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Abstract. We present the first protocol for efficient Fuzzy Private Set
Intersection (PSI) that achieves linear communication complexity, does
not depend on restrictive assumptions on the distribution of party inputs,
and abstains from inefficient fully homomorphic encryption. Specifically,
our protocol enables two parties to compute all pairs of elements from
their respective sets that are within a given Hamming distance, without
constraints on how these sets are structured.
Our key insight is that securely computing the (threshold) Hamming
distance between two inputs can be reduced to securely computing their
inner product. Leveraging this reduction, we construct a Fuzzy PSI pro-
tocol using recent techniques for inner-product predicate encryption. To
enable the use of predicate encryption in our setting, we establish that
these predicate encryption schemes satisfy a weak notion of simulation
security and demonstrate how their internal key derivation can be effi-
ciently distributed without a trusted third party.
As a result, our Fuzzy PSI on top of predicate encryption features not
only asymptotically optimal linear communication complexity but is also
concretely practical.

1 Introduction

Private Set Intersection (PSI) is an increasingly popular approach to enable col-
laborations in a variety of data-driven tasks. Given two parties, each with a set of
elements, PSI allows the computation of the intersection of the two sets without
revealing any additional information to the parties. Introduced in seminal works
such as Meadows [38] and Freedman et al. [22], PSI has since garnered signifi-
cant interest both from the research community and industry. This has led to
efficient PSI protocols as well as adoption and deployments by major companies
including Google [33], Meta [9], and Microsoft [39]. It turns out that communi-
cation complexity between parties typically represents the primary performance
bottleneck in real-world scenarios, as PSI computations often process data in



batches rather than real-time [33]. So, current state-of-the-art in PSI features
optimal linear communication complexity in the size of the parties’ input sets,
see [13, 26, 37, 49] for an overview.

While traditional PSI identifies exact matches between elements, many real-
world applications require finding elements within a distance threshold. Exam-
ples include matching network traffic features in security logs, comparing bio-
metric data like fingerprints, analyzing GPS coordinates, and identifying DNA
sequence variations.

The idea of relaxing the element equality constraint, generally referred to as
Fuzzy PSI (FPSI) was initially also mentioned by Freedman et al. [22]. In Fuzzy
private set intersection (FPSI), two parties hold their own set of vectors. A pair
of vectors, one from each set, is considered to be in the intersection if the distance
between them is below a predefined threshold. However, as näıve solutions result
in exponential communication cost (in the data dimension), efficient solutions
were left for future work. It is only lately that FPSI has seen a revival of interest
due to the applications needs and the industry’s general interest and adoption
of PSI techniques.

Many solutions have recently been proposed that significantly improve the
communication and computation complexity of FPSI protocols [18, 24, 27, 28,
50, 55, 57]. Yet, current solutions achieve linear communication complexity in the
dataset size only by making strong assumptions about input data distributions.
These structure-aware PSI approaches require specific data properties for input
sets, such as minimum distance thresholds between elements or distinct element
differences across dimensions. While current approaches demonstrate high effec-
tiveness when applied to datasets that conform to their underlying structural
assumptions, no existing solution achieves linear communication complexity for
arbitrarily distributed input data. However, in cases where input data is unpre-
dictable, deviates from idealized distributions, or fails to meet strict minimum
distance thresholds, FPSI solutions for arbitrary input distributions are essential.

This paper introduces an efficient FPSI protocol achieving linear communi-
cation complexity for arbitrary input distributions. Our protocol computes the
intersection of vectors from two parties within a Hamming distance threshold t.
By leveraging inner-product predicate encryption, we reduce (private) fuzzy in-
tersection computation to (private) testing whether vector inner-products match
specific values. Pairwise testing to verify that one party’s inputs are within a
specified Hamming distance of the other party’s inputs can be performed offline,
eliminating the need for any communication. Instead, one party simply sends
encryptions of their input vectors, and the other party obtains decryption keys
for each of their input vectors, leading to both linear communication complexity
and concrete practicality.

While we discuss related work in great detail later in Section 5, we compare
the main features of our protocol to related work in Table 1.

In summary, the technical highlights of this paper are:

– We present the first scheme to securely realize fuzzy private set intersection
for Hamming distance, featuring linear communication complexity in the size
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Table 1. Comparison of asymptotic communication and computation complexities.
For protocols with multiple variants, we summarize lower bounds to highlight key
parameters. S: FPSI sender, R: FPSI receiver, nS , nR: number of vectors from S and
R (denoted as n when nS = nR), ℓ: vector length, t: threshold, B1, B2 : FHE parameters

Protocol Metric Assumption Communication Computation

[56] Hamming FPR/FNR O(ℓnSnRB1)
S : O(ℓnSnRB2)
R : O(

(
ℓ
t

)
nR)

[12] Hamming and L1 FPR O(nSnRt
2) S : O((ℓ+ t2)nSnR)

R : O((ℓ+ t)nSnR)

[24]

Hamming R. UniqC O(ℓ2nS + ℓtnR)
S : O(ℓ2nS)
R : O(ℓ2nS + ℓtnR)

L∞ R ∧ S. disj. proj. O(ℓt(nS + nR))
S : O(ℓtnS + nR)
R : O(nS + ℓtnR)

Lp R ∧ S. disj. proj. O((ℓt+ p log t)nS +
ℓtnR)

S : O((ℓt+
p log t)nS + nR)
R : O(nS + ℓtnR)

[18] Hamming
(generalizes to other)

d(x, y) ≤ t or
d(x, y) ≥ δt, δ > 3 O(n1+ 1

δ−1 ) S/R : O(n1+ 1
δ−1 )

[27]

L∞

nR receiver balls:
radius t, separated

c · t, c > 2
O((4 log t)ℓnR + nS)

S : O((2t)ℓnR)
R : O((2 log t)ℓnS))

c > 4 O(2ℓℓnR log t+ nS)
S : O((2t)ℓnR)
R : O(ℓnS log t)

L∞ ∃ disj. proj. O(ℓnR log t+ nS) S : O((2t)ℓnR)
R : O(ℓnS log t)

[57]

Lp, L∞

nR receiver balls:
radius t, separated

c · t, c > 2
O(tℓnR + 2ℓnS)

S : O(2ℓtnS)
R : O(tℓnR + 2ℓnS))

c > 4 O(t2dℓnR + nS)
S : O(ℓnS)
R : O(t2ℓℓnR + nS))

L∞ ∃ disj. proj. O((tℓ)2nR + nS)
S : O(ℓ2nS)
R : O((tℓ)2nS + nR)

Lp c > 2t(ℓ
1
p + 1) O(tpnS + t2ℓℓnR)

S : O((ℓ+ tp)nS)
R : O(nS + t2dℓnR))

[50] L1, L2, L∞
Disjoint Hash,

0 ≤ s ≤ ℓ
Ω(ℓ(nS2

s + nR2
ℓ−s))

S : Ω(ℓnS2
s)

R : Ω(ℓnR2
ℓ−s)

Ours Hamming None O(ℓt(nS + nR))
S : O(ℓt(nS + nR))
R : O(ℓtnSnR)

– FPR/FNR: assumes that receiver can tolerate non-negiligible false positive/negative rate.
– R. UniqC: assumes that for each vector of R there exists at least t+1 dimensions such that on

each of these dimensions this vector has a unique value different from all other elements of R.
– R. disj. proj.: assumes that for each vector y of R there exists at least one dimension j on which

we have |y[j] − y′[j]| > 2t for all other elements y′ of R.
– R ∧ S. disj. proj.: assumes that disj. proj. assumption holds for sender and receiver sets.

of parties’ input sets. Our techniques do not make any restrictive assumption
on the structure or distribution of the parties’ sets.

– To be able to employ current schemes for inner-product predicate encryp-
tion, we introduce notions of weak selective security for preimage sampleable
predicate encryption, both as an indistinguishability game-based formulation
(IND-WSS) and as a simulation-based formulation (Sim-WSS). We prove,
first, that IND-WSS ⇒ Sim-WSS and that current selectively secure predi-
cate encryption schemes are IND-WSS secure.

– We design a two-party, distributed, and concretely practical version of the
key derivation scheme for the predicate encryption scheme by Park [48]. A
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Parameters: Number nS of input vectors xi from Sender S, number nR of input vec-
tors yi from Receiver R where xi,yi ∈ {0, 1}ℓ, vector length ℓ, thresh-
old t

1. Wait for input InS = (x1, . . . ,xnS ) from sender S and InR = (y1, . . . ,ynR) from
receiver R.

2. Output OutR = {(xi,yj)|xi ∈ InS ,yj ∈ InR s.t. HD(xi,yj) < t} to R.

Fig. 1. Ideal fuzzy PSI functionality FFPSI

two-party key derivation instead of relying on a trusted third party is an
important building block in our main construction.

– To show concrete practicality of our techniques, we implement and bench-
mark them. Upon publication of the paper, the source code will be made
available for download.

For completeness sake, we mention that recent structure-aware FPSI research
has addressed various distance metrics, not only Hamming distance, but also L1,
L2, Ln, and L∞ norms. Also, Chongchitmate et al. [18] demonstrated how low-
distortion embeddings can extend Hamming distance methods to other metrics
like Levenshtein (edit) distance, Euclidean distance, and angular distance.

1.1 Our results in a nutshell

This paper addresses the secure computation of Fuzzy Private Set Intersection
(Fuzzy PSI), formalized as an ideal functionality in Figure 1. In this setting, a
sender S holds an input set InS = {x1, . . . ,xnS

}, and a receiver R holds an input
set InR = {y1, . . . ,ynR

}. Each element xi and yj is a binary vector of length ℓ,
i.e., xi,yj ∈ {0, 1}ℓ. The goal is to compute the fuzzy intersection of InS and
InR, defined as all pairs (xi ∈ InS ,yj ∈ InR) such that their Hamming distance
HD(xi,yj) is below a threshold t. The crucial security requirement is that R
learns only the fuzzy intersection, while S learns nothing about R’s input.

We propose a new protocol ΠFPSI that securely realizes the ideal functionality
FFPSI from Figure 1. Our construction follows two main steps: (1) we design
ΠFPSI assuming the existence of a black-box inner product functionality, and (2)
realizing this black-box functionality through inner product predicate encryption
techniques.

Constructing ΠFPSI from Inner Products: Assume access to a black-box function-
ality that, given input vectors x from S and y from R, outputs to R whether
the inner product ⟨x,y⟩ equals a threshold τ . Beyond this output, R does not
learn anything about the input of S, and S does not learn anything about R’s
input.

If we have such a black-box functionality, the idea is then to exploit a relation
between the Hamming distance of two vectors and their inner product. Roughly
speaking, sender S creates a new vector x′ out of x, and Receiver R a new vector
y′ out of y such that HD(x,y) = ⟨x′,y′⟩ holds [36]. So, we convert the problem
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of testing whether x and y have Hamming distance τ to the problem of testing
whether the inner product of x′ and y′ equals τ . To compute whether for the two
vectors x and y their Hamming distance is less than a threshold t, we compute
for τ ∈ {0, . . . , t} whether ⟨x′,y′⟩ = τ . So in conclusion, we construct our fuzzy
PSI protocol ΠFPSI by iterating over inner product tests.

