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Abstract. The study of attack algorithms for the Learning with Er-
rors (LWE) problem is crucial for the cryptanalysis of LWE-based cryp-
tosystems. The BKW algorithm has gained significant attention as an
important combinatorial attack for solving LWE. However, its exponen-
tial time and memory requirements severely limit its practical applica-
tions, even with medium-sized parameters. In this paper, we present a
memory-efficient BKW algorithm for LWE, which extends Bogos’s work
[Asiacrypt’16] on the Learning Parity with Noise (LPN) problem. While
their work improved efficiency, it overlooked the high memory demands of
the BKW algorithm. We address this with two key improvements. First,
we propose an efficient reduction technique for low-memory regimes, c-
sum-PCS-reduce, which combines the c-sum technique with Parallel Col-
lision Search (PCS) to achieve a better time-memory trade-off. Second,
we present an improved memory-optimized finite automaton for our opti-
mized BKW algorithm by incorporating several efficient memory-saving
reduction techniques and pruning potential high-memory paths. Our al-
gorithm, using graphs as a meta tool, can automatically identify the op-
timal reduction path within the graph, aiming to reduce both time and
memory complexities. Compared to the state-of-the-art coded-BKW in
the lattice-estimator, our algorithm achieves time complexity improve-
ments ranging from 23.3 to 226.2. Furthermore, memory complexity is
improved, with reductions ranging from 29.7 to 271.3.

Keywords: Post-quantum cryptanalysis · Learning with errors problem
· The BKW algorithm · Time-memory trade-off

1 Introduction

The Learning with Errors (LWE) problem [37] is a highly promising problem in
lattice-based post-quantum cryptography. Specifically, the LWE problem can be
regarded as a set of linear equations with noise over Zq. An LWE oracle outputs
uniformly distributed vectors ai ∈ Zn

q and ⟨ai, s⟩ + ei mod q, where s ∈ Zn
q is

the secret vector and ei is a noise typically sampled from a discrete Gaussian
distribution with zero mean and variance σ2. As many post-quantum public-key
schemes base their security on the LWE problem, designing efficient algorithms
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to solve LWE and assessing its hardness are crucial for reliably determining
strong parameters of LWE-based post-quantum cryptography.

The attack algorithms consist of three main categories: lattice attacks, al-
gebraic attacks, and combinatorial attacks. Lattice attacks, such as primal at-
tack [42] and dual attack [25], generally reduce the LWE problem to a lattice
problem, which is then solved using lattice reduction algorithms like LLL and
BKZ [11,30,32,33,38]. Algebraic attacks [6] typically transform the LWE problem
into a system of algebraic equations with unknown variables and use algebraic
techniques, such as Gröbner bases, to solve it. Combinatorial attacks generally
include the BKW algorithms [2,3,21,23] and the Meet-in-the-Middle attack [15].

In this paper, we primarily focus on the BKW algorithm, which is a signifi-
cant combinatorial algorithm in LWE-based cryptanalysis. Generally, it has two
phases: the reduction phase progressively reduces the dimension of LWE, and
the solving phase recovers the remaining entries of the secret. When solving an
LWE problem with dimension n, where n = a · b and a, b ∈ N, the n-dimensional
secret s is divided into a blocks, each containing b entries. The reduction phase is
a block-wise variant of Gaussian elimination, which gradually reduces the prob-
lem size by b entries at each step, resulting in a smaller LWE problem with
increased noise. The solving phase then recovers the left b entries of the secret
s at a time. After recovering a portion of s, the samples are refreshed, and the
process iterates until all remaining entries are recovered.

In previous work, the BKW algorithm was initially applied to the learning
parity with noise (LPN) problem [7,29] and later adapted by Albrecht et al. [2]
to LWE. The first BKW algorithm for solving LWE [2] required the construc-
tion of numerous tables, resulting in significant time and memory consumption.
To improve the reduction phase, subsequent work incorporated lazy modulus
switching (LMS) [3], which was particularly effective for relatively small secrets.
Additionally, both approaches [2, 3] relied on exhaustive search in the solving
phase, leading to high time complexity. In 2015, Kirchner et al. [27] introduced
a quantization step that generalizes and fine-tunes modulus switching, thereby
optimizing the BKW algorithm. In 2015, Duc et al. [16] improved the solv-
ing phase by applying the Fast Fourier Transform (FFT). Subsequently, Guo
et al. [23] enhanced the BKW algorithm by incorporating linear lattice codes
and lattice sieving [21–23], resulting in the development of the coded-BKW al-
gorithm, which is the most efficient and widely used BKW algorithm. Recent
years have also seen improvements in analyzing sample complexity and noise
distributions [24,36].

We have identified several unresolved issues in previous research on the
BKW algorithm for solving LWE. Many BKW algorithms suffer from high mem-
ory and time complexities, which makes them less competitive than lattice at-
tacks [25, 42]. Moreover, potential improvements of various reduction and solv-
ing techniques under memory constraints remain largely unexplored. Although
recent studies on BKW algorithm for solving LPN [17, 31] have explored time-
memory trade-offs, a thorough analysis of such trade-offs within the context of
LWE-solving BKW algorithms is still lacking.
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This paper introduces a memory-efficient BKW algorithm designed to solve
the LWE problem, building on prior works applying BKW algorithms to LPN
[8, 9, 12, 20, 29, 31, 41]. We extend Bogos’s work [9] on LPN to design an LWE-
solving BKW algorithm, using graphs as a meta tool. However, their research
primarily focused on improving efficiency, overlooking BKW’s high memory con-
sumption. We address this by introducing several efficient reduction techniques
for low-memory regimes and an improved memory-optimized finite automaton.
This leads to a more efficient BKW algorithm with reduced time and memory
complexities when solving LWE.

1.1 Contributions

This paper makes the following major contributions. The source code is provided
at https://github.com/hfafsjlq/BKW.git.

Unified Framework for Reduction and Solving Techniques. We present a unified
framework encompassing all existing reduction and solving techniques of the
BKW algorithm for LWE, providing a consistent analysis of the time complex-
ity for each method. This unified framework serves as the basis for designing
our optimized BKW algorithm. Furthermore, we correct several inaccuracies in
previous complexity analyses, providing more accurate estimations.

Optimized BKW Algorithm for LWE. We propose an optimized BKW algorithm
to solve the LWE problem, utilizing graphs as a meta tool, inspired by the work
of Bogos [9] on the LPN problem. The construction of the graph G = (V,E) for
this algorithm is based on the transition rules of a finite automaton, specifically
adapted to the LWE problem as an extension of Bogos’s work [9]. In our algo-
rithm, various reduction techniques are formalized as edges in the graph, while
the states of the LWE samples—including vector dimensions and the number of
samples—are formalized as vertices. Consequently, the reduction phase of the
BKW algorithm is represented as a path in the graph G, where each edge corre-
sponds to a reduction technique that progressively reduces the dimension of the
LWE problem. For different LWE instances, we automate the search for the opti-
mal reduction path within this graph, identifying the most efficient combination
of reduction techniques to minimize the overall time complexity.

Memory-Efficient BKW Algorithm for LWE. The main drawback of the BKW
algorithm for solving LWE (or LPN) is its huge memory consumption, which
makes it impractical even for medium-sized parameters. We found that the nat-
ural extension of Bogos’s work [9] on LPN to LWE fails to address this critical
memory issue. Specifically, we identified two key limitations in the natural ex-
tension: a limited variety of reduction techniques and a focus solely on efficiency
without considering memory consumption. For instance, as shown in Fig. 2(a),
all reduction techniques rely on traditional pairwise reduction (i.e., 2-sum) and
do not incorporate modern memory-saving methods, such as c-sum reduction
for c ≥ 2. Moreover, the repeated application of the Discard-reduce technique
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can lead to significant memory overhead. To address these issues, we refined
the natural extension of their framework and proposed a memory-efficient BKW
algorithm specifically designed for LWE. Our approach introduces two key im-
provements:

– Reduction Techniques for Low-Memory Regimes. We introduce sev-
eral efficient reduction techniques for our BKW algorithm under memory
constraints. These techniques are based on the c-sum method for c ≥ 2,
which searches for c-tuples of vectors that sum to zero at selected b posi-
tions. Besides the existing c-sum techniques, such as c-sum-naive-reduce [17]
and c-sum-dissect-reduce [17], which can be directly applied to LWE-solving
BKW, we introduce a new reduction technique, c-sum-PCS-reduce, inspired
by Delaplace’s work [12]. This technique combines c-sum with Parallel Col-
lision Search (PCS) to improve efficiency under memory constraints. Specif-
ically, it symmetrically splits a c-sum problem into two c

2 -sum problems and
utilizes PCS to accelerate collision search.
We present the time and memory complexities of the corresponding c-sum-
BKW algorithms in Table 1, along with a comparison of their time-memory
trade-offs for LWE in Table 2 and Fig. 1. As illustrated in Fig. 1, when mem-
ory is constrained to 20.3n, c-sum-PCS-BKW achieves lower time complexity
than c-sum-dissect-BKW [17]. Furthermore, when memory is limited to less
than 20.63n, c-sum-PCS-BKW shows significant advantages in both time and
memory complexities over c-sum-naive-BKW [17].

