
Anamorphic Resistant Encryption: the Good, the
Bad and the Ugly

Davide Carnemolla1, Dario Catalano1, Emanuele Giunta2,3, Francesco
Migliaro1

1 Dipartimento di Matematica e Informatica, Università di Catania, Italy.
davide.carnemolla@phd.unict.it dario.catalano@unict.it

francesco.migliaro@phd.unict.it
2 IMDEA Software Institute, Madrid, Spain

emanuele.giunta@imdea.org
3 Universidad Politecnica de Madrid, Spain.

Abstract. Anamorphic encryption (AE), introduced by Persiano, Phan
and Yung at Eurocrypt ‘22, allows to establish secure communication in
scenarios where users might be forced to hand over their decryption
keys to some hostile authority. Over the last few years, several works
have improved our understanding of the primitive by proposing novel
realizations, new security notions and studying inherent limitations.
This work makes progress, mainly, on this last line of research. We show
concrete realizations of public key encryption schemes that, provably,
cannot be turned anamorphic. These were called Anamorphic Resistant
Encryption (ARE, fort short) in a recent work of Dodis and Goldin.
We also show that, under certain conditions, anamorphic encryption is
equivalent to algorithm substitution attacks. This allows to positively
reinterpret our AREs as PKE schemes provably resistant to subversion
attacks. To the best of our knowledge, these seem to be the first IND-
CPA secure schemes achieving subversion resistance without trust as-
sumptions or non-black-box decomposition techniques.
Our two AREs heavily rely, among other things, on a direct usage of
extremely lossy functions: here the lossyness property is used in the con-
structions, rather than just in the proofs. The first construction is in
the public parameters model and also requires iO. The second construc-
tion eliminates the need of both public parameters and iO, but is in the
random oracle and relies on the novel concept of robust extremely lossy
functions with group structure, a primitive that we define and (show how
to) realize in this paper.

mailto:davide.carnemolla@phd.unict.it
mailto:dario.catalano@unict.it
mailto:francesco.migliaro@phd.unict.it
mailto:emanuele.giunta@imdea.org

Table of Contents

1 Introduction 3
1.1 Our contributions . 4
1.2 Technical Overview . 5
1.3 Other Related works . 9

2 Preliminaries 10
2.1 Notation . 10
2.2 Public Key Encryption . 10
2.3 Anamorphic Encryption . 11
2.4 Universal Hash Functions . 13
2.5 Chameleon Hash Functions . 13
2.6 Extremely Lossy Functions . 14
2.7 Robust ELF with Group Structure . 15
2.8 Indistinguishability Obfuscator and Puncturable PRFs 16
2.9 Algorithm Substitution Attacks . 16

3 Anamorphic Resistant Encryption 18
3.1 Construction in the Public Parameters Model 18
3.2 Construction in the Random Oracle Model 24

4 Relationship between ASA on PKE and AE with extension 30
4.1 ASA on PKE implies Anamorphic Encryption with extension . . . 30
4.2 Anamorphic Encryption with extension implies ASA on PKE . . . 31

A More on Robust ELF with Group Structure 35
A.1 Zhandry’s Construction . 35
A.2 Adapting Zhandry’s Construction . 36

B Postponed proofs 38
B.1 Public Parameters: Small decryption error . 38
B.2 Anamorphic Encryption with extension implies ASA on PKE . . . 39

1 Introduction

The concept of (receiver) Anamorphic Encryption [PPY22] (AE, for short) allows
to establish private communication in hostile settings where the secret decryp-
tion keys of users are compromised. Such a scenario may arise, for instance, in
dictatorships where users may be subject to strong control measures and asked
to surrender their secret keys.

Informally, AE achieves this seemingly impossible goal by offering two differ-
ent deployment modes: regular or anamorphic. In regular mode, the encryption
scheme operates as a conventional public key one. In anamorphic mode, however,
a public key (apk) is generated along with two secret keys: a regular-looking one
(ask) and a covert one called the "double key" (dk). Bob privately shares dk with
Alice while using apk as his public key. If an adversary compels him to disclose
his secret key, Bob only reveals ask.

An important feature of AE is that the key pair (apk, ask) is designed to
be compatible with the regular encryption scheme. At the same time, Alice can
use dk as a symmetric key to embed an additional message into the ciphertext,
which remains hidden even if ask is known. Thus, in anamorphic mode, the
scheme allows for the encryption of two messages: a regular message m, meant
to be observed by an adversary with ask, and a covert one m̂, obtainable only
with dk. The primary security requirement is that anamorphic ciphertexts should
be indistinguishable from regular ones.

As Persiano et al. observed in [PPY22], creating new encryption schemes with
anamorphic capabilities may be a futile exercise: a sufficiently powerful adversary
could just ban those schemes hindering surveillance. Therefore, the real challenge
consists in proving existing (possibly practically adopted) schemes to actually
be anamorphic. Over the last few years, several papers addressed this challenge
(e.g.[PPY22, KPP+23, BGH+24, WCHY23, CGM24a]) very often by leveraging
specific properties of the underlying PKE. A notable exception, in this sense,
is the rejection-sampling based scheme in [PPY22]. This construction is indeed
agnostic to underlying PKE, which is treated as a black-box 4 and, as such, it
could be applied to any PKE enforced by a surveilling authority, thus removing
the issue above.

Although desirable for their flexibility, black-box constructions were shown
to be affected by several limitations in a recent line of works. In [CGM24c]
Catalano et al. proved that black-box AE can only hide up to O(log λ) anamor-
phic bits per ciphertext, bound matched by the rejection-sampling scheme. In
[CGM24b] a contrived (yet secure) PKE is presented, for which the rejection
sampling methodology surprisingly yields an insecure AE instantiation. Even
worse, [CGM24b] proved that stateless black-box AE is actually impossible5,
even when only weaker correctness notions are required.

4 More formally, an AE scheme is black-box [CGM24c] if it accesses the underlying
PKE solely through oracle calls.

5 Stateful black-box constructions on the other hand do exists, as shown in [BGH+24].

3

The above results however apply only to black-box constructions. In par-
ticular the following two statements do not directly contradict state of the art
results for AE:

1. Every semantically secure PKE can support a stateless secure AE scheme.
2. There exists a concrete PKE (i.e. efficient, correct and semantically secure)

such that no stateless anamorphic triplet is secure with respect to it.

A natural question is, therefore, to settle this state of things in one direction
or the other. The goal of this work is to address exactly this question.

1.1 Our contributions

In this paper, we close the above gap showing the existence of PKE schemes
for which no secure anamorphic encryption exists. Following Dodis and Goldin
[DG25], we call such a scheme Anamorphic Resistant Encryption (ARE). More
in details, our main findings can be summarized as follows:

1. We give two concrete compilers transforming essentially any PKE with large
message space into an ARE.
– The first one is in the public parameters model, where all keys are gener-

ated with respect to parameters chosen by the authority. The construc-
tion relies on extremely lossy functions [Zha16] and iO [BGI+01].

– Our second, much more efficient, construction does not need public pa-
rameters (nor iO) but is in the random oracle model and requires more
structure from the underlying family of extremely lossy functions.

These constructions are bad news, as they show AREs are concretely realiz-
able and, at least in principle, implementable.

2. We establish a strong connection between anamorphic encryption and so-
called algorithm substitution attacks (ASA) [BPR14]. We show that ASA
on PKE are actually equivalent to AE with extensions6, a refinement of the
original definition of AE recently proposed by Banfi et al. in [BGH+24].
The good news here is that, combined with our AREs, this immediately
yields the, seemingly first, concrete examples of schemes both provably resis-
tant to subversion attacks and IND-CPA secure without extra assumptions.
To the best of our knowledge, previous constructions were all required to
be either deterministic or to rely on the presence of, active, trusted third
parties [MS15, DMS16] or to resort to non-black-box techniques (such as
decomposition-and-amalgamation [RTYZ17]).

The results above actually generalize to PKEs satisfying any property preserved
by our compilers. This notably includes IND-CCA security, and homomorphism.

As per the ugly part, like it often occurs in the study of counterexamples,
our AREs compilers inevitably add artificial complications to the basic encryp-
tion/decryption mechanisms. These make our schemes somewhat unnatural from
a practical perspective. Coming up with concrete, yet natural, ARE designs is
an interesting direction we leave for future work.
6 In fact, a slightly restricted class of the latter, see Remark 1.

4

1.2 Technical Overview

Here we provide an informal overview of our main results. In what follows, to
better deliver the ideas underlying our constructions, we’ll often (deliberately)
neglect technical details that may render the presentation harder to follow.

Constructing AREs. Our starting point is the impossibility for (stateless)
black-box AE from [CGM24b], which we briefly recall here. Their general ap-
proach for ruling out black-box AE is to first describe an ideal (and thus ineffi-
cient) PKE and then show that no efficient AE tuple accessing the PKE through
oracle calls can be secure. To prove the latter point, the ideal PKE is modeled
to support weak messages. Those are special plaintexts informally satisfying the
following three properties:

1. There exists only polynomially many valid ciphertexts encrypting a weak
message.

2. Weak messages can be sampled indistinguishably from uniform ones, even
against an adversary who maliciously generated pk and sk.

3. Weak messages are hard to find given only the public key pk.

To clarify, the first and second requirement seems to contradict each other. The
catch here is that property 2 only needs to hold when the number of associated
ciphertexts is allowed to depend on (and be much larger than) the distinguisher’s
running time. As we elaborate below this aspect plays a crucial role in our
constructions.

To illustrate how weak messages are used, let Σ = (AT.Gen,AT.Enc,AT.Dec)
be an anamorphic triplet turning any PKE into an AE (and in particular the
ideal PKE above). To prove their scheme cannot be made anamorphic, Catalano
et al. [CGM24b] show how to distinguish regular from anamorphic ciphertexts as
follows. Knowing a weak message m∗, one queries the encryption oracle several
times for (m∗, 0) and (m∗, 1) (here 0 and 1 are the covert messages). When
encrypted in regular mode, queries for different anamorphic messages may collide
with significant probability as m∗, being weak, has few associated ciphertexts.
In anamorphic mode, however, the probability of such collision is close to zero.
This is due to correctness, dictating that, unless with negligible probability, the
same ciphertext cannot be a valid encoding of both 0 and 1.

The above strategy works well in the setting of [CGM24b] as their PKE is
only accessed through oracle calls – allowing them to easily model seemingly
magical trapdoor mechanisms to sample weak messages. Trying to extend this
technique to the case of concrete AREs, a trilemma arises. Indeed, we need to
design a PKE where weak messages can be sampled given public and secret key
and cannot be distinguished given the same keys. Moreover, all of this should
be achieved while preserving semantic security.

A Strawman Example. The key ingredient to remove the wizardry behind strong
ideal models will be relying on the magic of ELFs [Zha16]. Informally, extremely

5

lossy functions (ELF) are functions that can either be injective or extremely
lossy, i.e. with polynomially small image size, and the two modes are hard to
distinguish by properly time-bounded adversaries. To build intuition towards
our actual construction, we start showcasing a simple way to use ELFs.

Given any PKE whose message space is the set of all ELFs, we could modify
E.Enc by letting the ELF bias the encryption random coins. Precisely we set
E∗.Enc(pk, f ; r) = E.Enc(pk, f ; f(r)). Lossy functions act now as weak messages.
Indeed they are hard to distinguish from injective ones and reduce the number
of reachable ciphertexts to a polynomially small set.

This simple construction however is not semantically secure. Indeed weak
messages (ELFs) are publicly sampleable, and an attacker can use them against
the IND-CPA security game. Explicitly one can generate f0, f1 with f0 extremely
lossy and f1 injective, pre-compute all possible encryptions of f0 and query
(f0, f1). A table lookup is then enough to understand which one was encrypted.
Avoiding such attacks is then our main technical challenge.

First Construction. In the public parameters model we prevent such attack by
making available (the obfuscation of) a circuit C̃ which, on input m, produces
C̃(m) = (h, f) used to bias the random coins in the encryption of m. For most
messages m, f will be injective and h is a universal hash7. For some trapdoor
messages m∗ however, f is sampled in lossy mode by C̃. To guarantee that weak
messages are not leaked by C̃, we actually hard-code z = F (m∗) (F injective
one way function) for all polynomially many weak messages m∗. This essentially
eliminates the previous attack, as weak messages can only be retrieved from the
public parameter’s backdoor.

Second Construction. Our second construction is in the random oracle model,
but dispenses the need of (both!) public parameters and iO. Our strategy is to
augment the initial strawman example as follows. Given a function f , the random
oracle is used to generate a new injective function g. We then combine f, g into
a new function ϕ that is almost always injective when f, g are independent, but
may be lossy if f heavily depends on g. Let us clarify this better.

First let us specify how our combiner works. To start, it is built by replacing
standard ELFs with what we call Robust ELF with group structure (RELF, for
short). RELFs extends ELFs with the following two extra properties:

– First, function sampling is divided in a setup phase producing parameters ep
and a generation step that, given ep, produces a function f in the set Fep(M).
Robustness here means that security holds even for maliciously chosen ep.

– Second, the set of valid functions Fep(M) is assumed to have a group struc-
ture and generating a new (injective) instance is equivalent to sampling a
random element in the group.

7 We technically need h to extract good randomness from f(r), which is only guaran-
teed to have high min-entropy for a random r and injective f .

6

In Appendix A.2 we show the original construction given in [Zha16] to be, up
to minor modifications, already a RELF. With such a structure, our combiner
simply sets ϕ = f+g. Indeed when g is uniformly random and independent from
f , so is ϕ.