At this point, we omit subtleties about R learning the exact Hamming dis-
tance instead of only learning whether the Hamming distance is less than t and
refer to Section 2 for full details. Also, we relegate aspects such as the need for
the black box inner product functionality revealing x in case ⟨x′,y′⟩ = τ to
Section 2.

Secure, Efficient Two-Party Inner Product Computation: The second step is to
actually build such a black-box inner product test functionality described above
with the goal of achieving communication complexity linear in sizes nS and nR

of the parties’ input sets.

We employ a sub-type of functional encryption called predicate encryption
for inner product predicates. This encryption allows one party to encrypt a
message m under a vector x ∈ Zℓ

p to obtain ciphertext c. Another party with

vector y ∈ Zℓ
p and corresponding secret key sky can decrypt c to retrieve m if

and only if ⟨x,y⟩ = 0. If ⟨x,y⟩ ̸= 0, decryption fails, revealing no information
about m or x beyond the inequality of the inner product. The idea is that S
encrypts each xi with itself (m = xi) and sends the resulting ciphertexts to R.
Receiver R obtains decryption keys skyj

for each yj and tests whether they can
decrypt each ciphertext, yielding a simplified version of the black-box we want.
The communication cost of these steps is linear in nS and nR.

However, using predicate encryption again presents two technical challenges.
First, practical predicate encryption schemes are only selectively secure under
game-based definitions. This renders secure composition as part of our main
construction ΠFPSI difficult. Second, as with functional encryption also predicate
encryption is typically run by a trusted third party that sets up the keys (public
key, master secret key) and serves secret keys sky to recipients using a key
derivation algorithm. In our fuzzy PSI scenario, there are only two parties, sender
and receiver, who cannot resort to a trusted third party.

We address the first challenge by devising a new weak(er) selective security
definition for predicate encryption for which we can show that it implies a weak
notion of simulation-based security that is sufficiently strong to be useful for our
purposes. As this new simulation-based security definition is implied by current
selectively secure predicate encryption schemes, we can use these schemes as a
simple hybrid in our constructions.

We solve the second challenge by letting the fuzzy PSI Sender S run the
trusted third party and set up the system. Then, for each query for a decryption
key sky from Receiver R, we propose a new two-party key derivation protocol,
where the input from S is the master secret key, the input from R is y, and
the only information R learns is sky. Sender S does not learn anything about
y. Although such a two-party key derivation protocol can be achieved by re-
verting to general 2PC techniques, the outcome is often impractical in terms of
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high communication or computation costs. Consequently, we design a new con-
cretely practical OT-based protocol tailored to a recent inner product predicate
encryption scheme, maintaining linear communication complexity in nR.

Summary: By abstracting these two steps, we arrive at the following informal,
simplified description of protocol ΠPEI.

1. Sender S sets up a predicate encryption scheme for inner products, encrypts
slightly modified versions of each input vector xi, and sends the resulting
ciphertext ci to Receiver R.

2. S and R engage in a two-party distributed key derivation protocol allowing
R to obtain a secret key skyj

for a slight variation of each of R’s input vectors
yj .

3. For each combination of ci and skyj , R tries to decrypt ci. A successful
decryption reveals that the inner product of xi and yj satisfies a specific
condition, implying that xi and yj are within a certain Hamming distance.
Simultaneously, R recovers xi and adds the pair (xi,yj) to the fuzzy inter-
section.

The resulting communication complexity is in O(nS + nR) for sending all
ciphertexts from S to R and obtaining secret keys. Computational complexity is
in O(nS ·nR) as R has to try all possible combinations of ciphertexts and secret
keys.

1.2 Preliminaries

Before presenting technical details of our main protocol for fuzzy PSI, we briefly
summarize the notation used throughout this paper.

To denote a length-n ordered sequence of elements xi, we write (x1, . . . , xn).
Vectors x are sequences of elements and written in bold fonts. For vector x =
(x1, . . . , xn) of length n, we write x[i] to denote the ith element xi. We use
i ∈ [n] as a shorthand for i ∈ {1, . . . , n} and (xi)i∈[n] as a shorthand for sequence
(x1, . . . , xn).

Finally, we make use of predicates [A
?
= B] that can either evaluate to 1 (true)

or 0 (false). If A equals B, then [A
?
= B] evaluates to 1, otherwise it evaluates to

0.
For Fuzzy PSI, the inputs of sender and receiver are sets, and each element in

the set is a vector. As we will see later in Section 3, predicate encryption schemes
are defined over attribute vectors over vector space Zℓ

p. At the same time, Fuzzy
PSI requires binary vectors over {0, 1} as input, and other functionalities need
vectors over {−1, 1} as input. If clear from the context, we will use terms attribute
vectors and vectors interchangeably in this paper.

Security model: We operate within the semi-honest security model which assumes
that sender or receiver may act as passive adversaries. As a result, our security
proofs will each demonstrate the existence of two simulators, one to simulate
the sender and one to simulate the receiver. Each will be shown to reproduce
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Parameters: Prime p, vector length ℓ, number nS of input vectors xi ∈ {−1, 1}ℓ from
Sender S, number nR of input vectors yj ∈ {−1, 1}ℓ from Receiver R,
set T ⊂ N

1. Wait for vectors (xi)i∈[nS ] from S.
2. Wait for vectors (yj)j∈[nR] from R.
3. Send (bi,j,τ , x̂i,j,τ )i∈[nS ],j∈[nR],τ∈T to R, where

bi,j,τ = [⟨xi,yj⟩
?
= τ ], x̂i,j,τ =

{
xi, if bi,j,τ = 1

⊥, otherwise.

Fig. 2. Ideal restricted inner-product predicate encryption functionality FPEI

the respective party’s view of a real protocol execution, given only inputs and
outputs derived from the ideal functionality.

2 Protocol Details

This section focuses on our main contribution, a protocol ΠFPSI securely realizing
ideal fuzzy PSI functionality FFPSI. To simplify exposition and ease understand-
ing, we assume for now the existence of an ideal functionality FPEI as shown in
Figure 2. We will use FPEI in the construction of protocol ΠFPSI as a building
block. Later in Section 3, we then describe the actual protocol implementing
building block FPEI.

The main idea behind ideal functionality FPEI is that Sender S sends their
input vectors xi ∈ {−1, 1}ℓ to a trusted third party (TTP), and also Receiver
R sends their vectors yj ∈ {−1, 1}ℓ to the TTP. Observe that, for FPEI, input
vectors xi and yj are over {−1, 1} and not binary vectors. For set T ⊂ N, the
TTP then sends back to R whether, for all xi, yj , and τ ∈ T , the inner products
are equal to τ . That is, Receiver R learns all predicates [⟨xi,yj⟩

?
= τ ]. Moreover,

in case ⟨xi,yj⟩=τ , R also learns xi.
We call FPEI a restricted inner-product predicate encryption functionality, as

it is close to regular predicate encryption for inner product predicates, but we are
restricting to input vectors over {−1, 1} instead of Zp and require inner products
equal to τ . We will clarify details in Section 3.

2.1 Building Fuzzy PSI with FPEI

The key challenge to overcome when privately computing fuzzy PSI for the Ham-
ming distance is to privately compute the Hamming distance itself. Our approach
for privately computing the Hamming distance exploits a relation between the
Hamming distance HD(x,y) of two vectors x and y and their inner product
⟨x,y⟩.

In general, the Hamming distance of two binary vectors x,y ∈ {0, 1}ℓ can
be computed using the inner product with the following standard trick [36]. For
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vector x ∈ {0, 1}ℓ (and similarly y) construct vector x′ ∈ {−1, 1}ℓ (and similarly
y′) by setting x′[i] = −1 if x[i] = 0, and x′[i] = 1 if x[i] = 1. As a consequence,

we have HD(x,y) = ℓ−⟨x′,y′⟩
2 .

To compute [HD(x,y)
?
= t] for some t ∈ N, we just have to check whether

[⟨x′,y′⟩ ?
= ℓ− 2t]. That is, for τ = ℓ− 2t, we have

[HD(x,y)
?
= t] = [⟨x′,y′⟩ ?

= τ ],

which we can compute using FPEI.
To check whether the Hamming distance of vectors x and y is less than some

threshold t, [HD(x,y)
?
< t] = 1, we iteratively compute for θ ∈ (0, . . . , t − 1)

whether [HD(x,y)
?
= θ] = 1 by setting T in FPEI appropriately. Specifically, to

compute [HD(x,y)
?
< t], we compute [⟨x′,y′⟩ ?

= τ ] for τ ∈ T = {ℓ−2t+2, . . . , ℓ}
with FPEI.

As soon as [HD(x,y)
?
< t] = 1, this approach leaks t to the adversary which is

more than an ideal functionality computing [HD(x,y)
?
< t] would leak. However,

in the specific context of Fuzzy PSI, this additional leakage is consistent with the
target functionality: for the case HD(x,y) < t, the Fuzzy PSI ideal functionality
FFPSI of Figure 1 outputs x anyway in the clear to receiver R which allows R to
also compute HD(x,y).

We conclude by presenting both an ideal functionality F<t
HD and a realizing

protocol Π<t
HD that for two sets of vectors (xi)i∈[nS ] and (yj)j∈[nR]

1. output [HD(xi,yj)
?
< t] to R and

2. output xi and HD(xi,yj) to R if HD(xi,yj) < t.

Figure 3 shows F<t
HD, and Figure 4 shows Π<t

HD. Protocol Π
<t
HD follows exactly

the intuition we have described above.

Lemma 1. Protocol Π<t
HD securely realizes F<t

HD in the FPEI-hybrid model with
parameter T = {ℓ− 2t+ 2, . . . , ℓ}.

Proof. Regarding correctness, recall, first, our conversion between vectors over
{0, 1} and {−1, 1}. More importantly, observe that the way we construct vectors
x′

i and y′
j leads to

[⟨x′
i,y

′
j⟩

?
= τ ] = [HD(xi,yj)

?
=

ℓ− τ

2
].

So, for each θ ∈ {0, . . . , t − 1}, R learns HD(xi,yj)
?
= θ which allows them

to correctly compute and output both bi,j , βi,j , and zi,j in the last step of
Protocol Π<t

HD.
For security, we construct simulators SimS and SimR for the views of S and

R.

8



Parameters: Threshold t, vector length ℓ, number nS of input vectors xi ∈ {0, 1}ℓ
from S, number nR of input vectors yj ∈ {0, 1}ℓ from R

1. Wait for vectors (xi)i∈[nS ] from Sender S.
2. Wait for vectors (yj)j∈[nR] from Receiver R.
3. Send (bi,j , βi,j , zi,j)i∈[nS ],j∈[nR] to R where

bi,j = [HD(xi,yj)
?
< t]

βi,j =

{
⟨xi,yj⟩, if bi,j = 1

⊥, otherwise.

zi,j =

{
xi, if bi,j = 1

⊥, otherwise.