Fig. 1: Comparison of the time-memory trade-offs for various c-sum-BKW algo-
rithms utilizing different c-sum reduction techniques (both classical and quan-
tum).

– Improved Memory-Optimized Finite Automaton. We propose a memory-
optimized finite automaton tailored for our BKW algorithm in solving LWE
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problems. First, we incorporate several efficient c-sum reduction techniques
into the finite automaton to balance time and memory consumption, as
shown in Fig. 2(b). Second, we prune high-memory paths and adjust the
order of state transitions in the automaton. We show that, in memory-
constrained scenarios, no techniques from Reduce-techniques → Discard-
reduce can occur in the optimal reduction path of the BKW algorithm. Thus,
the naturally extended automaton can be significantly simplified by eliminat-
ing many impossible paths. We also adjust the order of Discard-reduce, plac-
ing it as the first step. On-the-fly generation allows samples to be generated
and discarded instantly if a non-zero value is detected. A detailed compar-
ison between the trivially extended automaton and our memory-optimized
automaton is shown in Fig. 2. This improved automaton enables the recon-
struction of the graph for our BKW algorithm, effectively solving various
LWE instances in low-memory regimes.

Fig. 2: A detailed comparison between the trivially extended automaton and our
memory-optimized automaton. (a) Finite automaton for our optimized BKW
algorithm for solving LWE: a natural extension of Bogos’s work on LPN [9]. (b)
Improved memory-optimized automaton for our optimized BKW algorithm for
solving LWE.
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Complexity Estimation and Comparison. We estimate the time and memory
complexities of our BKW algorithm and compare them with the state-of-the-
art coded-BKW algorithm [23] from the lattice-estimator [4], applied to LWE
instances from Regev [37], Lindner-Peikert [30], and the TU Darmstadt challenge
[1]. As shown in Table 3, our improved BKW algorithm achieves time complexity
improvements ranging from 3.3 to 26.2 bits across all considered LWE instances.
Furthermore, Table 4 demonstrates significant memory improvements compared
to coded-BKW, particularly under a memory constraint of 20.5n, where 16 out of
27 LWE instances consume memory less than 20.5n. Overall, for all parameters
tested [1,30,37], memory consumption is improved by factors ranging from 29.7

to 271.3.

1.2 Organization

The structure of this paper is as follows. We introduce the necessary preliminar-
ies of the LWE problem and the BKW algorithm in Sect. 2. We systematically
describe all existing reduction and solving techniques within a unified framework
in Sect. 3. Sect. 4 extends Bogos’s work [9] on LPN to develop a novel BKW algo-
rithm for solving the LWE problem. Sect. 5 focuses on optimizing this algorithm
to reduce both time and memory complexities. In Sect. 5.1, we present a reduc-
tion technique called c-sum-PCS-reduce, detailing its time-memory trade-off.
Sect. 5.2 introduces improvements to the memory-optimized finite automaton,
while Sect. 5.3 outlines search algorithms for finding the optimal reduction path
in the graph. We employ our algorithm to solve various LWE instances in Sect. 6,
presenting time and memory complexities along with comparisons. Finally, we
conclude this paper in Sect. 7.

2 Preliminaries

2.1 Notations

Row vectors use bold lowercase (e.g., s), and matrices use bold uppercase (e.g.,
A). The L2-norm of a vector x = (x1, x2, . . . , xn) ∈ Rn is given by ||x|| =√
x2
1 + · · ·+ x2

n. The Euclidean distance between two vectors x and y in Rn is
||x − y||, and their dot product is ⟨x,y⟩. Elements in Zq are integers within
the range

[
− q−1

2 , q−1
2

]
. The base-2 logarithm is denoted as log(·). Drawing an

element x uniformly from a domain D is expressed as x
U←− D.

2.2 The LWE Problem

Definition 1 (LWEs,χσ
distribution [37]). Given a positive integer n, prime

q, and a discrete Gaussian distribution χσ over Zq with mean 0 and variance
σ2. Given a secret vector s

U←− Zn
q , the LWEs,χσ

distribution over Zn
q × Zq is

obtained by selecting a
U←− Zn

q , e← χσ, and returning

(a, z) = (a, ⟨a, s⟩+ e mod q) ∈ Zn
q × Zq. (1)
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Search-LWE involves recovering the secret vector s from m samples of LWEs,χσ
,

while decision-LWE involves distinguishing between samples drawn from the
LWEs,χσ distribution and those from a uniform distribution over Zn

q × Zq.
As discussed in many references [16,23], the properties of continuous Gaussian

distributions can also be applied to discrete ones. If two independent random
variables X and Y follow distributions χσ1

and χσ2
, respectively, their sum X+Y

can be regarded as following distribution χ√
σ2
1+σ2

2

.
The LWE problem can be formulated in matrix form. Select m samples (a1,

z1), (a2, z2), · · · , (am, zm) from distribution Ls,χσ
, where ai ∈ Zn

q , zi ∈ Zq. Let
y = (y1, y2, · · · , ym) = sA and z = (z1, z2, · · · , zm). Then we have

z = sA+ e mod q, (2)

where A =
[
aT
1 a

T
2 · · ·aT

m

]
, zi = yi + ei = ⟨ai, s⟩ + ei mod q and ei are drawn

from χσ. Now the search LWE problem can be seen as a decoding problem.
The matrix A represents the generator matrix for linear codes over Zq and z
represents the received message. The goal is to recover s by searching for the
codeword y = sA that minimizes the distance to z.

2.3 The BKW Algorithm

We introduce the BKW algorithm for solving LWE, focusing on the reduction
and solving phases.

The Reduction Phase. This phase is a variant of Gaussian elimination, aiming
to reduce the dimension of the LWE problem. Given LWE samples written as
z = sA+ e mod q, where z ∈ Zm

q ,A ∈ Zn×m
q , n = a · b and a, b ∈ N. The BKW

algorithm applies some reduction techniques to the columns of A, progressively
reducing some positions to zero.

We employ a sort-and-match strategy on A, zeroing out a fixed number of b
entries in each iteration. In the initial step, the columns of A are classified into
distinct categories according to the values in their last b entries.

Elements with the same absolute value are classified into the same category.
Then we search for collisions in each category and match them to create new
sample vectors. If two vectors aTi1 ,a

T
i2

satisfy

aTi1 ± aTi2 = (∗ · · · ∗ 0 · · · 0︸ ︷︷ ︸
b

), (3)

a new vector âT = aTi1 ± aTi2 is obtained. The corresponding

z(1) = zi1 ± zi2 = s · âT + e(1) mod q, (4)

where e(1) = ei1 ± ei2 is drawn from a discrete Gaussian distribution with a
standard deviation of

√
2σ.

Repeating this step (a − 1) times zeros out the last (a − 1) · b entries of
vectors in matrix A, leaving only the first b positions non-zero. The reduction
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phase of the BKW algorithm can be referenced in Fig. 3. As a result, we obtain
a new LWE problem with a reduced dimension but increased noise, where the
noise follows the discrete Gaussian distribution with a standard deviation of√
2(a−1)σ.

Fig. 3: Reduction and solving phases of the BKW algorithm. The blue rectangle
represents the LWE sample matrix A, which initially has n rows and is gradually
reduced to b rows during the first stage.

The Solving Phase. This phase can recover the left b positions of the secret
s at a time. Denote the LWE instances after the reduction of the form

zi = s̄ · āiT + ēi mod q, i = 1, 2, · · · ,M (5)

where s̄ and āTi are vectors of dimension b, the errors ēi follow a discrete Gaussian
distribution χ√

2(a−1)σ
. M is sample size required to successfully recover the

secret s̄.
The simplest approach to recover the secret is to guess all possible values of

s̄ and observe the resulting error distribution. For each candidate s̃, we compute
the corresponding error

ẽi = zi − s̃ · āTi mod q. (6)

A correct candidate s̃ is guaranteed when ẽi is drawn from a discrete Gaussian
distribution. Conversely, if ẽi follows a uniform distribution, the guess is wrong.
The samples are refreshed upon recovering a portion of s, and the process con-
tinues iteratively until all remaining entries are recovered.

