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Abstract. Network agnostic protocols (Blum, Katz, Loss TCC ‘19) are consensus or MPC protocols
that strike a balance between purely synchronous and asynchronous protocols. Given thresholds ta, ts

that satisfy ta < n/3 < ts < n/2 and 2ts + ta < n, they have the unique property of remaining secure
against an adversary that either (1) corrupts up to ts parties in a synchronous execution where all
messages are delivered within a known bound ∆ or (2) corrupts up to ta in an asynchronous execution
where messages can be delayed arbitrarily. All existing network agnostic protocols follow a design
pattern which first attempts to run a synchronous path, and then switches to an asynchronous path
as a fallback option if the synchronous path times out after some time T due to the network being
asynchronous. Unfortunately, T has to be set conservatively to account for the possibility that the
synchronous path might take an unusually long time even when the network is synchronous. As a result,
for various basic tasks including Byzantine Agreement or MPC, no existing network agnostic protocol
is able to terminate for all honest parties within constant expected time in all possible executions.
In this work, we introduce a new paradigm to construct network agnostic consensus that, for the first
time, overcome this barrier. Using this new design pattern we first present simple protocols for reliable
broadcast (RB) and binary agreement (BA) that are responsive when no more than ta parties are
corrupted and run in expected constant time regardless of the network conditions.3 We then extend
our results to asynchronous common subset (ACS) and MPC. Notably, our approach reverses the
order of the synchronous and asynchronous path by designing protocols that are first and foremost
asynchronous and only fall back to the synchronous execution path when more than ta parties are
corrupted.

3 The latter was already possible for RB, which by design requires only constantly many constant rounds, but is
not guaranteed to terminate for all parties.
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1 Introduction

Distributed protocols such as consensus or multi-party computation protocols allow n parties
connected over a pair-wise network to compute a common function of their inputs. An
important property for such protocols is to remain secure and live even in the presence of
some number of malicious faults t < n that may deviate arbitrarily from the protocol. A long
line of research has established conditions under which various distributed protocols can be
implemented. They can roughly be divided into to classes: (1) The first class of protocols
assumes a synchronous network that delivers sent messages within some fixed duration ∆
and parties share a common notion of time. In this model, it is possible to tolerate up to
t < n/2 corrupted parties for many important distributed tasks such as MPC and consensus
(assuming some cryptographic setup). (2) The second class of protocols is designed to run
in an asynchronous network that guarantees nothing beyond the eventual delivery of sent
messages. As a result, MPC and consensus can be solved in this model if and only if t < n/3.
This poses a dilemma for a protocol designer: what type of network should a protocol be



designed for to be as secure as possible under all possible conditions? To soften the blow
of this trade-off Blum et al. [BKL19] (BKL19) introduced what has since been coined the
network agnostic (NA) setting. In their work, they study the fundamental problem of binary
Byzantine agreement, where parties wish to agree on a single bit. They show a protocol Π
with two corruption thresholds ta and ts satisfying 0 < ta < n/3 ≤ ts < n/2 and 2ts + ta < n
that remains secure against a malicious adversary that corrupts up to ta parties if the network
is asynchronous and corrupts up to ts when the network is synchronous. Moreover, they show
that n > ta + 2ts is a necessary condition in this setting to solve BA.
The BKL19 Paradigm and Its Limitations. To construct a protocol Π with these
properties, BKL19 first constructs a synchronous protocol Πs that is secure against ts cor-
ruptions and is guaranteed to terminate after some fixed duration T if the network remains
synchronous. Their second protocol Πa is asynchronous with a corruption tolerance of ta,
but has a crucial additional property: it remains secure against ts many corruptions in a
scenario where all honest parties supply the same input to Πa. Leveraging these properties,
BKL19 show that one can run Πs and Πa back to back, where the input to Πa is the output
of Πs. If the network is synchronous, Πs will always terminate with all honest parties in
consensus, and thus the overall security of the protocol is ts. If the network is asynchronous,
parties simply let Πs time out and then run Πa on their initial input if Πs did not output.
Since the initial work of BKL19, many followup works have shown that NA solutions exist for
various tasks such as general MPC [BZL20], distributed key generation [BCLZL23,ACC22],
state-machine replication [BKL21,ABKL22], and other variants of consensus [DE24,CGWW24,GLZW22].
While these protocols have also made substantial progress in terms of efficiency, they all fol-
low the above design pattern to some degree. This results in a severe penalty to the round
efficiency of all existing NA protocols. Namely, the timeout parameter T of the synchronous
component Πs must always be super-constant such that non-termination of Πs by time T
implies that the network is in the asynchronous mode. This issue was partially addressed
in the work of Deligios, Hirt, and Liu-Zhang [DHLZ21] and the recent work of Deligios and
Erbes [DE24]. These works construct NA protocols for MPC and consensus, respectively,
that achieve optimal corruption parameters and run in O(1) expected many synchronous
rounds whenever the network is synchronous. However, there is currently no NA protocol
(either for consensus or MPC) that runs in O(1) expected time even when the network is
asynchronous. In this work, we present a novel design pattern for NA protocols, which, for
the first time, overcomes this barrier. Leveraging our approach, we show optimally resilient
protocols for various important consensus tasks such as byzantine agreement, asynchronous
common subset, reliable broadcast, and (assuming fully homomorphic encryption) MPC. In
addition to always running in O(1) expected time, all of our protocols are optimistically
responsive, in the sense that if ta or fewer parties are corrupted then the running time only
depends on the actual network delay δ.

1.1 Our Contribution: A New Perspective on Network Agnostic Protocols

As briefly explained above, network agnostic protocols have so far followed the blueprint
laid out by Blum, Katz and Loss in [BKL19] where a synchronous protocol is followed by an
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asynchronous protocol only after the network is demonstrated to be asynchronous. 4 First,
the parties try to reach consensus through a synchronous path via a protocol that (when the
network is synchronous) has a worst case running time T after which each honest party will
either have received an output or be able to conclude that the network was not synchronous.
Thus honest parties that reach this point without having received output can conclude that
the network must be asynchronous and switch to an alternative asynchronous consensus
mechanism. While this design pattern has proven very fruitful, it has the major drawback
that the synchronous protocol must run for T time before switching to asynchrony. Otherwise
the adversary can break safety when the network is asynchronous.

From Protocols to Rounds via Network Agnostic Quorums. Our solution to over-
come this challenge is to move the logical switch between the two paths from the protocol
to the round level. In every round of the protocol, parties first attempt to obtain sufficiently
many messages to trigger the next step on the asynchronous path. If this fails, it must mean
that the asynchronous path did not have enough support from n−ta honest parties and thus,
the execution must be a synchronous one with ts > ta corrupted parties. Thus, they instead
wait for the round to conclude, at which point the worst-case delivery guarantees of the
network will ensure that they receive a sufficient number of messages to move on to the next
instruction on the synchronous path. This idea has several interesting implications. First,
it inverts the order in which paths are attempted when compared to the BKL19 paradigm.
Second, it allows for fluidity between paths, meaning that the protocol is never really locked
into one of the paths at any given point of the protocol execution. Lastly, it is has the dis-
tinct advantage of our protocols being inherently responsive, meaning that they run in time
proportional to the at the actual of the network delay δ (as opposed to the worst-case delay
∆) in synchronous executions where the number of corrupted parties is low enough.

To hint at how this works: consider that a party who takes a step down the asynchronous
path can wait until unanimous votes from n− ta parties are received. This can be thought of
as a network agnostic quorum, in the sense that if n−ta unanimous votes are received by one
party, then the same cannot happen for a conflicting vote for some other party. Since this
other party received votes from some other n− ta parties, the two sets have an intersection
of at least n − 2ta > ts parties, which includes at least one honest party, regardless of the
network condition.
Achieving Liveness on Both Paths. By following a pattern that only relies on such
network agnostic quorums, it is fairly straight-forward to construct protocols that are safe
and life in asynchrony and remain safe against ts corruptions in synchrony using standard
techniques from asynchronous consensus. However, in synchronous executions we need to
make progress against ts > ta corruptions and cannot wait for n− ta votes.
As already hinted above, our design facilitates this via a synchronous path which is used
as a fallback option when parties fail to collect enough votes to continue moving along the
asynchronous path after waiting for a timeout dependent on ∆. On the synchronous path,

4 A few notable exceptions include protocols by Momose and Ren [MR21] and the compiler by Deligios and
Erbes [DE24]. In both cases the logic that allows asynchronous output is always executed. But this does not
change the fact that T time must pass before giving asynchronous output.
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we will generally enforce that parties do not send any votes towards the completion of a
step on the synchronous path before they have waited long enough. here, long enough means
that if the network is synchronous, they have received all votes that honest parties might
have sent towards the completion of the corresponding step on the asynchronous path. The
goal is to use the votes from the synchronous path to establish a different type of quorum
based on only n− ts unanimous votes, which allows our protocols to be live in synchrony. In
addition, by allowing outputs based on quorums from both synchronous and asynchronous
paths they are also live in asynchrony. But with two paths to output, we need to consider
some implications for safety.
Achieving Safety on Both Paths. If parties follow the asynchronous path and give output
based on the network agnostic quorum, then they received n − ta unanimous votes which
as discussed implies uniqueness even in synchrony. In addition to this, we enforce that an
honest party will not send conflicting votes on the two paths. Hence, consistency between
the two different quorums types also holds in all network conditions because n− ta− ts > ts

implies that the two quorums include a vote from some common honest party. This is enough
to establish safety of outputs from the asynchronous path, regardless the network. Thus, it
remains to consider outputs from the synchronous path, i.e., based on n − ts synchronous
votes.

For this, we need to instead consider safety in each of the two possible network settings
separately. First, safety on the synchronous path can come from the network in fact being
asynchronous and thus at most ta < ts parties being corrupted. Namely, this implies that
any two sets of size (at least) n−ts have an intersection of at least n−2ts > ta parties, one of
which is honest. Alternatively, safety of the decisions made using the synchronous path (when
the network is synchronous and up to ts parties can be corrupted), must, as hinted above, be
based on messages being delivered within the known delay ∆. But it might not immediately
be clear how to enforce that parties can reliably wait to hear all honest contributions towards
the synchronous path before contributing to the asynchronous path. Thus, valid concern is
that since some parties can make decisions responsively on the asynchronous path, they
might drift too far apart from parties who follow the synchronous path.

So, in order to have safety in synchronous executions, we will use a design pattern which
enforces that honest parties will never be out of sync (in terms of when they enter the same
asynchronous step) by more than δ. Moreover, the synchronous path is only attempted after
waiting for 2∆ time after first being able to send the type of message we are waiting for.
Together, these imply that when an honest party moves down the synchronous path, then
we are in one of two cases:
– either the network is synchronous and all honest messages that are sent as part of the

asynchronous path will be seen by all other honest parties before they potentially use the
synchronous path,

– or alternatively the network is asynchronous but the number of corruptions is so low that
any two sets of messages from n− ts parties contains a message from a common honest
party.

We outline this design pattern below.
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Composing Synchronous Protocols without Synchronized Rounds. If we want to
achieve an optimistically responsive and network agnostic protocol it is necessary to make use
of asynchronous quorums without waiting for timeouts. So, if one is not careful it is possible
that one party follows a fast asynchronous path while another waits for the timeout, resulting
in desynchronization. To prevent this scenario the protocols we present will never rely on
the parties being synchronized in a lockstep fashion, but only on being able to wait until all
honest parties have responded to a request.

Concretely they will follow a common pattern where messages, inputs, and outputs come
with a justifier. A justifier corresponds to a justifier predicate J that allows checking whether
a message satisfies certain properties. Usually these properties guarantee that the message
is something an honest party could have sent if it saw a certain set of messages. In our case,
we additionally want the justifiers to have the property that a party who receives a justified
message which was prompted by some activation rule of the protocol, will be “caught up”
and itself be able to trigger that same activation rule and send its own justified message (if
it did not previously do so). With these properties in place, a party can trust that when it
triggers an activation rule, then it will hear the message caused by that activation rule from
all honest parties within 2 network delays.

A concrete example of a justifier with this property is used by Cachin et al. [CKPS01]
to reduce the problem of solving binary agreement to solving the (in many settings) easier
problem of validated binary agreement. While binary BA imposes the validity requirement
that the output must be the input of an honest party, validated BA simply requires the
output to satisfy some predicate. So to solve binary BA, parties can initially sign and send
their binary input and gather identical messages from t+1 parties, which eventually happens
when n > 3t. This set of signatures can be used to justify the input as having been the initial
input of an honest party to other parties, who in turn can forward the same set to justify
proposing the same value.5

1.2 Technical overview

To demonstrate the technique we start out by constructing simple consensus primitives
in the form of network agnostic (expected) constant time reliable broadcast and binary
agreement protocols that are responsive against up to ta corruptions. Then we show how to
build asynchronous expected constant time ACS with n > 2t from black box use of reliable
broadcast and a common coin. When this ACS is instantiated with our network agnostic
RB, it inherits network agnostic security and optimistic responsiveness.