Fig. 3. Ideal functionality F<t
HD

SimS((xi)i∈[nS ]): This simulator is trivial, as S does not receive any message
or output. It simply runs the simulator for the sender in the FPEI-hybrid using
arbitrary input to create the view for S.

SimR((yj)j∈[nR], (bi,j , βi,j , zi,j)i∈[nS ],j∈[nR]) : Again, the only messages that
SimR has to generate for R are the responses from FPEI. For this, SimR calls the
receiver’s simulator of the FPEI-hybrid. As input to this simulator, SimR uses
the (y′

j)j∈[nR]. For its output part, the FPEI simulator requires nSnR · |T | pairs
(bi,j,τ , x̂i,j,τ ). For each bi,j = 1 in its own input, SimR sets the output pair for
the FPEI simulator to (b

i,j,
ℓ−βi,j

2

= 1, x̂
i,j,

ℓ−βi,j
2

= zi,j) and all other pairs to

(0,⊥).

2.2 Fuzzy PSI Protocol ΠFPSI

With F<t
HD at hand, the construction of a fuzzy PSI protocol becomes straight-

forward. In our fuzzy PSI protocol ΠFPSI shown in Figure 5, Receiver R simply
outputs each yj and corresponding xi = zi,j for which bi,j from F<t

HD equals 1.
So, R outputs the xi that are within Hamming distance less than t to yj , as
indicated by bi,j = 1.

Theorem 1. Protocol ΠFPSI securely realizes FFPSI in the F<t
HD-hybrid model.

Proof. Correctness of FFPSI follows immediately from the correctness of the F<t
HD-

hybrid: R outputs the set of (xi,yj) that have Hamming distance less than t
which is the definition of Fuzzy PSI output.

For security, we construct simulators SimS for S and SimR for R. Note that
S shuffles their input using a random permutation π before sending it to the
F<t

HD-hybrid. This is a standard trick, so that R does not learn the real indices of
S’s input in the intersection. Not to overload notation in the following, we will
just write xi to denote the ith input of S to ΠFPSI even though it is actually the
π(i)th input.
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Input of S: (xi)i∈[ns],xi ∈ {0, 1}ℓ

Input of R: (yj)j∈[nR],yj ∈ {0, 1}ℓ

Parameters: Threshold t, an ideal functionality FPEI for length ℓ vectors and τ ∈ T =
{ℓ− 2t+ 2, . . . , ℓ}

Protocol:

1. For i ∈ [nS ],
(a) Sender S creates vector x′

i by replacing each 0 in xi by a −1.
(b) S sends x′

i to FPEI.
2. For j ∈ [nR]

(a) Receiver R creates vector y′
j by replacing all 0 elements of yj by −1.

(b) R sends y′
j to FPEI.

3. For i ∈ [nS ], j ∈ [nR], and τ ∈ T = {ℓ − 2t + 2, . . . , ℓ} FPEI sends (ui,j,τ ,vi,j,τ )
back to R.

4. For i ∈ [nS ], j ∈ [nR],
– if ∃(i, j, τ) such that ui,j,τ = 1, R outputs (bi,j = 1, βi,j = ℓ−τ

2
, zi,j = vi,j,τ ),

where every −1 element of vi,j,τ is replaced by a 0.
– otherwise, if ̸ ∃ui,j,τ = 1, R outputs (bi,j = 0, βi,j = zi,j = ⊥).

Fig. 4. Protocol Π<t
HD realizing F<t

HD in the FPEI-hybrid model

Input of S: Input vectors (xi)i∈[nS ], xi ∈ {0, 1}ℓ

Input of R: Input vectors (yj)j∈[nR], yj ∈ {0, 1}ℓ

Parameters: Number ns of input vectors from S, number nR of input vectors from
R, vector length ℓ, threshold t

Protocol:

1. S sends (xi)i∈[nS ] in shuffled order to F<t
HD , and R sends (yj)j∈[nR] to F<t

HD .
2. R receives back (bi,j , βi,j , zi,j)i∈[nR],j∈[nS ] from F<t

HD .
3. For each bi,j = 1, R outputs (zi,j ,yj).

Fig. 5. Fuzzy PSI Protocol ΠFPSI in the F<t
HD -hybrid model

SimS((xi)i∈[nS ]) : Sender S does not receive any message or produce any
output, so SimS just runs the sender’s simulator of the F<t

HD-hybrid with arbitrary
input to generate S’ view.

SimR(InR = (yj)j∈[nR],OutR = {(xi,yj)|HD(xi,yj) < t}) : To generate
the view of Receiver R, SimR runs the receiver’s simulator of the F<t

HD-hybrid
with the following input and output. The input for the F<t

HD simulator is simply
InR = (yj)j∈[nR]. For the output (bi,j , βi,j , zi,j) of the F<t

HD simulator, SimR sets

– for each (xi,yj) ∈ OutR, bi,j = 1, βi,j = ⟨xi,yj⟩, and zi,j = xi.

– for all i ∈ [nS ] and j ∈ [nR] such that (xi,yj) ̸∈ OutR, bi,j = 0, βi,j = ⊥,
and zi,j = ⊥.
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3 Realizing FPEI

After presenting protocol ΠFPSI for Fuzzy Private Set Intersection, we now turn
to the construction of its core component, a protocol for ideal functionality hy-
brid FPEI. Our approach is based on predicate encryption techniques for inner
product predicates, which, as we will demonstrate, already achieve a function-
ality closely aligned with FPEI. However, embedding predicate encryption as a
building block within a more complex protocol introduces additional technical
challenges. Below, we begin with an introduction to relevant predicate encryp-
tion schemes, their challenges, and how to realize FPEI with them.

3.1 Predicate Encryption

Informally, predicate encryption is a sub-class of functional encryption where
the decryption of a ciphertext is possible only if a predicate function f over
private key and ciphertext evaluates to 1, see [7, 8, 36, 47, 54] for an overview.
More specifically, a predicate encryption scheme for function f encrypts plaintext
m under attribute x to ciphertext c. A receiver holding the private key for an
attribute y can decrypt c back to m if and only if function fy(x) evaluates to 1.

Standard examples for predicate functions f include identity-based encryp-
tion [5, 6, 52, 53], where attributes x and y could be identities (such as bit
strings). In this case, fy(x) outputs 1 if and only if x = y. In attribute-based
encryption [4, 32, 59], attributes x and y come from different attribute spaces.
Here, x can be a Boolean formula in n variables, and y is an assignment for the n
variables. Predicate function fy(x) evaluates to 1 if and only if Boolean formula
x evaluates to true for assignment y.

As with functional encryption, predicate encryption is typically applied in
scenarios where the receiver of ciphertext c has to ask a third trusted party for
private keys corresponding to attribute y. For example, in ID-based encryption,
the receiver would need to show valid credentials to the TTP to get back the
private key that allows decryption of all ciphertexts encrypted under their ID y.

The above examples of predicate encryption are called payload hiding. A
ciphertext encrypting a payload (plaintext m) under attribute x can only be
decrypted by a private key for attribute y, if fy(x) evaluates to 1. In this paper,
we require a simplified variation of payload-hiding predicate encryption where
the payloadm is the actual attribute x. So, after decryption, the receiver does not
only learn that fy(x) = 1, but they also learn x in the clear. We will show later
in Appendix A that any predicate encryption scheme trivially realizes simplified
predicate encryption by setting plaintext m = x.

We now formalize the intuition behind this simplified predicate encryption
and then define its security properties.

Definition 1. For attribute space Σ, let predicate f : Σ × Σ → {0, 1} be a
function mapping two attributes x and y from Σ to either 1 or 0.

Let λ be the security parameter and C the ciphertext space. A simplified pred-
icate encryption scheme PE = (Setup,KDer,Enc,Dec) for predicate f is defined
as
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– (pk,msk) ← Setup(1λ): generates a public key pk and a master secret key
msk.

– sky ← KDer(msk, y): on input master secret key msk and an attribute y ∈
Σ, this algorithm outputs a secret key sky.

– c ← Encpk(x): using public key pk, this algorithm takes attribute x ∈ Σ to
output a ciphertext c ∈ C.

– {x,⊥} ← Decsky
(c): for secret key sky and a ciphertext c, this algorithm

outputs either x ∈ Σ or ⊥.

For correctness, we require that, for all x, y ∈ Σ such that fy(x) = 1,

Pr[Decsky (c) = x : (pk,msk)← Setup(1λ), sky ← KDer(msk, y),

c← Encpk(x)] = 1

must hold.

Discussion: In the definition above, we limit expressiveness and present the
simplified version of predicate encryption only to suit our application’s specific
needs and to ease notation. For completeness sake, note that, in the general
case of predicate encryption, f could also be defined over two different input
spaces. There also exist predicate-only predicate encryption schemes that do not

encrypt a plaintext, but only output whether fy(x) = 1, i.e., [fy(x)
?
= 1]. Also

in this paper, we only consider so called (strongly) attribute-hiding, payload-
hiding predicate encryption where x and m are both hidden in case the receiver
uses a secret key y where fy(x) = 0. We stress that predicate-only predicate
encryption does not give us the same properties as what we target with our
simplified predicate encryption, and we discuss differences in Section 3.7. We
also point out that several other types of predicate encryption schemes with
different security guarantees exist. For a more in-depth introduction, we refer to
[7, 36, 47]. We discuss these variations and their use for our main construction
also later in Section 3.7.

Of specific interest in this paper are predicate encryption schemes for the
prominent inner-product predicate [1, 16, 20, 31, 34, 36, 43–46, 48, 60]. There,
attributes x and y are length-ℓ vectors from vector space Σ = Zℓ

p for a prime
p with |p| = λ, and fy(x) = 1 if and only if they are orthogonal, so their inner
product ⟨x,y⟩ is 0.

As simplified predicate encryption for the inner-product predicate over Zℓ
p is

at the core of this work, we will just write predicate encryption as a shorthand
for brevity from now on if obvious from the context. We will also stick to vector
notation x for attributes from now on.

3.2 Security of Predicate Encryption

The standard, strong security definition for predicate encryption is adaptive se-
curity. The idea is that the adversary learns, first, the public key and then gets
oracle access to KDer before specifying their challenge attribute(s). For predicate
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encryption of general predicates as well as for functional encryption of general
functions, it has previously been shown that is difficult to find simulation-based
security definitions and prove security in the standard model [7, 11, 47]. Similar
to adaptive simulation-based security for public key encryption [42], the main
challenge is that the simulator would have to send a ciphertext to the adversary
without knowing which decryption keys the adversary will request in the future,
so which information the adversary will be able to compute from the underlying
plaintext.

Recent works have introduced sophisticated predicate encryption schemes
that achieve adaptive simulation security for inner product predicates [1, 20, 31,
60]. While these schemes could theoretically serve as hybrid functionalities within
our main Fuzzy PSI protocol and its security proof, the resulting scheme would
not necessarily be practical or even implementable. The concrete practicality of
these recent schemes remains uncertain due (I) their use of fully-homomorphic
encryption as a building block, (II) use of complexity leveraging in their security
argument or (III) individual ciphertext and key sizes being linear in the number
of plaintexts. Concrete practicality of recent theoretical advances has yet to be
validated through implementations and parameter evaluations, as no concrete
implementations or performance assessments currently exist.