3 BKW Techniques in a Unified Framework

This section introduces a unified framework that systematically describes all
existing reduction and solving techniques, serving as the basis for designing our
optimized BKW algorithm. We also correct several inaccuracies found in previous
complexity estimations. For reduction techniques, we detail the noise variation,
sample size changes, and time complexity. For solving techniques, we outline the
success probability of secret recovery, the required number of samples, and time
complexity.
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3.1 Reduction Techniques

As described in Sect. 2.3, we assume that all reduction techniques begin with m
samples, where the secret has dimension n and the standard deviations of the
secret and noise are σs and σ, respectively. After one reduction step, we obtain
m′ samples (which may be more or fewer), with the secret’s dimension reduced
to n′ ≤ n and the standard deviations updated to σ′

s and σ′.
We describe the existing reduction techniques as follows:

• LF1-reduce zeros out b rows of the sample matrix A in one reduction
step [29]. It categorizes the column vectors of A based on the absolute values
in the selected b positions. There are qb possible values, and excluding the all-
zero case, this results in qb−1

2 categories. This method selects a fixed sample
from each category and uses it to add or subtract other samples, generating
new samples. This technique reduces the sample size by qb−1

2 per step, with
the standard deviation becoming

√
2σ.

LF1-reduce(b): n′ = n− b; m′ = m− qb−1
2 ; σ′ =

√
2σ; σ′

s = σs

Complexity : O(n ·m)

• LF2-reduce is a heuristic improvement of LF1-reduce, which adds or sub-
tracts any sample pairs within each category to create updated samples [24].
This technique also reduces b dimensions per step, resulting in an increase
in standard deviation to

√
2σ. It generates enough samples with a time

complexity similar to LF1-reduce but increases the correlation between sam-
ples, thus requiring the independence heuristic discussed in several stud-
ies [8,16,29]. The expected number of new samples is given by m′ = m2

qb−1
−m

2 .

We have revised the estimate proposed by Bogos [8], 2m2

(qb−1)2
− m

qb−1
, as their

result omitted the factor (qb− 1)/2, which only considered samples within a
single category, resulting in an inaccurate estimate.

LF2-reduce(b): n′ = n− b; m′ = m2

qb−1
− m

2 ; σ′ =
√
2σ; σ′

s = σs

Complexity : O(n ·max{m,m′})

• Transform secret can convert the secret vector s from a uniform distribu-
tion to a noise distribution [5,28], which meets the requirements of certain re-
duction or solving techniques that aim for a minimal standard deviation of s.
Consider a LWE problem z = sA+ e mod q, where A ∈ Zn×m

q . By permut-
ing the columns of A, find the first n linearly independent columns, denoted
by A0. Let D = A−1

0 , then Â = DA =
(
I, âT

n+1, â
T
n+2, · · · , âT

m

)
. Calculate

ẑ = z − (z1, z2, · · · , zn) Â = (0, ẑn+1, ẑn+2, · · · , ẑm), where the first n posi-
tions are zero. With the remaining m−n samples, we derive a new LWE prob-
lem ẑ = ŝÂ+ e mod q, where the new secret ŝ = sD−1 − (z1, z2 · · · , zn) =
(−e1,−e2, · · · ,−en). Through this transformation, each entry of s follows
the distribution χσ.
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Transform secret : n′ = n; m′ = m− n; σ′ = σ; σ′
s = σ

Complexity :O(n2 + m′·n2

log2 n−log2 log2 n )

• Code-reduce is a reduction technique using a linear code [n, n′], first in-
troduced by Guo et al. [20] for the LPN-solving BKW algorithm, and later
extended to the LWE problem [23]. Code-reduce consists of two steps: de-
coding and reduction. Decoding maps sample vectors ai ∈ Zn

q to the nearest
codeword ci ∈ Zn

q , while reduction allows sample vectors mapped to the
same codeword to be reduced against each other.
Using an efficient decoding procedure, we represent ai = ci + ti, where
ci = c′iG, c′i ∈ Zn′

q , and G ∈ Zn′×n
q is the generator matrix of the code. The

vector ti represents the decoding error introduced by this technique. The
noisy LWE equations are given by:

⟨ai, s⟩+ei = ⟨c′iG, s⟩+⟨ti, s⟩+ei = ⟨c′i, sGT⟩+⟨ti, s⟩+ei, i = 1, 2, ...m (7)

where the new secret s′ = sGT ∈ Zn′

q has dimension n′, and the noise term
becomes e′i = ⟨ti, s⟩+ ei.
Since the coding noise ⟨ti, s⟩ depends on s and we aim to minimize it, apply-
ing Transform secret before Code-reduce is necessary. Multiple Code-reduce
steps are not permitted, so variations in σ′

s are not considered here. Following
previous work [20, 23], we assume that the decoding procedure has a linear
time complexity and that the coding noise follows a Gaussian distribution
with standard deviation σc.

Code-reduce: n′; m′ = m; σ′ =
√
σ2 + σ2

c

Complexity : O(mn)

• Sieve-code-reduce is an improvement of Code-reduce that incorporates
lattice sieving to control the progressively increasing coding noise [21]. Since
this reduction technique operates similarly to Code-reduce, with sieving in-
troduced solely to manage the noise in reduced positions and keep it approx-
imately constant, we will not discuss it separately in the following sections.

• LMS-reduce employs lazy modulus switching [3] to reduce an LWE in-
stance modulo q to a scaled instance modulo p, where p ≤ q. This method
accumulates both original noise and rounding noise for LWE instances. Since
this technique is primarily effective for small secrets in {0, 1}n or {−1, 0, 1}n,
and our focus is on uniformly distributed secrets s ∈ Zn

q , we will not con-
sider it further. Improvements to the lazy modulus switching technique are
discussed in [10,27].

• Guess-reduce allows for the random guessing of b positions of the secret
vector, typically used between the reduction and solving phases to balance
their time complexities. By iterating over all possible values with absolute
values less than d, (2d+1)b candidates are generated. This technique does not
change the number of samples or the noise level, but impacts the overall time
complexity of the BKW algorithm, as it must account for the probability of
correctly guessing these secret values.
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Guess-reduce: n′ = n− b; m′ = m; σ′ = σ; σ′
s = σs

Complexity : O(m · b · (2d+ 1)b)

• Discard-reduce reduces b randomly selected dimensions of the sample ma-
trix A by discarding samples with non-zero values in these dimensions. This
technique was originally employed to solve LPN problems, and we extend
it to our BKW algorithm for solving LWE problems, providing an analysis
of it in the LWE context. The probability of a value being zero in a given
dimension is 1/q, leading to an expected m

qb
samples with all zeros in these b

dimensions. Samples are created on-the-fly, and once a non-zero value is de-
tected, the sample can be immediately discarded. This reduction technique
does not introduce additional noise.

Discard-reduce: n′ = n− b; m′ = m
qb
; σ′ = σ; σ′

s = σs

Complexity : O(m(1 + 1
q + · · · 1

qb−1 ))

We have introduced all existing reduction techniques for the LWE-solving
BKW algorithm. Generally, the reduction phase aims to minimize noise while
preserving the number of samples. We will explore how to efficiently integrate
these techniques within the BKW algorithm in the following sections.

3.2 Solving Techniques

Assume that there are M new LWE samples with a reduced dimension of n′ and a
noise standard deviation of σf . We will now introduce several solving techniques,
optimize their analysis, and address inaccuracies in previous literature.

• Optimal solver relies on exhaustive search [2]. As discussed in Sect. 2.3,
to distinguish the distribution of ẽi for a given candidate s̃, it calculates the
log-likelihood ratio using the Neyman-Pearson lemma [34]. Due to its high
time complexity O(M · qn′

), this technique is rarely used in modern BKW
algorithms, and thus we will not provide a detailed explanation here.

• FFT solver is an efficient solving technique based on the Fast Fourier
Transform (FFT) [16]. Recall Equations (5) and (6), consider the function
f(x) =

∑M
i=1 1ai=xθ

zi
q , where θq := e

2πi
q and 1ai=x is an indicator function

that equals 1 if ai = x and 0 otherwise. The key idea is to compute the FFT
of f(x):

f̂(α) =
∑

x∈Zn′
q

f(x)θ−⟨x,α⟩
q =

M∑
i=1

θ−(⟨ai,α⟩−zi)
q . (8)

If α is the correct candidate s̄, the real part of this function will be relatively
large; otherwise, it approaches zero. Thus, with enough samples M , the secret
entries can be recovered by maximizing Re(f̂(α)).
The time complexity is O(M +n′ · qn′ · log(q)). The sample size required for

successful secret recovery is given by M = 4 · log( q
n′

ϵ ) · (1 − 2π2σ2

q2 )−2(n/b)

,
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where ϵ is the failure probability. We corrected Duc’s [16] original estimation
M = 8 ·n′ · log( qϵ ) · (1−

2π2σ2

q2 )−2(n/b)

, fixing inaccuracies in the log term and
optimizing the constant factor.