Reliable Broadcast. Our first contribution is a network agnostic protocol for reliable broad-
cast as defined by Bracha [Bra87]. Reliable broadcast allows a designated sender to send a
message to a set of parties with the following crucial property, usually referred to as totalitiy:
if an honest party outputs the sender’s message, then all honest parties eventually output
the same message. This primitive was studied in the network agnostic setting by Momose

5 These certificates were coined justifiers by Cachin et al. [CKPS01]. In line with [DYMM+20,KNTT22,LN24] we
apply justifiers more generally to protocol messages, inputs and outputs.
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and Ren [MR21] and Ghinea et al. [GLZW22], who give constant time solutions following
the BKL19 paradigm.6 With our technique we also achieve optimistic responsiveness.

In our reliable broadcast, the sender first signs a message and sends it to all parties,
who in response sends a signed asynchronous vote for the message to all parties. If n − ta

asynchronous votes are received, they are unique and can simply be forwarded to all parties
to propagate the unique output within the actual network delay δ (c.f. Section 2.1). If at most
ta parties are corrupted, then this terminates within 2δ of the honest sender giving input,
meaning it is responsive. Finally, it might deadlock in synchrony. But then parties will wait
for 2∆ and send a synchronous vote on the same message unless they in the meantime saw
a conflicting message from the sender (through an asynchronous vote). A party who receives
just n − ts synchronous votes can trust that the message is unique: in asynchrony due to
any two quorums intersecting on at least ta + 1 parties, and in synchrony due to n− ts > ts

and all honest parties being guaranteed to send the same (if any) synchronous votes. This
serves as an alternative certificate of unique output, and uniqueness across the two types of
certificates is argued along the lines of the discussion in Section 1.1.

Binary Agreement. We construct BA by reducing it to validated BA (VBA) using input
justifiers. As discussed in Section 1.1 when t < n/3 input justifiers can be established simply
by collecting signed inputs from n − t parties where at least t + 1 have sent the same bit.
But in our setting the thresholds n > 2ts + ta only a priori allow relying on an input being
valid given inputs from ts + 1 parties (since we could be in a synchronous execution). On the
other hand, we can only expect to receive that many identical inputs by waiting to hear from
2ts + 1 parties, which is more than the assumed number of honest parties in a synchronous
execution. If we insist on optimistic responsiveness, then we cannot collect inputs from all
honest parties. In Section 4.3 we resolve this apparent deadlock.

To construct VBA the main challenge is to obtain a protocol for graded agreement that
can terminate responsively. But having justified inputs helps a great deal. At a very high
level, if there is a unique justified input bit, then this corresponds to the situation in reliable
broadcast where an honest sender only signs a single message. In that case we can reuse the
logic of the reliable broadcast to obtain a justified certificate which excludes a certificate of
the same type on any different message. If we are not in this situation, then two honest parties
have different justified input bits. Together these serve as a certificate that both inputs are
justified. So by simply running the logic of the reliable broadcast, we are guaranteed to
obtain one of these two types of certificates. Since the two outputs that are justified by the
reliable broadcast logic have mutually exclusive justifiers, these 3 possible outputs can be
cast as a validated flavor of crusader agreement. We expand on this intuition and how it
can be used to obtain graded agreement with more grades in Section 4.1. From this and a
common coin, piecing together an expected constant time validated BA is simple. We provide
a construction in Section 4.2.

6 Since reliable broadcast may never terminate, we define the running time as the maximum of the time it takes
between an honest sender giving input and all honest parties receiving output, and the time between the first and
last honest parties receiving output, c.f. Remark 1.
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Agreement on a Core Set. We finally build a more directly useful primitive in the form
of Agreement on a Core Set (ACS), which is a key building block in asynchronous MPC and
directly implies most standard definitions of atomic broadcast, state machine replication,
public bulletin board, blockchain, total-order broadcast, etc. There are several constructions
of network agnostic ACS following the common approach of first establishing local sets with
a large common core and then running n parallel BA protocols to reach agreement on a set
including at least the common core. However, even if we use our expected constant time BA,
the expected time before the last of n parallel instances terminate is O(log n).

Instead, we base our design on the remarkably simple DAG-Rider protocol by Keidar
et al. [KKNS21]. It constructs a round-based DAG where blocks are sent through reliable
broadcast and point to n−t blocks from the previous round. Then after a wave of 4 rounds it
relies on a common core being established and uses it to agree on the block of a leader using
a single λ-bit coin instead of n parallel BAs. This allows the construction to be expected
constant time.

In order to adapt this to the network agnostic setting, we have to live with the possibility
of ts corruptions, which may exceed the n/3 corruption bound in DAG-Rider. Conveniently,
an amended version of the DAG-Rider protocol turns out to be asynchronously secure with
up to t < n/2 Byzantine corruptions from black box use of reliable broadcast and common
coin. In particular when instantiated with our reliable broadcast, it inherits network agnostic
security, optimistic responsiveness, and has expected constant round complexity. This implies
MPC with the same properties based on fully homomorphic encryptions and non-interactive
proofs of knowledge following [BKLZL20,Coh16].

We finally consider a potential issue that, for some use cases of ACS it might not suffice
to only guarantee a core of size n − ts. As we discuss in more detail in Section 1.3 and
Section 5.2, Constantinescu et al. [CGWW24] use ACS to solve convex consensus and require
that their network agnostic ACS satisfies the stronger property that all honest inputs are
included in the core in synchronous executions. We first show that this is incompatible with
optimistic responsiveness, but also that it is simple to add a single round gadget to our
protocol ensuring this property by initially waiting for all honest inputs and then giving
these as input to the original ACS. It is an interesting problem if this property is necessary
to solve convex consensus or computing other natural function. Another natural option is
to ensure that the majority of the inputs in the core are from honest parties. This can be
achieved responsively up to ta corruptions by adding an optimistic path to the above gadget,
which lets parties send an input set before they are done waiting if they manage to collect
n− ta inputs.

1.3 Related Work

Momose and Ren [MR21] describe a reliable broadcast protocol similar which is similar to
the one we describe in Fig. 1, but their version always waits for a timeout before outputting,
and as such cannot give responsive output. They justify this choice by showing that the
protocol cannot always be responsive by generalizing an impossibility on responsiveness to
the network agnostic setting, or rather to their more general multi-threshold setting where
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separate thresholds for safety and liveness in both synchrony and asynchrony are studied.
Specifically, they show that a protocol cannot be safe against βs Byzantine faults in synchrony
and responsive when there are n−βs

2 Byzantine faults. In our setting where we insist in both
liveness and safety and assume n > ta +2ts and ts > ta, their impossibility result implies that
you cannot make protocols responsive when there are n−ts

2 > ts+ta

2 > ta Byzantine faults.
This does not contradict our result as the protocols we present are responsive only when
t ≤ ta. We leave it as an open question if it is possible to commit responsively when there
are between ta and n−ts

2 Byzantine faults.
There has been a few other works on round efficient consensus which all follow the overall

design pattern by Blum et al. of waiting for the worst case bound of the synchronous BA
rounds before the asynchronous path is attempted. Notably, Deligios et al. [DHLZ21] study
round efficient synchronous BA with asynchronous fallback. However, they only consider
round efficiency of synchronous executions. In order to terminate using the asynchronous
path, it still needs to run λ rounds of the synchronous protocol. They also give an instan-
tiation for MPC from an ACS procedure which waits for n parallel BAs to terminate with
certainty. This is in order to preserve lock step synchrony, as protocol that terminate early
have to deal with some parties terminating in different rounds.

A recent work by Deligios and Erbes [DE24] design a compiler that turns any pair of
synchronous and asynchronous BA protocols into a network agnostic BA. In order for their
compiler to make black box use of the BA protocols, it has to run both the synchronous and
the asynchronous BA. In spite of this they still (up to a small additive constant) preserve
the concrete expected round complexity of the synchronous protocol by employing a gadget
that makes the asynchronous protocol terminate deterministically whenever output of the
synchronous BA is unique. As a result of being able to use any synchronous protocol, their
approach has better concrete round complexity than [DHLZ21] in synchronous executions, if
instantiated with [GGLZ22], which achieves an error probability (cr)r in r rounds but does
not allow early termination. However, the approach still has no hope of achieving constant
time regardless of which concrete BA protocols are used.

Another recent work by Constantinescu et al. [CGWW24] uses ACS as a building block
to solve convex consensus. Their network agnostic ACS initially follows a pattern similar
to ours, as some rounds of their GTHR protocol serve a role in both the synchronous and
asynchronous path. But after this phase the output is used to construct ACS by running
n parallel BAs using [DHLZ21], which in asynchrony requires at least O(λ) rounds and in
synchrony has expected O(log n) round complexity. While the ACS we present is expected
constant time and optimistically responsive, Constantinescu et al. point out that it does
not satisfy their ACS security definition. Namely, our protocol only guarantees outputting
a (fully adversarially chosen) set of n − ts parties’ inputs, which in synchronous executions
might only contain a single honest value. On the other hand they require a property named
Honest Core: that the output of ACS includes all honest inputs, and rely on this property to
implement convex consensus based on the output of ACS. We briefly discuss in Section 5.2
how to adapt our protocol to satisfy Honest Core in synchronous executions by adding an
initial one round gadget. The resulting construction cannot terminate responsively, which
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we show is inherent. Finally, we show an optimistically responsive version of the gadget with
a slightly weaker guarantee than Honest Core: that the majority of inputs in the core are
honest. We suspect this property is sufficient to solve convex consensus.

2 Preliminaries

2.1 Network, Time and Corruption.

We consider a set of n parties P connected via point to point channels and assume that
message delivery is handled by an adversary who may adaptively corrupt up to ts parties if
the network is synchronous and up to ta when it is asynchronous. We assume that ta+2ts < n
and a strong flavour of adaptive corruptions where the adversary can corrupt a party and
drop messages that it sent while it was honest.

Clocks, Rounds, and Time Complexity. In synchronous executions, the adversary must
deliver all messages between two honest parties within a fixed bound ∆ which is known
to all parties. We assume that parties have access to local clocks which for simplicity are
synchronized up to an error bounded by ∆. We follow a common design pattern in partially
synchronous protocols, where parties do not enter and exit rounds in lock step synchrony, but
instead wait 2∆ between synchronous steps to allow other parties to respond to a message
before sending the next. This additionally trivializes composition of synchronous protocols
whenever outputs or inputs come with a justifier (see below) that allows a receiver to be
caught up to the state of the sender and respond to messages immediately. A similar
light use of clocks without lock-step synchrony has previously been used for synchronous
protocols [HMW18,AMN+20].

In asynchronous executions there are no guarantees on when messages are delivered, and
termination guarantees are only stated in terms of the maximal duration in which a message
between two honest parties has been en route. In line with Canetti and Rabin [CR93], for any
finite execution we use the maximal such duration to measure time complexity. Following
the literature on optimistic responsiveness [PS18] we use δ to denote it.

In synchronous executions we measure time complexity in ∆ while in asynchronous exe-
cutions we use δ. The duration of each round is of length at most ∆ when the network is syn-
chronous and at most δ when there are ta or fewer corruptions. This is because when ∆ > δ,
the activation rules relying on timeouts never trigger. This accounts for both asynchronous
time complexity and optimistic responsiveness. We use time and rounds interchangeably, and
note that all the presented protocols have (expected) constant round and time complexity.
Threshold Signatures and PKI. In line with most literature in the area we follow the
Dolev-Yao model [DY81] and idealize signatures schemes as ideal objects with λ bit sized
signatures and perfect unforgeability. We assume a signature scheme (Gen, Sig, Ver) and a
PKI, where in some initial synchronous round all parties Pi ∈ P sample (vki, ski)← Gen(1λ)
and send vki to a trusted third party which makes public (vk1, . . . , vkn). The adversary gets
to see vki for all honest Pi before picking its own keys, and it does not have to pick its own
keys at random, it can use any vkj for a corrupted Pj. We will also make use of threshold
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signatures with reconstruction thresholds ts+1, ta+1, n−ts, and n−ta. For this we define a t
threshold signature scheme with unique signatures (Setupt, Sigt, Vert, ShareVerifyt, Combinet),
where (vk, sk1, . . . , skn) ← Setupt(1λ) generates a verification key vk and a signing share ski

for Pi, Sigt,ski
partially signs m, ShareVerifyt can verify a partial signature, and Combinet

computes σ = Sigt,sk(m) from t verified shares.

Common Coin. We assume a protocol for common coin ΠCC. If all honest parties invoke
ΠCC with an identifier id, the functionality gives a unique coin cid to all honest parties. The
value of this coin is unpredictable until the first honest party invokes ΠCC with id. This can
be implemented in asynchrony from threshold signatures following [CKS00] under honest
majority, which is implied by 2ts + ta < n.