Game-Based Security: An alternative line of work has presented predicate en-
cryption schemes that are proven secure for a game-based security definition [16,
34, 36, 43–46, 48]. Some of these schemes offer only selective security (see discus-
sion below), work in impractical groups of composite order or have large key sizes.
Yet, there exist other schemes that are not only asymptotically efficient, but also
concretely practical with implementations available [40, 48]. Unfortunately, using
a predicate encryption primitive secure under a game-based definition as a black-
box to prove simulation-based security of a more complex protocol realizing FPEI

(and ultimately Fuzzy PSI) is involved. There are no composability guarantees
implied by this type of security definition, and the security proof would need to
include a cumbersome reduction to the predicate encryption scheme.

A way to remedy this problem, and our strategy in this section, is to show that
a game-based definition implies a similar simulation-based definition. As a result,
any scheme providing the game-based security can be used as a hybrid function-
ality in the more complex protocol, offering the corresponding simulation-based
security. There has been only limited exploration of the relationship between
game-based and simulation-based security in predicate encryption so far. O’Neill
[47] was able to show for general functional encryption that a special type
of security called token-non-adaptive (TNA) security implies a corresponding
simulation-based definition. Unfortunately, current concretely practical predi-
cate encryption schemes [16, 34, 36, 43–46, 48] offer selective security, a notion
that is different from TNA security, and there is no simulation-based security
definition implied by selective security for predicate encryption schemes.

Roadmap for the remainder of this section: Surprisingly, we observe and prove
that FPEI can be implemented by any predicate encryption primitive that meets
a weak(er) notion of simulation-based security (Sim-WSS) that we introduce. We
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Experiment ExpIND-SS
PE,A (λ)

b
$←− {0, 1}

((xi,0,xi,1)i∈[n], st)← A1(1
λ)

(pk,msk)← Setup(1λ)
(ci ← Encpk(xi,b))i∈[n]

b′ ← AKDer(msk,·)
2 (pk, (ci)i∈[n], st)

If b = b′ output 1, else output 0.

Fig. 6. Selective security game-based definition

also show that this weaker notion of simulation security is implied by a weaker
notion of game-based security (IND-WSS) which, in turn, is already achievable
by existing predicate encryption schemes that are so far proven secure only
using a game-based, selective security definition. That is, we prove that existing
predicate encryption schemes can serve as simulation-secure building blocks to
securely realize FPEI under their respective hardness assumptions. Finally, we
show how to replace the TTP required in predicate encryption schemes to derive
keys by either a standard application of 2PC in the general case or even more
efficiently by a careful modification of the KDer algorithm in the scheme by Park
[48].

3.3 Selective Security

We follow the approach suggested by Boneh et al. [7] and O’Neill [47]. We
define a weak game-based definition for which we can show that it implies a
weak simulation-based security definition for predicate encryption. Our weak
simulation-based security definition might not have much utility for general
predicate encryption scenarios in other applications and other contexts, but it
is sufficiently strong to be useful as a building block in the special case of Fuzzy
PSI and securely realizing FPEI.

We start with a simplified game-based notion for selective security, matching
our simplified predicate encryption where the plaintext m equals the attribute
x under which it is encrypted. To avoid cumbersome notation, we adopt this
simplification without loss of generality, as it does not affect the validity of
our results. More precisely, the only difference between this simplified selective
security below and regular selective security is that the adversary cannot output
plaintexts m as part of their challenge. Appendix A shows that any predicate
encryption scheme with standard selective security from related work [36, 43,
44, 48] also trivially realizes simplified predicate encryption in the random oracle
model.

The main idea of selective security [2, 10, 29] in general is that the adversary
has to commit to the attributes they want to be challenged on before receiving the
public key. Below is the formal simplified selective security game-based definition
IND-SS (“IND-Selective Security”) for predicate encryption.
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Definition 2 (IND-SS). Let λ be the security parameter, PE = (Setup,KDer,
Enc,Dec) be a predicate encryption scheme, and A = (A1,A2) be an adversary.

Consider security experiment ExpIND-SS
PE,A (λ) in Figure 6 where xi,0,xi,1 ∈ Σ.

For each of A’s inputs y ∈ Σ to an oracle call KDer(msk, ·), it must hold that

1. (fy(xi,0) = fy(xi,1))i∈[n] and
2. for each i: if fy(xi,0) = fy(xi,1) = 1, then xi,0 = xi,1.

The probability that experiment ExpIND-SS
PE,A (λ) outputs 1 is

Pr[ExpIND-SS
PE,A (λ) = 1].

A predicate encryption scheme PE is called IND-SS secure iff for all PPT (λ)
adversaries A

AdvIND-SS
PE,A (λ) = 2 · Pr[ExpIND-SS

PE,A (λ) = 1]− 1

is negligible in λ.

As standard, Definition 2 requires equality of predicate evaluations and equal-
ity of attributes in case an attribute can be decrypted, so that A cannot trivially
derive b.

In the IND-SS security definition above as well as in all following definitions,
we specify security for multiple encryptions (Definition 12.5 of Katz and Lindell
[35]). The adversary can send n pairs of attribute vectors (xi,0,xi,1)i∈[n] instead
of a single pair of attributes (x0,x1). As with regular public key encryption,
also selectively secure predicate encryption schemes secure for one encryption
are secure for multiple encryptions using a standard hybrid argument, see, e.g.,
Lemma 6 of Gay [29].

3.4 Weak Selective Security

Yet, even for this selective security setting, it is unclear how to derive a simulation-
based definition, amenable for composition to prove the security of our fuzzy PSI
scheme, and that could be reduced to Definition 2. In the reduction, a simulator
Sim would receive an x from the adversary in the beginning and need to generate
an x′ such that fyi

(x) = fyi
(x′) for all yi that Sim would not have at this step.

Attributes yi become available to Sim only later during key derivation.
Our insight is that, for the specific case of Fuzzy PSI, the following weaker

definition of selective security for predicate encryption is sufficient. In our weaker
definition, the adversary commits to both the challenge attribute x as well as
all yi they will query for during key derivation up front. The weaker selective
game-based security implies a simulation-based security that we finally use in our
proof of Fuzzy PSI. In Section 3.7.3, we further discuss real-world implications
and use cases for predicate encryption schemes that meet our weaker security
definition.

Note that our weak selective security resembles the ones for arbitrary func-
tional encryption discussed by Garg and Srinivasan [25] and the “very selective”
security by Agrawal [1].
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Experiment ExpIND-WSS
PE,A (λ)

b
$←− {0, 1}

((xi,0,xi,1)i∈[n], (yj)j∈[n′], st)← A1(1
λ)

(pk,msk)← Setup(1λ)
K = (KDer(msk,yj))j∈[n′]

(ci ← Encpk(xi,b))i∈[n]

b′ ← A2(pk,K, (ci)i∈[n], st)
If b = b′ output 1, else output 0.

Fig. 7. Weak selective game-based definition

3.4.1 Game-Based Security

We now present our weak game-based security definition IND-WSS (IND-
“Weak Selective Security”). Both the game-based IND-WSS definition as well as
our simulation-based definition Sim-WSS later follow the game- and simulation-
based template definitions for adaptive security of O’Neill [47]. As with selective
security, the difference to these templates is that the adversary has to commit
to both the challenge attributes (xi,0,xi,1) and the yj before Setup is called,
and the adversary can only get keys for the yj they have initially committed
to. Interestingly, this weaker requirement proves sufficient for our fuzzy PSI
construction.

Definition 3 (IND-WSS). Let λ be the security parameter, PE = (Setup,KDer,
Enc,Dec) be a simple predicate encryption scheme, and A = (A1,A2) be an
adversary. Consider security experiment ExpIND-WSS

PE,A (λ) in Figure 7. All xi,0,
xi,1, and yj output by A1 must be such that

1. fyj
(xi,0) = fyj

(xi,1).
2. if fyj

(xi,0) = fyj
(xi,1) = 1, then xi,0 = xi,1.

The probability that experiment ExpIND-WSS
PE,A (λ) outputs 1 is

Pr[ExpIND-WSS
PE,A (λ) = 1].

A predicate encryption scheme PE is called IND-WSS secure iff for all PPT (λ)
adversaries A,

AdvIND-WSS
PE,A (λ) = 2 · Pr[ExpIND-WSS

PE,A (λ) = 1]− 1

is negligible in λ.

Before presenting the simulation-based security definition implied by IND-WSS,
we briefly show that IND-SS security implies IND-WSS security. With IND-WSS
being weaker than IND-SS, we can then later use any concretely practical selec-
tively secure predicate encryption scheme for inner-products in our implemen-
tation and evaluation. It will automatically satisfy our weak simulation-based
security definition, too.
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Experiment ExpPS
PE,A,B(λ)

((xi)i∈[n], (yj)j∈[n′])
$←− B(1λ)

(x′
i)i∈[n]

$←− A(1λ, (yj)j∈[n′], (fyj (xi)i∈[n],j∈[n′]))
If (fyj (x

′
i) = fyj (xi))i∈[n],j∈[n′] output 1, else output 0

Fig. 8. Preimage sampleability

Lemma 2. Let PE be an IND-SS secure predicate encryption scheme. Then, PE
is also IND-WSS secure.

Proof. Assume PE is not IND-WSS secure, so there exists adversary A∗ =
(A∗

1,A∗
2) in the IND-WSS game such that AdvIND-WSS

PE,A∗ (λ) is non-negligible in λ.
We construct adversary B = (B1,B2) for the IND-SS game in Figure 6 that uses
this adversary A∗ as a sub-routine. We show that AdvIND-SS

PE,B (λ) = AdvIND-WSS
PE,A∗ (λ).

B1 runs A∗
1 to get the xi,0,xi,1 and the (yj). B1 forwards the xi,0 and xi,1 to

the IND-SS challenger. After receiving public key pk and ciphertexts ci back, B2
asks key derivation oracle KDer for the private keys corresponding to attributes
(yj)j∈[n′]. Let the sequence of these private keys returned by the oracle be K.
Finally, B2 calls A∗

2 with pk, K, and the ci as input and outputs whatever A∗
2

outputs.
Our reduction is tight, as B has the same runtime and success probability as

A∗.

3.4.2 Preimage Sampleability

Before completing the transition from game-based to simulation-based se-
curity, we need one final ingredient. The predicate f for which our predicate
encryption scheme is defined for must be preimage sampleable [47]. Preimage
sampleability for f means that, given a sequence of fyj

(x) for some unknown x,
you can efficiently compute an x′ such that fyj

(x) = fyj
(x′) for all j.

Definition 4. Consider Experiment ExpPS
PE,A,B(λ) in Figure 8. A predicate f is

preimage sampleable iff there exists a PPT algorithm A such that, for every
PPT algorithm B, the probability that ExpPS

PE,A,B(λ) outputs 0 is negligible in λ.