Next, we need to specify how is g sampled. If we were to generate g directly
from H(f) we would achieve semantic security, as the combination f+g is almost
always injective, but lose the power to inject lossy functions. To address this issue
we add a chameleon hash h [KR00] to the recipe. Specifically, we now assume
the PKE’s messages to be of the form (f, s), with s being the chameleon hash
random string, and generate g with random coins H(h(f ; s)).

In order to inject an extremely lossy function f , any adversary holding the
chameleon hash trapdoor, proceeds as follows: Initially, it computes g from
H(h(f∗; s∗)) for a random message f∗, s∗. Next, it uses the chameleon hash
trapdoor to find a collision h(f∗; s∗) = h(f − g; s). The weak message is now
(f − g, s) since the resulting function ϕ used to bias the encryption’s random
coin is ϕ = (f − g) + g = f , that is extremely lossy.

Connection with ASA. Algorithm Substitution Attacks (ASA) aim at re-
placing honest implementations of cryptographic schemes with subverted ones,
so to be able to extract secret information when executing the latter. A formal
treatment of ASA was first proposed by Bellare et al. in [BPR14]. Informally, a
successful ASA should satisfy recoverability (i.e. it should be possible to recover
subliminal messages from the ciphertext) and undetectability (i.e. users should
not be able to tell apart the honest from the subverted implementation).

In this paper, we establish a strong connection between ASA on PKE and
Anamorphic Encryption with extensions [BGH+24]. The latter is a refinement of
the original notion by which the double key dk is allowed to be independent from
the anamorphic key pair (apk, ask). This makes the basic notion more versatile
in applications: one might decide, for instance, to add a double key to a scheme
already in usage, or to add several double keys to the same key pair.

In this context, our main technical contribution is to show that any ASA on
PKE satisfying undetectability and recoverability is an AE with extensions and
viceversa. The proof is very simple and builds on the intuition that the covert
message space of the ASA on PKE can be reinterpreted as the anamorphic
message space of the AE (and viceversa, in the other direction of the proof).

We believe this connection to be interesting for at least two reasons. First,
it allows to "import" the large body of results known in the context of ASA in
the much less explored world of AE. Also, it allows to positively reinterpret our
impossibility results in terms of ASA.

Indeed, since (1) AE with extensions and ASA on PKE are equivalent and (2)
AE with extensions implies standard AE8, our Anamorphic Resistant Encryp-
tion constructions can be reinterpreted as ASA resistant encryption schemes.
While ours are by no means the first examples of such schemes, previously
8 This trivially follows from the fact that any AE with extensions can always be

reinterpret as a regular AE.

7

known constructions were either doomed to be deterministic or needed to rely
on trusted third parties (e.g. [MS15, DMS16]) or used non-black-box techniques
(e.g. decomposition-and-amalgamation [RTYZ17]). To the best of our knowl-
edge, ours seem to be the first candidates achieving IND-CPA security without
trust assumptions or non-black-box techniques. Also, since our compilers pre-
serve, among other things, IND-CCA security we also achieve subversion resis-
tant IND-CCA security without extra assumptions.

A note on our models. As discussed before, our Anamorphic Resistant En-
cryption candidates are constructed in two different models, namely the public
parameters model and the random oracle model with plain PKE. While in the
Anamorphic Encryption context the former model is justified by the presence of
a dictator that wants to prevent AE schemes to be deployed, in the ASA setting
the relevance of the public parameters model is less clear. Dictators may be able
to choose the encryption scheme to adopt in their country and users might be
well aware that the adopted scheme is Anamorphic Resistant (dictators don’t
always need to to justify their choices after all). The authority in the ASA sce-
nario, instead, cannot decide which PKEs can be used and which not, indeed the
users are able to use any PKE they want. Nevertheless, the authority subverts
users’ algorithms but does not want to get caught doing this.

In fact, the roles in AE and ASA on PKE are switched. The adversary in
the context of AE is a dictator that wants to stop unwanted communications.
In ASA on PKE, the "adversary" is a user that wants to know whether she is
using a subverted implementation of a PKE or not. For this reason, in the ASA
on PKE setting, the public parameters and the trapdoor keys are generated by
users independently9 and can be used to detect potential subversions.

This makes the two models kind of incomparable in our setting. In the AE
context the public parameters model might be preferable, whereas the plain
model seems more suited for the ASA context.

Connection with steganography. In light of existing results (e.g. [BL17]),
it might seem that our connection between AE and ASA on PKE could lead
to a similar connection between AE and stegosystems. Informally, stegosystems
[Sim83, Cac98, HLv02, vH04] allow two parties to exchange a hidden message
(the hiddentext) over a public channel in a way such that eavesdroppers cannot
tell if a message has actually been sent or not. More precisely, parties sharing
some information, can use a stegoencoder : an algorithm that samples documents
from a given channel and embeds the hiddentext into the documents. Once the
receiver gets the output of the stegoencoder (the stegotext), she can retrieve the
hiddentext using a stegodecoder.

In [vH04] von Ahn et al. showed that all possible channels admit a (Public
Key) Stegosystem. Clearly, if our results were implying the equivalence of AE

9 The public parameters and the trapdoor key can be seen as part of the public key
and secret key respectively.

8

and stegosystems this would be (very!) problematic, as our findings also show
that AE is impossible in general.

What prevents this from happening, is that, in the Stegosystem from [vH04],
the stegoencoder is allowed to output many documents as stegotext. In our
equivalence proof, on the other hand, we allow the AE (and the ASA on PKE)
to produce one single ciphertext. Its extra flexibility allows the stegoencoder to
increase the amount of available min-entropy of the channel and to gain more
freedom when embedding the hiddentext in the stegotext.

In this respect, it is interesting to note that, in principle, our impossibility of
AE could be bypassed if the underlying encryption mechanism were allowed to
encrypt ℓ = ω(1) regular messages. This would produce ℓ corresponding cipher-
texts, that, as in the case of stegosystems, would increase the overall min-entropy
of the system10.

Comparison with Dodis and Goldin’s work. As discussed above, [CGM24c]
proves that black-box AE cannot hide more than O(log λ) bits per ciphertext.
A first formalization of encryption schemes with such limited anamorphic capa-
bilities was given by Dodis and Goldin in [DG25]. They were the first to call
these schemes Anamorphic Resistant Encryption and also to come up with a
concrete realization of ARE. The construction in [DG25] requires both the ran-
dom oracle and the public parameters model, and, similarly to the the ideal
construction from [CGM24c], it allows to transmit at most O(log λ) anamorphic
bits per ciphertext.

Our constructions, on the other hand, are in (seemingly) weaker models, by
dispensing either the random oracle or public parameters, while also achieving
stronger anamorphic resistance. Specifically, our schemes do not allow trans-
mitting even a single anamorphic bit, matching the (tighter) negative result in
[CGM24b].

1.3 Other Related works

The notion of Anamorphic Encryption shares similarities with several other no-
tions studied in the past, we refer to [PPY22] for an overview of these notions
and in-depth comparisons. In [KPP+23, CGM24a] the notion of receiver AE has
been refined by introducing privacy requirements (for regular and covert mes-
sages) to hold even when knowing dk. In [BGH+24] the notion of robust AE
has been introduced. This notion was later adapted to the case of sender AE
in [WCHY23]. In addition to what we said earlier, [DG25] introduce a notion
called unforgeability which strengthen robustness.

10 The practical relevance of such a construction is unclear, though. In the dictatorship
scenarios envisioned to motivate Anamorphic Encryption [PPY22] sending more
ciphertexts than needed might look suspicious. It also is unclear why users not
interested in covert communications might want to use such a bandwidth inefficient
communication system in the first place.

9

The possibility of subversion to enable backdoors in cryptosystems was in-
troduced and explored by Young and Yung under the term Kleptography in
[YY96, YY97a, YY97b, YY01, YY06]. Algorithm-substitution attacks were for-
malized as a special case of Kleptography by Bellare et al. in [BPR14] and later
extended in [BJK15]. In this latter work, the authors proposed a stronger secu-
rity notion and a new attack breaking all randomized encryption schemes with
high min-entropy. This model was further revisited in [DFP15].

Berndt et al. in [BL17] showed that there is a strong connection between
algorithm-substitution attacks and stegosystems. Finally, [WCHY23] formalized
the definition of ASA on public-key encryption and proved that this is implied
by sender AE (our connections with ASA are for receiver AE).

Several papers proposed solutions to realize subversion resistant encryp-
tion schemes. In [MS15] the authors proposed the cryptographic reverse firewall
model, wherein a trusted third party, i.e. the firewall, remains online and helps
the communicating parties by re-randomizing their ciphertexts (thus making
the scheme unsubvertible). Another approach to achieve IND-CPA security was
proposed in [RTYZ17], where the non-black-box technique of decomposition-and-
amalgamation was employed. The main idea of this technique is to “decompose”
the encryption algorithm into a fixed number of pieces so that each piece can be
independently tested by the detector.

Other works in which ELFs are used jointly with iO (and other primitives),
but in a different way, are [ACH20, AWZ23].

2 Preliminaries

2.1 Notation

[n] denotes the set {1, . . . , n}. λ ∈ N is the security parameter. A function
f : N→ R+ is negligible if it vanishes faster than the inverse of any polynomial.
negl(λ) denotes a generic negligible function. Given a probabilistic Turing Ma-
chine A we denote y ← A(x; r) its output on input x and random tape r. The
notation y ←$ A(x) is short for y ← A(x; r) with r being a uniformly sampled
tape. With PPT we denote probabilistic polynomial time. With ≈δ we denote
the computationally δ-close indistinguishability, we omit δ in case of standard
computational indistinguishability. Given a set S we denote by x ←$ S the
uniformly random sampling of an element x from the set S. We further write
x ∼ U(S) to indicate that x is a uniformly distributed random variable over S.

Unless otherwise specified, we assume adversaries in security definitions to be
stateful, and procedures in a given scheme (e.g. a PKE) to be stateless. Also, we
may omit the game in the adversary’s advantage Adv when clear from context.

2.2 Public Key Encryption

In this section we revise definitions and notation for public key encryption, revis-
ing in particular the public parameters model by [?]. In general, a PKE scheme

10

is a triplet of algorithms (E.Gen,E.Enc,E.Dec). In the aforementioned model
however, the key generation phase is split into two procedures: E.Init which gen-
erates a set of global public parameters (along with a possibly empty backdoor
key), and E.Gen which samples a key pair from the common public parameters.
More explicitly these procedures’ syntax is as follows, assuming without loss of
generality that pp is embedded in pk and sk by E.Gen.

– E.Init(1λ) $→(pp, td) samples parameters pp along with a trapdoor td.
– E.Gen(pp) $→(pk, sk) creates public and secret encryption keys.
– E.Enc(pk,m) $→c encrypts a message m into a ciphertext c

– E.Dec(sk, c) $→m decrypts a ciphertexts.

Standard security notions for PKE are easily translated in the context of global
public parameters. Correctness requires that given pp, pk, sk correctly generated
and any message m, the probability that E.Dec(sk,E.Enc(pk,m)) ̸= m is negligi-
ble. IND-CPA is also as usual up to providing pp (but not td!) to the adversary
at the beginning of the game.

2.3 Anamorphic Encryption

The notion of (receiver) anamorphic encryption was introduced in [PPY22] and
later extended in [CGM24a] separating anamorphic encryption and decryption
keys. As in this work (fully) asymmetric AE will not be discussed in details, only
the original paper’s notation is presented. In this context, in anamorphic mode
two regular-looking keys apk, ask are generated along with a covert dk used to
embed extra messages into ciphertext. Syntax, adapted to the public parameters
model, is specified in the following definition.

Definition 1 (Anamorphic Triplet). An anamorphic triplet Σ = (AT.Gen,
AT.Enc,AT.Dec) is a triplet of efficient algorithms such that

– AT.Gen(pp) $→(apk, ask, dk) with apk, ask being the anamorphic public and
secret keys while dk is the double key and pp are the (possibly empty) public
parameters.

– AT.Enc(apk, dk,m, m̂) $→c, with m ∈ M and m̂ ∈ M̂ being respectively the
standard and anamorphic messages encrypted in c.

– AT.Dec(ask, dk, c)→ m̂/⊥, with m̂ the anamorphic message encrypted in c.

For ease of notation, in the definition above we do not explicitly provide
pp, apk to AT.Dec and rather assume them to be contained in dk and ask respec-
tively.

Definition 2 (Anamorphic Encryption). A PKE Π = (E.Init,E.Gen,E.Enc,
E.Dec) is an Anamorphic Encryption scheme if it is IND-CPA secure and there
exists an anamorphic triplet Σ = (AT.Gen,AT.Enc,AT.Dec) such that any PPT
adversary A has negligible advantage, defined as

AdvAnamA,Π,Σ(1
λ) :=

∣∣Pr [RealGΠ(1
λ,A) = 1

]
− Pr

[
AnamorphicGΣ(1

λ,A) = 1
]∣∣

where RealGΠ and AnamorphicGΣ are described in Figure 1.