• Pruned FFT solver is an improved version of the FFT solver, which limits
the number of hypotheses. This technique guesses potential candidates for s̄
with absolute values less than d and identifies the correct candidate similarly
to the FFT solver. Due to its efficiency, this technique is utilized in the solving
phase of our BKW algorithm.

Pruned FFT solver : M = 4 · log( (2d+1)n
′

ϵ ) · (1− 2π2σ2

q2 )−2(n/b)

Complexity : O(M + n′ · qn′ · log(2d+ 1))

After presenting the reduction and solving techniques within a unified frame-
work, the BKW algorithm proceeds as follows. Given m initial LWE samples of
dimension n, several reduction techniques are applied to generate M new samples
with a reduced dimension n′. A solving technique is then employed to recover
the n′-dimensional secret with a failure probability of ϵ. This process is iterated
with updated samples until the entire secret is recovered.

The time complexity of every reduction technique is determined solely by m,
n, and the number of steps, independent of final noise. The sample size needed
to recover the secret depends on the final noise. This paper focuses on recovering
only a part of the secret, as in prior works [2,3,8,23]. This is because recovering
the first part of the secret dominates the overall complexity, while the rest is
easier to solve.

4 Optimized BKW Algorithm for LWE

This section presents the graph construction for our optimized BKW algorithm
to solve the LWE problem. The graph G = (V,E) is built according to the
transition rules of a finite automaton, extended from Bogos’s work on LPN [9] to
the context of the LWE problem. In this framework, various reduction techniques
are represented as edges, while the states of the LWE samples correspond to the
vertices. Thus, finding the optimal BKW algorithm is equivalent to identifying
the optimal path in this graph. We automate the search for the optimal reduction
path in order to determine the most effective combination of techniques, thereby
minimizing the time complexity for different LWE instances.

The vertex set V = {1, . . . , n} × S represents the states of LWE samples,
including their dimensions and log(·) of the number of samples. For instance, the
vertex (n, log2 m) denotes an LWE instance with dimension n and m samples.
The set S can be R, N, or {0, . . . , η}, where η denotes an upper bound.

The edge set E comprises the reduction techniques applicable between ver-
tices. Each technique is represented as an edge from an (n, log2 m) instance to
a new instance (n′, log2 m

′), where n′ ≤ n indicates a reduction in dimension.
The number of samples may either increase or decrease, along with changes in



Memory-Efficient BKW Algorithm for Solving the LWE Problem 13

the noise standard deviation. An edge from (n, log2 m) to (n′, log2 m
′) speci-

fies the applied reduction technique and the corresponding parameters, such as
LF1-reduce(b).

In this representation, the reduction phase of the BKW algorithm is viewed
as a path in graph G, where each edge corresponds to a reduction technique that
progressively reduces the dimension of the LWE instance. This path ultimately
leads to a solver, where the pruned FFT is used to recover some entries of the
secret vector.

We define a standard formula to represent the change in the noise standard
deviation during the reduction phase of the BKW algorithm for solving LWE.
The accumulated noise standard deviation σ′ is derived from the initial standard
deviation σ, with their relationship given by

σ′2 = c1 · σ2 + c2, c1, c2 ∈ R. (9)

We define a mapping function ApproxS : R → S that returns the closest
element in S to a given x ∈ R. Specifically, we have:

ApproxS(x) =

{
⌈x⌉S = min{s ∈ S | s ≥ x}
⌊x⌋S = max{s ∈ S | s ≤ x},

(10)

where ⌈x⌉S represents the smallest element in S that is not less than x, and ⌊x⌋S
represents the largest element in S that is not exceed x.

We select the following reduction techniques as candidate edges for the graph:
LF1-reduce, LF2-reduce, Transform secret, Discard-reduce, Guess-reduce, and
Code-reduce. After defining the noise formula and mapping function, we for-
malize the selected reduction techniques as follows:

◦ LF1-reduce(b): (n, log2 m) → (n − b,ApproxS(log2(m − (qb − 1)/2))), with
c1 = 2 and c2 = 0.
◦ LF2-reduce(b): (n, log2 m)→ (n− b,ApproxS(log2(

m2

qb−1
− m

2 ))), with c1 = 2
and c2 = 0.
◦ Transform secret : (n, log2 m)→ (n,ApproxS(log2(m−n))), with c1 = 1 and
c2 = 0.
◦ Discard-reduce(b): (n, log2 m) → (n − b,ApproxS(log2(m/qb)), with c1 = 1

and c2 = 0.
◦ Guess-reduce(b): (n, log2 m) → (n − b,ApproxS(log2(m)), with c1 = 1 and
c2 = 0.
◦ Code-reduce(n, n′): (n, log2 m) → (n′,ApproxS(log2(m)), with c1 = 1 and
c2 = σ2

c , where σ2
c is the variance of the coding noise introduced by the

employed linear code [n, n′]. Our analysis of coding noise and code length is
consistent with the Code-reduce approach proposed by Guo et al. [23].

As illustrated in Fig. 4, the construction of the graph G = (V,E) must follow
the state transition rules of a finite automaton. In this section, we focus on
extending the automaton designed by Bogos [9] for LPN to a version suitable
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Fig. 4: Finite automaton for our optimized BKW algorithm to solve LWE: a
natural extension of Bogos [9] for LPN.

for the LWE problem. In the next section, we will introduce a memory-efficient
automaton.

There are several specific constraints on the order of the reduction techniques
in the finite automaton. Since the primary purpose of Transform secret is to
control the standard deviation of the secret, and only Code-reduce generates
coding noise related to the secret’s standard deviation, Transform secret must
be applied before Code-reduce. Additionally, due to the difficulty in analyzing
sequences with multiple Code-reduce steps, only a single application of Code-
reduce is permitted. The necessary codes are composed of a cascade of smaller-
dimensional codes, as described in coded-BKW [23]. The techniques LF1-reduce,
LF2-reduce, and Discard-reduce can be applied multiple times without specific
order requirements. Guess-reduce is employed to balance the time complexity
between the reduction and solving phases and is typically placed at the end of
the reduction path, just before the pruned FFT solver.

Based on the finite automaton presented in Fig. 4, we introduce the con-
struction algorithm for the directed graph G = (V,E) in the context of the LWE
problem, as described in Algorithm 1. We then provide the definition of the
reduction path within this graph.

Definition 2 (Reduction Path). Consider a graph G = (V,E), where the ver-
tex set is defined as V = {(n0, log2 m0), (n1, log2 m1), . . . , (ni, log2 mi)}, with i ∈
N. The edge set E = {LF1/LF2-reduce,Transform secret,Code-reduce,Discard-reduce,
Guess-reduce} represents the available reduction techniques. A sequence

(n0, log2 m0)
e1−→ (n1, log2 m1)

e2−→ . . .
ei−→ (ni, log2 mi) (11)

is called a reduction path in the BKW algorithm, where each edge ei ∈ E
corresponds to a specific reduction technique applied at step i.
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Algorithm 1 Construction of the graph for the LWE-solving BKW
Require: n, S, σ, η, b, q, d
Ensure: Graph G = (V,E) includes all reduction steps whose complexity does not

exceed 2η. The vertex set V = {1, . . . , n} × S × state, where state = {1, 2, 3, 4}
corresponds to the state points in the automaton. The edge set E includes all edges
((i, η1, st), (j, η2, st

′)) labeled by (c1, c2, r), where a st
r−→ st′ transition exists in the

automaton and for
1: r = LF1-reduce:
2: for all (i, η1) with rop ≤ η do
3: set the edge with (j, η2) = (i− b,ApproxS(log2(2

η1 − (qb − 1)/2)))
4: c1 = 2, c2 = 0, rop = log2 i+ η1
5: end for
6: r = LF2-reduce:
7: for all (i, η1) with rop ≤ η do
8: set the edge with (j, η2) = (i− b,ApproxS(log2(2

2η1/(qb − 1)− 2η1/2)))
9: c1 = 2, c2 = 0, rop = log2 i+max(η1, η2)

10: end for
11: r = Discard-reduce:
12: for all (i, η1) with rop ≤ η do
13: set the edge with (j, η2) = (i− b,ApproxS(η1 − log2(q

b))))
14: c1 = 1, c2 = 0, rop = log2 i+ η1 + log2((q − 1/qb)/(q − 1))
15: end for
16: r = Transform-secret :
17: for all η1 : 1 with rop ≤ η do
18: set the edge with i = n, (j, η2) = (i,ApproxS(log2(2

η1 − i)))
19: c1 = 1, c2 = 0, rop = log2(i

2 + ((2η1 − i) · i2)/(log2 i− log2 log2 i))
20: end for
21: r = Guess-reduce:
22: for all (i, η1) with rop ≤ η do
23: set the edge with (j, η2) = (i− b,ApproxS(η1))
24: c1 = 1, c2 = 0, rop = η1 + log2 b+ b · log2(2d+ 1)
25: end for
26: r = Code-reduce:
27: for all (i, η1, j) with j < i and rop ≤ η do
28: set the edge with η2 = η1, c1 = 1, c2 = σ2

c , rop = log2 i + η1, where σc is the
coding noise standard deviation from code [i, j]

29: end for

A reduction path is considered valid if it follows the order of reduction
techniques illustrated in the automaton and terminates at the solver. If a valid
reduction path ends at the state (nt, log2 mt), which is accepted by the pruned
FFT solver, then the remaining nt positions of the secret will be recovered with
high probability. We then define the valid reduction path formally.