Justified messages, inputs and ouputs. In many cases the inputs, outputs and messages
sent in our protocols have a corresponding justifier, which is a convenient abstraction allowing
parties to be convinced that the information they receive satisfies certain validity properties
by buffering the information until it is seen to satisfy some justifier predicate J . Additionally,
in order to make it easy to justify information based on other justified information, where
our definitions are in line with [KNTT22] (see Definition 2). A justifier predicate is said to be
monotone if for any message m that J justifies in the view of a party P at some point in time,
m remains justified in P ’s view. J is said to be propagating if any message that is justified
in P ’s view eventually becomes justified in every party P ’s view. As an example, consider
the previously discussed reduction from BA to VBA where parties send a t + 1 threshold
signature to demonstrate that an honest party received the bit as input [CKPS01]. This is
clearly a monotone justifier, and if parties additionally forward the signature, then it is also
propagating. Similarly all blocks in the DAG-Rider protocol by Keidar et al.[KKNS21] can
be cast as justified by being send through reliable broadcast and referencing only justified
messages. Again this justifier is monotone and since reliable broadcast satisfies totality, it is
also propagating.

Some previous works using similar abstractions for justifiers introduce an explicit predi-
cate for every justifier [DYMM+20], but since in our case almost every message is associated
with a justifier that would be quite verbose. Instead, we might write: “wait until t + 1 sig-
natures on some bit b are received, and forward b justified by these t + 1 signatures.”. So,
to simplify notation considerably while keeping the formal meaning of each justifier unam-
biguous, we introduce the following conventions allowing us to define justifiers ad hoc when
defining the protocol rules giving rise to the justified information.

We consider a formal model where all messages sent in a protocol implicitly come with
a message identifier. This is a typically assumed but often ignored abstraction which allows
having more than one instance of the protocols and primitives described with meaningful
security properties, without writing an explicit copy for each one. We do however deliberately
keep this hidden from the specifications of our security definitions and protocol descriptions.
7 This is to not clutter them with unnecessary syntax. Yet, we will still tacitly assume that

7 With the exception that we do make explicit use of message identifiers to compose and disambiguate between
protocol instances in the causal cast framework presented in Appendix A.1.
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each message is associated with this unique string and take advantage of it when defining
justifiers.

Definition 1 (Message identifiers - informal). In our protocols all messages will have
a message identifier mid specifying which protocol it belongs to, what round of the protocol
it comes from, sent by whom and so on. Each message identifier mid specifies a party Pmid,
which we think of as the party which is to send the message identified by mid. Each mid also
specifies a so-called justifier Jmid, which is a predicate depending on the message m and the
local state of a party. When we write pseudo-code then we write Jmid(m) to denote that the
party P executing the code computes Jmid on m using its current state. In definitions and
proofs we write Jmid(m, P, τ) to denote that we apply Jmid to m and the local state of P at
time τ .

We further characterize justifiers by requiring the following useful properties (adapted
from a similar definition in [KNTT22]).

Definition 2 (Justifier). For a message identifier mid we say that Jmid is a justifier if the
following properties hold.

Monotone: If for an honest P and some time τ it holds that Jmid(m, P, τ) = ⊤ then at all
τ ′ ≥ τ it holds that Jmid(m, P, τ ′) = ⊤.

Propagating: If for honest P and some point in time τ it holds that Jmid(m, P, τ) = ⊤,
then eventually the execution will reach a time τ ′ such that Jmid(m, P′, τ ′) = ⊤ for all
honest parties P′.

In the protocols we define, many internal protocol messages will come with a justifier,
which intuitively is used to force the adversary to behave consistently with honest input
output behaviour. Our proofs will often follow a pattern where we show that for any message
of a certain type, some predicate P holds for all possible justified messages, by which we
mean that it holds for honest messages which are sent to all parties and in addition that the
adversary cannot even cook up messages which look justified to some honest party but do
not have the property P .

Definition 3 (Possible Justified Messages). Let Π be protocol executed among parties
P = {P1, . . . , Pn}. When we say that an ℓ-ary predicate P holds for all possible justified
messages we mean that any PPT adversary should win the following game with negligible
probability.

– Run an execution of Π under attack by the adversary.
– At any point the adversary may output a sequence of triples

(P1, mid1, m1), . . . , (Pℓ, midℓ, mℓ).
– We say that the adversary wins if the message identifiers mid1, . . . , midℓ identify messages

of Π, P1, . . . , Pℓ are honest (but not necessarily distinct) parties, for j = 1, . . . , ℓ it holds
that Jmidj (mj) = ⊤ at Pj, and P (m1, . . . , mℓ) = ⊥. Otherwise the adversary looses the
game.
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We will mostly use this to talk about predicates that are satisfied by a subset of all
possible justified messages of a protocol, specifically ones prompted by a concrete activation
rule of the protocol. This is covered by Definition 3 by making the class of messages part of
the predicate P .

Note that it is important for the definition to be meaningful that honest parties send their
messages through a channel that leak them to the adversary, as otherwise an honest message
that does not satisfy the P does not imply the adversary winning the game. For this reason
it will be convenient when defining security properties to use all possible justified outputs of
a justified protocol as shorthand for the outputs of honest parties as well as anything the
adversary could convincingly claim to have gotten as output. This motivates Definition 4
which considers a predicate P only on outputs of the protocol Π, but then requires the
outputs to be sent to all parties. As honest parties send their outputs, the adversary could
easily win the game if an honest party receives output that does not satisfy P .

Definition 4 (Possible Justified Outputs). Let Π be protocol executed among parties
P = {P1, . . . , Pn} with output justifier J . Let Π ′ be the protocol Π with only change being
that each party on getting output, sends their output to all parties if this was not already
done. Consider an ℓ-ary predicate P , and let P ′ be equivalent to P with the only change
being that its domain is restricted by making it evaluate to ⊥ when any of its inputs are
not an output of Π ′. When we say that an ℓ-ary predicate P holds for all possible justified
outputs of Π we mean that P ′ holds for all possible justified messages of Π ′.

Most of our protocols will be justified protocols which puts validity constraints on the
inputs and outputs.

Definition 5 (Justified Protocol). A justified protocol Π can have input and output
justifiers.
Input justifier: If a protocol has an input justifier Jin it means that a message identifier

midin is associated with the input, Jin = Jmidin, and it is Pmidin which gets the input.
Furthermore, if Pmidin is honest then it is guaranteed that Jin(m, Pmidin , τ) = ⊤ when m is
input to Pmidin at time τ .

Output justifier: If a protocol has an output justifier Jout it means that a message iden-
tifier midout is associated with the output, Jout = Jmidout, it is Pmidout which gives the
output, and when it gives the output it may send the output to all parties with message
identifier midout. Furthermore, if Pmidout is honest and gets output m then it is a secu-
rity property of the protocol that if P does send its output to all parties at time τ , then
Jout(m, P, τ) = ⊤.

When necessary, we use the notation Π.Jin and Π.Jout to disambiguate Jin and Jout from
the input and output justifiers of other protocols.

2.2 Problem definitions

We include standard definitions of the main studied primitives, and defer definitions of
additional primitive used building blocks to the relevant sections.
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Reliable Broadcast. Reliable broadcast allows parties to send messages with strong con-
sistency guarantees, which guarantees that if one honest party receives the message, then
all honest parties receives the same message. In contrast to synchronous broadcast, it is not
possible to reach agreement on the fact that no message was sent.

Definition 6 (Reliable Broadcast). Let Π be protocol executed among parties P =
{P1, . . . , Pn}, where a designated sender S has input m ∈ {0, 1}∗ and each party Pi may
output a message mi. We say that Π is a secure reliable broadcast protocol if the following
properties hold:

Validity: If S is honest and has input, and honest Pi has output then mi = m.
Agreement: If honest parties Pi and Pj have output then mi = mj.
Eventual Output 1: If S is honest and has an input, and all honest Pi start running the

protocol, then eventually all honest Pj have an output mj.
Eventual Output 2: If an honest Pj has output mj, and all honest parties start running

the protocol then eventually each honest Pi has output mi.

Remark 1. Note that RB does not have a unified termination property, but requires termi-
nation only given an honest sender, of if an honest party already received output. When we
discuss the latency of reliable broadcast and claim that it is constant time or responsive,
then we consider the duration between an honest party either sending or receiving a mes-
sage through reliable broadcast and the last honest party receiving the message. We let the
maximal such duration define the running time of the protocol.

Binary Agreement. Binary agreement allows the parties to reach agreement on a bit
decision, which is guaranteed to be the input of an honest party.

Definition 7 (BA). Let Π be protocol executed among parties P = {P1, . . . , Pn}, where
each party Pi holds an input xi ∈ {0, 1} and outputs a value yi ∈ {0, 1} upon terminating.
We say that Π is a secure BA protocol if the following properties hold:

Liveness: If every honest party Pi has input xi ∈ {0, 1}, then eventually every honest party
Pj will have output yi ∈ {0, 1}.

Agreement: If honest parties Pi and Pj have output then yi = yj.
Validity: If honest party Pi has output, then for some honest party Pj: yi = xj.

Validated Binary Agreement. Valididated BA relaxes the validity requirement of BA, so
that the output just has to satisfy some predicate. On the other hand the outputs is typically
assumed to come with a transferable certificate.

Definition 8 (Validated BA). Let Π(Jin) be a protocol parameterized by an input justifier
Jin and executed among parties P = {P1, . . . , Pn}, where each party Pi receives an input
xi ∈ {0, 1} for which Jin(xi, Pi, τ) = ⊤ at the time of input τ and outputs a value yi ∈ {0, 1}
satisfying an output justifier Jout upon terminating. We say that Π(Jin) is a secure VBA
protocol if the following properties hold:
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Liveness: If every honest party Pi has justified input xi ∈ {0, 1} (where Jin(xi) = ⊤), then
eventually every honest party Pj will have justified output yj ∈ {0, 1} (where Jout(yj, Pj, τ) =
⊤ at the time of output τ).

Justified Agreement: For all possible justified outputs y and y′: y = y′.
Justified Validity: If Jout(y) = ⊤, then Jin(y) = ⊤.

Agreement on a Core Set. Agreement on a core set (ACS) allow a set of parties to reach
agreement on a subset of their inputs.

Definition 9 (Agreement on a Core Set). Let Π be a protocol executed among parties
P = {P1, . . . , Pn}. All honest Pi have an input Bi and may obtain output Ui consisting of a
set of inputs.

Liveness: If all honest parties start running the protocol with a Jin-justified input then
eventually all honest parties have a Jout-justified output.

Validity: If an honest party Pi obtains output Ui then for all honest Pj where (Pj, Bj) ∈ Ui

it holds that Pj had input Bj.
Agreement: If a pair of honest parties Pi and Pj obtain outputs Ui and Uj then Ui = Uj.
t-Large Core: If an honest party Pi obtains output Ui it holds that |Ui| ≥ n− t.

3 Reliable Broadcast

We present a reliable broadcast protocol and show that the protocol has network agnostic
security if the thresholds satisfy n > ta + 2ts.

The logic of our reliable broadcast somewhat resembles the reliable broadcast protocols by
Momose and Ren [MR21] and Ghinea et al. [GLZW22], but we do not require synchronized
starts and are able to output responsively. In the protocols of [MR21,GLZW22], parties first
report the message they received from the sender by sending it to all parties. Then (after a
timeout), they vote for it if no conflicting messages from the sender have been seen after all
honest parties have had a chance to report what they saw from the sender. When n−ts votes
are collected, they serve as a certificate of the output’s uniqueness and can be relayed to all
parties to ensure totality. The vote message in these two protocols plays the same role as
our synchronous vote, in the sense that in synchronous executions all honest (synchronous)
votes are on the same message. This ensures unique output: in synchrony because n − ts

votes include an honest vote and in asynchrony because any two sets have n− 2ts > ta votes
in common.

Where our logic differs is that the initial report of the sender’s proposal is also seen as
a asynchronous vote, and n − ta asynchronous votes form a certificate without waiting for
∆. This larger set of signatures is still a valid certificate in asynchrony, but now also in
synchrony because any two asynchronous certificates share n− 2ta > ts asynchronous votes.
To see that the message is unique across the two different certificate types, observe that they
share n − ts − ta > ts votes, and that an honest party will not send an asynchronous and
synchronous vote on two different messages.
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Reliable Broadcast ΠRB

Input: The input of the designated sender S is m. In response to this input S sends (m, σs = Sigsks
(m))

to all parties. Create initially empty sets SignedAsync and SignedSync.
Asynchronous Vote: Pi: Upon receiving (m, σs) from S, where Vervks (m, σs) = ⊤ and where no such

message was received before and there is no (Pj , mj , σj) ∈ SignedAsync with mj ̸= m, proceed as
follows:
1. Let σi = Sigski

((Async, m)) and send (m, σs, σi) to all parties.
2. Add (Pi, m, σi) to SignedAsync.
3. Record current time τi.

Collect Asynchronous Votes: All parties: Upon receiving (mj , σs, σj) from Pj , where Vervks (mj , σs) =
⊤ and Vervkj ((Async, mj), σj) = ⊤ and no such value was received from Pj before, add (Pj , mj , σj)
to SignedAsync.

Synchronous Vote: Pi: At τi + 2∆ if there are at least n − ts values (Pj , m, ·) ∈ SignedAsync and there
does not exist (Pk, m′, ·) ∈ SignedAsync where m′ ̸= m, then let σi = Sigski

((Sync, m)) and send
(m, σi) to all parties.