11

RealGΠ(1
λ,A)

1 : (pp, td)←$ E.Init(1λ)

2 : (pk, sk)←$ E.Gen(pp)

3 : return AOreal(pp, td, pk, sk)

Oreal(m, m̂)

1 : Sample a random r

2 : return E.Enc(pk,m; r)

AnamorphicGΣ(1
λ,A)

1 : (pp, td)←$ E.Init(1λ)

2 : (apk, ask, dk)←$ AT.Gen(pp)

3 : return AOanam(pp, td, apk, ask)

Oanam(m, m̂)

1 : Sample a random r

2 : return AT.Enc(apk, dk,m, m̂; r)

Fig. 1. Anamorphic Encryption security game in the public parameters model. The
original definition is obtained when E.Init(1λ) returns pp = 1λ and td = ε.

Finally, regarding correctness we refer to [BGH+24] for a game-based def-
inition. For the sake of generality, however, we will only use a weaker notion,
called correctness on average, holding only for uniformly sampled regular mes-
sages, honestly generated public parameters and correct keys. A formal definition
follows.

Definition 3 (Correctness on average). An anamorphic triplet is ε−correct
on average if, for a negligible ε, sampling (pp, td)← E.Init(1λ), (apk, ask, dk)←$

AT.Gen(pp) and a random message m ←$ M from the regular message space,
then for all m̂ ∈ M̂

Pr
[
m̃ ̸= m̂

∣∣∣ m̃← AT.Dec(ask, dk, c), c←$ AT.Enc(apk, dk,m, m̂)
]
≤ ε(λ).

.
Since we are only interested in Anamorphic Triplets, which enable Anamor-

phic Encryption, we may occasionally use both names interchangeably.
In [BGH+24] the notion of Anamorphic Extension has been introduced to

model the possibility of switching to anamorphic mode after the scheme is de-
ployed. This is possible by making the anamorphic generation algorithm depen-
dent only on the public key of the scheme, in fact decoupling the process of
generating anamorphic keys from regular ones. In the following, we adapt the
definition of Anamorphic Extension to the public parameters model. For the
sake of notation, we assume that pk contains pp.

Definition 4 (Anamorphic Extension). Let Π be a PKE scheme Π = (E.Init,
E.Gen,E.Enc,E.Dec). For pp←$ E.Init(1λ) and (pk, sk)←$ E.Gen(pp), an anamor-
phic extension for Π is a triplet Σ = (AX.Gen,AX.Enc,AX.Dec) of PPT algo-
rithms such that:

– AX.Gen(pk) $→dk on input the public key pk for Π, outputs a double key dk.
– AX.Enc(pk, dk,m, m̂) $→c on input a public key pk, a double key dk, a mes-

sage m ∈ M , a covert message m̂ ∈ M̂ , outputs an anamorphic ciphertext
c.

12

– AX.Dec(dk, c) → m̂ on input a secret key sk, a double key dk, a ciphertext
c, outputs a covert message m̂ ∈ M̂ or the special symbol ⊥/∈ M̂ (indicating
the absence of a covert message).

The security and correctness properties for Anamorphic Extension are de-
fined analogously to the ones for Anamorphic Triplet. It is clear that the exis-
tence of Anamorphic Encryption schemes with extensions implies the existence
of Anamorphic Encryption schemes with triplets.

Remark 1. In the updated full version [BGHM23] of [BGH+24] the algorithms
AX.Gen and AX.Dec are allowed to take sk as input. We have chosen to drop
the sk from the inputs and use the original definition for two reasons. First,
allowing for the anamorphic key generation to depend on sk can be seen as
a more limited definition when considering the security of regular messages.
Indeed, dk may contain information about sk that might allow to break the
security requirements relative to the regular message (see [KPP+23, CGM24a]).
The second reason is related to what we prove in Section 4. Looking ahead, there
we prove that (receiver) AE with extensions and ASA on PKE are equivalent.
This proof is simple and elegant when sk is not used to generate dk. While it
might be possible to extend our results to encompass the updated definition,
exploring the nuances induced by this change is left as future work.
Note that considering this restricted class of AE with extension is not a concern
for our goals. Indeed, the existence of an AE satisfying this definition implies the
existence of AE with triplets. Therefore, we can still extend our impossibility
result for AE to ASA on PKE.

2.4 Universal Hash Functions

Universal hash functions (UHF) [CW79] are a family of hash function that guar-
antees a low number of expected collisions, even if the data is selected by an
adversary. The formal definition follows.

Definition 5. Let H be a finite family of functions of type h : {0, 1}n → {0, 1}m.
H is a universal hash function if chosen h←$ H then for all x, y ∈ {0, 1}n such
that x ̸= y, holds

Pr [h(x) = h(y)] ≤ 2−m.

2.5 Chameleon Hash Functions

Chameleon hash functions [KR00] are a generalization of collision-resistant hash
where a trapdoor allows to efficiently find collisions. Formally, a CH consists of
three procedures (CH.Gen,CH.Eval,CH.Adapt) such that

– CH.Gen(1λ) $→(hk, td) generates hash key and trapdoor.
– CH.Eval(hk, x, r)→ y evaluates the hash of key hk on input (x, r).
– CH.Adapt(td, x, r, x′)→ r′ finds a collision (x, r), (x′, r′).

13

Through this paper, we require chameleon hash to satisfy the three main and
basic properties stated in [KR00], namely (adapt) correctness, uniformity and
collision resistance.

Definition 6. A tuple CH is a secure Chameleon Hash if it satisfies:

– Correctness: for any (hk, td) in the support of CH.Gen(1λ) and x, r, x′, calling
r′ = CH.Adapt(td, x, r, x′), then CH.Eval(hk, x, r) = CH.Eval(hk, x′, r′).

– Uniformity: for any (hk, td) in the support of CH.Gen(1λ), x and x′, if r is
uniformly sampled, then r′ ← CH.Adapt(td, x, r, x′) is uniformly distributed.

– Collision Resistance: for any PPT adversary A there exists ε negligible so
that, sampling (hk, td)←$ CH.Gen(1λ) and getting (x0, r0), (x1, r1)←$ A(hk),
holds

AdvA(1
λ) = Pr

[
CH.Eval(hk, x0, r0) = CH.Eval(hk, x1, r1)

(x0, r0) ̸= (x1, r1)

]
≤ ε(1λ).

Note that subsequent work proposed various strengthening to the above defi-
nitions [BFF+09, AMVA17, CDK+17]. Most of the above enhance CR when a
collision is leaked. In our constructions however such leakage never occurs. Fi-
nally, up to assuming td contains the random coins used to generate (hk, td)←$

CH.Gen(1λ), we also require that testing membership in the support of CH.Gen(1λ)
can be done efficiently.

2.6 Extremely Lossy Functions

Introduced in [Zha16], extremely lossy functions (ELF) are a class of functions
with tunable domain size, ranging from injective mode to polynomially small
image size.

Definition 7. An ELF consists of a probabilistic algorithm ELF.Gen such that
ELF.Gen(M,R), for given integers M,R, outputs the description of a function
f : [M]→ [N], for some N > M , where:

– f : [M]→ [N] is computable in time poly(logM).
– f ←$ ELF.Gen(M,M) is injective with overwhelming probability (in logM).
– f ←$ ELF.Gen(M,R), then |Im f | ≤ R with overwhelming probability.
– For any polynomials p, δ there exists a polynomial q such that for any p-time

adversary A and any R with q(logM) ≤ R ≤ M we have that, sampling
f0 ←$ ELF.Gen(M,M) and f1 ←$ ELF.Gen(M,R)

Adv(A) = |Pr [A(M,f0)→ 1]− Pr [A(M,f1)→ 1]| ≤ 1/δ(logM).

Definition 8. An ELF is strongly regular if for all R, with overwhelming prob-
ability over the choice of f ←$ ELF.Gen(M,R), the distribution f(x) with x←$

[M] is statistically close11 to uniform.
11 That is, the statistical distance is negligible in logM .

14

2.7 Robust ELF with Group Structure

Toward a construction of an anamorphic resistant scheme without public param-
eters, we need a more structured family of ELFs. Specifically, we need that:

1. There is an initial setup algorithm which generates evaluation parameters
ep later used to evaluate functions with input space [M].

2. Security holds even with adversarially chosen parameters ep.
3. A group structure is defined over the set of valid functions of given input

space [M], and generating a new injective function is equivalent to sampling
a random element from this group.

We formalize the first requirement by assuming the ELF to be divided into
two procedures (ELF.Setup,ELF.Gen) so that ep ←$ ELF.Setup(M) and f ←$

ELF.Gen(ep,M, r). f can then be evaluated given ep as fep(x), although we will
omit ep when clear from the context. Regarding the third requirement we call
Fep(M) the set of functions in the support of ELF.Gen(ep,M, ·) and assume it
to have a group structure (Fep(M),+) and that ELF.Gen(ep,M,M) consists of
sampling f ←$ Fep(M).

Notably the last property is by no means obtained without loss of generality.
However in the Appendix, Section A.2, we show that the original construction
in [Zha16] from the exponential k-linear assumption (and public coins groups)
is a robust ELF with group structure in the ROM up to minor modifications. A
more formal definition of Robust ELF with Group Structure follows.

Definition 9. A Robust ELF with Group Structure is a couple of algorithm
(ELF.Setup,ELF.Gen) along with a family of groups (Fep(M),+) such that

– ELF.Setup(M) $→ep generates the ELF parameters for range [M].
– ELF.Gen(ep,M,R) $→f ∈ Fep(M) where f : [M]→ [N] for some N > M .

and satisfies the following four properties:

– Efficiency: for any ep, f ←$ ELF.Gen(ep,M,R) implies f : [M] → [N] is
computable in polynomial time.

– Injective Mode: for ep ←$ ELF.Setup(M) and f ←$ ELF.Gen(ep,M,M)
then f is injective up to negligible probability.

– Lossy Mode: for any ep, f ←$ ELF.Gen(ep,M,R) implies |Im f | ≤ R.
– Uniformity: for any ep, f ←$ ELF.Setup(ep,M,M) implies f is uniformly

distributed over Fep(M).
– Indistinguishability: for any polynomials t, δ there exists a polynomial

q such that for any M , R ≥ q(logM) and any t-time adversary A such
that A(M) → ep, then, sampling f0 ←$ ELF.Gen(ep,M,M) and f1 ←$

ELF.Gen(ep,M,R)

Adv(A) = |Pr [A(M,f0)→ 1]− Pr [A(M,f1)→ 1]| ≤ 1/δ(logM).

15

2.8 Indistinguishability Obfuscator and Puncturable PRFs

We briefly recall the definitions of Indistinguishability Obfuscator [BGI+01] and
Puncturable PRFs [BW13, KPTZ13, BGI14], taking notation from [SW14].

Definition 10 (Indistinguishability Obfuscator). A uniform PPT algorithm
iO is called an Indistinguishability Obfuscator for a circuit class {Cλ} if:

– For all 1λ ∈ N, for all C ∈ Cλ, for all inputs x, it holds that

Pr
[
C ′(x) = C(x) : C ′ ←$ iO(1λ, C)

]
= 1.

– For any PPT adversaries S,D, there exists a negligible ε such that, given
(C0, C1, σ)←$ S(1λ), if Pr [∀x,C0(x) = C1(x)] > 1−ε(λ), then it holds that∣∣Pr [D(σ, iO(1λ, C0)) = 1

]
− Pr

[
D(σ, iO(1λ, C1)) = 1

]∣∣ ≤ ε(λ).

Definition 11 (Puncturable PRF). A triplet of algorithm (PRF.Gen,PRF.Eval,
PRF.Puncture) is said to be a Puncturable PRF if, given n(1λ),m(1λ) two com-
putable functions, the two following requirements are satisfied:

– For every PPT adversary A such that A(1λ) outputs a set S ⊆ {0, 1}n, then
for all x ∈ {0, 1}n \ S, it holds that

Pr [PRF.Eval(k, x) =PRF.Eval(kS , x) :

k ←$ PRF.Gen(1λ), kS ← PRF.Puncture(k, S)
]
= 1.

– For every PPT adversary (A1,A2) such that A1(1
λ) outputs a set S ⊆ {0, 1}n

and a state σ, given k ←$ PRF.Gen(1λ), kS ← PRF.Puncture(k, S), it holds
that

|Pr [A2(σ, kS , S,PRF.Eval(k, S)) = 1]

−Pr
[
A2(σ, kS , S, U(m(1λ) · |S|)) = 1

]∣∣ = negl(λ).

Where PRF.Eval(k, S), for S = {x1, . . . , xl}, denotes the concatenation of
PRF.Eval(k, x1), . . . ,PRF.Eval(k, xl) and U(ℓ) denotes the uniform distribu-
tion over ℓ bits.

2.9 Algorithm Substitution Attacks

The notion of Algorithm Substitution Attack (ASA) was initially proposed in
[BPR14] and later expanded in [BJK15] and [DFP15]. This notion models attacks
instantiated by replacing standard encryption algorithms with subverted ones.
These allow an attacker, (typically referred to as the Big Brother), to leak data
from ciphertexts. In this section we recall the generalized ASA model for PKE,
as proposed in [WCHY23], adapted to the public parameters model. In what
follows we assume that pk contains pp.

16

Definition 12 (Algorithm Substitution Attack on PKE). Let Π = (E.Init,
E.Gen,E.Enc,E.Dec) be a PKE. For pp←$ E.Init(1λ) and (pk, sk)←$ E.Gen(pp),
an ASA on PKE is a triplet of efficient algorithms ASA = (ASA.Gen,ASA.Enc,
ASA.Ext) such that

– ASA.Gen(pk) $→skey on input the public key pk for Π, outputs a subversion
key skey.

– ASA.Enc(pk, skey,m, m̂) $→c on input a public key pk, a subversion key skey,
a message m ∈M and a subliminal message m̂ ∈ M̂ , outputs a ciphertext c.