Lemma 3. The inner-product predicate fy(x) = [⟨x,y⟩ ?
= 0] with x,y ∈ Zℓ

p is
preimage sampleable.

Proof (Sketch, also see O’Neill [47], Proposition 5.1). For each xi, A uses the
inner-product predicate results to set up a separate system of linear equations.
Consider the equations E0 for which the inner-product is 0 and E1 the equa-
tions for which the inner-product is non-zero. A computes a base (bk)k∈[s] for
E0’s kernel using Gaussian elimination. The kernel’s dimension s is at least 1
because we already know that at least one solution exists (i.e., x). A outputs
x′ =

∑s
k=1 rkbk, a random linear combination of the kernel’s base vectors. By

construction, x′ satisfies E0. It also satisfies E1 with probability at least 1−n
p .
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ExpSim-WSS-real
PE,A (λ) ExpSim-WSS-ideal

PE,A,Sim (λ)

((xi)i∈[n], (yj)j∈[n′], σ)← A1(1
λ) ((xi)i∈[n], (yj)j∈[n′], σ)← A1(1

λ)

(msk, pk)← Setup(1λ) (msk, pk)← Setup(1λ)
K = (KDer(msk,yj))j∈[n] K = (KDer(msk,yj))j∈[n]

cr ← (Encpk(xi))i∈[n] cs ← Sim(pk, (yj , fyj (xi))i∈[n],j∈[n′],K)
σ′ ← A2(pk, cr,K) σ′ ← A2(pk, cs,K)
If σ = σ′ output 1 else 0. If σ = σ′ output 1 else 0.

Fig. 9. Simulation-based security experiments

3.4.3 Simulation-based Security

Finally, we present our simulation-based security definition Sim-WSS (“Sim-
weak selective security”).

Definition 5 (Sim-WSS). Let λ be the security parameter, PE = (Setup,KDer,
Enc,Dec) be a predicate encryption scheme, and A = (A1,A2) be an adversary.
Consider the two security experiments ExpSim-WSS-real

PE,A (λ) and ExpSim-WSS-ideal
PE,A,Sim (λ)

in Figure 9.
Let the probability that experiment ExpSim-WSS-real

PE,A (λ) outputs 1 be

Pr[ExpSim-WSS-real
PE,A (λ) = 1].

Let the probability that experiment ExpSim-WSS-ideal
PE,A (λ) outputs 1 be

Pr[ExpSim-WSS-ideal
PE,A (λ) = 1].

A predicate encryption scheme PE is called Sim-WSS secure iff there exists a
PPT (λ) simulator Sim such that for all PPT (λ) adversaries A,

AdvSim-WSS
PE,A,Sim(λ) =Pr[ExpSim-WSS-real

PE,A (λ) = 1]− Pr[ExpSim-WSS-ideal
PE,A (λ) = 1]

is negligible in λ.

The security intuition behind this definition is thatA1 outputs vectors (xi)i∈[n]

and (yj)i∈[n′], but also some value σ. Only after this step is the public/master
key setup. In the real experiment, (xi)i∈[n] is encrypted into a ciphertext cr. A
scheme is simulation secure if there exists a simulator Sim that can generate a
ciphertext cs using only the output of the ideal functionality, the public key pk
and K (the set of private keys for (yj)i∈[n′]), such that allowing any adversary A2

access to the ciphertext cr, along with the public key pk and K does not give it
a non-negligible advantage, to guess σ, over a run using cs the ciphertext output
by the Sim. The intuition is that the ciphertext does not reveal anything about
the (xi)i∈[n] that cannot be simulated from the output of the ideal functionality.

Lemma 4. Let PE be an IND-WSS secure predicate encryption scheme for a
preimage sampleable predicate function. Then, PE is also Sim-WSS secure.
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Proof. Assume PE is not Sim-WSS secure. Consequently, for any simulator Sim,
there exists an adversary A = (A1,A2) from the Real and Ideal experiments of
Definition 5 such that, the advantage AdvSim-WSS

PE,A,Sim(λ) is not negligible (intuitively
distinguishing the real ciphertext cr from the simulator ciphertext cs). We will
use the preimage samplability property to build a specific simulator Sim∗. Given
our assumption that PE is not Sim-WSS secure, it means that there exists a
corresponding adversary A∗ = (A∗

1,A∗
2) from the Real and Ideal experiments

of Definition 5 such that, AdvSim-WSS
PE,A∗,Sim∗(λ) is not negligible. We will use Sim∗

and A∗ to construct an adversary B = (B1,B2) for the IND-WSS experiment of
Definition 3.

Constructing B: Adversary B1 starts by runningA∗
1. It obtains ((xi,0)i∈[n], (yj)j∈[n′], σ).

As predicate functions fyj
are preimage sampleable, B1 uses the yj to compute

an (xi,1)i∈[n] such that, for all yj∈[n′], predicates fyj are the same for xi,0 and
xi,1, so fyj (xi,0) = fyj (xi,1).

Observe that, with non-negligible probability, there exists an i ∈ [n] such that
xi,1 ̸= xi,0 and for all j ∈ [n′]: fyj

(xi,0) = fyj
(xi,1) = 0. Otherwise, PE would

already be Sim-WSS secure, because the fyi
(xi,0) would automatically reveal

xi,0 to the adversary by preimage sampling. Specifically, if for the computed
(xi,1)i∈[n] it would hold that (xi,0 = xi,1)i∈[n] or fyj (xi,0) = 1 (which would
reveal xi,0), with probability 1−negl(λ), then it is possible to create the follow-
ing simulator Sim′ for Definition 5. Simulator Sim′ computes inputs (xi,0)i∈[n]

using preimage sampling and encrypts cs ← (Encpk(xi,0))i∈[n]. No adversary
A2’s output can be distinguished using input (pk, cr = (Encpk(xi,0))i∈[n],K) or
(pk, cs = (Encpk(xi,0))i∈[n],K). This would contradict our assumption that PE
is not Sim-WSS secure.

Constructing Sim∗: Consequently, consider (xi,1 ̸= xi,0)i∈[n] in the following. For
every i such that there exists j ∈ [n′] with fyj

(xi,0) = 1, set xi,1 to xi,0. From the
argument above, there will remain at least one i for which xi,1 ̸= xi,0. B1 builds
the following simulator Sim∗. First, B1 submits ((xi,0)i∈[n], (xi,1)i∈[n], (yj)j∈[n′], σ)
as its first output in the IND-WSS game. Note that we use σ from A1’s output
as B1’s state. After running Setup, the IND-WSS challenger computes K and
either c← (Encpk(xi,0))i∈[n] or c← (Encpk(xi,1))i∈[n]. B2 gets (pk,K, c, t). The
output of Sim∗ is defined as the ciphertext c obtained from the challenger in the
IND-WSS game. At this stage, B2 callsA∗

2(pk, c,K) and receives σ′. If σ = σ′ then
B2 outputs b′ = 0 to the IND-WSS challenger, otherwise they output b′ = 1. The
intuition is that if the challenger has chosen b = 1, then c ← (Encpk(xi,1))i∈[n]

leads to a σ′ that is different from σ with a non-negligible probability compared
to a σ′ derived from c← (Encpk(xi,0))i∈[n].

Analysis: First, we note the following two properties.
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Parameters: Prime p, predicate encryption scheme PE set up by Sender S for vectors
of length (ℓ+1), number nR of input vectors yj ∈ {0, 1}ℓ from Receiver
R, set T ⊂ N

1. Wait for master secret key msk from S.
2. Wait for vectors (yj)j∈[nR] from R.
3. For each j ∈ [nR], τ ∈ T ,

(a) Create length-(ℓ+ 1) vector yj,τ by setting

yj,τ [1] = yj [1], . . . ,yj,τ [ℓ] = yj [ℓ],yj,τ [ℓ+ 1] = −τ.

(b) Send skyj,τ ← KDer(msk,yj,τ ) to R.

Fig. 10. Ideal functionality FKDer

Pr[b′ = b|b = 0] =Pr[ExpSim-WSS-real
PE,A (λ) = 1]

=AdvSim-WSS
PE,A,Sim(λ) + Pr[ExpSim-WSS-ideal

PE,A (λ) = 1]

and

Pr[b′ = b|b = 1] =1− Pr[b′ = 0|b = 1]

Pr[b′ = b|b = 1] =1− Pr[ExpSim-WSS-ideal
PE,A (λ) = 1].

Therefore,

Pr[b′ = b] =Pr[b′ = b|b = 0] · Pr[b = 0] + Pr[b′ = b|b = 1] · Pr[b = 1]

=(AdvSim-WSS
PE,A,Sim(λ) + Pr[ExpSim-WSS-ideal

PE,A (λ) = 1])
1

2

+ (1− Pr[ExpSim-WSS-ideal
PE,A (λ) = 1])

1

2

=
1

2
+

AdvSim-WSS
PE,A,Sim(λ)

2

As a result, adversary B, would win the indistinguishability game IND-WSS
with a non-negligible advantage half of the advantage of the adversary in the
Sim-WSS experiment.

3.5 Two-Party distributed KDer

So far, we have silently ignored two important issues. First, we have assumed
that Receiver R can somehow obtain secret keys K for each of their input vectors
y. In the standard setting of predicate encryption, it is typically a TTP that runs
Setup, derives master secret key msk, and then answers KDer queries by clients.
However, in our two-party setting where Sender S sets up the encryption, and S

20



and R are mutually untrusted, we need a distributed two-party KDer. Essentially,
S and R engage in a two-party KDer such that S does not learn anything about
R’s input y, R does not learn anything about msk, but R still obtains secret
key sky ← KDer(msk,y).

The second issue that we have ignored is that standard predicate encryption

only tests whether the inner product of vectors equals 0, i.e., [⟨x,y⟩ ?
= 0]. How-

ever, for functionality FPEI, we need to test whether the inner product equals

any τ ∈ N, so [⟨x,y⟩ ?
= τ ].

We address both issues in this section in a combined way.

Support for arbitrary inner products: The second issue of privately testing for
arbitrary inner products can be easily addressed. There exists a well-known

transformation [36] that allows to check whether [⟨x,y⟩ ?
= t] for t ∈ N by just

using the regular functionality for predicate [⟨x,y⟩ ?
= 0] as a sub-routine.

Specifically, to check whether, for two length-ℓ vectors x and y, their inner
product equals t instead of 0, we create two vectors x′,y′ of length (ℓ+ 1) and
set them to

x′[1] = x[1], . . . ,x′[ℓ] = x[ℓ],x′[ℓ+ 1] = 1 and

y′[1] = y[1], . . . ,y′[ℓ] = y[ℓ],y′[ℓ+ 1] = −t.

Evaluating the inner product predicate on x′ and y′ as input allows deriving
whether the inner product of x and y is t, i.e.,

[⟨x′,y′⟩ ?
= 0] = [⟨x,y⟩ ?

= t].

So, to support checking for arbitrary products of length-ℓ vectors, our ap-
proach is to instantiate a predicate encryption scheme for length-(ℓ+ 1) vectors
and run the above transformation.