Collect Synchronous Votes: All parties: Upon receiving (mj , σj) from Pj , where
Vervkj ((Sync, mj), σj) = ⊤ and no such value was received from Pj before, add (Pj , mj , σj)
to SignedSync.

Asynchronous Output: All parties: If there exists m such that there are n − ta values (Pj , m, σj) ∈
SignedAsync then let Σ = {(Pj , σj)}(Pj ,m,σj )∈SignedAsync, output m, send (m, Σ) to all parties, and
terminate.

Synchronous Output: All parties: If there exists m such that there are n − ts values (Pj , m, σj) ∈
SignedSync then let Σ = {(Pj , σj)}(Pj ,m,σj )∈SignedSync, output m, send (m, Σ) to all parties, and termi-
nate.

Output by Relay: Upon receiving (m, Σ) from any party where either
– Σ contains n − ts values (Pj , m, σj) for distinct Pj such that Vervkj ((Sync, m), σj) = ⊤ (call such

a value synchronous-valid), or
– Σ contains n − ta values (Pj , m, σj) for distinct Pj such that Vervkj ((Async, m), σj) = ⊤ (call

such a value asynchronous-valid),
output m, send (m, Σ) to all parties, and terminate.

Fig. 1. A protocol for RB with dual thresholds ts and ta and designated sender S.

Theorem 1 (Network Agnostic reliable broadcast). ΠRB is a reliable broadcast pro-
tocol for the network agnostic model where either the network is synchronous and there are
at most ts corruptions or the network is asynchronous and there are at most ta corruptions.
All parties terminate within time 2δ + 2∆. Furthermore, if t ≤ ta and the sender is honest
then all honest parties terminate within time 2δ.

It is not hard to see that the protocol has eventual output and validity. The running time
is also straight forward. The main observation is that when corruption is bounded by ta then
within time δ the n− ta honest parties trigger Asynchronous Vote and then within δ all
parties have an asynchronous-valid output. We sketch why the protocol has agreement. The
pivotal property which the protocol has by design is the following.

Lemma 1 (Synchronous Vote Agreement). If two honest Pi and Pj send (mi, σi) and
(mj, σj) in Synchronous Vote then mi = mj.

Proof. Consider Pi and Pj sending (mi, σi) and (mj, σj) in Synchronous Vote. Then they
sent some (mi, σs, σ′

i) and (mj, σ′
s, σ′

j) in Asynchronous Vote. Assume Pi sent (mi, σs, σ′
i)

first. Then Pj waited until at least τj + 2∆ ≥ τi + 2∆, i.e. at least 2∆ after (mi, σs, σ′
i) was
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sent before sending its synchronous vote. Assume that the network is synchronous. Then
Pj saw (mi, σs, σ′

i) before τj + 2∆ which is the earliest point (mj, σj) could have been sent.
Therefore mj = mi, or (mi, σs, σ′

i) would have blocked the sending of (mj, σj). Assume then
that the network is asynchronous. Then by assumption t ≤ ta. Recall that 2ts + ta < n. If
Pi sent (mi, σi) then it saw n − ts values (Pk, mi, ·) ∈ SignedAsync. If Pj sent (mj, σj) then
it saw n− ts values (Pk, mj, ·) ∈ SignedAsync. This means they saw values from n− 2ts > ta

common parties. So they saw (Pk, mi, ·) and (Pk, mj, ·) from at least one joint honest Pk.
Therefore mi = mj. ⊓⊔

Lemma 2 (Network Agnostic Agreement). If Pi and Pj are honest and output mi

and mj then mi = mj.

Proof. If Pi outputs mi then it saw a valid (mi, Σi) and if Pj outputs mj then it saw a
valid (mj, Σj). If any of the parties saw a synchronous-valid value, then rename the parties
such that Pi saw one. This gives three cases on the validity flavour of (mi, Σi)-(mj, Σj):
synchronous-synchronous, synchronous-asynchronous, and asynchronous-asynchronous. As-
sume first they both are synchronous-valid. Recall that 2ts − ta < n. Among the n − ts

parties in Σi there is at least one honest party as n − ts > t, where t is the actual number
of corruptions. Similarly, among the n − ts parties in Σj there is at least one honest party.
Agreement then follows from Lemma 1. Assume then that both (mi, Σi) and (mj, Σj) are
asynchronous-valid. Then among the n− ta parties in Σi and the n− ta parties in Σj there
are at least n − ta − ta > 2ts − ta > ts ≥ t common parties. Therefore there is at least
one common honest party. Honest parties sign at most one message m. Assume then that
(mi, Σi) is synchronous-valid and (mj, Σj) is asynchronous-valid. Among the n − ts parties
in Σi and the n− ta parties in Σj there are at least n− ts − ta > ts common parties. Since
ts ≥ t, where t is the actual number of corruptions, it follows that there is at least one
honest party in common among Σi and Σj. Clearly, if an honest party signs both (Sync, m)
and (Async, m′) then m′ = m. Therefore mi = mj. ⊓⊔

4 Binary Agreement

We construct binary agreement (Definition 7) by first solving the simpler problem of validated
binary agreement (Definition 8) and then giving a separate reduction from BA to VBA
in Section 4.3 in line with Cachin et al. [CKPS01]. VBA is in turn reduced to validated
proxcensus and a common coin.

As discussed in our overview (Section 1.2), obtaining justified inputs for VBA in an op-
timistically responsive manner is surprisingly challenging. To resolve the apparent deadlock,
we let parties first optimistically wait to see ts + 1 identical inputs, as such a set of inputs
is guaranteed to eventually arrive in asynchronous executions, and is always a sound certifi-
cate. But in a synchronous execution, such a set may never arrive. Notice however, that if all
(> ts) honest parties have the same input, then a certificate arrives within a network delay
of them getting input. So if a party waits long enough to receive the inputs of all honest
parties in a synchronous execution and did not see such a set, then either (1) both bits have
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been given as inputs to honest parties or (2) the network is asynchronous. If (1) is true,
then both bits are valid and if (2) is true then a certificate of signed identical inputs from
only ta + 1 parties is enough to demonstrate validity. Since we want the certificates to be
transferable and “having waited long enough” is not a justifiable statement, we first send an
intention to downgrade the threshold and require the downgraded certificate of ta + 1 signed
inputs to include signed intentions from ts + 1 parties, of which at least one was honest and
waited long enough to ensure validity.

The main remaining challenge is to construct graded agreement.

4.1 Validated Graded Agreement

We first abstract a high level idea from [Kam25] which defines validated proxcensus (c.f.
Definition 10). As a special case: consider a validated flavor of crusader agreement which is
to crusader agreement what VBA is to BA. In crusader agreement, parties input bits and
receive output in the form of a bit or and undecided value ‘?’, with validity requiring that
if all honest parties input the same bit then that should be the unique output and graded
agreement requiring that no honest parties have different bits as output. In validated crusader
agreement, validity is replaced with the condition that if only on input can be justified,
then it should be the uniquely justified output. Similarly, graded agreement becomes the
requirement that all justified outputs of the protocol have graded agreement. More precisely
an adversary cannot construct an output and a corresponding justifier that convinces an
honest party, unless the output has graded agreement with all other such outputs.8 From this,
validated graded consensus with more grades can be constructed by sequentially applying
this protocol.

To construct validated crusader agreement we notice that the logic from the reliable
broadcast almost solves the problem. The justified votes on the senders signed message can be
seen as solving a weak consensus protocol (sometimes called reliable consensus [BKLZL20])
where all honest parties having the same input leads to them obtaining that message as
output, and where no conflicting outputs are possible. When inputs are justified bits, then
we can make parties send their justified input to all parties and also give it as input to
this reliable consensus. Now, either all honest parties had the same input, and the reliable
consensus terminates, or at least two different justified inputs will propagate. This solves
validated crusader agreement by outputting the bit from reliable consensus, or an undecided
value if both possible inputs are seen to be justified.

With this logic in place, the primitive can be used to instantiate validated proxcensus
with 2G + 1 grades by invoking the primitive sequentially G times. We now present the more
general solution using the definition of validated proxcensus by Kamp [Kam25].

Definition 10 (Validated Proxcensus [Kam25]). Let ΠVProx−G(Jin) be a protocol for
n parties, parameterized by an input justifier Jin, and outputting y ∈ {0, . . . , G−1} satisfying
an output justifier Jout. We say that ΠVProx−G(Jin) solves VProx-(G) if the following holds:

8 We define all possible justified messages and output in Definitions 3 and 4.
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Liveness If every honest party Pi have justified input x ∈ {0, 1} where Jin(x) = ⊤, then
eventually every honest party Pj will have justified output y ∈ {0, . . . , G − 1} where
Jout(y) = ⊤.

Justified Graded Agreement For all possible justified outputs y and y′: |y − y′| ≤ 1.
Justified Validity If b is the only possible Jin justified bit, then y = b · (G − 1) for all

possible justified outputs y.

Validated Proxcensus ΠVProx−2s−1(Jin)

We implement ΠVProx−2s−1 from ΠVProx−s for s ≥ 2. As a base case for the recursion, define ΠVProx−2(Jin)
to output its input with Jout = Jin (trivially satisfying Definition 10).

1. On input xi where Jin(xi) = ⊤, Pi runs ΠVProx−s(Jin) with input xi. Let zi denote the output.
2. Pi multicasts (AsyncProposal, zi) with a signature, a shares of threshold signature schemes with

thresholds n − ta and n − ts. It also records the current time τi.
3. Upon receiving justified (AsyncProposal, z) and (AsyncProposal, z − 1), Pi lets yi = 2z − 1,

multicasts (AsyncPair, yi) and terminates with output yi. The value is justified by the justifiers of z
and z − 1.

4. Upon receiving justified (AsyncProposal, z) from n − ta distinct parties, Pi lets yi = 2z, multicasts
(AsyncQuorum, yi) and terminates with output yi. The value is justified by an n − ta threshold
signature on z.

5. After time τi + 2∆ and having collected (AsyncProposal, z) from at least n − ts distinct parties,
Pi multicasts (SyncProposal, z) with a signature and a share of a ts + 1 threshold signature. The
value is justified by an n − ts threshold signature on z.

6. On having received ts + 1 justified (SyncProposal, z) messages from ts + 1 distinct parties, Pi lets
yi = 2z, multicasts (SyncQuorum, yi), and terminates with output yi. The value is justified by a
ts + 1 threshold signature on z.

Fig. 2. A recursive description of the validated proxcensus protocol.

Lemma 3. For any two justified values (AsyncPair, y) and (AsyncPair, y′) produced in step 3,
y = y′.

Proof. By induction hypothesis ΠVProx−s(Jin) satisfies Justified Graded Agreement, so y and
y′ are uniquely defined by the two possible justified outputs of the inner protocol.

Lemma 4. For any two justified values (AsyncQuorum, y) and (AsyncQuorum, y′) produced in
step 4, y = y′. Additionally, for any justified (SyncProposal, z) sent in step 5, y = 2z.

Proof. Any two n−ta threshold signatures justifying y and y′ have shares from n−2ta > ts ≥ t
parties in common. Regardless of the network condition, at most ts parties are corrupted,
so y = y′ as no honest party sends more than one AsyncProposal. When comparing y and z,
the justifier of y is an n− ta threshold signature on y/2, while the justifier for z is an n− ts

threshold signature on z. At least n− ta − ts > ts ≥ t parties would need to have proposed
both, so they must be equal, so y = 2z.

We show that justified output of the asynchronous path satisfy Justified Graded Agree-
ment.
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Lemma 5 (Asynchronous Graded Agreement). For any justified output (AsyncPair, y)
and (AsyncQuorum, y′), |y − y′| ≤ 1.

Proof. Consider y justified by step 3 and y′ justified by step 4. We know by the above
two lemmas that they are uniquely defined. We show that |y − y′| = 1. By Justified Graded
Agreement of ΠVProx−s(Jin), we know that the two values z and z−1 justifying y are the only
possible justified outputs of ΠVProx−s(Jin). Since y′ ∈ {2z, 2z−1} we have y = 2z−1 = y′±1.

⊓⊔

Lemma 6 (Honest Synchronous Proposal Agreement). For any two honest messages
(SyncProposal, z) and (SyncProposal, z) sent through step 5, z = z′.

Proof. If the network is asynchronous, then t = ta and the two sets of size n− ts intersect on
n− 2ts > ta parties, so the values are identical. If instead the network is synchronous, then
consider the first honest party Pi that sends a AsyncProposal message and starts the timeout
in step 2 at time τi. By synchrony all honest parties receive the justified message from Pi not
later than τi + ∆, and send their own AsyncProposal which reaches all honest parties no later
than τi + 2∆. Since P was the first honest party to start waiting, no honest party finishes
waiting before τi + 2∆. So any honest party sending a (SyncProposal, z) message does so on
the single value z that was included in all honest (SyncProposal, z) messages.

Lemma 7. For any two justified messages (SyncQuorum, y) and (SyncQuorum, y′) sent in step
6, y = y′.