– ASA.Ext(skey, c) → m̂ on input the subversion key skey and a ciphertext c,
outputs the subliminal message m̂.

Definition 13 (Recoverability). Let ASA = (ASA.Gen,ASA.Enc,ASA.Ext) be
an ASA on PKE = (E.Init,E.Gen,E.Enc,E.Dec). We say ASA satisfies recover-
ability if for any m ∈M and any m̂ ∈ M̂ ,

Pr

ASA.Ext(skey, c) ̸= m̂ :

(pp, td)←$ E.Init(1λ)
(pk, sk)←$ E.Gen(pp)
skey←$ ASA.Gen(pk)
c←$ ASA.Enc(pk, skey,m, m̂)

 ≤ negl(λ).

ASARealGΠ(1
λ,D)

1 : (pp, td)←$ E.Init(1λ)

2 : (pk, sk)←$ E.Gen(pp)

3 : return DOASAreal(pp, td, pk, sk)

OASAreal(m, m̂)

1 : Sample a random r

2 : return E.Enc(pk,m; r)

ASASubGASA(1
λ,D)

1 : (pp, td)←$ E.Init(1λ)

2 : (pk, sk)←$ E.Gen(pp)

3 : skey←$ ASA.Gen(pk)

4 : return DOASAsub(pp, td, pk, sk)

OASAsub(m, m̂)

1 : Sample a random r

2 : return ASA.Enc(pk, skey,m, m̂; r)

Fig. 2. ASA undetectability security game in the public parameters model. The original
definition is obtained when E.Init(1λ) returns pp = 1λ and td = ε.

Definition 14 (Undetectability). Let ASA = (ASA.Gen,ASA.Enc,ASA.Ext)
be an ASA on a PKE Π = (E.Init,E.Gen,E.Enc,E.Dec). We say ASA satisfies
undetectability if any PPT detector D has negligible advantage, defined as

AdvDet
D,Π,ASA(1

λ) :=
∣∣Pr [ASARealGΠ(1

λ,D) = 1
]
− Pr

[
ASASubGASA(1

λ,D) = 1
]∣∣

where ASARealGΠ and ASASubGASA are described in Figure 2.

17

Remark 2. Our definitions above assume that ASA.Enc (resp. ASA.Ext) takes
as input a single (regular) message (resp. ciphertext). In some previous works
[BPR14, BJK15, DFP15] the same algorithms are allowed to work on sets of
messages/ciphertexs instead. This allows to embed the subliminal message in
several ciphertexts rather than in a single one. A similar mechanism can be
realized in our setting as follows. Let M̂ = {0, 1}, following [BL17, WCHY23], we
also let ASA.Encℓ(pk, skey, {m1, . . . ,mℓ}, m̂) be the algorithm that, to encode the
subliminal message m̂ ∈ M̂ ℓ, runs ASA.Enc on input (mi, m̂i) (for i = 1..ℓ), where
m̂i is the i-th bit of m̂. The algorithm ASA.Extℓ(skey, {c1, . . . , cℓ}) is defined
analogously.

3 Anamorphic Resistant Encryption

3.1 Construction in the Public Parameters Model

We begin providing a simple construction of anamorphic resistant encryption
in the public parameters model, i.e. where all keys are generated with respect
to a set of public parameters chosen by the authority. More specifically our
construction is actually a compiler. Given any standard PKE we construct a new
scheme preserving its security while being anamorphic resistant. The following
tools will be used:

– A public key encryption scheme (E∗.Gen,E∗.Enc,E∗.Dec) with random coin
in {0, 1}λ and message space M , with |M | = 2λ. To simplify our analysis we
assume E.Enc(pk,m; r) to be injective in r for all valid (pk,m).

– An injective one-way function F with domain M .
– A strongly regular extremely lossy function family ELF.Gen.
– A family of universal hash functions H with domain containing the image of

any ELF with input size 2µ, and output length µ− 2λ.
– An obfuscator iO and a puncturable PRF (PRF.Gen,PRF.Puncture,PRF.Eval).

Our strategy is realizing the weak ideal PKE from [CGM24b], where certain
weak messages admit only polynomially many ciphertexts. As in [CGM24b], if
a given AT.Enc cannot distinguish a weak m from a random one, we can break
anamorphic security by repeatedly querying (m, 0) and (m, 1). Indeed, in the
real game we would observe ciphertexts distributed over the full (polynomially
small) set of ciphertexts encrypting m, whereas in the anamorphic game we
would observe ciphertexts distributed over a fraction of said space.

We achieve this goal exploiting the backdoored public parameters. Informally,
pp consists of the obfuscation of a circuit C̃ which on input m returns C̃(m) =
(h, f) with h being a universal hash function for randomness extraction and
f either injective or extremely lossy (sampled through a PRF on input m).
Encryption is then carried out as E∗.Enc(pk,m; h ◦ f(r)) for a random string r.

More specifically, f will be extremely lossy only for fixed weak messages. To
ensure C̃ does not leak them, we actually hard-code zi = F (mi) and let C(m)

18

return a precomputed lossy function f∗
i only when F (m) = zi. In this way IND-

CPA security is not directly compromised, as no adversary can efficiently query
the encryption of a weak message.

Another issue we face to show semantic security is how to extract randomness
from f(r) when f is injective, but chosen adversarially. Sampling a public uni-
versal hash h would not suffice, since, even though r is independent from h, f(r)
may not be. We address this assuming C(m) actually samples, with a different
PRF key, a distinct h for each m. This approach works in a selectively secure
sense, as knowing the messages an adversary will query allows us to puncture
the PRF keys before C̃ is given, allowing us to argue (h, f) = C̃(m) are actu-
ally sampled independently. Lifting selective security to plain IND-CPA is done
through another ELF and standard techniques from [Zha16]. The full scheme is
presented in Figure 3.

E.Init(1λ) :

1 : Setup an ELF ϕ←$ ELF.Gen(2λ, 2λ)

2 : Sample m∗
1, . . . ,m

∗
λ ←$ M distinct

3 : Compute zi ← F (m∗
i)

4 : Generate fi ←$ ELF.Gen(2µ, 2i)

5 : Sample two keys k1, k2 ←$ PRF.Gen(1λ)

6 : z← (zi)
λ
i=1 and f ← (fi)

λ
i=1

7 : C̃ ← iO(Cz,f ,k1,k2,ϕ)

8 : return (pp, td)← (C̃, (m∗
i)

λ
i=1)

Cz,f ,k1,k2,ϕ(m) :

1 : if F (m) = zi: f ← fi

2 : else :
3 : f ← ELF.Gen(2µ, 2µ;PRF.Eval(k1, ϕ(m)))

4 : h← Sample(H;PRF.Eval(k2, ϕ(m)))

5 : return (f, h)

E.Gen(pp) :

1 : (pk, sk)←$ E∗.Gen(1λ)

2 : return (pk, sk)

E.Enc(pp, pk,m; r) :

1 : (f, h)← C̃(m) // pp = C̃

2 : c← E∗.Enc(pk,m;h ◦ f(r))
3 : return c

E.Dec(pp, sk, c) :

1 : m← E∗.Dec(sk, c)

2 : return m

Fig. 3. Weak PKE with public parameters. µ is set so that µ− 2λ equals the random
tape length expected by E∗.Enc.

Proposition 1. If iO is a secure obfuscator, ELF.Gen an ELF, F an injective
OWF, H a family of universal hash function and the PRF is pseudorandom,
then, calling E∗ the underlying PKE and E the one defined in Figure 3

– E∗ CPA secure ⇒ E CPA secure.
– E∗ CCA secure ⇒ E CCA secure.

Proof of Proposition 1. We prove the proposition through a sequence of hybrids
H0, . . . ,H5 and in H5 reduce the target security notion (CPA/CCA/. . .) to that

19

of the underlying encryption scheme. Toward contradiction let A be a p(λ)-
time adversary breaking security for E infinitely often with inverse-polynomial
advantage ε(λ). For simplicity we only consider hybrids when the security game
is IND-CPA and discuss later how the proof is adapted in the other cases.

H0: Real IND-CPA game. To fix notation, let m0,m1 the challenge messages, b
the challenge bit, and c∗ ←$ E.Enc(pk,mb) the challenge ciphertext.

H1: As H0, but abort if F (mb) ∈ {z1, . . . , zλ}.
H2: As H1, but ϕ ←$ ELF.Gen(2λ, r) where r (the range size) is such that ELF

security holds for any p+ p∗ time machine with advantage δ = ε/2, with p∗

an upper bound on the (joint) execution time of E.Init,E.Gen and E.Enc.

H3: As H2, but θ0, θ1 ←$ Imϕ are sampled, k∗i ← PRF.Puncture(ki, {θ0, θ1}) and
C̃ is the obfuscation of C∗

z,f ,k∗
1 ,k

∗
2 ,ϕ,r,θ0,θ1

where ri,j = PRF.Eval(ki, θj) and
C∗ is defined12 as C but on input θj returns f, h computed as

f = ELF.Gen(2µ, 2µ; r1,j), h = Sample(H; r2,j).

H4: As H3, but ri,j are randomly sampled for i, j ∈ {0, 1}.
H5: As H4, but if {ϕ(m0), ϕ(m1)} ⊆ {θ0, θ1}, computes c∗ ← E∗.Enc(pk,mb).

H0 ≈ H1. Any distinguisher D is readily reduced to an inverter for the OWF
(up to losing a factor λ in the reduction to guess the zi that D will invert) since
H0 and H1 are identical if both F (m0) and F (m1) are not in {z1, . . . , zλ}.

H1 ≈δ H2. Any p-time distinguisher D is reduced to an adversary B for the
ELF for parameter r. B(ϕ) sets up pp (using its own ϕ in line 1 of E.Init) and
pk, executes D(pp, pk) → (m0,m1), samples b and replies c∗ = E.Enc(pk,mb).
Eventually when D outputs a bit, B returns the same. According to how is ϕ
sampled, B perfectly simulates either H1 or H2, so Adv(D) = Adv(B). Moreover,
B runs in time p+ p∗, and therefore Adv(D) = Adv(B) ≤ ε/2.

H2 ≈ H3. Follows from iO security as C and C∗ with respective hard-coded
parameters are functionally equivalent.

H3 ≈ H4. Follows directly from the puncturable PRF security.

H4 ≈ H5. Let fj , hj for j ∈ {0, 1} be respectively the injective ELFs sampled
with random coins r1,j and hj the hash function sampled from H with coins r2,j .
Let j0 and j1 bits so that ϕ(m0) = θj0 and ϕ(m1) = θj1 , that are well defined
when {ϕ(m0), ϕ(m1)} ⊆ {θ0, θ1}. Finally, in this setting we call f = fjb and
h = hjb , where b is the challenge bit. Note that as b is uniformly random, and
fj , hj are all freshly sampled, we have that f, ρ and h are mutually independent,
with ρ the random coins used to compute c∗. Moreover, as f is generated in
12 We implicitly assume either C or C∗ were properly padded to be of the same size.

20

injective mode, H∞(f(ρ)) = H∞(ρ) = µ. Finally, let u ←$ {0, 1}µ−2λ, since
h is a universal hash and has output length of µ − 2λ bits, the Leftover Hash
Lemma13 implies that

∆ ((h, f, h ◦ f(ρ)), (h, f, u)) ≤ 1

2λ
.

Finally H4 and H5 can be derived as the same probabilistic function applied
respectively to the first and second tuple above. This is done observing that all
other parameters generated in E.Init and E.Gen are distributed independently
from f, g (that are respectively deterministic functions of r1, r2). Moreover, if
the adversary queries m0,m1 so that ϕ(mb) = θ, then in the first world c∗ =
E∗.Enc(pk,mb;h◦f(ρ)) while in the second c∗ = E∗.Enc(pk,mn;u). We can then
conclude that for any distinguisher D (even an unbounded one) it holds that
Adv(D) ≤ 2−λ.

H5 is hard. Let A be an adversary breaking IND-CPA in H5. We reduce it
to B attacking IND-CPA for the underlying scheme (E∗.Gen,E∗.Enc,E∗.Dec).
Initially B(pk) generates pp as in H5, in particular sampling θ0, θ1 ←$ Imϕ, and
runs A(pp, pk) → (m0,m1). If {ϕ(m0), ϕ(m1)} ⊈ {θ0, θ1} it aborts returning a
random bit. Conversely, it queries m0,m1 to its encryption oracle, obtains c∗

and forwards c∗ to A. Finally, when A(pk, c∗)→ b′, returns the same bit b′.
First we argue that the probability of not halting is at least 1/r2 − negl(λ).

Indeed in H2 the adversary has no information on θ0, θ1, and we can thus bound
Pr [{ϕ(m0), ϕ(m1)} ⊆ {θ0, θ1}] ≥ 2/r(r − 1) ≥ 1/r2. Since any distinguisher for
H2 and H5 has negligible advantage, we conclude that in H5 the same holds up
to a negligible loss. Conversely, if B does not abort, it simulates H5 to A since
c∗ ←$ E∗.Enc(pk,mb). We can thus conclude that

Adv(A) ≤ (r2 + negl(λ)) · Adv(B) ≤ negl(λ).

Conclusion. Combining all the hybrids, and the fact that guessing the challenge
bit in H5 is hard given the IND-CPA of the underlying scheme, we get that for any
p-time adversary A in H0, its advantage is Adv(A) ≤ δ+negl(λ) = ε/2+negl(λ).
This contradicts the hypothesis that A succeeds infinitely often with advantage
ε = 1/poly(λ).