Secure KDer Computation: The transformation of working on length-(ℓ + 1)
vectors leads to the ideal functionality FKDer shown in Figure 10. To be able to
test whether the inner product of two length-ℓ vectors is τ , R needs to retrieve
secret key sky′ for corresponding length-(ℓ+ 1) vector y′.

There are several ways one can realize such an FKDer functionality, and we
present two approaches in the following. One is a black-box technique based on
2PC (such as garbled circuits), and one is modifying the actual real-world KDer
algorithm of the predicate encryption scheme that is used. While both techniques
are asymptotically efficient with computation and communication complexity
polynomial in the security parameter, the second approach is also concretely
practical for the scheme we will be using (and others) in our implementation
later in Section 4.

3.5.1 Using 2PC

General two- or multi-party computation techniques such as garbled circuits
allow parties to compute any functionality or circuit in a way that both parties

21



only see the output of that computation, but learn nothing else about the other
parties’ input, see Evans et al. [21] for an overview.

Consequently, for any specific predicate encryption scheme PE, let CKDer(msk,y)
be a circuit representation implementing PE’s key derivation algorithm KDer(msk,y)
with master secret key msk and attribute y being its input. Let 2PC be a two-
party secure circuit computation mechanism such as garbled circuits where

(o1, o2)← 2PC(C, i1, i2),

securely evaluates circuit C on Party 1’s input i1, Party 2’s input i2 and outputs
o1 to Party 1 and o2 to Party 2.

We can just plug circuit CKDer, msk, and y into this mechanism, so S and R
jointly run 2PC(CKDer,msk,y) to obtain o1 = ⊥ for S and o2 = sky for R.

The 2PC evaluation of CKDer is efficient and securely realizes FKDer by defini-
tion.

3.5.2 Concretely practical construction for Park [48]

For the concrete case of the predicate encryption scheme by Park [48] that
we employ in our evaluation, there exists a more efficient version of two-party
KDer without reverting to general 2PC.

Intuition: In Park’s scheme, secret keys comprise ℓ elements Ki from some pair-
ing group G, essentially one for each component of attribute vector y. The main
idea for a two-party KDer is that the sender prepares two different version of
each Ki: K−1,i for the case that y[i] = −1 and K1,i for y[i] = 1. Sender S and
receiver R then run ℓ 1-out-of-2 OTs, where in the ith OT, S inputs (K−1,i,K1,i),
R inputs bit y[i], and R receives Ky[i],i.

Technical details: As the exact details require some understanding of Park [48]’s
scheme, we briefly summarize the key derivation (Section 4.1 in [48]). The scheme
works for attributes y ∈ Zℓ

p. For an attribute y, the TTP computes secret key sky
consisting of 4ℓ+2 elements sky = ((K1,i,K2,i,K3,i,K4,i)i∈[ℓ],KA,KB) ∈ G4ℓ+2.
Specifically,

– the first 4ℓ elements Kj,i are computed as Kj,i = Gj,i + y[i] · Hj,i, where
Gi,j , Hi,j ∈ G do not depend on y, but only on master secret key msk and
independent randomness.

– KA = G +
∑ℓ

i=1(f1,iK1,i + f2,iK2,i + f3,iK3,i + f4,iK4,i) where G ∈ G and
fj,i ∈ Zp come from msk.

– KB = G′ ∈ G does not depend on y, but only independent randomness.

We now convert the above KDer into a concretely practical, secure two-party
KDer protocol where Sender S inputs master secret key msk, and Receiver R
inputs y. Recall that in our case length-ℓ vectors are transformed to length ℓ+1
vectors y′, where the first ℓ elements are either −1 or 1, and the last element
is always set to −t. For the first ℓ elements, we let S compute the two possible
versions for each Kj,i that R could obtain (for either −1 or 1) and mask the
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Input of S: Master secret keymsk of predicate encryption scheme PE for length-(ℓ+1)
vectors, msk includes G, Gj,i, Hj,i ∈ G, fj,i ∈ Zp, for j ∈ [4], i ∈ [ℓ+ 1]

Input of R: Vectors (yj)j∈[nR],yj ∈ {−1, 1}ℓ

Parameters: Pairing group G used in PE, prime p, number nR of R’s input vectors,
length ℓ, set T ⊂ N

Protocol:

1. For each yj , for τ ∈ T ,
(a) let length-(ℓ+ 1) vector

y′[1] = yj [1], . . . ,y
′[ℓ] = yj [ℓ],y

′[ℓ+ 1] = −τ.

(b) for i ∈ [ℓ],

i. for u ∈ [4], S chooses random Mu,i
$←G and computes

K−1
u,i = Gu,i −Hu,i K1

u,i = Gu,i +Hu,i

κ−1
u,i = Mu,i + fu,iK

−1
u,i κ1

u,i = Mu,i + fu,iK
1
u,i.

ii. S and R engage in 1-out-of-2 OT where S is the OT sender with input
(K−1

u,i ||κ
−1
u,i)u∈[4] and (K1

u,i||κ1
u,i)u∈[4], and R is the OT receiver with input

y′[i] receiving Ky′[i]. R extracts the K
y′[i]
u,i which are part of secret key

sky′ and the (κ
y′[i]
u,i )u∈[4].

(c) For u ∈ [4], S chooses random Mu,ℓ+1
$←Zp and sets

Ku,ℓ+1 = Gu,ℓ+1 + y′[ℓ+ 1] ·Hu,ℓ+1 and

κu,ℓ+1 = Mu,ℓ+1 + fu,ℓ+1Ku,ℓ+1.

(d) S sends (Ku,ℓ+1, κu,ℓ+1)u∈[4] and γ = G−
∑

i∈[ℓ+1],u∈[4] Mu,i to R.

(e) R computes KA = γ +
∑

i∈[ℓ],u∈[4] κ
y[i]
u,i +

∑
u∈[4] κu,ℓ+1 which is part of sky′ .

(f) S computes and sends KB = G′ completing sky′ .

Fig. 11. Protocol ΠKDer realizing FKDer in the FOT-hybrid model

K
fj ,i
j,i by a random factor M such that R cannot learn more than KA. Then,

R can fetch the Kj,i with OT and compute KA by peeling off random factors
M . For the (ℓ + 1)th element of y′, S sends the Kj,ℓ+1 in the clear. Figure 11
presents protocol ΠKDer in full detail.

Lemma 5. Protocol ΠKDer securely realizes FKDer from Figure 10 in the FOT-
hybrid model.

Proof. Observe that ΠKDer is correct, as R, first, retrieves all Kj,i corresponding
to input y. Second, γ removes all randomness added to the κj,i such that R
correctly computes KA, too.

For security, we show existence of simulators SimS for S and SimR for R.
SimS(PE,msk): This simulator for Sender S is trivial, as it only has to run

the FOT-simulator for the OT sender with arbitrary input.
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Input of S: (xi)i∈[nS ],xi ∈ {−1, 1}ℓ

Input of R: (yj)j∈[nR],yj ∈ {−1, 1}ℓ

Parameters: Set T ⊂ N, predicate encryption scheme PE for attribute vectors of
length ℓ+1 and matching FKDer-hybrid for attribute vectors of length ℓ
and parameter T , security parameter λ, numbers of input nS , nR

Protocol:

1. Sender S invokes Setup(1λ) and gets (pk,msk). S sends msk to FKDer.
2. Receiver R sends (yj)j∈[nR] to FKDer and gets back secret keys K.
3. For each xi, let length-(ℓ+ 1) vector x′

i be such that

x′
i[1] = xi[1], . . . ,x

′
i[ℓ] = xi[ℓ],x

′
i[ℓ+ 1] = 1.

S computes (ci ← Encpk(x
′
i))i∈[nS ] and sends the ci to R.

4. For i ∈ [nS ], skj,τ ∈ K,
– R computes zi,j,τ = Decskj (ci)
– if zi,j,τ = ⊥, R outputs (0,⊥), else R outputs (1, zi,j,τ ).

Fig. 12. Protocol ΠPEI realizing FPEI in the FKDer-hybrid model

SimR((yj)j∈[nR], (skyj,τ
)j∈[nR],τ∈T ): Simulator SimR for R starts by running

the FOT simulator for the OT receiver (for each yj , τ, i). From its input skyj,τ ,
SimR takes the ℓ values Ku,i as input to the OT simulator. To simulate the κu,i,
it chooses random values ρu,i ∈ G as input to the OT simulator. Observe that the
ρu,i are indistinguishable from the κu,i sent in the real protocol execution. Then
S sends Ku,ℓ+1 and another random ρu,ℓ+1 ∈ G to R to simulate Message (1d)
from ΠKDer.

With KA being part of skyj,τ coming from the ideal functionality, SimR

sends γ = KA −
∑

u∈[4],i∈[ℓ+1] ρu,i to R which is indistinguishable from the
message sent in the real protocol execution. Finally, SimR sends KB from the
ideal functionality’s key skyj

to R.

Discussion: We point out that several other predicate encryption schemes for
the inner product predicate use key derivation techniques similar to the one by
Park [48], and we conjecture that our efficient two party KDer technique from
above also applies in their cases [43–46, 60].

There exists a trivial optimization for ΠPEI that we have omitted from Fig-
ure 11 to keep our exposition simple: instead of running one separate 1-out-of-2
OTs for each τ ∈ T , observe that R’s choices do not change for the same y′.
Thus, we can run a single OT for the combination of (K−1

u,i ||κ1
u,i) for all τ of the

same y′. Our implementation in Section 4 uses this optimization to reduce the
number of OTs by a factor of |T |.

3.6 ΠPEI from Sim-WSS and KDer

Finally, we complete the construction of a new protocol to securely realize ideal
functionality FPEI (Figure 2) with the presentation of protocol ΠPEI in Figure 12.
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It combines Sim-WSS-secure predicate encryption and distributed KDer in the
now obvious way.

Theorem 2. Let PE be a Sim-WSS-secure predicate encryption scheme ( simplified
predicate encryption for the inner-product predicate over Zℓ

p). Then, ΠPEI se-
curely realizes functionality FPEI in the FKDer-hybrid model.

Proof. Observe the correctness of ΠPEI from the protocol description. Let PE
be a Sim-WSS secure predicate encryption scheme for the simplified predicate
encryption for the inner-product predicate over Zℓ

p. In the FKDer-hybrid model,
let PE support an ideal FKDer functionality. We need to show the existence of
simulators SimS and SimR capable of generating respective views for S and R
that are indistinguishable from real protocol executions.

SimS((xi)i∈[nS ]): We first note that Sender S does not receive any message or
output. Hence, its view is trivial to simulate: SimS sends random input vectors
yj to FKDer. The simulator for FKDer generates the corresponding view for S.

SimR((yj)j∈[nR], (bi,j,τ , x̂i,j,τ )i∈[nS ],j∈[nR],τ∈T ): The view ofR comprises the view

for FKDer and ciphertexts ci. First, SimR runs Setup(1λ), obtains pk and msk,
and sends msk to FKDer to generate the key derivation view for R. With access
to msk, SimR can also re-compute keys K for inputs yj .