Proof. The messages are justified by a ts + 1 threshold signature from ts + 1, with a a
contribution from an honest party who sent, (SyncProposal, y/2). By Lemma 6 all honest
SyncProposal messages are consistent.

Lemma 8 (Justified Graded Agreement). The protocol ΠVProx−2s−1 is a validated prox-
census protocol as defined in Definition 10.

Proof. Combining the previous lemmas, we have that all outputs are identical, except those
produced in step 3, but these are at most off by one. The communication complexity is
O(n2λ). The round complexity is at most 2 per recursive call, i.e.logarithmic in the number
of grades and the protocol is responsive up to ta corruptions.

4.2 Validated Binary Agreement

We present our VBA, which roughly follows the approach of Feldman and Micali [FM97]
using graded agreement and a common coin to reach consensus in an expected constant
number of rounds.

In order to avoid explicit use of session identifiers, we will exploit the fact that each
invocation of validated proxcensus uses a unique justifier and (abusing notation slightly) use
the justifier to distinguish between different sessions.

Theorem 2. The protocol ΠVBA presented in Fig. 3 is a secure validate binary agreement
according to Definition 8.
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Validated Binary Agreement ΠVBA (Jin)

Input: On input xi justified by Jin, party Pi initiates an iteration counter r = 0 and defines x0
i = xi and

J0 = Jin. Pi then executes the following steps.
Proxcensus: Pi runs ΠVProx−7(Jr) with input xr

i .
Coin Flip: On justified output gr

i from ΠVProx−7(Jr), Pi invokes ΠCC with identifier r.
Decision: On output cr from ΠCC, Pi waits until it also has a justified gr

i and then acts according to
the following rules:
Output: if gr

i = 0 (or gr
i = 6): let yi = 0 (or yi = 1), multicast and output yi justified by gr

i being
ΠVProx−7(Jr).Jout justified.

Maintain consistency: if gr
i = 1 (or gr

i = 5): let xr+1
i = 0 (or xr+1

i = 1) be justified by gr
i being

ΠVProx−7(Jr).Jout justified.
Use coin: otherwise: let xr+1

i = cr be justified by gr
i being ΠVProx−7(Jr).Jout justified.

If Pi did not yet output, it defines Jr+1 in accordance with the rules above, lets r = r + 1, and goes
back to the Proxcensus step.

Output by relay: Upon receiving an output yj , justified according to the output rules above for any
round r with justified grade gr

j , Pi lets yi = yj , multicasts and outputs yi. The value is justified by
gr

j being a ΠVProx−7(Jr).Jout justified grade and (gr
j , yi) being either (0, 0) or (6, 1).

Fig. 3.

Proof. Justified Validity: We first use Justified Validity of the validated proxcensus pro-
tocol to argue Justified Validity of the VBA. If only one input bit b is justified, then
only the output 6 · b can be justified. So protocol terminates for all parties after the first
iteration where the only possible justified output is b.

Justified Agreement: Similarly we use graded agreement from the validated proxcensus
protocol to argue Justified Agreement. If a justified output b is possible, then the output
b is justified (by grade 6 · b), then by design of our protocol all justified inputs to the next
round of consensus would be on the same bit b, and this inductively results in all future
iterations being given input b and giving output 6 · b. (In particular it means that all
parties terminate at latest in the next iteration, as there are no justified inputs to future
iterations.)

Liveness: Finally, for liveness, note that there are three possible “middle grades” {4, 5, 6}
that make parties use a coin which is unpredictable to the adversary at the point where
the first honest party gets output from proxcensus. If no party uses the coin to decide
their input to some iteration, then by design all parties have already terminated or all
possible justified outputs lie on the same side of the middle grades and can only be used
to justify some unique input in the next round. This leads to all parties terminating after
that round. If all parties use the coin, then they also give the same input in the next
round. So we only need to consider the case where grades are distributed between 1 and 2
(as the other case is symmetric). Since the adversary cannot predict the coin at the time
the first party gives output from proxcensus and the outputs have graded agreement,
then this case results in the protocol terminating (in the next iteration) with probability
≥ 1/2.
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4.3 Reducing BA to VBA

We introduce a simple justified protocol, ΠIVG, which lets parties obtain a validated input for
the VBA protocol, reducing BA to VBA as proposed by Cachin et al. [CKPS01]. Given these
two building blocks the protocol shown in Fig. 4 implements binary agreement as defined in
Definition 7.

Binary Agreement ΠBA

– On input xi, Pi runs ΠIVG with input xi.
– On output bi (which is justified by ΠIVG.Jout) from ΠIVG, run ΠVBA(ΠIVG.Jout) with input bi.
– On output yi from ΠVBA, output yi.

Fig. 4.

The protocol ΠIVG corresponds to the step where inputs are validated using threshold
signature in [CKPS01], however in our setting it is a bit more involved than sending and
collecting shares of a t + 1 threshold signature scheme.

We define its security formally in Definition 11.

Definition 11 (Input Validation Gadget). Let Π be a protocol executed among parties
P = {P1, . . . , Pn}, where each party Pi holds an input xi ∈ {0, 1} and outputs a value
yi ∈ {0, 1} satisfying an output justifier Jout upon terminating. We say that Π is a secure
IVG if the following properties hold:

Liveness If every honest party Pi has input xi ∈ {0, 1}, then eventually every honest party
Pj will have justified output yj ∈ {0, 1} (where Jout(yj, Pj, τ) = ⊤ at the time of output
τ).

Justified Validity For all possible justified outputs y, some honest party Pi had input yi =
y.

Remark 2. The first concern to address is that until now, we only assumed that (in syn-
chronous executions) ∆ is a sound upper bound on δ, which in particular implies that all
honest parties are able to receive inputs within ∆ of the first party sending a message in any
given protocol. This was sufficient because we followed a pattern where, whenever a party
used a timeout to hear from any honest parties who might have potentially conflicting infor-
mation, they also sent a justifier. This justifier allowed the receiver to immediately respond
with its own message, if it had not previously sent anything. If nothing else, the receiver
could simply reply with the same message and justifier. This approach falls apart when we
move to problems where inputs have no objective justification. So instead, we assume that
all honest parties receive input to ΠIVG and ΠBA within a duration of at most ∆.

To construct the input justifier in Fig. 5 we first have all parties multicast their input bits
and optimistically try to collect signature shares on the same input bit from ts + 1 parties,
which would mean that is the input of at least one honest party regardless of the network
setting. We let this be a certificate of validity for that bit. If all honest parties have the same
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input and the network is synchronous, then clearly this would happen within ∆ of the last
honest party sending.

On the other hand, if we assume that honest parties receive inputs at most ∆ and a
party waits 2∆ without receiving identical inputs from ts +1 parties, it can conclude assume
that on of two things is true: either the network is not synchronous or there was not honest
preagreement. So, all honest parties who did not terminate already, will then send a message
that this is the case and try to collect ts + 1 such messages and ta + 1 signed inputs on a bit
b. This is to demonstrate two things: First the ta + 1 signatures on b demonstrate that if the
network is asynchronous, then the bit is the input of at least one honest party. On the other
hand, if the network is synchronous at least on honest party signed a message saying that
they detected that either the network is asynchronous or that it is synchronous but both
bits are valid inputs because there was not pre-agreement.

A final concern is that if most honest parties give output using the first rule without
making this information propagate, then there might not be enough honest parties left to
trigger the second rule. Because of this we make everyone forward a justified output when
they terminate. To make communication O(n2λ), the output is justified by a threshold
signature which combines shares from ts + 1 parties directly on the bit, or alternatively only
ta + 1 directly on the bit and ts + 1 shares from parties who claim that either there was not
honest pre-agreement or that the network is asynchronous.

Input Validation Gadget ΠIVG

– On input bi, Pi records current time τi, multicasts (bi, Async) with a signature, and shares of threshold
signature schemes with thresholds ta + 1 and ts + 1.

– Upon receiving (b, Async) for some bit b from ts + 1 distinct parties, Pi combines the shares of the
ts + 1 threshold signature scheme, multicasts (b, AsyncOutput) along with the threshold signature
and gives output b.

– At time τi + 2∆ if Pi did not yet give output, it multicasts AsyncOrBothValid.
– Upon receiving AsyncOrBothValid from ts + 1 distinct parties and (b, Async) for some bit b

from ta + 1 distinct parties, Pi combines the shares of the ts + 1 threshold signature scheme on
AsyncOrBothValid and the ta + 1 threshold signature scheme on (b, Async) and multicasts
(b, SyncOutput) along with the threshold signatures and gives output b.

Fig. 5. An input validation gadget reducing BA to VBA.

Note that if there is at most ta corrupted parties, then the majority bit among the
remaining n − ta > 2ts honest parties will give a justifier for that bit which travels at
network speed. In other words: the protocol is optimistically responsive.

Lemma 9. The protocol ΠIVG given in Fig. 5 is a secure IVG as defined in Definition 11.

Proof. We consider the synchronous and asynchronous case separately. In asynchrony we first
consider justified validity. Since any justified output is includes at least ta +1 identical signed
inputs. At least one honest party had this as input. For liveness observer that eventually
n− ta > 2ts inputs propagate and the majority bit among them is signed by at least ts + 1.
This also gives optimistic responsiveness whenever corruption is bounded by ta.
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In synchrony, the liveness holds because n− ts > ts + ta > ta, so the majority bit among
honest parties form a certificate within 3∆, unless some parties gave optimistic output,
which in that case propagates within δ. Validity when following the optimistic rule holds
as ts + 1 > ts. Validity of the alternative path holds because some honest party signed
AsyncOrBothValid. This party waited long enough to conclude that it heard all honest inputs,
and since n − ts ≥ ts + 1 and it did not yet give output, there could not have been honest
pre-agreement. So the justified validity property is an empty statement.

Corollary 1. The protocol ΠBA given in Fig. 4 is a secure binary agreement protocol as
defined in Definition 7.

Proof. Follows directly from the security definitions shown to be satisfied by ΠVBA and ΠIVG.

5 Agreement on a Core Set

To construct ACS for the network agnostic setting, we now take a detour in order to provide
a more general result. Namely, using protocols satisfying the definitions of reliable broadcast
and common coin in a black box fashion, we first present a protocol ΠACS for asynchronous
ACS based on ideas from DAG-Rider. We will define the protocol for a set of parties P =
{P1, . . . , Pn} of which we assume at most t < n/2 are adaptively corrupted. Then, when
we subsequently instantiate the reliable broadcast using the protocol from Section 3 and
the common coin as we did for the BA construction, the resulting protocol is secure in the
network agnostic setting with thresholds n > ta + 2ta.
DAG-Rider with Honest Majority from Reliable Broadcast and Common Coin.
We provide some background on DAG-Rider and intuition for how the proof can be adapted
to honest majority. The full construction and proofs appear in Appendix A

First, the DAG-Rider protocol is phrased as an atomic broadcast, rather than as ACS.
At a high level: atomic broadcast implements a growing ledger of entries where parties up to
a prefix relation agree on the ordering of these records. DAG-Rider provides such a ledger by
letting parties include entries in every block, and then when a block is committed impose a
deterministic ordering on all outstanding entries in the transitive closure of blocks that can
be reached via pointers from the selected block (which we will refer to as the causal past of
the block). To get a single shot ACS from this, one can view DAG-Rider as a way to select
a single block, then run it with empty blocks except for including a set of n− t inputs in the
first round, and output the set of inputs in the (causal past of the) first selected block.

In the original protocol, this block selection process is run in a pipelined fashion which for
instance involves dealing with consistency between the views of parties who commit different
leaders in different waves. While the protocol is remarkably simple, pipelined commits results
in monolithic proof. We choose to disentangle this pipelined presentation into a roughly
equivalent single shot ACS. This allows deconstructing the wave-based protocol into logical
units for which simpler security properties can be proved separately. The protocol still works
based on the same principles, but some care and revised proof techniques have to be applied
to show that it works for n > 2t.
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We attempt to give the intuition for DAG-Rider only needing honest majority in a nut-
shell: the DAG is built in waves consisting of 4 rounds where parties add a block pointing
to n− t blocks from the previous round. After completing a wave (by receiving n− t blocks
from its fourth round), a coin is flipped to elect a leader. If a party’s local view of the DAG
has n− t blocks in the last round that include in their causal past the leader’s block in the
first round, then this party commits the leader’s block. Since all parties might not commit in
the same wave, consistency is enforced by noticing that it is impossible to completely miss
a leader that someone else might have committed, since they would have been included in
the causal past of n− t blocks, of which you have seen at least n− 2t. Had the blocks just
been sent through point to point channels, then you would normally need to use the n > 3t
threshold to argue that they have at least t + 1 i.e. one honest party in common. But since
the blocks are sent through reliable broadcast it does not matter if they are Byzantine, and
a threshold of n > 2t would suffice.