Other security definitions. If E∗ is IND-CCA, the proof is almost identical, as
sk is available to the reductions between all hybrids (and can therefore simulate
decryption queries). In H5, the decryption oracle for E∗ is identical to one for
E. The only technical change is, assuming A performs q decryption queries, p∗
(defined in H2) must be augmented by q-times the execution time of E.Dec =
E∗.Dec. Note this is still polynomial in λ.
13 Given x with H∞(x) ≥ k and h a universal hash with k− 2 log(1/ε) output bits and

independent from x, then ∆((h, h(x)), (h, u)) ≤ ε for a uniformly sampled u.

21

Theorem 1. There exists no stateless anamorphic triplet for the PKE in Fig-
ure 3 that is correct on average, under the assumption that ELF.Gen is a strongly
regular ELF, PRF is pseudorandom, and H is a family of universal hash function
with image size Ω(2λ).

Proof. Let (AT.Gen,AT.Enc,AT.Dec) a stateless anamorphic triplet for the given
PKE. By definition the anamorphic message space M̂ has at least two elements,
so we assume without loss of generality that {0, 1} ⊆ M̂ . Let p1 be a polynomial
upper-bounding the running time of (AT.Gen,AT.Enc,AT.Dec) combined, p2 for
the running time of E.Enc, p = p1+ p2 and δ = 8λ. By ELF security there exists
a polynomial q such that, for any ρ ≥ q(λ) any p-time adversary distinguishes
ELF.Gen(2λ, ρ) from ELF.Gen(2λ, 2λ) with probability smaller than 1/δ. We then
define in Figure 4 the following non-uniform adversary A for the anamorphic
security game.

A(pp, td, apk, ask) :

1 : Find m∗
j in td with j the smallest integer s.t. 2j ≥ q(λ)

2 : Let R = |{Im fj}| with (hj , fj)← C̃(m∗
j)

3 : Compute K = {E∗.Enc(apk,m∗
j ;hj(v)) : v ∈ Im fj}

4 : Initialize S0 ← ∅ and S1 ← ∅
5 : for i ∈ {1, . . . , λ ·R}:
6 : Query ci,0 ← O(m∗

j , 0) and store S0 ← S0 ∪ {ci,0}
7 : Query ci,1 ← O(m∗

j , 1) and store S1 ← S1 ∪ {ci,1}
8 : if ci,0 /∈ K or ci,1 /∈ K: return 0

9 : return (|S0| == R) ∧ (|S1| == R)

Fig. 4. Attack breaking anamorphism of a given triplet for the PKE in Figure 3.

On input pp and the backdoor td = (m∗
i)

λ
i=1, A finds m∗

j associated to fj
computed as ELF.Gen(2λ, 2j) where 2q(λ) > 2j ≥ q(λ). Note that this depen-
dency on q makes A non-uniform. Next, it queries encryptions of (m∗

j , 0) and
(m∗

j , 1) both λR times, where R = |Im fj | ≤ 2j , and in particular R = poly(λ).
Eventually A accepts if it obtains R distinct ciphertexts from both query types,
respectively stored in two sets S0, S1. The reason is that in the real game S0

and S1 eventually cover the entire space K of reachable encryptions of m∗
j . Con-

versely in the anamorphic game due to correctness at least one between S0 and
S1 will have size smaller than ≈ 3/4 · R on expectation. Formally we study the
probability A accepts in the two worlds.

Real Game. We prove Pr
[
AOreal(pp, td, apk, ask)→ 1

]
= 1 − negl(λ). It suffices

showing Pr [|Sb| = R] ≥ 1−negl(λ) for b ∈ {0, 1}. To fix notation we let ri,b be the
randomness used in each encryption query, and define the sets Vb = {fj(ri,b)}λRi=1

22

and Wb = hj(Vb). Trivially Sb = {E.Enc(pk,m∗
j ;w) : w ∈Wb} and in particular

|Sb| = |Wb| as we assumed the underlying PKE to be random-coin injective.
Next, from the fact that hj is chosen from a family of Universal Hash Functions,
Pr [|Wb| < |Vb|] = negl(λ). This formally follows as hj is sampled independently
from fj , and in particular, the set Im fj . As |Im fj | ≤ R = poly(λ) and hj has
image of size Ω(2λ), by the fact that hj is chosen from a family of universal
hash functions, it is injective over Im fj up to probability ≤ R2 · 2−λ = negl(λ).
Finally, since the given ELF is strongly regular, we have that

Pr [|Vb| < R] ≤
∑

y∈Im fj

Pr [y /∈ V0] ≤
∑

y∈Im fj

(
1− 1

2R

)λR

≤ R ·
(
1− 1

2R

)λR

≤ R · e−λ/2 = negl(λ)

where the first inequality is a union bound and the second one follows over ap-
proximating ∆(fj(r), u) ≤ 1

2R for uniformly random r ←$ [2λ] and u←$ Im fj .
Note this statistical distance is negligible from strong regularity, Definition 8.
We thus conclude that

Pr [|S0| = R] = Pr [|W0| = R] ≥ Pr [|V0| = R]− negl(λ) ≥ 1− negl(λ).

Anamorphic Game. Up to negligible probability, we condition on the event that
|K| = |Im fj | = R as before. Given apk, ask, dk, define Γ0 and Γ1 the set of
ciphertexts decrypting respectively to 0 or 1 anamorphically. Since AT.Dec is
deterministic Γ0∩Γ1 = ∅. Therefore one of these sets, without loss of generality
say Γ0, has small intersection with K, i.e. |Γ0 ∩ K| ≤ R/2. We can now state
the main technical claim, saying that the anamorphic encryption of (m∗

j , 0) lies
in Γ0 with high (but not overwhelming) probability.

Claim 1 Setting c ←$ AT.Enc(apk, dk,m∗
j , 0) then Pr [c /∈ Γ0] ≤ η(λ) where

η(λ) = 1
8λ + negl(λ).

Given the claim (whose proof appears in Appendix, Section B.1) we can now
estimate the size of S0, conditioning on S0 ⊆ K as otherwise A rejects.

E[|S0|] = |Γ0 ∩K|+ E[|S0 \ (Γ0 ∩K)|] ≤ R

2
+ E

[∑λR

i=1
1ci,0 /∈Γ0

]
=

R

2
+

λR∑
i=1

Pr [ci,0 /∈ Γ0] ≤
R

2
+ λR ·

(
1

8λ
+ negl(λ)

)
≤ 3R

4

where the first equality follows by linearity of expectation, the first inequality
through a set-theoretic union bound, where we denoted 1E the indicator variable
for the event E, the second equality again by linearity, the second inequality by
Claim 1 and the last one holds asymptotically as negl(λ) ≤ R/8. Finally, Markov
inequality implies that Pr [|S0| = R |S0 ⊆ K, |K| = R] ≤ 3/4, and in particular
Pr

[
AOanam(pp, td, apk, ask)→ 1

]
≤ 3/4 + negl(λ).

23

Conclusion. Combining both inequalities we obtain that the adversary A has
advantage Adv(A) ≥ 1− negl(λ)− 3/4− negl(λ) = 1/4− negl(λ).

3.2 Construction in the Random Oracle Model

Again our strategy is to realize the weak PKE from [CGM24b], where certain
weak messages admit only polynomially many ciphertexts. We achieve this goal
exploiting the ELF security. This second construction, which is again in fact a
generic compiler for any semantically secure PKE, involves the following tools:

– A Chameleon hash CH. We denote for simplicity hhk(·, ·) = CH.Eval(hk, ·, ·).
– A PKE (E∗.Gen,E∗.Enc,E∗.Dec) with message space14 F(2λ) × {0, 1}λ and

randomness space {0, 1}λ.
– A Robust ELF with a group structure (ELF.Setup,ELF.Gen), see Section 2.7.

The resulting scheme is an Anamorphic Resistant PKE with message space
F(2λ) × {0, 1}λ. Its public key pk = (pk∗, hk, ep) consists of the underlying
PKE’s public key, CH’s evaluation key and the ELF parameters. The secret key
sk = (sk∗, td) instead contains the base PKE’s secret key and the chameleon
hash trapdoor.

The idea to obtain weak messages is again to bias the randomness of E∗.Enc
via a function that can be either injective or extremely lossy. Notably, we need
to ensure the latter can only occur when sk is known. Toward this goal we use a
"backdoored" random oracle, obtained as H◦hhk. On input (f, s) the encryption
procedure evaluate ρ = H ◦ hhk(f ; s) and uses the result as a random seed to
sample an injective function g ∈ F(2λ), i.e. g = ELF.Gen(ep, 2λ, 2λ; ρ). Finally,
it computes ϕ = f+g and uses ϕ to bias the encryption random coins, returning
E∗.Enc(pk, (f, s);H(ϕ(m))).

Due to the collision resistance of hhk, for any message (f, s) an adversary
for IND-CPA may query, the resulting g is essentially independent from f , so
ϕ = g+f is injective with high probability. However, a dictator who holds td can
easily find weak messages: Initially it computes ρ = H ◦hhk(f

∗; s∗) for a random
message (f∗, s∗) and the resulting g. Next, it samples an appropriate ELF f it
wishes to inject, and uses td to find s so that hhk(f

∗, s∗) = hhk(f − g, s). The
message (f − g, s) is then weak since applying H ◦ hhk it yields the same ρ, and
in particular the same g, meaning that ϕ = (f − g) + g = f .

Given the above description, we clarify the random oracle is crucial for two
tasks. The first – and most important – is to ensure that without td the function
ϕ = f+g is essentially uniform, and thus injective. The second is to extract good
randomness from ϕ(r), which when ϕ is injective contains high min-entropy. A
full description of the compiler is provided in Figure 5.

14 We can assume this without loss of generality by taking any PKE whose message
space contains F(2λ) × {0, 1}λ, and then restrict it to said set. Note we can do so
as membership in F(2λ)× {0, 1}λ is decidable in polynomial time.

24

E.Gen(1λ) :

1 : pk∗, sk∗ ←$ E∗.Gen(1λ)

2 : hk, td←$ CH.Gen(1λ)

3 : ep←$ ELF.Setup(2λ)

4 : pk = (pk∗, hk, ep), sk = (sk∗, td)

5 : return (pk, sk)

E.Enc(pk, (f, s); r) :

1 : ρ← H ◦ hhk(f, s)

2 : g ← ELF.Gen(ep, 2λ, 2λ; ρ)

3 : ϕ← f + g // ϕ ∈ F(2λ)

4 : r∗ ← H(ϕep(r))

5 : m∗ := (f, s)

6 : return c = E∗.Enc(pk∗,m∗; r∗)

E.Dec(sk, c) :

1 : Parse sk = (sk∗, ·)
2 : return E∗.Dec(sk∗, c)

Fig. 5. ARE scheme in the ROM with message space F(2λ)× {0, 1}λ.

Proposition 2. If CH is a secure chameleon hash and (ELF.Setup,ELF.Gen) a
robust ELF with group structure, then in the ROM, calling E∗ the underlying
PKE and E the construction in Figure 5

– If E∗ is CPA then E is CPA.
– If E∗ is CCA then E is CCA.

Proof of Proposition 2. Let A be and adversary for IND-CPA, asking m0,m1

and receiving challenge ciphertext c∗ encrypting mb. Call ϕ the function E.Enc
computes in Line 3. The core of the proof lies in the following technical claim:

Claim 2 Calling Bad the event "ϕ is not injective", then Pr [Bad] ≤ negl(λ).

Proof. We provide a somewhat standard reduction to the chameleon hash colli-
sion resistance through rewinding and the (local) forking lemma [BDL19]. Infor-
mally B, detailed in Figure 6, executes A twice with the same setup. The first
time it gets the message mb that would be encrypted by A’s challenger. The
second one instead, it program H in x = hhk(mb), and get output m′

b from A.
Finally it returns (mb,m

′
b) as a possible collision.

To fix notation, let us name the random variables that would be involved
in the computation of E.Enc(pk,mβ,b) as (fβ , sβ) = mβ,b, ρβ = H(hhk(mβ,b)),
gβ = ELF.Gen(2λ, 2λ; ρβ) and ϕβ = fβ + gβ . Moreover we define the event
Fork : (ϕ0, ϕ1 not injective) ∧ (hhk(m0,b) = hhk(m1,b)). By the local forking
lemma [BDL19, §3, Lemma 1] we have that

Pr [Fork] ≥ 1

q
· Pr [Bad]2 .

Next, by construction ρ1 is sampled independently from m0,b. In particular g1 is
independent from f0 and thus f0+g1 ∼ U(F(2λ)). It follows by ELF correctness

25

B(hk):

1 : Sample pk∗, sk∗ ←$ E∗.Gen(1λ) and ep←$ ELF.Setup(2λ)

2 : Set pk = (pk∗, hk, ep) and sample a challenge bit b←$ {0, 1}
3 : Sample uniformly a random tape u←$ {0, 1}poly(λ) for A
4 : // First execution

5 : Run AH(pk;u)→ (m0,0,m0,1)

6 : Let x = hhk(m0,b)

7 : Sample a random ρ1 and program H∗ = H[x 7→ ρ1]

8 : // Second execution

9 : Run AH∗
(pk;u)→ (m1,0,m1,1)

10 : return (m0,b,m1,b)

Fig. 6. Reduction to CH collision resistance. The random oracle H is lazily maintained
by B. H[x 7→ y] denotes the programming of H so that H(x) = y.

that Pr [f0 + g1 not injective] ≤ negl(λ). Combining the two properties we finally
lower bound the probability B found a collision.