Definition 3 (Valid Reduction Path). Consider a reduction path in the
graph G = (V,E) constructed by Algorithm 1:

(n0, log2 m0)
e1−→ (n1, log2 m1)

e2−→ . . .
ei−→ (ni, log2 mi), (12)

where each edge ej = (c1,j , c2,j , r), with r representing the applied reduction
technique, and c1, c2 are coefficients that affect the noise standard deviation.
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Let σj denote the noise standard deviation at the vertex (nj , log2 mj), defined
recursively by σ0 = σ, and

σ2
j = c1,jσ

2
j−1 + c2,j , for j = 1, . . . , i. (13)

The path is considered an ϵ-valid reduction path if mi meets the sample
requirements for successful secret recovery by the pruned FFT solver, where ϵ is
the failure probability.

Using the above algorithm and definitions, we can construct the graph for
our optimized BKW algorithm, based on the automaton tailored for the LWE
problem. This approach allows us to formalize the reduction phase of the BKW
algorithm as a search for the optimal valid reduction path to solve various LWE
instances. Our goal is to identify the most efficient valid combination of reduction
techniques (i.e., the reduction path). The detailed search algorithm is presented
in Sect. 5.3.

5 Memory-Efficient BKW Algorithm

The primary limitation of the BKW algorithm for solving LWE (or LPN) is
its substantial memory requirement, making it impractical even for medium-
sized parameters. We found that the natural extension of Bogos’s work [9] on
LPN to LWE does not alleviate the significant memory consumption of the BKW
algorithm. For example, as illustrated in Fig. 4, the Discard-reduce technique can
be repeatedly applied at each state, which is likely to result in significant memory
overhead. Moreover, all reduction techniques in Fig. 4 rely on traditional pairwise
reduction (i.e., 2-sum), without considering modern memory-saving methods
such as multiple collision finding, i.e., c-sum reduction techniques for c ≥ 2.

This section presents a memory-efficient modification of the natural exten-
sion of the BKW algorithm introduced in Sect. 4. Our approach includes two
key improvements. First, in Sect. 5.1, we introduce a more efficient reduction
technique for low-memory scenarios by combining multiple collision finding with
Parallel Collision Search (PCS). Additionally, we propose a memory-efficient au-
tomaton in Sect. 5.2 by pruning high-memory paths, integrating memory-saving
reduction techniques, and rearranging the order of reduction methods. Finally,
we present algorithms for searching the optimal reduction path in our optimized
BKW algorithm to solve various LWE instances in Sect. 5.3.

5.1 Reduction Techniques for Low-Memory Regimes

In this section, we introduce several efficient reduction techniques tailored for
LWE-solving BKW algorithm, based on multiple collision finding, i.e., c-sum for
c ≥ 2. Inspired by Delaplace’s work [12], we propose a novel reduction technique,
c-sum-PCS-reduce, which integrates Parallel Collision Search (PCS) to improve
efficiency in low-memory scenarios. This technique enriches the existing c-sum
techniques extended from LPN to LWE. Finally, we compare the performance
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of these c-sum techniques in terms of time-memory trade-offs within the context
of the LWE problem.

Two c-sum techniques used in LPN-solving BKW algorithms can be directly
extended to LWE-solving BKW algorithms [17]. The original BKW algorithm [7]
solves the LPN problem with time and memory complexities of 2

n
log n (1+o(1))

using 2-sum. Esser et al. [17] proposed the c-sum technique, termed c-sum-naive-
reduce, to balance the time and memory complexities. This technique identifies
c-tuples of vectors that sum to zero at selected b positions. By leveraging the
exponential growth of size-c subsets, it significantly reduces the number of initial
samples needed, thereby lowering memory usage. They further improved the
time-memory trade-off for the LPN-solving BKW algorithm by combining c-
sum with a dissection technique, which asymmetrically decomposes the problem
and solves it recursively, referred to as c-sum-dissect-reduce.

We now present the c-sum-PCS-reduce technique for the LWE-solving BKW
algorithm, designed to improve efficiency in low-memory settings. This technique
combines the c-sum technique with PCS [39,40], which has been widely studied
for enhancing cryptanalysis algorithms [14,19,35]. The main idea involves split-
ting the c-sum problem into two symmetric c

2 -sum problems and using PCS to
detect sample collisions.

First, we formally define the c-sum problem over the finite field Fq, where q
is an arbitrary prime modulus. Since Zq and Fq are equivalent for prime q, we
use Fq in our definitions for the LWE problem to align with the LPN problem.

Definition 4 (c-Sum Problem (c-SP)). Consider positive integers b,N and
c ≥ 2. Define a list L := {x1, . . . ,xN}, where each element xi is uniformly drawn
from Fb

q. A single-solution of the c-SPb problem is a subset L ∈
(
[N ]
c

)
of size c

where ∑
j∈L

xj = 0b. (14)

Given a list L, c-sum problem c-SPb involves determining at least N unique
single-solutions. Thus, the goal is to identify N distinct c-sized subsets of b-
dimensional vectors in L, with their sum equal to the zero vector.

We extract the c-sum problem from the reduction phase, since solving this
problem dominates the overall complexity of the c-sum-BKW algorithm for
LWE, as shown in the following theorem. Furthermore, we adopt the indepen-
dence heuristic proposed by Esser et al. [17], treating the c-sum problem as
independent in our analysis.

Theorem 1 (Complexities of c-sum-BKW [17]). Let b, c,N ∈ N. Un-
der the independence heuristic, an algorithm solving the c-SPb problem for an
input list of size N with expected time T and memory M can also solve the
n-dimensional LWE problem with high probability. This requires time T 1+o(1),
memory M1+o(1), and N1+o(1) samples, provided N ≥ q

b+c logq c+1

c−1 .

To satisfy the lower bound in Theorem 1, we set the list size N = |L| =
c · q

2b
c−1 = q

2b+c logq c−logq c

c−1 > q
b+c logq c+1

c−1 . We assume c is an even positive integer
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for simplicity. We divide L into c equal-sized sublists, each containing |Li| = q
2b

c−1

elements, where i = 1, . . . , c. Each sublist Li is viewed as a set over F
2b

c−1
q . we

then randomly select one element from each sublist, denoting the kth element of
sublist Li as Li[k].

To facilitate the application of PCS, we define two mapping functions. For
j = 0, 1, we set

fj : (F
2b

c−1
q )

c
2 → Fb

q,

(l1, . . . , l c2 ) 7→ Lj c
2+1[l1] + Lj c

2+2[l2] + · · ·+ L c
2 (1+j)[l c2 ].

(15)

The mapping function f0 maps c
2 indices to a c

2 -sum problem defined on the first
half of all sublists, while f1 does the same for the second half. Consequently, if
a collision occurs between f0 and f1, i.e., f0(l1, . . . , l c2 ) = f1(l c2+1, . . . , lc), we
obtain a c-sum problem that satisfies

L1[l1] + · · ·+ Lc[lc] = 0b. (16)

This represents a single-solution to the c-sum problem. To fully resolve this
problem, we need to identify N = c · q

2b
c−1 distinct collisions between f0 and f1

using the procedure PCS(f0, f1, N). It is commonly assumed that the collisions
returned by PCS are uniformly random, as discussed in [12,13].

For example, we consider c = 4 and c = 8 and demonstrate a single reduction
iteration that reduces b dimensions, as shown in Fig. 5.

Fig. 5: One iteration of the c-sum-PCS-reduce for c = 4 and c = 8.