By inspecting the proofs of Keidar et al. it becomes clear that this holds for almost all
argued properties. The crucial exception is that they rely on n > 3t to invoke a result by
Dolev and Gafni [DG16] which is used to argue liveness. Namely, that at the end of each
wave before the coin is flipped there is always at least n− t parties that would be committed
by all parties if they were chosen as the leader. Keidar et al. observe that the first 3 rounds
of a wave matches the protocol logic in the “get core” protocol of Dolev and Gafni. This
protocol is in turn an adaptation of a protocol by Attiya and Welch [AW04] from a setting
with t < n/2 crash faults to be Byzantine fault tolerant when n > 3t. To claim resilience
against Byzantine corruption, Dolev and Gafni have to rely on a different proof technique.

We show that the proof technique of Attiya and Welch can be translated to the Byzantine
setting (using the Dolev and Gafni protocol or equivalently 3 rounds of a DAG-Rider wave)
while keeping the n > 2t threshold assuming black box use of reliable broadcast. Intuitively,
this is not terribly surprising. The protocol follows a pattern where (1) all messages are
sent through reliable broadcast, (2) all messages include pointers to the information that
prompted them to be sent in accordance with some activation rule, and (3) the messages
are verified to be consistent with an honest execution of said activation rule and otherwise
ignored. (1) removes the ability of equivocating from Byzantine parties, (2) and (3) imply
that the whenever their messages are received (in the sense that they are not rejected as
invalid) they are consistent with the input output behaviour of an honest party. It follows
that a Byzantine faulty party is for most purposes equivalent to a crash faulty party.9

With this insight we construct an ACS protocol that is information theoretically secure
against an adversary which adaptively corrupts up to t < n/2 parties in an asynchronous
network from black box use of reliable broadcast and common coin. It is additionally expected
constant round and responsive in the sense that when the reliable broadcast delivers messages
in O(δ) time, then it terminates in expected O(δ) time.

The full construction and security proof appears in Appendix A.

9 A notable exception is that a Byzantine party might claim to not have received some information, and that it
cannot be trusted for validity guarantees that cannot be externally verified as discussed in [DG16].
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5.1 Network Agnostic ACS

After this aside, we reenter the network agnostic setting and assume thresholds n > ta + 2ts.
The ACS presented in Appendix A runs in expected O(1) rounds of responsive communica-
tion, which since we are dealing with subprotocols has to be further qualified: In an infinite
execution, let the maximum time it takes for reliable broadcast protocol ΠRB to deliver the
message of an honest sender to an honest receiver or between delivering a message to two
different honest receivers be ∆RB (see Remark 1), and the maximum duration between the
common coin ΠCC getting input from all honest parties until it gives output to all honest par-
ties be ∆CC, then ΠACS(ΠRB, ΠCC) terminates within time O(∆max(RB,CC)) = max(∆RB, ∆CC).

In particular this provides a network agnostic ACS which when ΠRB is instantiated
with the protocol from Fig. 1 and ΠCC is instantiated with common coin based on threshold
signatures, ΠACS terminates within expected time O(δ) when at most ta parties are corrupted
and otherwise within O(∆).

Theorem 3. In the network setting with n > ta + 2ts the protocol ΠACS given in Fig. 11
is a secure ACS with a ts-Large Core according to Definition 9 when instantiated with the
reliable broadcast protocol in Fig. 1. It is expected constant time and optimistically responsive
against ta corruptions.

Proof. The generic ΠACS protocol makes black box use of a protocol satisfying Definition 6, a
common coin (which we assume instantiated from threshold signatures) and the assumption
that n > 2t. The reliable broadcast in Fig. 1 satisfies Definition 6 for the network agnostic
setting where ∆max(RB,CC) is bounded by ∆ in synchronous executions and by δ when at most
ta parties are corrupted. The threshold t can be replaced with ts which satisfies a strictly
stronger constraint.

An MPC protocol with the same properties follows from standard technique using thresh-
old fully-homomorphic encryption (FHE) and non-interactive zero-knowledge (NIZK) proofs.
See for instance Blum et al. [BKLZL20]. Parties can encrypt their input and use the cipher-
text with a proof of plaintext knowledge as inputs to the ACS. Then compute the function of
the encrypted ciphertexts and finally distribute decryption shares of the output. Crucially,
this only requires using threshold FHE with threshold t + 1 when there are no more then
t < n/2 corruptions. This only adds a single round of responsive communication, so in the
network agnostic setting we can use threshold ts + 1 to get constant time optimistically
responsive network agnostic MPC.

5.2 On the Number of Honest Inputs in the Core Set

As discussed in Section 1.3, Constantinescu et al. [CGWW24] require a stronger security
definition for network agnostic ACS than what we define, namely that in synchronous exe-
cutions it satisfies the Honest Core property, i.e. it contains all honest inputs. This property
is inherently infeasible for any optimistically responsive protocol if the optimistic condition
does not require all parties to be honest. (At which point ACS with Honest Core is trivially
implemented by waiting for all parties to send an input.)
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Theorem 4 (Informal). If a protocol for ACS can terminate responsively when t parties
are corrupted, then it may output a core that does not contain the input of t honest parties
in a synchronous execution.

Proof. Consider a protocol for ACS that is guaranteed to terminate responsively when no
more than t parties are corrupted. Observe that the adversary can simulate the optimistic
condition and an arbitrary low latency. Concretely, it may choose to obey some concrete
network delay δ < ∆, corrupt a set of t parties A but let them follow to the protocol, and
partition a set of t honest B parties from the rest of the network for a duration of δ. Finally,
simulate an execution with a much shorter network delay δ∗ << δ among the remaining
honest parties C and the corrupted parties A.

Now, since the protocol should terminate responsively in the face of up to t corruptions,
and the t corrupted parties A act honestly, the honest parties B that have not been par-
titioned from the network must terminate within a duration depending only on δ∗ and in
particular before δ for any sufficiently small δ∗. Since the parties in B who terminated early
were partitioned from C, their output cannot include the inputs of C.

We conclude that in general: if a protocol for ACS can terminate responsively in the face
of t corruptions, it can terminate without the inputs of t honest parties.

An ACS with Honest Core and Minimal Latency. We sketch a simple gadget that
ensures an Honest Core in synchronous executions while only sacrificing responsiveness in
an initial input round. We will assume that parties receive input within a duration of ∆.
Then parties initially multicast their inputs, and collects inputs until 2∆ have passed and at
least n − ts inputs have been collected. At this point they use the collected set as input to
ΠACS. In a synchronous execution, all honest parties have received the inputs of all honest
parties. And since at least one honest party makes it into the core, another core which in
synchronous executions satisfies Honest Core can be formed by taking the union of sets of
inputs included in the original core. The resulting ACS is constant time as before, but only
optimistically responsive after the initial input round.
An Optimistically Responsive ACS with Honest Core Majority. Since Honest Core
is impossible to get with a responsive ACS, but can be achieved by one round of unresponsive
communication, it raises the question: what meaningful properties can we ensure from an
optimistically responsive ACS beyond the current guarantee of a ts-Large Core? Concretely,
from Theorem 4 and our protocol being responsive when t ≤ ta, we conclude that it must
allow ta honest inputs not making it into the core. But currently it allows that ts honest
inputs are left out of the core, which in the worst case only guarantees that the core contains
a single honest input.

The most obvious approach is to improve the unresponsive gadget with the natural
optimistic condition: If we start the process of waiting and collecting inputs as above, but
short circuit the process whenever n − ta inputs are collected before the timeout, then the
gadget and overall construction is responsive when t ≤ ta and in this case the ACS will have
a core of size at least n− ta. If the execution is synchronous, then some honest part had their
input set included in the core, and either provided an input set with all honest inputs or
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provided an input set of size at least n−ta. In either case the input set contains at least ts +1
honest contributions, which means that union of all input sets in the core consists primarily
of honest inputs. In asynchrony the process results in a core of size at least n− ts as before,
but since at most ta parties are corrupted, the majority of the inputs in the selected core set
are honest.

We will say that a protocol Π is an ACS protocol with an Honest Core Majority if for any
set S obtained as output of Π by an honest party, majority of the elements in S are inputs of
honest parties. Observe that this corresponds the setting in optimally resilient asynchronous
MPC with n = 3t + 1, where the best guarantee one can hope for is to establish a core of
n− t inputs which matches Honest Core Majority. To demonstrate it usefulness, notice that
it can be used to solve BA by giving bits as input to an ACS with Honest Core Majority and
defining the output to be the most prevalent bit in the core. We leave further investigations
into the usefulness of the Honest Core Majority property and its relation to Honest Core as
future work.
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A Constant Time Honest Majority Asynchronous ACS from RB
and CC

The implementation of ΠACS is defined via a series of protocols where each party has an input
Bi ∈ {0, 1}∗, which we will call a block below. A block set is a set of pairs U = {(Pj, Bj)}Pj∈P ,
where P ⊆ P and |P | ≥ n − t. We think of (Pj, Bj) ∈ U as Pj having input Bj. We offer
the reader the intuition that the flow of protocols presented in this section can be viewed as
a single shot version of the DAG-Rider protocol [KKNS21], but with the crucial difference
being that we show that only honest majority is needed.

Most of the primitives are to the best of our knowledge not commonly studied. So, in
order to present each primitive with a clear understanding of its building blocks, we present
the construction from the ground up. To assist the reader with an intuition of where we are
headed, we provide the following roadmap of the steps we take to reduce ACS to simpler
primitives:

Agreement on a Core Set (Appendix A.7): The end goal is to construct ACS, which
allows parties to reach agreement on a set of inputs. We achieve this by letting each party
send their inputs, then collect a set of n − t inputs and finally, use select block to pick
one of these sets.

Select Block (Appendix A.6): Select block takes from each party a single input, which
satisfies an input justifier. It outputs one of these inputs with agreement. We implement
this from a weaker version which only has graded agreement.

Graded Select Block (Appendix A.5): The graded version lets each party obtain a jus-
tified output block with a grade. If a justified output has grade 2, then all outputs have
grade 1 or 2 and the justifier can be propagated as a proof of termination being safe. This
is achieved by running graded gather on the blocks and interpreting the output using a
common coin.

Graded Gather (Appendix A.4): Graded gather takes inputs from all parties, and to
each party outputs two sets U and T , each with at least n − t inputs. All of the sets
have a large common core in the sense that their intersection is of size at least n − t,
additionally each T set is a subset of the intersection of all U sets. It is implemented
by running gather on the inputs, multicasting the outputs and taking the union and
intersection of n− t outputs of gather.

Gather (Appendix A.3): Gather takes inputs from all parties and lets them each obtain
a set of at least n− t inputs, with the guarantee that all these sets have a common core
of at least n − t inputs. Our core contribution is to show that this can be implemented
in asynchrony with n > 2t from causal cast.

Causal Cast (Appendix A.1): Causal cast is a framework used to impose a causal order
on consistent messages by sending them through reliable broadcast with references to
other messages.
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A.1 Causal Cast

We first present a framework for describing protocols for DAG-style protocols (cf. [KKNS21])
in a modular way and in combination with non-DAG style protocols. It can also be seen as a
generalization of the CO Send protocol by Dolev and Gafni [DG16]. In a DAG-style protocol
all messages m are reliably broadcast and they point to the other reliably broadcast messages
they were computed from. Therefore the receiver can recompute and check the message m.
In fact, the message m never has to be sent, the receiver can compute it itself. This allows
to compress the communication complexity. All that needs to be reliably broadcast are the
pointers to the messages used to compute m. This implements reliable, causal communication
against a Byzantine adversary. We will therefore call our system below causal cast.

Each message m to be causal cast will have a message identifier mid. We let mid encode
one of three types (free-choice, computed and constant) which partitions the set of message
identifiers into sets with the following semantics:

Free-Choice Message: Each free-choice identifier specifies a sender Pmid and a justifier
Jmid. Messages with a free-choice mid are used to introduce information from the local
view of a party to the causal cast protocol.

Computed Message: Each computed message identifier specifies a sender Pmid and a next
message function NextMessagemid. This function is PPT and takes as input a set of pairs
M = {(midj, mj)}ℓ

j=1 and outputs m = NextMessagemid(M), where m = ⊥ indicates that
M is not a valid set of inputs for computing the message for mid. When a party sends a
computed message, it only needs to transmit the identity of the messages that made it
send the message. The remaining parties will locally simulate what the sender would have
said. This saves communication and guarantees that computed messages from Byzantine
parties are consistent with messages from an honest party.

Constant Message: The constant identifiers are a tool to define that some values on which
the parties already agree have been “delivered” and thus justified. We will for instance use
this to introduce the output from a common coin into the framework, such that computed
messages can be based on it.

The system guarantees liveness, agreement on all messages, and that all messages are valid
inputs, valid outputs of a leader election, or computed correctly from other valid messages.

Definition 12 (Causal Cast). A protocol for n parties P1, . . . , Pn is called a causal cast
if it has the following properties.

Free-Choice Send: A party Pi can have input (caucast-send, mid, m) where mid is a free
choice identifier Pi = Pmid and Jmid(m) = ⊤ at Pmid at the time of input.