Adv(B) = Pr [m0,b ̸= m1,b ∧ hhk(m0,b) = hhk(m1,b)]

≥ Pr [m0,b ̸= m1,b ∧ Fork]

= Pr [Fork]− Pr [Fork ∧ m0,b = m1,b]

≥ Pr [Fork]− Pr [f1 + g1 not injective ∧ m0,b = m1,b]

≥ Pr [Fork]− Pr [f0 + g1 not injective]

≥ 1

q
Pr [Bad]− negl(λ).

Given the claim, if E is IND-CPA, we can provide a reduction B to the IND-
CPA security of E∗ (the case for IND-CCA is analogous and thus omitted).

Initially BH(pk∗) samples (hk, td) ←$ CH.Gen(1λ) and ep ←$ ELF.Setup(2λ)
and runs AH(pk). When AH(pk)→ (m0,m1) it forwards such values to its chal-
lenger and get c. When AH(c)→ b′, it return the same bit.

To show that B simulates well A’s game, let c′ = E.Enc(pk∗,mb). If ¬Bad,
then ϕ = f+g is an injective function, and in particular ϕ(r) has min-entropy λ.
Hence, calling x1, . . . , xq the ROM queries performed by A, define Hit the event
ϕ(r) ∈ {x1, . . . , xq}. We have that

Pr [Hit | ¬Bad] = Pr [ϕ(r) ∈ {x1, . . . , xn} | ¬Bad]

≤
∑q

i=1
Pr [ϕ(r) = xi |ϕ(r) /∈ {x1, . . . , xi−1}, ¬Bad]

≤
∑q

i=1

1

2λ − i
≤ q

2λ − q
= negl(λ).

In particular, by the claim it holds that Pr [Hit ∨ Bad] ≤ negl(λ). Finally, when
both event do not occur, ϕ(r) is never queried by A and in particular r∗ is

26

uniform in {0, 1}λ and independent from A coins, key, and ROM queries. Thus
c′ = E∗.Enc(pk∗,mb; r

∗) follows the same distribution of c. We can then conclude
that

Adv(B) ≥ Adv(A)− Pr [Hit ∨ Bad] ⇒ Adv(A) ≤ negl(λ).

Theorem 2. There exists no stateless anamorphic triplet for the PKE in Fig-
ure 5 that is correct on average, under the assumption that ELF.Gen is a strongly
regular, robust ELF with group structure (see Section 2.7) and CH is a secure
Chameleon Hash, in the Random Oracle Model.

Proof. Let toward contradiction (AT.Gen,AT.Enc,AT.Dec) be an anamorphic
triplet for E. In Figure 7 we describe an attacker A breaking the anamorphic
property 2. Let p1(λ) a polynomial upper bound on the running time of AT.Gen,
AT.Dec and p2(λ) a bound for the hybrids in the proof of Claim 3 (introduced
later). By ELF security, fixing δ = 8λ, there exists a polynomial q(λ) such that
any p-time adversary (p = p1 + p2) cannot distinguish ELF.Gen(2λ, q(λ)) from
an injective function with advantage higher than 1/δ.

With these parameters, A first searches for a weak message m so that the
associated ϕ is lossy with image of size ≤ q(λ). This is done exploiting the
chameleon hash: initially the adversary computes ϕ∗ = g+f∗, where g is uniquely
determined from hhk(f

∗, s∗), for a random message (f∗, s∗). Next, it finds a
collision s so that hhk(f − g, s) = hhk(f

∗, s∗) for a lossy f as above. In this way
the g terms is unchanged and eventually ϕ = (f − g) + g = f . Then, as in the
proof of Theorem 1, this message is used to break anamorphism by repeatedly
querying (m, 0) and (m, 1).

Before studying the probability that A returns 1 in the two worlds we remark
that with overwhelming probability |K| = R. This true as H is injective over
Im f up to probability R2 · 2−λ. Moreover, all element in ImH ◦ f are mutually
independent and uniformly distributed. Hence, by IND-CPA, the probability
that a collision E∗.Enc(pk∗,m; r1) = E∗.Enc(pk∗,m; r2) occurs for r1, r2 ∈ ImH◦f
is negligible. We do not explicit the reduction, and only remark it crucially
relies on the fact that m can be efficiently computed given only pk∗. A union
bound yields |K| = |ImH ◦ f | up to probability R2 · negl(λ) and in particular
Pr [|K| = R] ≥ 1− negl(λ).

Real Game. We show Pr
[
AOreal(apk, ask)→ 1

]
≥ 1 − negl(λ). By construction,

A never fails at lines 2 and 17. Next, assuming |K| = R, we have by strong
regularity of the ELF that ci,β is statistically close to uniform in K. Hence,

Pr [|Sβ | < R | |K| = R] ≤
∑

c∈K

∏λR

i=1
Pr [c ̸= ci,β | |K| = R]

≤
∑

c∈K

∏λR

i=1

(
1− 1

2R

)
≤ R

(
1− 1

2R

)λR

≤ Reλ/2.

The claimed bound is then proved recalling that Pr [|K| < R] ≤ negl(λ).

27

AH(apk, ask):

1 : Parse apk = (pk∗, hk, ep) and ask = (sk∗, td)

2 : if (hk, td) is not in the support of CH.Gen(1λ): return 0

3 : // Part 1: Look for a weak message

4 : Sample uniformly a message (f∗, s∗)

5 : ρ← H(hhk(f
∗, s∗))

6 : g ← ELF.Gen(2λ, 2λ; ρ)

7 : f ←$ ELF.Gen(2λ, q(λ)) // extremely lossy

8 : s← CH.Adapt(td, f∗, s∗, f − g)

9 : m← (f − g, s) // weak message

10 : // Part 2: Break the anamorphic game

11 : Let R = |Im f |
12 : Compute K = {E∗.Enc(apk,m;H(u)) : u ∈ Im f}
13 : Initialize S0 ← ∅ and S1 ← ∅
14 : for i ∈ {1, . . . , λ ·R}:
15 : Query ci,0 ← O(m, 0) and store S0 ← S0 ∪ {ci,0}
16 : Query ci,1 ← O(m, 1) and store S1 ← S1 ∪ {ci,1}
17 : if ci,0 /∈ K or ci,1 /∈ K: return 0

18 : return (|S0| == R) ∧ (|S1| == R)

Fig. 7. Attacker breaking an anamorphic triplet for the PKE in Figure 5, parametrized
by a polynomial q(λ).

Anamorphic Game. Assume as before |K| = R. Given apk, ask, since AT.Dec is
stateless and deterministic, let Γ0, Γ1 the ciphertexts in K decrypting respec-
tively to 0 or 1 anamorphically. Clearly Γ0 ∩ Γ1 = ∅ and in particular at least
one of them, say Γ0, is such that |Γ0∩K| ≤ R/2. Using correctness on average we
can show that each ci,0 lies in Γ0 up to a small (but non negligible) probability.

Claim 3 Setting c←$ AT.Enc(apk, dk,m, 0) then Pr [c /∈ Γ0] ≤ 1
8λ + negl(λ).

Proof. We rely on correctness on average. First, we define a sequence of hybrids,
indistinguishable (with small polynomial error) for time p1 adversaries15, gener-
ating the message m. Initially, m is as the one sampled by A, and eventually is
a random message. Next, we show that checking correctness on m by anamor-
phically encrypting and decrypting (m, 0) is a valid distinguisher. As decryption
error is negligible on random message we derive a bound on the decryption error
in A’s execution.

H0: Hybrid sampling m as done by A, see Figure 8.
H1: As H0, but in line 8 (Figure 8) sample f ←$ ELF.Gen(2λ, 2λ).
15 Recall, p1 is a bound on the joint running time of AT.Enc and AT.Dec.

28

H2: As H1, but in line 9 (Figure 8) sample s uniformly.

H0(1
λ):

1 : Sample (apk, ask, dk)←$ AT.Gen(1λ)

2 : Parse apk = (pk∗, hk, ep) and ask = (sk∗, td)

3 : if (hk, td) is not in the support of CH.Gen(1λ):
4 : return ⊥
5 : Sample a random message (f∗, s∗)

6 : ρ← H(hhk(f
∗, s∗))

7 : g ← ELF.Gen(2λ, 2λ; ρ)

8 : Sample f ←$ ELF.Gen(2λ, q(λ))

9 : Find a collision s← CH.Adapt(td, f∗, s∗, f − g)

10 : return (apk, ask, dk,m) with m = (f − g, s)

Fig. 8. First hybrid in the proof of Claim 3

From H0 to H1. Given A a p1-time distinguisher, we defined B a (p1 + p2)-
time adversary for the ELF security with image size q(λ). B(f), initially simu-
lates H0 sampling apk, ask, dk, f∗, s∗ and computing ρ, g. Next it computes s as
CH.Adapt(td, f∗, s∗, f − g) and runs A(apk, dk, ask,m) → b′. Finally it returns
b′.

By construction B pre-computation takes time p2, so overall it runs in time
bounded by p1 + p2. Moreover, when f is lossy with image size q(λ), B perfectly
simulates H0, whereas when f is injective it simulates H1. By our choice of
parameters we conclude

AdvA(1
λ) = AdvB(1

λ) ≤ 1

δ
=

1

8λ
.

From H1 to H2. Follows directly from uniformity in Definition 6 since s∗ is
distributed uniformly and not leaked. The two games are thus perfectly indis-
tinguishable.

Conclusion. Set A(apk, ask, dk,m) to first compute c ←$ AT.Enc(apk, dk,m, 0)
and then return 0 == AT.Dec(ask, dk, c). By construction A is a p1-time ad-
versary and by correctness on average Pr

[
A(H2(1

λ))→ 0
]
≤ negl(λ). It thus

follows that Pr
[
A(H0(1

λ))→ 0
]
≤ 1

8λ + negl(λ), which concludes the Claim’s
proof.

Given the claim, we can estimate Pr
[
AOanam(apk, ask)→ 1

]
≤ 3/4 exactly as

in the proof of Theorem 1.

29

Conclusion. Combining both results we can estimate A to have advantage at
least Adv(A) ≥ (1− negl(λ))− (3/4 + negl(λ)) = 1/4− negl(λ).

4 Relationship between ASA on PKE and AE with
extension

In this section we prove that ASA on PKE implies Anamorphic Encryption with
extension and vice-versa. This, among other things, allows to reinterpret in a
positive way our negative results on AE.

4.1 ASA on PKE implies Anamorphic Encryption with extension

AX.Gen(pk)

1 : dk←$ ASA.Gen(pk)

2 : return dk

AX.Enc(dk, pk,m, m̂)

1 : c←$ ASA.Enc(dk, pk,m, m̂)

2 : return c

AX.Dec(dk, c)

1 : m̂← ASA.Ext(dk, c)

2 : return m̂

Fig. 9. Anamorphic Encryption with extension built from ASA on PKE.

Theorem 3. Let ASA = (ASA.Gen,ASA.Enc,ASA.Ext) be an ASA on PKE
which satisfies the undetectability and the recoverability properties on E = (E.Init,

E.Gen,E.Enc,E.Dec) with subliminal message space M̂ . Then, E equipped with the
anamorphic extension of Figure 9 is an Anamorphic Encryption with message
space M̂ .

Proof. We have to prove that if ASA satisfies the properties of undetectability
and recoverability then the construction in Figure 9 satisfies the properties of
security and correctness for Anamorphic Encryption with extension.

First of all we prove the security. Suppose that exists an adversary D that dis-
tinguishes between RealGE and AnamorphicGAX with a non-negligible advantage,
we can construct an adversary A against the ASA undetectability game. Pre-
cisely, A has access to an oracle O(·, ·) that returns the output of E.Enc(pk,m; r)
if O is OASAreal or the output of ASA.Enc(pk, skey,m, m̂; r) if O is OASAsub.
Let q = poly(λ) the number of queries made by D. The pseudocode of A
is given in Figure 10. Now we can analyze the D’s view relative to the or-
acle that has been provided to A. The parameters (pp, td) are generated by
E.Init and the key pair (pk, sk) is generated by E.Gen, just like the two games

30

RealGE and AnamorphicGAX . If A is in ASARealGE then it is using OASAreal,
so D receives a regular encryption of m ignoring m̂. Hence we can state that
Pr

[
RealGE(1

λ,D) = 1
]
= Pr

[
ASARealGE(1

λ,A) = 1
]
. Otherwise, if the oracle

O outputs a ciphertext using ASA.Enc, D receives an encryption of m which
allows the extraction of the message m̂ with key dk. So we can state that
Pr

[
AnamorphicGAX(1

λ,D) = 1
]
= Pr

[
ASASubGASA(1

λ,A) = 1
]
. Hence we can

state that the view of D is perfectly simulated by A. So, if D breaks the Anamor-
phic Encryption with extension security game then also A breaks the unde-
tectability security game.

Now, all we have to do is prove the correctness. Suppose that the construction
of Figure 9 not satisfies correctness, this means that

Pr
[
m̃ ̸= m̂

∣∣∣ m̃← AX.Dec(sk, dk, c), c←$ AX.Enc(pk, dk,m, m̂)
]

> negl(λ).

but by construction, this means that

Pr
[
ASA.Ext(skey, c) ̸= m̂

∣∣∣ c←$ ASA.Enc(pk, dk,m, m̂)
]

> negl(λ).

which is against the hypothesis of ASA’s recoverability. So, if ASA satisfies the
property of recoverability then also the Anamorphic extension of Figure 9 is
correct.