Theorem 2 (Complexities of c-sum-PCS-reduce). Given an even positive
integer c, the size of a c-SPb instance L is |L| = N := c · q

2b
c−1 . The c-sum-

PCS-reduce, under independence heuristic, solves c-SPb with an expected time
complexity of T = Õ(q(

1
2+

1
c−1 )b) and memory M = Õ(q

b
c−1 ).
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Proof. The complexity of the c-sum-PCS-reduce primarily depends on the com-
plexity of the PCS procedure. We first analyze the complexity of PCS over the
q-ary field. Consider two random functions f0, f1 : Fr

q → Fr
q, where r, q ∈ N.

f0 and f1 are treated as independent random functions under the independence
heuristic. The procedure PCS(f0, f1, N) is expected to find N distinct collisions
between f0 and f1 with a time complexity of T = Õ(q

r+logq N

2 ) and a memory
complexity of M = Õ(N).

During each reduction iteration, we only consider b positions and aim to find
N = c ·q

2b
c−1 collisions between f0 and f1. Consequently, the memory required for

the c-sum-PCS-reduce is M = Õ(N) = Õ(q
2b

c−1 ). The expected time complexity
can be formulated as:

T = Õ(q
b+logq N

2 ) = Õ(q
b
2 · q

1
2 ·
(

2b+c logq c−logq c

c−1

)
) = Õ(q

b
2 · q

b
c−1 ) = Õ(q(

1
2+

1
c−1 )b).

The BKW algorithm corresponding to the c-sum-PCS-reduce is called the
c-sum-PCS-BKW algorithm. To analyze the complexity of this algorithm, it is
essential to select an appropriate value for the block size b.

Define the modulus of the n-dimensional LWE problem as q = O(ncq ) and
the noise standard deviation as σ = O(ncs), where cq > cs > 0 are constants. As
discussed in [26], the original BKW algorithm uses a block size b with a blocks
where ab = n, and selects a = (1 + 2cq − 2cs) · log n. The time complexity and
memory complexity of the original BKW algorithm are as follows:

qb(1+ϵ) = 2
1
2 ·

cq

cq−cs+1
2

·n(1+ϵ)
, where ϵ > 0. (17)

Since the c-sum-PCS-BKW algorithm combines c samples in each reduction
to generate new ones, we adapt the approach from [18] by modifying a with a
factor of log c. Specifically, the adjusted value is defined as:

a = (1 + 2cq − 2cs) ·
log n

log c
. (18)

Consequently, the block size b becomes:

b =
n

a
=

n · log c
(1 + 2cq − 2cs) · log n

. (19)

By combining Theorems 1 and 2 with the value of b, we derive the following
complexity theorem for the c-sum-PCS-BKW algorithm.

Theorem 3 (Complexities of c-sum-PCS-BKW). Given an even positive
integer c, and ϵ > 0. Under the independence heuristic, the LWE problem with
parameters (n, q = O(ncq ), σ = O(ncs)) can be solved with high probability by
the c-sum-PCS-BKW algorithm with time

T = 2
( 1

2+
1

c−1 )·n·log c· 12 ·
cq

cq−cs+1
2

·(1+ϵ)
and memory M = 2

2
c−1 ·n·log c· 12 ·

cq

cq−cs+1
2

·(1+ϵ)
.
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Proof. By substituting the value of b from Equation (19) into the complexity
expression of Theorem 2 for the c-sum-PCS-reduce, we derive the complexity
formula for the c-sum-PCS-BKW algorithm.

Comparison of Different c-sum Techniques We compare our proposed
c-sum-PCS-reduce with other existing c-sum techniques, including c-sum-naive-
reduce, c-sum-dissect-reduce, and c-sum-quantum-reduce, in the context of solv-
ing the LWE problem. To facilitate this comparison, we first present the time
and memory complexities of the corresponding c-sum-BKW in Table 1, followed
by a comparison of their time-memory trade-offs in Table 2.

We express the complexities of the different c-sum-BKW algorithms in a
unified format as follows:

T = 2x(1+ϵ), M = 2y(1+ϵ), (20)

where

x = t · n · 1
2
· cq

cq − cs +
1
2

, y = m · n · 1
2
· cq

cq − cs +
1
2

. (21)

The values of t and m are presented in Table 1.

Table 1: Partial complexity exponents t and m for various c-sum-BKW algo-
rithms solving the LWE problem.

Algorithm t m for

classic

Original BKW [2] 1 1
c-sum-naive-BKW [18] log c log c

c−1
c ≥ 2

c-sum-dissect-BKW [18] (1− i
c−1

) · log c log c
c−1

c ∈ magic
c-sum-PCS-BKW ( 1

2
+ 1

c−1
) · log c 2·log c

c−1
c ≥ 2

quantum c-sum-quantum-BKW [18] 1
2
· c
c−1
· log c log c

c−1
c ≥ 2

* magic represents a sequence that satisfies ci = ci−1+i+1, with c−1 = 1, i ∈ N∪{0}.

We derive the time-memory trade-offs for various c-sum-BKW algorithms
based on the results in Table 1. These trade-offs are summarized in Table 2 using
the most commonly used time-memory trade-off notation. To further illustrate
these comparisons, we plot the corresponding time-memory trade-off curves for
each algorithm in Fig. 1, based on the formulas in Table 2.

As shown in Table 2, the c-sum-BKW algorithms that incorporate various
c-sum reduction techniques offer significant advantages in time-memory trade-
offs compared to the original BKW algorithm, with the best trade-off observed
in the c-sum-quantum-BKW algorithm. In comparison, our c-sum-PCS-BKW
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Table 2: Time-memory trade-off comparisons of various c-sum-BKW algorithms
for solving LWE: our c-sum-PCS-BKW vs. other c-sum-BKW algorithms.

Trade-offs 2
n·log c· 1

2
· cq

cq−cs+1
2

·(1+ϵ)

= for

classic

Original BKW [2] T
1
2 ·M

1
2

c-sum-naive-BKW [18] T
1
2 ·M

c−1
2 c ≥ 2

c-sum-dissect-BKW [18] T ·M i c ∈ magic
c-sum-PCS-BKW T ·M

c−3
4 c ≥ 2

quantum c-sum-quantum-BKW [18] T ·M
c−2
2 c ≥ 2

* magic represents a sequence that satisfies ci = ci−1+i+1, with c−1 = 1, i ∈ N∪{0}.

algorithm requires approximately the square of the memory used by the c-sum-
quantum-BKW algorithm for the same time complexity. The comparison be-
tween our c-sum-PCS-BKW and the c-sum-dissect-BKW is less apparent in Ta-
ble 2, but the trade-off curves in Fig. 1 provide a clearer comparison.

Fig. 1 highlights the time-memory trade-offs of our c-sum-PCS-BKW algo-
rithm compared to other c-sum-BKW algorithms. When memory is constrained
to 20.3n, our algorithm shows lower memory consumption than the classical c-
sum-dissect-BKW algorithm for the same time complexity. Additionally, for the
same memory complexity, c-sum-PCS-BKW achieves lower time complexity. Our
algorithm offers substantial advantages in both time and memory complexity
when memory is limited to 20.63n, compared to the classical c-sum-naive-BKW
algorithm.

5.2 Improved Memory-Optimized Finite Automaton

This section presents improvements to the finite automaton designed in Sect. 4
for our optimized LWE-solving BKW algorithm, resulting in a memory-optimized
finite automaton. We proved the optimal order of reduction techniques in the
LWE scenario, inspired by Wiggers [41] but extended to a more general frame-
work suitable for larger moduli and noise levels.

First, we introduce three classic c-sum reduction techniques—c-sum-PCS-
reduce, c-sum-dissect-reduce, and c-sum-naive-reduce—into the original finite
automaton described in Fig. 4. The reduction techniques in the original au-
tomaton rely solely on traditional pairwise reduction (i.e., 2-sum) and do not
incorporate modern c-sum techniques. We have provided a detailed explana-
tion of the advantages of c-sum reduction techniques in low-memory regimes in
Sect. 5.1. We then present the improved automaton with the newly added re-
duction techniques in Fig. 6. To simplify the representation of the automaton,
we use Reduce-techniques to denote the available reduction methods, including
various c-sum techniques, LF1-reduce, and LF2-reduce.

Second, we prune the potential high-memory paths in the original automa-
ton shown in Fig. 4. We observe that, under memory constraints, the original
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Fig. 6: Improved memory-optimized automaton for our BKW algorithm to solve
the LWE problem.

automaton becomes significantly simplified because of many impossible paths.
For example, in the original automaton, the Discard-reduce technique applies
after each reduction technique and is repeatedly used at each state, which may
lead to high memory consumption. However, we present the following Proposi-
tion 1 to demonstrate that, in memory-constrained scenarios, no technique from
Reduce-techniques → Discard-reduce can occur in the optimal reduction path of
our optimized BKW algorithm to solve the LWE problem.

Proposition 1. No technique from Reduce-techniques→ Discard-reduce can oc-
cur in the optimal reduction path for solving the LWE problem under memory
constraints.