Computed-Message Send: A party Pi can have input (caucast-send, mid, m,
mid1, . . . , midℓ), where mid is a computed-message identifier, Pi = Pmid, Pi ear-
lier gave outputs (caucast-del, midj, mj) for j = 1, . . . , ℓ, and ⊥ ̸= m =
NextMessagemid((mid1, m1), . . . , (midℓ, mℓ)). We let Jmid be the predicate that is sat-
isfied when NextMessagemid(M) ̸= ⊥, i.e. as soon as a party sees the referenced messages
as delivered and is able to successfully recompute the message.
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Constant Send: A party Pi can have input (caucast-send, mid, m) where mid is a con-
stant identifier. In that case it is guaranteed that all honest parties eventually have the
same input (caucast-send, mid, m). We let Jmid be the trivial justifier that the message
was received as local input.

Free-Choice Validity: A party Pi can have output (caucast-del, mid, m), where mid is
a free-choice identifier. It then holds that Jmid(m) = ⊤ at Pi at the time of output.
Furthermore, if Pj = Pmid is honest, then Pj had input (caucast-send, mid, m).

Computed-Message Validity: A party Pi can have output
(caucast-del, mid, m, mid1, . . . , midℓ), where mid is a computed-message identi-
fier. In that case Pi earlier gave outputs (caucast-del, midj, mj, . . .) for j = 1, . . . , ℓ,
and ⊥ ≠ m = NextMessagemid((mid1, m1), . . . , (midℓ, mℓ)).

Constant Validity: A party Pi can have output (caucast-del, mid, m). In that case it
immediately before had input (caucast-send, mid, m).

Liveness: If an honest party Pi had input (caucast-send, mid, . . .) or some honest party
had output (caucast-del, mid, . . .) and all honest parties are running the system, then
eventually all honest parties have output (caucast-del, mid, . . .).

Agreement: For all possible justified outputs (caucast-del, mid, m, . . .) and
(caucast-del, mid, m′, . . .) it holds that m′ = m.

Below is a protocol implementing causal cast from black box use or reliable broadcast.

Protocol ΠCausal in the view of party Pi.

Free-Choice Send: On input (caucast-send, mid, m) at Pi where mid is a free choice Pi inputs (mid, m)
to ΠRB,

Computed-Message Send: On input (caucast-send, mid, m, mid1, . . . , midℓ) at Pi, where mid is a
computed-message identifier, Pi inputs (mid, (mid1, . . . , midℓ)) to ΠRB.

Free-Choice Deliver: On ΠRB delivering (mid, m) where mid is a free-choice identifier, wait until
Jmid(m) = ⊤ (possibly waiting forever if this never happens) and then output (caucast-del, mid, m).

Computed-Message Deliver: On ΠRB delivering (mid, (mid1, . . . , midℓ)) wait until out-
puts (caucast-del, midj , mj) were given for j = 1, . . . , ℓ (possibly waiting forever if
this never happens), compute m = NextMessagemid((mid1, m1), . . . , (midℓ, mℓ)), and output
(caucast-del, mid, m, mid1, . . . , midℓ) if m ̸= ⊥.

Constant Deliver: On input (caucast-send, mid, m) where mid is a constant identifier, output
(caucast-del, mid, m).

Fig. 6. Protocol ΠCausal implementing Causal Cast from reliable broadcast and common coin.

Lemma 10. The protocol ΠCausal in Fig. 6 is a causal cast protocol cf. Definition 12 assum-
ing the same constant inputs are given across honest parties, that ΠRB satisfy Definition 6.

Proof. As long as honest parties give the same constant inputs, agreement holds by agreement
of Definition 6 and the NextMessage function being deterministic. All validity properties holds
by the validity of ΠRB and design of ΠCausal. ⊓⊔

The protocols presented in Appendix A follow a common pattern: The protocols are
chained together with the input of each being computed from the output of a previous
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protocol and only the first in the chain being given free-choice inputs satisfying some Jin
predicate.

Definition 13 (Justified Causal Cast Protocols). A Justified Causal Cast protocol is a
special case of a Justified protocol as defined Definition 5, where all message are sent through
Causal Cast. We let the justifier Jmid of a message m at Pi be that (caucast-del, mid, m, . . .)
was output by Pi. The input m of each party, identified by midin, is a message with Jin(m) =
Jmidin(m) = ⊤. The output m of each party, identified by midout, can be sent as a computed
message in which case Jout(m) = Jmidout(m) = ⊤. In particular this means that ouputs are
computed as a function, NextMessagemidout, of previously Causal Cast messages and can be
forwarded as a computed message.

A.2 Causal Cast Complexity

We address communication complexity. We represent a session identifier sid with κ bits as
we can always hash the session identifiers. We let all parties Pi number the messages they
send using a counter ci = 1, 2, . . .. Then message identifiers can be of the form (sid, i, ci). We
do not need to send sid along with all mid as it is the same for all mid in the protocol. Using
that n, n ∈ poly(λ) and that ci can become at most polynomially large in a poly-time run
of the system each mid can be represented in log(κ) extra bits. We can therefore represent
(mid, mid1, . . . , midℓ) as κ+ℓ log(κ) bits. So, the communication complexity is that of reliably
broadcasting all free-choice messages m plus the complexity of reliably broadcasting κ +
ℓ log(λ) per computed message. In many cases a computed message is computed from n− t
outputs of n possible messages with session identifiers sid1, . . . , sidn known by all parties. In
these cases we can send an n-bit vector indicating the n− t session identifiers to use. Then
the communication is only O(λ + n) = O(λ) bits per computed message. We return to this
when analysing the complexity of concrete protocols.

Definition 14 (Complexity). We say that a protocol Π using causal cast has (expected
communication) complexity

O(c1 in +c2 rb +c3 rb# +c4)

if the following holds in expectation, using the above methods for compression, and under O:
c1 is the total number of bits that the protocol needs to RB 10 as inputs, c2 is the total number
of bits that the protocol needs to RB as intermediary values and outputs, c3 is the number
of RB instances run, and c4 is the total number of bits sent otherwise. Notice that we count
all messages sent by all parties.

The reason why we single out the complexity of inputs is that when inputs are given as
computed messages, c1 in only needs to accommodate the description of the set of messages
used to compute the inputs.
10 I.e., the sum of the length of messages input to a RB.
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A.3 Justified Gather

We describe and analyse our Justified Gather protocol. The Gather primitive says that each
party Pi has a block set Ui as output and there is a large common core, i.e., a set U of size
n− t which is a subset of each Ui. So all parties to some extend agree on a large set U , but
some Pi might have extra elements in Ui and they do not know which are the extra ones.

Definition 15 (Justified Gather). A protocol for n parties P1, . . . , Pn. There is an input
justifier Jin and an output justifier Jout specified by the protocol. All honest Pi have an input
Bi for which Jin(Bi) = ⊤ at Pi at the time of input.

Liveness: If all honest parties start running the protocol with a Jin-justified input then
eventually all honest parties have a Jout-justified output.

Justified Blocks: For all possible justified outputs U and all (potentially corrupt) Pi and
all (Pi, Bi) ∈ U it holds that Jin(Bi) = ⊤.

Validity: For all possible justified outputs U and all honest Pi and all (Pi, Bi) ∈ U it holds
that Pi had input Bi.

Agreement: For all possible justified outputs U and U ′ and all (Pi, Bi) ∈ U and (Pi, B′
i) ∈

U ′ it holds that Bi = B′
i.

Large Core: For all possible justified outputs (U1, . . . , Um) it holds that |⋂m
k=1 Uk| ≥ n− t.

We present a Justified Gather protocol, ΠGather, in Fig. 7. The protocol follows the
structure of the get-core protocol presented by Attiya and Welch in [AW04] and attributed
to Gafni. The get-core protocol tolerates crash failures of up to half of the parties and works
as follows: All parties gossip an input (U0) and then in two rounds gather sets of inputs from
n − t parties, take the union (U1 and U2) and gossips it. When taking the union of the U2

sets it can be shown that all resulting sets (U3) have a common core of size n− t. The proof
goes by arguing that the U1

i set of some party, Pi must be included in the majority of U2 sets
and thus in all U3 sets. The get-core protocol was adapted to the Byzantine setting by Dolev
and Gafni in [DG16] using an abstraction similar to Causal Cast. However, the proof relies
on an honest supermajority sending U sets. We stress that the proof of Lemma 11 implies
that the protocol presented in [DG16] would also be secure against a minority of Byzantine
parties when given a RB functionality.

We show that ΠGather is a Justified Gather protocol. The proof largely follows the idea
from [AW04] of describing a table and counting entries with ones. While they only consider
crash failures, we allow Byzantine corruptions. However, since all the messages are justified
and sent through Causal Cast, the adversary must either follow the protocol or stay silent.
This allows the proof from [AW04] to go through with the original combinatorial argument,
but a slightly different interpretation of the table. Dolev and Gafni, who previously adapted
the protocol to tolerate Byzantine corruptions in [DG16], altered the table to only have a
row and column for each honest party, which gives a simpler proof but also means that it
needs an honest supermajority to go through.

Lemma 11. If t < n/2 then ΠGather is a Justified Gather. If β = ∑n
i=1 |Bi| then it has

complexity O(β in +n rb# +n2 rb).
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Protocol ΠGather.

1. The input of Pi is Bi with Jin(Bi) = ⊤. Party Pi lets U0
i = {(Pi, Bi)}. The singleton set is justified

by Bi satisfying Jin.
2. For r ∈= 1, 2, 3 Party Pi causal casts Ur−1

i
a and collects incoming Ur−1

j from parties Pj , lets P r
i be

the set of Pj it heard from, waits until |P r
i | ≥ n − t, and lets

Ur
i =

⋃
Pj ∈P r

i

Ur−1
j .

The set is justified by being computed from the set P r
i where |P r

i | ≥ n − t.
3. Party Pi outputs U3

i .

a Whether Ur−1
i is causal cast as a free-choice or computed message is determined by its justifier.

Fig. 7. Protocol for finding a common core corresponding to the first 3 rounds of a DAG-Rider wave.

Proof. We first address the complexity. In the first round n parties each causal cast their
input, possibly as a computed message. This contributes β in +n rb#. Then in a constant
number of rounds each party RBs a set described by n bits, adding O(n rb# +n2 rb) and
resulting in total of O(β in +n rb# +n2 rb).

Liveness, Justified Blocks, Validity, and Agreement are all trivial so we only show Large
Core. Initially singleton sets of inputs, U0, are sent through causal cast with the only re-
striction being that the block satisfies Jin. If the message of a corrupted party reaches any
honest party then it reaches all honest parties and satisfies Jin. As this is all we require of
a message from an honest party, the only way to deviate from the protocol is to not send
a valid message. Similarly, in the following rounds r ∈ [1; 2] the accumulated set U r is sent
through causal cast as a computed message based on the messages from previous round. So,
the adversary must choose to either stay silent or send a message identical to what would
have been sent by an honest party if they had received messages from the claimed set of
parties P r. The result now follows from the counting argument in [AW04]. We show that
there is at least one party Pi, whose U1

i set is included in all possible justified outputs. This
is sufficient for the Large Core property as all justified U1 sets include n− t input values.

Let T be an n by n table. For each row i: if Pi sends a message U2
i which at some point

is received by an honest party, then each entry T [i, j] is one if Pj ∈ P 2
i and zero otherwise.

Alternatively: U2
i is never received by an honest party and we let T [i, j] be one if and only if

U1
j is eventually received by an honest party. Since all rows contain at least n− t ones, there

are at least n(n − t) ones in the table. So, at least one of the n columns, k, must contain
n − t ones. This means that set of parties whose U2 set will eventually be received by an
honest party and which does not include U1

k has size at most t. Call this set of parties S.
By Computed-Message Validity, if a message which is never received by an honest party is
referenced in a computed message, then that computed message is justified in the view of
an honest party. In particular if U2

i is never received by an honest party, and Pj sends U3
j

justified by P 3
j which points to U2

i , then U3
j will never be justified in the view of an honest

party.11 So, when in the next round any possible justified output U3 is justified by taking the
11 Note that Definition 4 only concerns outputs that can be sent and satisfy Jout.
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union of n− t U2 sets, at least n− t− |S| ≥ n− 2t > 1 of them will not be in S, i.e. it will
contain U1

k . Thus U1
k is a subset of all possible justified outputs U3 and these all satisfy Large

Core.

A.4 Justified Graded Gather

We describe our Justified Graded Gather protocol. This is just a Justified Gather, where
each party also has knowledge about the common core. Each Pi outputs a set Ti of size at
least n− t which is a subset of the common core U .

Definition 16 (Justified Graded Gather). A protocol for n parties P1, . . . , Pn. There is
an input justifier Jin and an output justifier Jout specified by the protocol. All honest Pi have
an input Bi for which Jin(Bi) = ⊤ at Pi at the time the input is given.

Liveness: If all honest parties start running the protocol with a Jin-justified input then
eventually all honest parties have a Jout-justified output.