AO(pp, td, pk, sk)

1 : Run D(pp, td, pk, sk)
2 : Whenever D makes a query, ∀i ∈ [q] compute:
3 : c←$ O(m, m̂)

4 : Answer to D with the ciphertext c

5 : return D’s output

Fig. 10. Adversary A against undetectability from adversary D against Anamorphic
Encryption with extension.

4.2 Anamorphic Encryption with extension implies ASA on PKE

Theorem 4. Let AX = (AX.Gen,AX.Enc,AX.Dec) be an anamorphic extension
which satisfies the correctness and security properties on E = (E.Init,E.Gen,

E.Enc,E.Dec) with anamorphic message space M̂ . Then, the construction of Fig-
ure 11 is an ASA on PKE which satisfies the undetectability and recoverability
properties on E with subliminal message space M̂ .

The proof is analogous to that of Theorem 3, so we omit it. For completeness,
it is given in Appendix, Section B.2.

31

ASA.Gen(pk)

1 : skey←$ AX.Gen(pk)

2 : return skey

ASA.Enc(pk, skey,m, m̂)

1 : c←$ AX.Enc(pk, skey,m, m̂)

2 : return c

ASA.Ext(skey, c)

1 : m̂← AX.Dec(skey, c)

2 : return m̂

Fig. 11. ASA built from Anamorphic Encryption with extension.

Acknowledgments

This work has been partially supported by PRODIGY Project (TED2021-1324
64B-I00) funded by MCIN/AEI/10.13039/501100011033/ and the European
Union NextGenerationEU/PRTR. This work has also been supported by the
Smart Networks and Services Joint Undertaking (SNS JU) under the European
Union’s Horizon Europe research and innovation programme in the scope of the
CONFIDENTIAL6G project under Grant Agreement 101096435. The contents
of this publication are the sole responsibility of the authors and do not in any
way reflect the views of the EU.

References

ACH20. Thomas Agrikola, Geoffroy Couteau, and Dennis Hofheinz. The usefulness
of sparsifiable inputs: How to avoid subexponential iO. In Aggelos Kiayias,
Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020,
Part I, volume 12110 of LNCS, pages 187–219. Springer, Cham, May 2020.

AMVA17. Giuseppe Ateniese, Bernardo Magri, Daniele Venturi, and Ewerton An-
drade. Redactable blockchain–or–rewriting history in bitcoin and friends.
In 2017 IEEE European symposium on security and privacy (EuroS&P),
pages 111–126. IEEE, 2017.

AWZ23. Damiano Abram, Brent Waters, and Mark Zhandry. Security-preserving
distributed samplers: How to generate any CRS in one round without
random oracles. In Helena Handschuh and Anna Lysyanskaya, editors,
CRYPTO 2023, Part I, volume 14081 of LNCS, pages 489–514. Springer,
Cham, August 2023.

BDL19. Mihir Bellare, Wei Dai, and Lucy Li. The local forking lemma and its
application to deterministic encryption. In Steven D. Galbraith and Shiho
Moriai, editors, ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages
607–636. Springer, Cham, December 2019.

BFF+09. Christina Brzuska, Marc Fischlin, Tobias Freudenreich, Anja Lehmann,
Marcus Page, Jakob Schelbert, Dominique Schröder, and Florian Volk. Se-
curity of sanitizable signatures revisited. In Stanislaw Jarecki and Gene
Tsudik, editors, PKC 2009, volume 5443 of LNCS, pages 317–336. Springer,
Berlin, Heidelberg, March 2009.

32

BGH+24. Fabio Banfi, Konstantin Gegier, Martin Hirt, Ueli Maurer, and Guilherme
Rito. Anamorphic encryption, revisited. In Marc Joye and Gregor Leander,
editors, EUROCRYPT 2024, Part II, volume 14652 of LNCS, pages 3–32.
Springer, Cham, May 2024.

BGHM23. Fabio Banfi, Konstantin Gegier, Martin Hirt, and Ueli Maurer. Anamorphic
encryption, revisited. Cryptology ePrint Archive, Report 2023/249, 2023.

BGI+01. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 1–18. Springer, Berlin, Heidelberg, August 2001.

BGI14. Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and
pseudorandom functions. In Hugo Krawczyk, editor, PKC 2014, volume
8383 of LNCS, pages 501–519. Springer, Berlin, Heidelberg, March 2014.

BJK15. Mihir Bellare, Joseph Jaeger, and Daniel Kane. Mass-surveillance without
the state: Strongly undetectable algorithm-substitution attacks. In Indrajit
Ray, Ninghui Li, and Christopher Kruegel, editors, ACM CCS 2015, pages
1431–1440. ACM Press, October 2015.

BL17. Sebastian Berndt and Maciej Liskiewicz. Algorithm substitution attacks
from a steganographic perspective. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 1649–
1660. ACM Press, October / November 2017.

BPR14. Mihir Bellare, Kenneth G. Paterson, and Phillip Rogaway. Security of
symmetric encryption against mass surveillance. In Juan A. Garay and
Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS,
pages 1–19. Springer, Berlin, Heidelberg, August 2014.

BW13. Dan Boneh and Brent Waters. Constrained pseudorandom functions
and their applications. In Kazue Sako and Palash Sarkar, editors, ASI-
ACRYPT 2013, Part II, volume 8270 of LNCS, pages 280–300. Springer,
Berlin, Heidelberg, December 2013.

Cac98. Christian Cachin. An information-theoretic model for steganography. In
David Aucsmith, editor, Information Hiding, Second International Work-
shop, Portland, Oregon, USA, April 14-17, 1998, Proceedings, volume 1525
of Lecture Notes in Computer Science, pages 306–318. Springer, 1998.

CDK+17. Jan Camenisch, David Derler, Stephan Krenn, Henrich C. Pöhls, Kai
Samelin, and Daniel Slamanig. Chameleon-hashes with ephemeral trap-
doors - and applications to invisible sanitizable signatures. In Serge Fehr,
editor, PKC 2017, Part II, volume 10175 of LNCS, pages 152–182. Springer,
Berlin, Heidelberg, March 2017.

CGM24a. Dario Catalano, Emanuele Giunta, and Francesco Migliaro. Anamorphic
encryption: New constructions and homomorphic realizations. In Marc Joye
and Gregor Leander, editors, EUROCRYPT 2024, Part II, volume 14652
of LNCS, pages 33–62. Springer, Cham, May 2024.

CGM24b. Dario Catalano, Emanuele Giunta, and Francesco Migliaro. Generic
anamorphic encryption, revisited: New limitations and constructions. Cryp-
tology ePrint Archive, Paper 2024/1119, 2024. https://eprint.iacr.org/
2024/1119.

CGM24c. Dario Catalano, Emanuele Giunta, and Francesco Migliaro. Limits of black-
box anamorphic encryption. In Leonid Reyzin and Douglas Stebila, editors,
CRYPTO 2024, Part II, volume 14921 of LNCS, pages 352–383. Springer,
Cham, August 2024.

33

https://eprint.iacr.org/2024/1119
https://eprint.iacr.org/2024/1119

CW79. J.Lawrence Carter and Mark N. Wegman. Universal classes of hash func-
tions. Journal of Computer and System Sciences, 18(2):143–154, April 1979.

DFP15. Jean Paul Degabriele, Pooya Farshim, and Bertram Poettering. A more
cautious approach to security against mass surveillance. In Gregor Leander,
editor, FSE 2015, volume 9054 of LNCS, pages 579–598. Springer, Berlin,
Heidelberg, March 2015.

DG25. Yevgeniy Dodis and Eli Goldin. Anamorphic-resistant encryption; or why
the encryption debate is still alive. Cryptology ePrint Archive, Paper
2025/293, 2025.

DMS16. Yevgeniy Dodis, Ilya Mironov, and Noah Stephens-Davidowitz. Mes-
sage transmission with reverse firewalls—secure communication on cor-
rupted machines. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part I, volume 9814 of LNCS, pages 341–372. Springer,
Berlin, Heidelberg, August 2016.

HLv02. Nicholas J. Hopper, John Langford, and Luis von Ahn. Provably secure
steganography. In Moti Yung, editor, CRYPTO 2002, volume 2442 of
LNCS, pages 77–92. Springer, Berlin, Heidelberg, August 2002.

KPP+23. Miroslaw Kutylowski, Giuseppe Persiano, Duong Hieu Phan, Moti Yung,
and Marcin Zawada. The self-anti-censorship nature of encryption: On the
prevalence of anamorphic cryptography. Proc. Priv. Enhancing Technol.,
2023(4):170–183, 2023.

KPTZ13. Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In
Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS
2013, pages 669–684. ACM Press, November 2013.

KR00. Hugo Krawczyk and Tal Rabin. Chameleon signatures. In NDSS 2000. The
Internet Society, February 2000.

MS15. Ilya Mironov and Noah Stephens-Davidowitz. Cryptographic reverse fire-
walls. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015,
Part II, volume 9057 of LNCS, pages 657–686. Springer, Berlin, Heidelberg,
April 2015.

PPY22. Giuseppe Persiano, Duong Hieu Phan, and Moti Yung. Anamorphic en-
cryption: Private communication against a dictator. In Orr Dunkelman and
Stefan Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276
of LNCS, pages 34–63. Springer, Cham, May / June 2022.

RTYZ17. Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Generic
semantic security against a kleptographic adversary. In Bhavani M. Thu-
raisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS
2017, pages 907–922. ACM Press, October / November 2017.

Sim83. Gustavus J. Simmons. The prisoners’ problem and the subliminal channel.
In David Chaum, editor, CRYPTO’83, pages 51–67. Plenum Press, New
York, USA, 1983.

SW14. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In David B. Shmoys, editor, 46th ACM
STOC, pages 475–484. ACM Press, May / June 2014.

vH04. Luis von Ahn and Nicholas J. Hopper. Public-key steganography. In Chris-
tian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027
of LNCS, pages 323–341. Springer, Berlin, Heidelberg, May 2004.

WCHY23. Yi Wang, Rongmao Chen, Xinyi Huang, and Moti Yung. Sender-
anamorphic encryption reformulated: Achieving robust and generic con-
structions. In Jian Guo and Ron Steinfeld, editors, ASIACRYPT 2023,

34

Part VI, volume 14443 of LNCS, pages 135–167. Springer, Singapore, De-
cember 2023.

YY96. Adam Young and Moti Yung. The dark side of “black-box” cryptography,
or: Should we trust capstone? In Neal Koblitz, editor, CRYPTO’96, volume
1109 of LNCS, pages 89–103. Springer, Berlin, Heidelberg, August 1996.

YY97a. Adam Young and Moti Yung. Kleptography: Using cryptography against
cryptography. In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of
LNCS, pages 62–74. Springer, Berlin, Heidelberg, May 1997.

YY97b. Adam Young and Moti Yung. The prevalence of kleptographic attacks
on discrete-log based cryptosystems. In Burton S. Kaliski Jr., editor,
CRYPTO’97, volume 1294 of LNCS, pages 264–276. Springer, Berlin, Hei-
delberg, August 1997.

YY01. Adam Young and Moti Yung. Bandwidth-optimal kleptographic attacks. In
Çetin Kaya Koç, David Naccache, and Christof Paar, editors, CHES 2001,
volume 2162 of LNCS, pages 235–250. Springer, Berlin, Heidelberg, May
2001.

YY06. Adam Young and Moti Yung. A space efficient backdoor in RSA and its
applications. In Bart Preneel and Stafford Tavares, editors, SAC 2005,
volume 3897 of LNCS, pages 128–143. Springer, Berlin, Heidelberg, August
2006.

Zha16. Mark Zhandry. The magic of ELFs. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 479–508.
Springer, Berlin, Heidelberg, August 2016.

A More on Robust ELF with Group Structure

A.1 Zhandry’s Construction

In this section we recall the elegant ELF construction presented in [Zha16],
and later show to adapt it to satisfy Definition 9. The construction is based
on the exponential hardness of k-dLin, which implies that distinguishing rank k
matrix from rank m > k in Gn,m is hard. Formally, let GRP.Gen be a procedure
generating the group parameters, i.e. GRP.Gen(1λ)→ (G, g, p) with |G| = p and
2λ ≤ p < 2 · 2λ. Exponential k-dLin is defined as follows:

Definition 15. A cryptographic group GRP.Gen satisfies the exponential deci-
sional k-linear assumption if there exists a polynomial q(·, ·) such that for any
time t and probability δ, setting λ = log q(t, 1/δ), any t-time adversary A

AdvA(1
λ) =

∣∣Pr [A (
G, g, ga1 , . . . , gak , ga1b1 , . . . , gakbk , gc

)
→ 1

]
−

−Pr
[
A
(
G, g, ga1 , . . . , gak , ga1b1 , . . . , gakbk , g

∑k
i=1 bi

)
→ 1

]∣∣∣ ≤ δ

where (G, g, p)←$ GRP.Gen(1λ) and ai, bi, c←$ Zp. The public-coin exponential
k-dLin assumption is defined as above, up to replacing the group description
(G, g) with the random coins used in GRP.Gen(1λ) to sample it.

35

Given a group satisfying the above assumption, the construction for domain
[M] works as follows. Let us denote ν = logM . For every i ∈ {1, . . . , ν} define
the parameters:

λi =

⌈
i− 1

k

⌉
, mi = logpi

(M3), ni = 2mi, (Gi, gi, pi)←$ GRP.Gen(1λi).