Proof. We take LF1-reduce as an example to prove that the order LF1-reduce
→ Discard-reduce cannot occur under memory constraints, and similar proofs
apply to other techniques within the Reduce-techniques. Our proof is inspired by
Wiggers et al. [41].

Assume that we need to reduce the LWE problem with dimension n. Utilizing
the order LF1-reduce→Discard-reduce, we first reduce it to LWE with dimension
n− b via LF1-reduce, and then to LWE with dimension n′ using Discard-reduce,
where b ∈ [0, n − n′]. This sequence takes time T ≈ (2n − b) · (m − qb−1

2 ) and
memory M ≈ max{mn, (m − qb−1

2 )(n − b)}. Both functions T (b) and M(b)
are strictly decreasing in b, achieving their minimum at b = n−n′. Notably, the
number of remaining samples is independent of b, meaning that b does not impact
subsequent reductions. In summary, in the optimal path, any order LF1-reduce
→ Discard-reduce simplifies to LF1-reduce.

We have also considered the orders Code-reduce → Discard-reduce and Code-
reduce → any technique within Reduce-techniques. No further reduction tech-
nique after Code-reduce is allowed due to the complex relationship between time
complexity and the coding noise introduced by the code. Consequently, we prune
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the reusable Discard-reduce technique from states 1, 2, 3, and 4 in the original
automaton shown in Fig. 4, as well as the reusable LF1/LF2-reduce techniques
from state 4.

Finally, we modified the original automaton by adjusting the order of Discard-
reduce, placing it as the first step. We support on-the-fly sample generation, and
once a non-zero value is detected, the sample can be immediately discarded.
Only samples that meet the Discard-reduce criteria can remain in memory. This
fits well in a memory-constrained scenario, such as in the LPN settings [41].

We present the improved memory-optimized finite automaton in Fig. 6, which
allows us to reconstruct graphs for our optimized BKW algorithm to solve LWE,
using a method similar to that in Sect. 4.

5.3 Finding the Optimal Reduction Path

Building on Bogos’s work [9], we propose two algorithms tailored for the LWE
setting to identify optimal valid reduction paths for the BKW algorithm to solve
various LWE instances.

The time complexity of BKW, following the reduction path (e1, . . . , ei), is
determined by the total complexity of each reduction step and the pruned FFT
solver. We approximate BKW’s complexity by taking the maximum of these
values, defining it as the max-complexity of the path.

Note that if the set S = R, i.e., ApproxS is the identity function, such a
reduction path is called an exact path; otherwise, it is called a rounded path.
Since exact paths are computationally expensive in practice, and rounded paths
offer a good balance between performance and computational cost, we aim to
search for an optimal rounded path that minimizes max-complexity within a
required precision.

We first introduce Algorithm 2, which is designed to find the optimal valid
reduction path for the optimized BKW algorithm to solve LWE, ensuring that
its max-complexity is bounded by 2η.

As illustrated in Algorithm 2, this algorithm inputs the parameters of the
LWE problem, the failure probability ϵ associated with recovering the secret
vector, and an upper limit η on the logarithmic time complexity of each reduc-
tion step. It begins by constructing a directed graph G following the framework
outlined in Algorithm 1, which includes all feasible reduction steps with a time
complexity below 2η. It is important to note that we do not directly call Al-
gorithm 1 to store all edges; instead, we generate the edges based on the rules
specified in the finite automaton in Fig. 6.

For each vertex, Algorithm 2 iteratively defines Edgest and Σst, which denote
the optimal reduction step to reach that vertex and the associated noise variance,
respectively. We aim to identify the reduction path that minimizes noise variance.
Ultimately, we arrive at a state that can be processed by the pruned FFT solver,
ensuring that the complexity of the solving phase remains within 2η. By retracing
our steps through this process, we construct the optimal valid rounded reduction
path, with the logarithmic max-complexity constrained by η.
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Algorithm 2 Search for an optimal valid rounded reduction path with max-
complexity bounded to η

Require: n, σ, S, η, q, b, ϵ
Ensure: An optimal valid rounded path with max-complexity bounded to η
1: Construct graph G using Algorithm 1 with parameters n, σ, S, η, q, b, d
2: for all η1 ∈ S do
3: Σ0

n,η1 ← σ2, Edge0n,η1
←⊥, Σst

n,η1 ← −∞, Edgestn,η1
←⊥ ▷ Σst

n,η1 stores the
noise standard deviation for a vertex (n, η1, st) in a path, and Edgestn,η1

represents
the edge reaching this vertex

4: end for
5: for j ← n decreasing to 1 do
6: for η2 ∈ S in decreasing order do
7: Σst

j,η2 ← 0, Edgestj,η2 ←⊥ for all st
8: for each st′ and each edge e to (j, η2, st

′) do
9: Let (i, η1, st) be e’s origin, with c1, c2 derived from e

10: if c1Σ
st
i,η1 + c2 ≤ Σst′

j,η2 then
11: Σst′

j,η2 ← c1Σ
st
i,η1 + c2, Edgest

′

j,η2
← e

12: end if
13: end for
14: if η2 > 4 · log( (2d+1)j

ϵ
) · (1−

2π2Σst′
j,η2

q2
)−2(n/b)

and j + log2 j ≤ η then
15: Define the path c terminating at Edgest

′

j,η2
and output (c, true)

16: end if
17: end for
18: end for
19: Output (⊥, false)

While Algorithm 2 is capable of identifying the optimal valid rounded reduc-
tion path within a specified logarithmic max-complexity bound η, the challenge
of determining the smallest value of η remains unresolved. To tackle this issue,
we present a new algorithm, as illustrated in Algorithm 3.

Algorithm 3 efficiently determines the smallest η by employing a divide-
and-conquer strategy. By utilizing Algorithm 2 as a subroutine, Algorithm 3
guarantees that Algorithm 2 can locate a valid rounded reduction path with an
optimal max-complexity constrained by 2η. In other words, Algorithm 3 can find
a valid rounded reduction path for the LWE-solving BKW algorithm, achieving
optimal max-complexity within specified precision.

Specifically, Algorithm 3 utilizes a binary search technique, beginning with
an initial value of η = n derived from a brute-force result. It then iteratively
halves the search space for η, progressively refining the range to quickly deter-
mine the smallest valid η. This approach considerably decreases the number of
calls to Algorithm 2 compared to a straightforward linear search across the en-
tire η range, thereby enhancing overall search efficiency. Through this method,
Algorithm 3 ensures that Algorithm 2 not only identifies a valid rounded path
that meets the specified precision but also minimizes its complexity as effectively
as possible.

We outline the complexity of the aforementioned algorithms. In Algorithm 1,
we construct a graph with O(n·|S|) vertices, where each vertex connects to O(n)
other vertices, leading to a total graph size of O(n2 · |S|). In Algorithm 2, the
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Algorithm 3 Algorithm for finding a valid rounded path with optimal max-
complexity
Require: n, σ, η, q, b, ϵ, prec = 0.1
Ensure: A valid rounded path
1: let found ← bruteforce, rise ← n, η ← n
2: repeat
3: let rise ← rise/2
4: define S ← {0, prec, 2× prec, . . .} ∩ [0, η − rise]
5: (output’, success)← Search(n, σ, ϵ, q, d, b, S, η − rise) with Algorithm 2
6: if success then
7: let found ← output’, η ← η − rise
8: end if
9: until rise ≤ prec

10: output found

LWE dimension offers n potential values, while the number of samples can take
|S| distinct values. Additionally, for any fixed vertex, each type of edge has O(n)
possible sources. Thus, the complexity of Algorithm 2 is O(n2 · |S|), indicating
a linear relationship with the size of the graph. The memory complexity of
Algorithm 2 is O(n · |S|), primarily allocated for storing Σn,η and Edgen,η.
Using a binary search approach, Algorithm 3 calls Algorithm 2 approximately
log n

precision times.

6 Comparison of Estimation Results

6.1 Time Complexity Comparison

This section estimates the time complexity of our optimized BKW algorithm for
solving various LWE instances and compares it with the state-of-the-art coded-
BKW algorithm [23] from the leading lattice-estimator [4], currently the most
effective tool in post-quantum cryptanalysis.

We selected the LWE parameters suggested by Regev [37], Lindner-Peikert
[30], and the TU Darmstadt challenge [1], with the comparisons presented in
Table 3, respectively. In column 5 of Table 3, the results of the coded-BKW
from the lattice-estimator [4] are provided. Columns 6 and 7 show the results of
our BKW algorithm, representing the optimal max-complexity (‘max-’) and the
optimal total complexity (‘tot-’), respectively. The last column highlights the
improvements of our algorithm, calculated as the difference between the total
complexity and the values in column 5. The values demonstrate that our opti-
mized BKW algorithm outperforms the previously most effective coded-BKW
algorithm [23] for all parameters considered.