Finally, to simulate the ciphertexts, recall Lemma 4. For any Sim-WSS scheme,
there exists a simulator Sim∗ that, given input (pk, (yj)j∈[nR], (fyj

(xi))i∈[nS ],j∈[nR],
K), outputs ciphertexts cS such that no adversary can distinguish with a non-
negligible advantage (pk,K, c ← (Encpk(xi))i∈[nS ]) from (pk,K, cS). So, SimR

employs Sim∗ to compute the ciphertexts for R as follows.

– For all combinations of i and j where there exists a τ such that bi,j,τ = 1,
SimR sends Encpk(x̂i,j,τ ) to R.

– For all other combinations of i and j, SimR uses one of the ciphertexts output
by Sim∗ when run with input (pk, (yj)j∈[nR], (bi,j,0)i∈[nS ],j∈[nR], K).

3.7 Discussion: Weaker Predicate Encryption

One might argue that basing our construction of protocol ΠPEI and thus also
ΠFPSI on a strong attribute-hiding predicate encryption scheme is unnecessarily
restrictive, hinders performance, and weaker predicate-only predicate encryp-
tion schemes could be sufficient. However, the current state of the art suggests
otherwise.

3.7.1 Using Strong Predicate-Only Predicate Encryption

A strong attribute-hiding predicate-only predicate encryption scheme is suf-
ficient for ΠFPSI. In such a scheme [36], the only information the receiver R

obtains is [fyj
(xi)

?
= 1]. Naturally, for each index i for which R has learned
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that fyj
(xi) = 1, R could then use 1-out-of-nS Oblivious Transfer or symmet-

ric PIR and privately fetch xi in S’ input set. As we are in the semi-honest
security model, this approach would be secure, because R will only ask for the
indices they are supposed to. Yet, as the size of the intersection might be equal
to nS , R would need to query for a total of nS elements (many dummy ele-
ments) not to leak the actual size of the intersection to S. Moreover, 1-out-of-nS

OT or symmetric PIR also incur a significant overhead in either communica-
tion, computation, or both. In contrast, the additional cost of payload-hiding
predicate encryption schemes over predicate-only schemes is surprisingly small
with the current state of the art. Their main approach for payload-hiding is to
first design a predicate-only scheme that realizes a key encapsulation mecha-
nism (KEM). Then, in case fyj

(xi) = 1, R learns a (symmetric) key that can
be used to decrypt another ciphertext back to m. For example, in the works by
Katz et al. [36] or Park [48], the only additional operation required to achieve
payload-hiding over predicate-only encryption is a cheap hash performed during
decryption.

3.7.2 Using Weak Predicate-Only Predicate Encryption

Another weaker type of predicate encryption could be a predicate-only pred-
icate encryption scheme that automatically outputs attribute x in the clear as
soon as fy(x) = 1. This could be sufficient to realize FPEI. Instead of the ex-
tra encryption of x and decryption later, receiver R would get x already for
free in case fy(x) = 1. However, we are not aware of an efficient predicate-only
predicate encryption scheme for the inner-product predicate that provides this
type of security. We stress that this type of security, revealing the attribute “for
free” in case fy(x) = 1 is very different from the (established) notion of weakly
attribute-hiding predicate encryption, see, e.g., Gorbunov et al. [31]. In weakly
attribute-hiding schemes, only some information about x is potentially leaked to

R in addition to [fy(x)
?
= 1], but not x as a whole. So, the current state of the

art imposes that weak attribute-hiding predicate-only encryption is not sufficient,
and the additional encryption of x is required.

The current state of the art in predicate encryption for the inner product
predicate does not incur a significant drawback over weaker predicate-only con-
structions, and we leave basing Fuzzy PSI on weaker variations of predicate
encryption to future work.

3.7.3 Sim-WSS-Secure Predicate Encryption outside of FPEI

While we do not claim any specific utility for Sim-WSS-secure predicate en-
cryption outside our fuzzy private set intersection scenario, we briefly discuss
the implications and meaning of this security notion for real-world scenarios.
Recall that Sim-WSS denotes a selective security notion in which the adversary
must commit to both the challenge inputs xi and the inputs yj for KDer queries
before receiving the public key.
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Consequently, Sim-WSS-secure predicate encryption schemes have limited
general applicability [14]. Specifically, such a scheme is only secure for the en-
cryption of data that was committed to or fixed before publishing the public
key. While the adversary can always influence the distribution of new plaintexts,
selective security only guarantees protection of inputs committed to before the
public key is released. Thus, once the public key is published, the adversary’s
control over plaintext selection compromises security. Similarly, the scheme is
secure only if parties commit to the secret keys they wish to obtain before the
public key is made available. Interestingly, this proves sufficient to achieve a se-
cure FFPSI with linear communication complexity as the parties’ one-time input
set to predicate encryption is fixed before running Setup and then submitted in
a batch.

If parties want to perform predicate encryption and key derivation of input
chosen after publication of the public key, one would have to reset the whole
system, let parties commit to their input, and then choose a new public key.

3.8 Extension to Fuzzy Labeled-PSI

While not at the core of our contribution, we briefly highlight that ΠFPSI can be
modified in a straightforward manner to also support a fuzzy PSI extension one
might call fuzzy labeled-PSI.

In standard labeled PSI [15, 56], the sender’s input is a set of tuples (xi, Li),
where Li is called a label. For the receiver set of inputs yj , The output of labeled
PSI is the set {Li|∃(i, j) s.t. xi = yj}. Along the same lines, we can define
the output of fuzzy labeled PSI for sender input set (xi, Li) and receiver input
set yj to be set {Li|∃(i, j) s.t. HD(xi,yj) < t}. Using our predicate encryption
approach, we can easily implement this functionality by encrypting Li instead
of xi and making minor adjustments to our security arguments.

4 Evaluation

We have implemented protocol ΠFPSI and evaluated its performance through
benchmarks across various combinations of parameters nS , nR, t, and ℓ. The
goal of our evaluation is to show concrete practicality of ΠFPSI. We report on the
concrete performance ofΠFPSI without directly comparing it to existing proto-
cols. Related work relies on strong assumptions about data structure to optimize
performance. Such assumptions are not required for this work, as our techniques
support arbitrary input conditions. Thus, any direct comparison would be both
uninformative and inherently unfair.

Our implementation is written in C++ and will be made available upon
publication of the paper. At its core, we have re-implemented the predicate
encryption scheme by Park [48]. This predicate encryption scheme is selectively
secure for a game-based definition, it is designed for the inner-product predicate
over Zℓ

p, so it offers preimage sampleability and is Sim-WSS secure.
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Table 2. Benchmark results for protocol ΠFPSI. Comm: total data exchanged between
sender and receiver, Time: total runtime, nS and nR: number of input vectors from
sender and receiver, ℓ: length of each vector, t: threshold for Hamming distance

ℓ = 16 ℓ = 32 ℓ = 64 ℓ = 128 ℓ = 256 ℓ = 512 ℓ = 1024
nR = 64 Comm Time Comm Time Comm Time Comm Time Comm Time Comm Time Comm Time

t nS = (MByte) (s) (MByte) (s) (MByte) (s) (MByte) (s) (MByte) (s) (MByte) (s) (MByte) (s)

2

32 2.5 0.3 3.6 0.5 5.9 1.0 10.4 1.9 19.4 3.6 37.4 7.1 73.4 14.0
64 3.5 0.6 5.6 1.0 9.8 1.9 18.3 3.6 35.3 7.0 69.3 14.0 137.3 27.8
128 5.4 1.0 9.5 1.9 17.8 3.6 34.3 7.0 67.3 14.0 133.3 27.7 265.3 55.4
256 9.2 1.9 17.3 3.6 33.6 7.1 66.1 14.0 131.1 27.8 261.1 55.3 521.1 110.5

4

32 3.5 0.6 5.6 1.0 9.8 1.9 18.3 3.6 35.3 7.0 69.3 14.0 137.3 27.8
64 5.4 1.0 9.5 1.9 17.8 3.6 34.3 7.0 67.3 14.0 133.3 27.7 265.3 55.4
128 9.2 1.9 17.3 3.6 33.6 7.1 66.1 14.0 131.1 27.8 261.1 55.3 521.1 110.5
256 16.9 3.7 33.0 7.1 65.3 14.0 129.8 27.8 258.8 55.4 516.8 110.4 1032.8 220.7

8

32 5.4 1.0 9.5 1.9 17.8 3.6 34.3 7.0 67.3 14.0 133.3 27.7 265.3 55.4
64 9.2 1.9 17.3 3.6 33.6 7.1 66.1 14.0 131.1 27.8 261.1 55.3 521.1 110.5
128 16.9 3.7 33.0 7.1 65.3 14.0 129.8 27.8 258.8 55.4 516.8 110.4 1032.8 220.7
256 32.3 7.3 64.4 14.2 128.7 28.0 257.2 55.5 514.2 110.6 1028.2 220.7 2056.2 441.2

16

32 9.2 1.9 17.3 3.6 33.6 7.1 66.1 14.0 131.1 27.8 261.1 55.3 521.1 110.5
64 16.9 3.7 33.0 7.1 65.3 14.0 129.8 27.8 258.8 55.4 516.8 110.4 1032.8 220.7
128 32.3 7.3 64.4 14.2 128.7 28.0 257.2 55.5 514.2 110.6 1028.2 220.7 2056.2 441.2
256 63.0 14.5 127.2 28.2 255.4 55.8 511.9 110.9 1024.9 221.1 2050.9 441.2 4102.9 882.2

Comm Time Comm Time Comm Time Comm Time Comm Time Comm Time Comm Time
t nS = nR (MByte) (s) (MByte) (s) (MByte) (s) (MByte) (s) (MByte) (s) (MByte) (s) (MByte) (s)

2

32 2.4 0.2 3.5 0.3 5.6 0.6 9.9 1.0 18.4 1.9 35.4 3.7 69.4 7.3
64 3.5 0.6 5.6 1.0 9.8 1.9 18.3 3.6 35.3 7.0 69.3 14.0 137.3 27.8
128 5.5 1.9 9.8 3.6 18.3 6.9 35.3 13.7 69.3 27.3 137.3 54.3 273.3 108.4
256 9.6 7.1 18.1 13.8 35.1 27.2 69.1 53.9 137.1 107.4 273.1 214.3 545.1 428.4

4

32 3.4 0.3 5.5 0.6 9.6 1.0 17.8 1.9 34.3 3.7 67.3 7.3 133.3 14.5
64 5.4 1.0 9.5 1.9 17.8 3.6 34.3 7.0 67.3 14.0 133.3 27.7 265.3 55.4
128 9.4 3.6 17.6 7.0 34.1 13.8 67.1 27.3 133.1 54.3 265.1 108.3 529.1 216.5
256 17.3 14.1 33.8 27.4 66.8 54.2 132.8 107.6 264.8 214.6 528.8 428.2 1056.8 856.1