Justified Blocks: For all possible justified outputs (U, T ) and all (potentially corrupt) Pi

and all (Pi, Bi) ∈ U it holds that Jin(Bi) = ⊤.
Sub Core: For all possible justified outputs ((U1, T 1), . . . , (Um, T m)) it holds that T i ⊆⋂m

k=1 Uk for all i ∈ [m].
Validity: For all possible justified outputs (U, T ) and all honest Pi and all (Pi, Bi) ∈ U it

holds that Pi had input Bi.
Agreement: For all possible justified outputs (U, T ) and (U ′, T ′) and all (Pi, Bi) ∈ S and

(Pi, B′
i) ∈ U ′ it holds that Bi = B′

i.
Large Sub Core: For all possible justified outputs ((U1, T 1), . . . , (Um, T m)) it holds that
|⋂m

k=1 T k| ≥ n− t.

ΠGradedGather

1. The input of Pi is Bi with Jin(Bi) = ⊤. All parties run ΠGather with Pi inputting Bi justified by Jin.
Let the output of Pi be U ′

i .
2. Party Pi causal casts U ′

i as a computed-message justified by ΠGather.Jout and collects justified U ′
j

from parties Pj , lets Pi be the set of Pj it heard from and waits until |Pi| ≥ n − t.
3. Party Pi outputs

(Ui, Ti) =
( ⋃

Pj ∈Pi

U ′
j ,

⋂
Pj ∈Pi

U ′
j

)
.

The outputs are justified by being computed as above from justified sets.

Fig. 8. ΠGradedGather

Lemma 12. If t < n/2 then ΠGradedGather is a Justified Graded Gather. If β = ∑n
i=1 |Bi|

and ΠGradedGather uses ΠGather from Fig. 7 as sub-protocol, then it has complexity
O(β in +n2 rb +n rb#). ⊓⊔
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Proof. Complexity, Liveness, Justified Blocks, Validity and Agreement follow from the same
properties of Justified Gather. We have that ⋂n

k=1 Tk = ⋂n
k=1

⋂
Pj∈Pi

U ′
j, so Large Sub Core

follows from Large Core of Justified Gather. Sub Core follows from the below lemma.

Lemma 13 (Sub Core). Let (·, Ti) and (Uι, ·) be any possible justified outputs. Then
Ti ⊆ Uι.

Proof. It is enough to argue that if (Pk, Bk) ∈ Ti then (Pk, Bk) ∈ Uι. If (Pk, Bk) ∈ Ti then
Pk ∈ U ′

j for all Pj ∈ Pi. Since |Pi| ≥ n − t ≥ t + 1 it follows that any party receiving
n − t justified sets U ′

j will also receive a set U ′
j with Pk ∈ U ′

j. Namely, the sets are reliably
broadcast so if two parties receive justified U ′

j and Û ′
j then U ′

j = Û ′
j. Since all parties collect

n− t justified sets U ℓ
· to justify Uι = ⋃

Pj∈P ℓ
ι

U ℓ
j it follows that (Pj, Bk) ∈ Uι. ⊓⊔

A.5 Justified Graded Block Selection

We now present our graded block selection protocol. Here each party has as input a block
Bi and as output a block Ci. The goal is to let Ci be one of the inputs and to agree on Ci.
Since corrupted parties can pick their own input and we allow that Ci = Bi for a corrupt
Pi we simply define validity by saying that the output should be some justified input. Note
that this implies that if there is only one possible justified input, then that will become the
only justifiable output. We will not always be able to perfectly agree on the output, instead
the output will have a grade g ∈ {0, 1, 2}. The grades are never more than 1 apart and if
the grade is 2 then there was agreement on Ci. Finally, we want that with some non-zero
probability the grade will be 2.

Definition 17 (Justified Graded Block Selection). A protocol for n parties P1, . . . , Pn.
There is an input justifier Jin and an output justifier Jout specified by the protocol. All honest
Pi have an input Bi for which Jin(Bi) = ⊤ at the time the input Bi is given. The output of
the protocol is a Ci justified by Jout.

Liveness: If all honest parties start running the protocol with a Jin-justified input then
eventually all honest parties have a Jout-justified output.

Justified Output: Jin(Ci) = ⊤ holds for all possible Jout-justified outputs (Ci, ·).
Graded Agreement: For all possible justified outputs (Ci, gi) and (Cj, gj) it holds that
|gi − gj| ≤ 1. Furthermore, if both gi, gj > 0 then Ci = Cj.

Positive Agreement: There exists α > 0 such that with probability at least α − negl all
possible justified outputs of at least n− t parties will have grade gi = 2.

Stability: If there are possible justified outputs (Ci, ·) and (Cj, ·) with Ci ̸= Cj then there
exist two justified inputs Bi and Bj with Bi ̸= Bj.

Lemma 14. If t < n/2 then ΠGradedSelectBlock is a Justified Graded Block Selection. When
β = ∑n

i=1 |Bi| and when using ΠGradedGather from Fig. 8 as sub-protocol the complexity is
O(β in +n2 rb +n rb# + elect) where elect is the complexity of ΠCC.

37



ΠGradedSelectBlock

1. The input of Pi is Bi with Jin(Bi) = ⊤.
2. The parties run ΠGradedGather with input Bi and input justifier Jin. Let the output of Pi be (Ui, Ti)

and causal cast this as a computed message.a
3. Upon receiving (Uj , Tj) from n − t parties Pj ∈ Pi, the parties use ΠCC to elect a king Pk, input Pk

to causal cast as a constant send.
4. Party Pi outputs

(Ci, gi) =


(Bk, 2) if ∃(Pk, Bk) ∈ Ti

(Bk, 1) if ∃(Pk, Bk) ∈ Ui \ Ti

(Bi, 0) if ∄(Pk, ·) ∈ Ui .

The output is justified by being computed as above from causal cast messages.

a The point of this message is not to distribute the sets, but to commit n − t parties to their output of
ΠGradedGather before an honest party invokes ΠCC.

Fig. 9. ΠGradedSelectBlock

Proof. We start with the complexity. ΠGradedGather has complexity O(β in +n2 rb +n rb#).
In addition to this ΠGradedSelectBlock only does one leader election. It has to send no more
causal cast information as the justifier for (Ci, gi) is the justified Bi, the justified (Ui, Ti),
and the justified Pk, which have all been causal cast already. Liveness is straight forward.
We argue Justified Output. Let (Ci, gi) be any justified output. If gi = 0 then by definition
Ci = Bi is a justified input. If gi > 0 then Bi = Bk for (Pk, Ck) ∈ Ui and therefore Ck

is a justified input to the Graded Gather which also used Jin as input justifier. Then use
the Justified Blocks property. To argue Graded Agreement let (Ci, gi) and (Cj, gj) be any
justified outputs. To argue that |gi−gj| ≤ 1 it is sufficient to prove that if gi = 2 then gj ̸= 0.
So assume that gi = 2. Then (Pk, Ci) ∈ Tk for some justified Tk. Therefore, by Sub Core,
(Pk, Ci) ∈ Uj, and therefore gj ≥ 1. Assume then that gi, gj > 0. In that case (Pk, Ci) ∈ Ui

and (Pk, Cj) ∈ Uj, so by Agreement of the Graded Gather it follows that Ci = Cj. We
then argue Positive Agreement for α = 1/2. Consider the first honest Pi to start running the
leader election. When this happens Pi already received (Uj, Tj) from n − t parties Pj. By
Large Sub Core of ΠGradedGather these Tj sets have an intersection of size at least n − t.
Since |⋂Pj∈Pi

Ti| ≥ n − t > n/2 it follows that Pk ∈ Tj for all Pj ∈ Pi with probability at
least 1/2− negl. Whenever this happens, no party in Pi can justify an output with grade less
than 2. To argue Stability just note that it holds for both Ci and Cj that they are justified
inputs of ΠGradedSelectBlock. ⊓⊔

A.6 Justified Block Selection

We now present our (ungraded) block selection protocol. The difference from graded block
selection is that all possible justified outputs Ci should be identical.

Definition 18 (Justified Block Selection). A protocol for n parties P1, . . . , Pn. There is
an input justifier Jin and an output justifier Jout. All honest Pi have an input Bi for which
Jin(Bi) = ⊤ at the time the input was given. The output of the protocol is a block Ci justified
by Jout.
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Liveness: If all honest parties start running the protocol with a Jin-justified input then
eventually all honest parties have a Jout-justified output.

Justified Output: Jin(Ci) = ⊤ holds for all possible Jout-justified outputs Ci.
Agreement: For all possible justified outputs Ci and Cj it holds that Ci = Cj.

ΠSelectBlock

1. The input of Pi is Bi with Jin(Bi) = ⊤. It initialises GaveOutputi = ⊥.
2. Let B0

i = Bi and g0
i = 0, which is justified if Jin(B0

i ) = ⊤ and g0
i = 0.

3. For rounds r = 1, . . . each party Pi with GaveOutputi = ⊥ runs ΠGradedSelectBlock where:
(a) Pi has input Br−1

i .
(b) The input of Pi is justified by a justified (Br−1

i , gr−1
i ) where gr−1

i < 2.
(c) Pi eventually gets justified output (Br

i , gr
i ).a

4. In addition to the above loop each Pi runs the following echo rules:
– In the first round r where GaveOutputi = ⊥ and gr

i = 2, set GaveOutputi = ⊤ and output Ci = Br
i .

Causal cast the output as a computed message using the justifier for (Br
i , gr

i ).
– In the first round r where GaveOutputi = ⊥ and where some justified (Bρ

j , gρ
j ) propagated from

Pj ̸= Pi with gρ
j = 2, set GaveOutputi = ⊤, and output Ci = Bρ

j . The output justifier is the
justifier for (Bρ

j , gρ
j ).

a Recall that by Definition 13 this output can be sent as a computed message.

Fig. 10. ΠSelectBlock

Lemma 15. If t < n/2 then ΠSelectBlock is a Justified Select Block Protocol. When β =∑n
i=1 |Bi| and using the protocol ΠGradedSelectBlock from Fig. 9 as sub-protocol the complexity

is O(β in +n2 rb +n rb# + elect) where elect is the complexity of ΠCC.

Proof. We start with the complexity. The first run of ΠGradedSelectBlock has
complexity O(β in +n2 rb +n rb# +elect), and each following run has complexity
O(n2 rb +n rb# +elect), where we ignore the in component as the size of the message
identifiers needed to send the outputs as computed messages (n bits for each) is dominated
by other costs. Besides this the protocol only causal casts computed values for which the
receiver knows the message identifier, so there is no more information to causal cast. The
protocol terminates in expected O(1) rounds as argued below. This gives the desired com-
plexity. Liveness follows from Positive Agreement: at some point all possible justified outputs
from at least n− t parties of the rth iteration of ΠGradedSelectBlock will have gr

i = 2. These
parties cannot give justified input to ΠGradedSelectBlock in round r + 1, which means that
it will deadlock. Additionally one of these parties is honest and will have gr

i = 2, and then
the protocol will eventually terminate by construction of the echo rules. Justified Outputs is
clear by the Justified Output rule of ΠGradedSelectBlock which maintains that Jin(Br

i ) = ⊤
for all r. We then argue Agreement. Assume that some Pi outputs Ci. Then it saw a justified
(Br

j = Ci, 2). Let r be the smallest r for which a justified (Br
j , 2) was seen by an honest party.

Then by graded agreement all justified (Br
j , g) for round r will have Br

j = Ci. Therefore, by
Stability, it holds for all justified (Bρ

j , g) for rounds ρ ≥ r that Bρ
j = Ci. Now consider any
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other honest party Pk which outputs Ck. Then it saw some justified (Br′
j = Ck, 2). Since

we picked r to be minimal we have that r′ ≥ r. From this it follows that Br′
j = Ci. Ergo

Cj = Ci. ⊓⊔

A.7 Agreement on a Core Set

We finally present a protocol for Agreement on a Core Set (ACS). It just lets each party
propose a set and then picks n− t of them.

ΠACS

1. The input of Pi is Bi.
2. Party Pi causal casts Bi as a free-choice message.
3. Party Pi collects at least n − t Bj from parties Pj ∈ Pi and lets Ui = {(Pj , Bj)}Pj ∈Pi . This value is

justified by |Pi| ≥ n − t.
4. Run ΠSelectBlock where Pi inputs Ui. The input justifier of ΠSelectBlock is that Ui is computed from

Pi as in the above step.
5. Party Pi gets output Ci from ΠSelectBlock and outputs Ci. The output justifier is that Ci is a justified

output from the above ΠSelectBlock.

Fig. 11. Protocol to Agree on a Core Set ΠACS

Lemma 16. If t < n/2 then ΠACS satisfies Definition 9. When β = ∑n
i=1 |Bi|

and when using ΠSelectBlock from Fig. 10 as sub-protocol the complexity is
O(β in +n2 rb +n rb# + elect) where elect is the complexity of ΠCC.

Proof. Safety and liveness properties follows directly from those of ΠSelectBlock. We address
the complexity. The causal cast of all blocks Bi costs β in. Causal casting the inputs to
ΠSelectBlock, Ui, costs n2 rb to specify the sets Pi. Running ΠSelectBlock then costs an
additional expected O(n2 rb +n rb# + elect), where we ignore the in component as it is
run on computed messages. There are no further costs. ⊓⊔
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