The procedure ELF.Gen(M,M) sets the above parameters and generates the
required groups. It then return an injective-mode function f = hν ◦ Lν ◦ hν−1 ◦
. . . ◦ L1 ◦ h0 with

– h0 : [M]→ Zm1
p1

random pair-wise independent hash16.
– hi : Gni

i → Zni+1
pi+1 random pair-wise independent hash.

– hν : Gnν
ν → [M3] random pair-wise independent hash.

– Li : Fmi
pi
→ Gni

i defined by a random matrix gAi ∈ Gni,mi

i s.t. Li(x) = gAix.

The procedure ELF.Gen(M, q) produces all intermediate functions exactly as
above with the exception of Li where i is such that 2i ≤ q < 2i+1. More specif-
ically, Ai is sampled as a random matrix in Zni,mi

pi
with rank at most k. Note

this implies that the image of Li has size at most |Gk
i | = pki ≤ 2i ≤ q since

pi ≤ 2λi+i ≤ 2i/k, and in particular |Im f | ≤ q.

A.2 Adapting Zhandry’s Construction

The most direct approach to realize Definition 9, given the construction in
[Zha16], is to set ep = (Gi, gi, pi)

ν
i=1 and Fep(M) as the space of function tuples

(h0, . . . , hν , L1, . . . , Lν). For this to work we need to first identify an efficiently
computable group structure Fep(M), and second, to show security holds even
when Gi are chosen maliciously.

The first point is easily achieved: Given ep = (Gi, gi, pi)
ν
i=1 then Li are

uniquely defined by the matrix gAi ∈ Gni,mi

i , which is a group with entry-
wise operations. Regarding pair-wise independent function we recall that for
any prime p, and integers n,m, the set Zn,m

p of matrix/linear functions from Zn
p

to Zm
p is a family of pair-wise independent hash and a group. Given that we only

require pair-wise hash whose image has size the power of a prime, we can take
hi ∈ Hi as described above, with (Hi,+) a group. In conclusion

Fep(M) = (H0 × . . .×Hν)× (Gn1,m1

1 × . . .×Gnν ,mν
ν) .

Conversely, achieving security against maliciously chosen group description is
trickier. Possible directions to do so includes assuming GRP.Gen to be determin-
istic (reflecting currently deployed elliptic-curve based groups), or that expo-
nential k-dLin holds even for subverted groups. However, as our construction in
Section 3.2 already requires a random oracle, we can rely on a simpler strategy:
setting ep as a random seed so that ρi = H(ep||i) are the random coins used to
generate (Gi, gi, pi). Note this induces a polynomial security loss.
16 An hash function h drawn from a family of functions with distribution H, for which

for all x ̸= y in the domain of h, then the random variables h(x) and h(y) are iid.

36

ELF.Setup(M)

1 : Sample s←$ {0, 1}logM

2 : return ep = s.

ELF.Gen(ep,M,R)

1 : ρi ← H(ep||i)
2 : (Gi, gi, pi)← GRP.Gen(1λi ; ρi)

3 : Sample hi ←$ Hi and Ai ←$ Zni,mi
pi

4 : if R < M :
5 : Let j: 2j ≤ R < 2j+1

6 : Sample Aj ←$ Znj ,mj
pj with rk(Aj) ≤ k

7 : return f = (h0, . . . , hν , g
A1 , . . . , gAν)

Fig. 12. Zhandry’s ELF from k-dLin, adapted to satisfy Definition 9. rk(·) denotes the
matrix rank.

Proposition 3. Under the public-coin exponential k-dLin assumption, (ELF.Setup,
ELF.Gen) in Figure 12 is a Robust ElF with Group Structure.

Proof. The first four properties follow directly by construction. Regarding indis-
tinguishability we reduce security to that of ELF.Gen∗, the ELF in [Zha16]. For
any polynomially bounded t, δ, there exists a q such that any M , R ≥ q(logM)
and t-time adversary M for ELF.Gen∗, its advantage is smaller than 1/(t · δ)17.
Let A be a t-time adversary for (ELF.Setup,ELF.Gen). Without loss of generality
A(M) performs at most t RO queries x1, . . . , xt before returning ep (we assume
ep is the prefix of one such queries). We build a t time adversary B for ELF.Gen∗.

Initially B receives input (M,f∗) where f∗ =
(
(ρi, g

Ai)νi=1, (hi)
ν
i=0

)
with ρi

being the (uniformly sampled) random coins used in GRP.Gen, so that (Gi, gi, pi)←
GRP.Gen(1λi ; ρi). Next B samples a random i∗, and runs A(M). When A queries
xi∗ , if a previous query share a log(M) bit long prefix with xi∗ then B aborts.
Otherwise let s ∈ {0, 1}logM be the prefix of xi∗ . B then programs H(s||i∗) = ρi∗ .

If A later returns ep ̸= s, B aborts. Otherwise B replies to A with f =(
h0, . . . , hν , g

A1 , . . . , gAν
)
. Finally, when A returns a bit b, so does B.

Since A has no information on i∗, it follows that up to probability 1/t, ep is
a prefix of xi∗ , with i∗ being the smallest such index. In this case B perfectly
simulates the ELF indistinguishability game to A, thus 1/(tδ) ≥ Adv(B) =
(1/t) · Adv(A), which implies Adv(A) ≤ 1/δ.

17 Given t and δ for (ELF.Setup,ELF.Gen) we are calibrating ELF.Gen∗ to be indistin-
guishable against t-time adversaries with advantage at most 1/(t · δ).

37

B Postponed proofs

B.1 Public Parameters: Small decryption error

Proof of Claim 1. The argument is proven through a sequence of hybrids, with
the first one returning (pp,m∗

j) as A would compute it. These are shown to be
almost indistinguishable for any p1-time18 distinguisher. Hence this holds for
D∗ which on input (pp,m∗

j) computes (apk, ask)←$ AT.Gen(pp), encrypts c←$

AT.Enc(apk, dk,m∗
j , 0) and returns 1 if AT.Dec(dk, c) = 0. Note by construction

D∗ is p1-time. Such procedure will be shown to return 0 with high probability
in the last hybrid. The same then holds with (pp,m∗

j) chosen by A. The hybrids
are defined as follows.

H0: Initially sample (pp, td)←$ E.Init(1λ), with td = (m∗
i)

λ
i=1, choose the small-

est j such that 2j ≥ q(λ), set m = m∗
j and return (pp,m).

H1: As H0 but set fj ←$ ELF.Gen(2µ, 2µ).
H2: As H1 but hard-code k∗1 = PRF.Puncture(k1, ϕ(m

∗
j)) in C instead of k1.

H3: As H2 but compute fj = ELF.Gen(2µ, 2µ;PRF.Eval(k1, ϕ(m
∗
j))).

H4: As H3 but hard-code k1 in C instead of k∗1 .
H5: As H4 but hard-code zj =⊥ and fj =⊥ in C.
H6: As H5 but return (pp,m) with m←$ M .

We show any p1-time distinguisher tells H0 from H1 with advantage 1
8λ ,

while the remaining hybrids are computationally indistinguishable. Setting D∗

as above, correctness on average implies that in H6 it returns 0 (i.e. c /∈ Γ0) with
overwhelming probability. Thus in H0, Pr [c /∈ Γ0] ≤ 1

8λ + negl(λ).

From H0 to H1. We describe a p-time B, where p = p1 + p2, breaking ELF
security for range 2j ≥ q(λ). Initially B(f) runs E.Init in time ≈ p1 to generate
(pp,m∗

j), up to setting fj = f . Then it runs D(pp,m∗
j) in time p2 and returns

its output. By inspection B perfectly emulates H0 or H1 respectively when f is
generated as ELF.Gen(2µ, 2j) or as ELF.Gen(2µ, 2µ). By ELF security, and our
choice of parameters, Adv(D) = Adv(B) ≤ 1

8λ .

H1 ≈ H2. Up to negligible probability let us assume ϕ is injective. Then in H1

the obfuscated circuit C never evaluates k1 on input ϕ(m∗
j) since for any m

either m ̸= m∗
j implies ϕ(m) ̸= ϕ(m∗

j) or m = m∗
j and in particular F (m) = zj

by construction. Indistinguishability thus follows from the security of iO.

H2 ≈ H3. We reduce any distinguisher D to B against the punctured PRF
pseudorandomness. Initially B samples ϕ and m∗

j as in H2, sends ϕ(m∗
j) to its

challenger and obtain k∗1 , r. It then uses r to set fj ← ELF.Gen(2µ, 2µ; r) and
computes the remaining parameters as in H2 to get pp. Finally it returns the same
bit as D(pp,m∗

j). When r is random B simulates H2 perfectly. Conversely, when
r = PRF.Eval(k1, ϕ(m

∗
j)), it perfectly simulates H3. Thus Adv(D) = Adv(B) =

negl(λ).
18 where we defied p1 as a bound on the execution time of (AT.Gen,AT.Enc,AT.Dec).

38

H3 ≈ H4. Follows from iO security as replacing k∗1 and k1 maintains the circuits
functionally equivalent.

H4 ≈ H5. Setting zj =⊥, on input m∗
j we have F (m∗

j) ̸= zj and for any
i ̸= j also F (m∗

j) ̸= zi since F is injective and m∗
i ̸= m∗

j by construction.
Therefore in H5 on input m∗

j the obfuscated circuit evaluates to (f, h) with
f = ELF.Gen(2µ, 2µ;PRF.Eval(k1, ϕ(m

∗
j))), which equals fj as computed in H4.

Note moreover that in H5, the circuit does not depend on fj . Hence the circuits in
the two hybrids are functionally equivalent and indistinguishability follow from
iO security.

H5 ≈ H6. Indistinguishability holds statistically. Indeed in H5 the public param-
eters pp contains no information on m∗

j besides that m∗
j ̸= m∗

i . Thus conditioning
on pp = pp∗ for any pp∗ we have that m∗

j is uniform over M \ {m∗
i }i̸=j . In H6

instead m is uniform over M even conditioning on pp = pp∗. As we assumed
|M | = Ω(2λ), it follows that

∆
(
(pp,m∗

j), (pp,m)
)
≤ (λ− 1) · |M |−1 = negl(λ).

B.2 Anamorphic Encryption with extension implies ASA on PKE

Proof of Theorem 4. We have to prove that if AX satisfies the correctness and
security properties for AE with extension then the ASA construction in Fig-
ure 11 satisfies the undetectability and recoverability properties. Firstly, we
prove the undetectability property. Suppose that exists an adversary D that
distinguishes between ASARealGE(1

λ,D) and ASASubGASA(1
λ,D) with a non-

negligible advantage, we can construct an adversary A against the Anamorphic
Extension security. In particular, the adversary A has access to an oracle O(·, ·)
that returns the output of E.Enc(pk,m; r) if the oracle is Oreal or the output
of AX.Enc(pk, dk,m, m̂; r) if O is Oanam. Let q = poly(λ) the number of oracle
queries made by D. The pseudocode of A is essentially the same as the one pro-
posed in the proof of the Theorem 3 that it is given in Figure 10. Now we can
analyze the D’s view relative to the oracle that has been provided to A. The
parameters (pp, td) are generated by E.Init and the key pair (pk, sk) is generated
by E.Gen, just like the two games ASARealGE and ASASubGASA. If A is in RealGE

then it is using Oreal, so D receives a regular encryption of m ignoring m̂. Hence
we can state that Pr

[
ASARealGE(1

λ,D) = 1
]
= Pr

[
RealGE(1

λ,A) = 1
]
. Other-

wise, if the oracle O outputs a ciphertext using AX.Enc, D receives an encryption
of m which allows the decryption of the message m̂ with key skey. So we can state
that Pr

[
ASASubGASA(1

λ,D) = 1
]
= Pr

[
AnamorphicGAX(1

λ,A) = 1
]
. Hence we

can state that the view of D is perfectly simulated by A. So, if D breaks the ASA
undetectability game then also A breaks the Anamorphic Extension security.

Now, all we have to do is prove the recoverability. Suppose that the construc-
tion of Figure 11 not satisfies recoverability, this means that

Pr
[
m̃ ̸= m̂

∣∣∣ m̃← ASA.Ext(sk, skey, c), c←$ ASA.Enc(skey, pk,m, m̂)
]

> negl(λ).

39

but by construction, this means that

Pr
[
AX.Dec(skey, c) ̸= m̂

∣∣∣ c←$ AX.Enc(pk, skey,m, m̂)
]

> negl(λ).

which is against the hypothesis of Anamorphic Extension correctness. So, if AX
satisfies the property of correctness then also the ASA construction of Figure 9
satisfies the recoverability property.

40

	Introduction
	Our contributions
	Technical Overview
	Other Related works

	Preliminaries
	Notation
	Public Key Encryption
	Anamorphic Encryption
	Universal Hash Functions
	Chameleon Hash Functions
	Extremely Lossy Functions
	Robust ELF with Group Structure
	Indistinguishability Obfuscator and Puncturable PRFs
	Algorithm Substitution Attacks

	Anamorphic Resistant Encryption
	Construction in the Public Parameters Model
	Construction in the Random Oracle Model

	Relationship between ASA on PKE and AE with extension
	ASA on PKE implies Anamorphic Encryption with extension
	Anamorphic Encryption with extension implies ASA on PKE

	More on Robust ELF with Group Structure
	Zhandry's Construction
	Adapting Zhandry's Construction

	Postponed proofs
	Public Parameters: Small decryption error
	Anamorphic Encryption with extension implies ASA on PKE