8

32 5.3 0.6 9.4 1.0 17.5 1.9 33.7 3.7 66.2 7.3 131.2 14.5 261.2 28.8
64 9.2 1.9 17.3 3.6 33.6 7.1 66.1 14.0 131.1 27.8 261.1 55.3 521.1 110.5
128 17.0 7.2 33.3 13.9 65.8 27.4 130.8 54.4 260.8 108.5 520.8 216.4 1040.8 432.5
256 32.7 28.0 65.2 54.8 130.2 108.2 260.2 215.0 520.2 429.0 1040.2 855.9 2080.2 1711.5

16

32 9.2 1.0 17.2 1.9 33.3 3.7 65.6 7.3 130.1 14.5 259.1 28.8 517.1 57.5
64 16.9 3.7 33.0 7.1 65.3 14.0 129.8 27.8 258.8 55.4 516.8 110.4 1032.8 220.7
128 32.4 14.2 64.7 27.7 129.2 54.7 258.2 108.7 516.2 216.7 1032.2 432.4 2064.2 864.6
256 63.4 55.9 127.9 109.4 256.9 216.4 514.9 429.9 1030.9 857.7 2062.9 1711.5 4126.9 3422.2

In contrast to its previous implementation [40], we have ported Park [48]’s
scheme to the popular MCL library [41] which has allowed easy adoption of the
original KDer algorithm to our distributed setting (Figure 11). Cryptographic
operations are performed over the Type-3 BN-254 curve and use the optimal Ate
pairing. To realize the OT functionality FOT in ΠKDer, we borrow the Ferret-OT
implementation from EMP-OT [58]. Ferret realizes random OT, so S encrypts
the possible two choices inside each key with the random values output by the
random OT and sends the result to R. We use the hash-based KEM-hybrid
transformation described in Appendix A to encrypt vectors x as plaintexts m in
the underlying predicate encryption scheme. We use AES-based hash function
Blake2 and AES-based PRG from cryptoTools [51]

Table 2 summarizes our benchmark results. All benchmarks were performed
on a single Amazon AWS c7i.metal-48xl instance, i.e., without taking network
latency into account. Yet, total runtime (“Time” in Table 2) in most scenarios
will be dominated by computation time due to the quadratic complexity of Re-
ceiver R trying to decrypt all ciphertexts with all secret keys. Yet, as decryptions
can be trivially parallelized, we stress that total runtime will greatly benefit from
running on a machine with more cores.
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The total runtime in Table 2 includes the time to encrypt all sender in-
puts, performing the OT-based distributed key derivation, and decryption by R.
Communication cost (“Comm”) includes all nS ciphertexts and distributed key
derivation (OT plus sending the two encrypted choices).

5 Related Work

Fuzzy PSI: The commercial success of PSI has revived interests in Fuzzy PSI.
Recently, several schemes have been developed that aim to achieve linear com-
munication complexity, computation complexity, or both. A common strategy
consists of clustering input data to reduce complexity. However, these techniques
make strong assumptions about the distribution of the data such as distance be-
tween elements and the minimal separation between clusters.

Uzun et al. [56] were among the first to propose a Fuzzy Labeled PSI scheme
(FLPSI) that targets linear communication. FLPSI uses Locality Sensitive Hash-
ing (LSH) and noise removal techniques to map samples from an Euclidean space
to bitstrings amenable to Hamming distance comparisons. The paper uses a com-
bination of subsampling (using masks) and 2PC computation to derive a small
set of inputs on both the sender and receiver sides to be fed into existing exact
Labeled PSI schemes. Additional measures are taken to reduce leakage, leverag-
ing threshold secret sharing on the labels, and FHE to hide partial matching.
However, FLPSI is defined for a closeness function that provides only probabilis-
tic guarantees, and only for when input elements are close (i.e., matching) or far
(i.e., non matching), but is not defined for elements that are neither (near). It
does not provide formal guarantees for Hamming distance thresholds.

Garimella et al. [27] introduce the notion of structure-aware PSI (sa-PSI)
to achieve communication complexity that is linear in the sender’s set descrip-
tion size, not its cardinality. They initiate the work of formally exploiting the
structure of parties’ elements and introduce a generic paradigm for structure-
aware PSI based on a new weak boolean function secret-sharing. The paradigm
is applied to Fuzzy PSI as an application, specifically considering the struc-
ture when the sender’s set is defined by balls of radius t, and the metric is L∞
in an ℓ-dimensional space. Garimella et al. derive different protocols depend-
ing on additional constraints. For disjoint balls, communication complexity is in
O((4 log(t))ℓ and reduces to O(2ℓ) for balls separated by 4t. They also show that,
for a globally-axis-disjoint structure (i.e., the projection of the balls onto every
axis is disjoint), communication complexity becomes linear in the dimension. In
a follow-up work, Garimella et al. [28] introduce the first sa-PSI protocol that
is also secure against malicious adversaries, by using a cut-and-choose technique
and by applying new derandomizable function secret-sharing.

Chakraborti et al. [12] propose FPSI schemes for Hamming distance and in-
teger distance. They represent each input element as a set, and formulate the
condition for revealing an element to the receiver as the size of the sets’ differ-
ence exceeding ℓ− t. To cope with additional leakage when elements are within
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the (t, 2t) interval [30], [12] propose two solutions: (I) homomorphically comput-
ing the Hamming distance between elements and filtering elements beyond the
threshold, or (II) a sub-sampling technique. In addition to a quadratic commu-
nication complexity, this approach has a non-negligible false positive rate.

Son et al. [55] present FPHE, a Fuzzy PSI scheme for cosine similarity. FPHE
reduces computation and communication to be linear with respect to the dimen-
sion of each set element. They builds on fully homomorphic encryption, optimiz-
ing it for approximate sign function evaluation. Unfortunately, FPHE requires
that the sender elements are separated by at least twice the threshold (i.e., 2t).

Richardson et al. [50] generalize the PSI scheme by Cho et al. [17] to provide
Fuzzy PSI for Euclidean distances L1, L2 and L∞. This scheme uses condition-
ally overlapping hashing of sender and receiver inputs to execute a PSI over a
small set of bins. Although, it offers the possibility of trade-offs, the complexity
remains exponential in the dimension of the data, limiting its applicability to
low-dimentional setups.

Gao et al. [24] present Fuzzy mapping (Fmap), an abstraction of previous
approaches using coarse mapping to group (bin or cluster) sender and receiver
elements to reduce the number of PSI executions (refined filtering). The under-
lying assumption of Fmap is that the for receiver elements on at least t + 1
dimensions each element has a unique attribute relatively to all other elements.
Under this assumption, they design a solution for Hamming distance and L∞
norm.

Chongchitmate et al. [18] propose a Fuzzy PSI scheme for structured data
assuming that elements are either “close” (distance ≤ t) or sufficiently “far”
(distance ≥ 3t). The scheme achieves near-linear computation and communica-
tion complexity for Hamming distance and generalizes to other distances using
low distortion embeddings to Hamming distance.

To summarize, recent schemes have demonstrated significant reductions in
communication and computational complexity for Fuzzy PSI. These methods are
particularly powerful and efficient within contexts where input data aligns with
their structural assumptions. Nevertheless, their inherent dependence on data
structure limits general applicability, a limitation addressed by our approach
that achieves efficient Fuzzy PSI regardless of input data structure.

Predicate Encryption: Functional encryption and predicate encryption are active
research areas, yielding both foundational results [7, 47] and practical schemes [1,
16, 20, 31, 34, 36, 43–46, 48, 60]. Our work leverages inner-product predicate
encryption to demonstrate that Fuzzy PSI is achievable with minimal security
assumptions, i.e., weak selective security (IND-WSS). While we instantiate our
construction using Park’s scheme due to its efficiency and ease of implementa-
tion, our approach is not limited to this specific scheme; any predicate encryption
scheme satisfying IND-WSS or selective security can be substituted.
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6 Conclusion

We have presented a new, efficient protocol for Fuzzy Private Set Intersection
(FPSI) that achieves linear communication complexity while avoiding restrictive
assumptions on input distributions. Our approach leverages inner-product pred-
icate encryption, reducing secure Hamming distance computation to a secure
inner-product test. By establishing a weak simulation-based security definition
for predicate encryption, we have demonstrated that existing selectively secure
schemes suffice for our protocol. Furthermore, we have introduced a distributed
key derivation mechanism, eliminating the need for a trusted third party setup
while maintaining efficiency. As indicated by our implementation, our construc-
tion not only achieves optimal linear communication complexity, but is also
concretely practical for various real-world parameter settings.
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A Simplified Predicate Encryption from Predicate
Encryption

In our exposition in Section 3.1, we have defined a simplified predicate encryption
scheme that directly encrypts a vector x ∈ Σ to ciphertext c, i.e., c← Encpk(x).
Decryption under secret key sky in our simplified definition directly yields x if
and only if ⟨x,y⟩ = 0. Yet, standard predicate encryption schemes allow a more
powerful setup where a plaintextm from plaintext spaceM is encrypted under x,
i.e., c← Encpk(m,x). Decryption yields m if and only if ⟨x,y⟩ = 0. If decryption
fails, nothing is revealed about m. Moreover, in any case, nothing about x is
revealed besides whether ⟨x,y⟩ = 0. The security definition for both simplified
and standard predicate encryption is selective security where the adversary has
to output up front to the vectors (xi,0,xi,1) they want to be challenged upon.

We now show that any standard predicate encryption scheme can be trans-
formed into a simplified predicate encryption scheme. While there are various
ways how to perform such a transform, we apply the typical approach of hybrid
enryption. There, the predicate encryption scheme is used as a Key Encapsu-
lation Mechanism (KEM) to encrypt a symmetric key which is then used with
symmetric key encryption to encrypt whatever input should be encrypted, see
[3, 19, 23] for an overview.

First, let PE = (SET UP,KDER, ENC,DEC) be a standard predicate en-
cryption scheme for predicate f . We construct simplified predicate encryption
scheme PE = (Setup,KDer,Enc,Dec) for predicate f in the following way.

For PE, we set Setup to be exactly like SET UP, and KDer to be exactly like
KDER. We only change encryption and decryption in the following straightfor-
ward way.

1. Encpk(x): To encrypt x in the simplified encryption scheme, choose a random

m
$←M and use a cryptographic hash function H (modeled as a random

oracle) to hash it to a key k = H(m) for a semantically secure encryption
(E,D). Then encrypt m under x using ENC, i.e., c1 ← ENCpk(m,x). Use
the semantically secure encryption to encrypt the bit-representation of x and
key k to ciphertext c2 ← Ek(x). Send (c1, c2) to the other party.

2. Decsky(c1, c2): To decrypt (c1, c2) with sky, run DECsky(c1). If decryption
is successful, not returning ⊥ but returning m′, compute k′ = H(m′) and
decrypt c2 to x′ using the semantically secure encryption with key k′, i.e.,
x′ = Dk′(c2).
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Note that one can also use a PRG G instead of semantically secure encryption
(E,D) with k serving as its seed to produce a one-time pad. The security of this
KEM-style hybrid encryption scheme PE in the random oracle model follows
directly from the security of PE and the underlying encryption scheme (E,D)
(or PRG G), analogous to the argument by Bellare and Rogaway [3].
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