Regev [37] defines n as a positive integer, q as the smallest prime greater than
n2, and σ = q√

n·log2 n
√
2π

. We select values of n in the range n = [64, 80, 96, 112, 128,

160, 224, 256, 384, 512]. Following previous BKW algorithms [2, 3, 16, 23], we set
the success probability to 0.99, and assume that operations over C have the
same complexity as those over Zq. We also assume that the initial samples we
provided are sufficient for use.
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Table 3: Comparison of estimated time complexity (in log2(·)) of the BKW
algorithm for various LWE instances with parameters from Regev [37], Lindner-
Peikert [30], and TU Darmstadt LWE challenges [1].

Parameters n q σ
Lattice-

estimator [4]
This paper Impro-

vementsmax- tot-

Regev [37]

64 4099 5.68 47.5 41.6 42.2 5.3
80 6421 7.17 62.8 52.8 53.4 9.4
96 9221 8.66 65.3 55.1 55.5 9.8
112 12547 10.21 68.8 57.1 57.5 11.3
128 16411 11.81 84.5 71.7 72.0 12.5
160 25601 15.06 101.5 89.5 90.2 11.3
224 50177 21.94 127.9 117.0 117.0 10.9
256 65537 25.53 145.1 129.3 129.7 15.4
384 147457 40.73 221.4 214.3 214.3 7.1
512 262147 57.06 287.6 261.4 261.4 26.2

Lindner-
Peikert [30]

128 2053 2.70 69.7 58.3 58.5 11.2
192 4099 8.87 109.6 100.2 100.5 9.1
320 4099 8.00 170.3 149.1 149.4 20.9
512 4099 2.90 209.2 184.7 184.8 24.4

LWE
Challenge [1]

40

1601 8.01 41.7 32.3 32.8 8.9
1601 16.01 41.7 32.2 32.7 9.0
1601 24.02 51.7 45.0 45.0 6.7

50

2503 12.52 44.5 38.1 38.9 5.6
2503 37.55 55.1 46.3 46.4 8.7
2503 75.09 65.8 62.5 62.5 3.3

70

4903 24.52 60.3 50.9 51.3 9.0
4903 49.03 72.1 63.6 63.6 8.5
4903 73.55 74.5 65.3 65.3 9.2

120

14401 72.01 108.8 97.5 97.5 11.3
14401 144.01 124.0 107.0 107.0 17.1
14401 216.02 136.8 120.5 120.5 16.3
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We present a detailed analysis of Regev’s [37] parameters in Table 3, demon-
strating that our optimized BKW algorithm outperforms the state-of-the-art
coded-BKW algorithm [4]. Specifically, we achieve an improvement in time com-
plexity ranging from 5.3 to 26.2 bits across all considered parameters. To illus-
trate how our BKW algorithm finds the optimal reduction path, we provide an
example. For an LWE instance with (n, q, σ) = (256, 65537, 25.53), the optimal
reduction path searched by our algorithm is:

(256, 228.13)
1○−→ (249, 116.13)

2○−→ (249, 116.13)
3○−→ (109, 114.91)

4○−→ (8, 112.59)

5○−→ (7, 112.59)→ Solver.

Here, 1○ represents Discard-reduce(7), 2○ represents Transform-secret, 3○
involves 20 iterations of LF1-reduce(7), 4○ represents Code-reduce(101), and 5○
represents Guess-reduce(1). The Code-reduce uses a [101, 84] concatenated code,
composed of 12 random linear lattice codes: one [11, 7], two [10, 7], two [9, 7],
three [8, 7], and four [7, 7]. After the reduction, the new LWE instance with
dimension 7 is passed to the solver to recover the secret subvector. Ultimately,
our optimized BKW algorithm solves this LWE instance with a total complexity
of 2129.7, representing an improvement of 15.4 bits over the 2145.1 complexity of
the coded-BKW algorithm implemented in lattice-estimator [4].

Lindner and Peikert [30] proposed new parameters for LWE-based cryptogra-
phy. We consider values of n in the range [128, 192, 320, 512]. Table 3 presents a
comparison of the time complexities of various BKW algorithms for solving LWE
instances with Lindner-Peikert’s parameters. As shown in Table 3, our algorithm
outperforms the state-of-the-art coded-BKW in [4], achieving improvements in
time complexity ranging from 9.1 to 24.4 bits. For n = 192, the coded-BKW
algorithm in the lattice-estimator requires 2109.6 operations, while our algorithm
reduces this to 2100.2, yielding a 9.1-bit improvement.

In Table 3, we also select some LWE parameters from the TU Darmstadt
LWE challenge [1], with n taking values from [40, 50, 70, 120]. Our results show
that our algorithm achieves an improvement in time complexity ranging from 3.3
to 17.1 bits compared to the commonly used coded-BKW algorithm in lattice-
estimator [4].

Note 1. We provide a comprehensive overview of the total dimension reduction
achieved by the Code-reduce technique across various LWE instances [1, 30, 37],
including the corresponding code lengths, in Appendix A.

6.2 Memory Consumption Comparison

In Table 4, we compare the memory complexity of our optimized BKW algorithm
with the state-of-the-art coded-BKW algorithm [23] as reported in the lattice-
estimator [4].

As shown in Table 4, our BKW algorithm demonstrates a significant advan-
tage in memory consumption compared to the coded-BKW algorithm [23] in
the lattice-estimator [4]. For Regev’s parameters [37] (excluding n = 80), our
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Table 4: Comparison of estimated memory complexity (in log(·)) of the BKW
algorithm for solving various LWE instances. The label ‘ [4]’ refers to the state-
of-the-art coded-BKW algorithm [23] from lattice-estimator [4], while ‘Ours’
denotes the logarithmic memory complexity of our BKW algorithm. ‘LOG’ rep-
resents logm in n, and ‘Impro’ highlights the improvements of our results.

Regev Parameters [37] Lindner-Peikert Parameters [30]

n [4] Ours LOG Impro n [4] Ours LOG Impro

64 38.9 28.0 0.44 10.9 512 183.3 172.2 0.34 11.1

80 53.8 41.7 0.52 12.1 LWE Challenge Parameters [1]

96 55.9 43.5 0.45 12.4 n [4] Ours LOG Impro

112 58.1 45.1 0.40 13.1

40

34.3 24.6 0.61 9.7

128 73.3 59.7 0.44 13.7 34.3 24.5 0.61 9.8

160 91.2 77.2 0.48 14.0 44.7 24.4 0.61 20.3

224 116.1 97.9 0.44 18.2

50

36.6 26.1 0.52 10.5

256 131.5 116.1 0.45 15.4 47.5 36.6 0.73 10.9

384 209.6 175.9 0.46 33.7 58.4 36.2 0.72 22.2

512 309.5 238.2 0.46 71.3

70

51.7 40.2 0.57 11.5

Lindner-Peikert Parameters [30] 63.8 40.0 0.57 23.9

n [4] Ours LOG Impro 65.5 39.9 0.57 25.6

128 57.9 48.0 0.37 9.9

120

99.4 72.3 0.60 27.1

192 99.2 87.8 0.46 11.4 73.3 58.7 0.49 14.6

320 159.1 135.8 0.42 23.3 73.3 58.7 0.49 14.7



Memory-Efficient BKW Algorithm for Solving the LWE Problem 29

memory complexity remains below 20.5n. Compared to the coded-BKW algo-
rithm, our memory consumption shows improvements ranging from factors of
210.9 to 271.3. For instance, for n = 512, the memory consumption of our BKW
algorithm is m = 2238.2, which approximates m ≈ 20.46n. This represents a fac-
tor of 271.3 improvement over the memory consumption of the best coded-BKW
algorithm [23] in the lattice-estimator [4].

For Lindner-Peikert’s parameters [30], our memory consumption improve-
ments range from factors of 211.1 to 223.3, with m falling within the range of
20.34n to 20.46n. For the LWE parameters from the TU Darmstadt challenge [1],
our memory consumption improvements range from factors of 29.7 to 227.1.

When memory is constrained to 20.5n, we find that for 16 out of the 27
selected LWE instances, the actual memory consumption falls below 20.5n. In
summary, our improved BKW algorithm significantly outperforms the current
best coded-BKW algorithm [4] in terms of memory complexity for the considered
LWE instances.

6.3 BKW vs. Lattice Attacks

We provide a comparison between the state-of-the-art coded-BKW algorithm
[23] in lattice-estimator [4], our optimized BKW algorithm, and the state-of-the-
art hybrid dual attack [25] for Regev’s parameters [37], as detailed in Table 5.

The hybrid dual attack demonstrates the best performance in both time
and space complexity, particularly in high-dimensional scenarios. In contrast,
our optimized BKW algorithm performs well in low-dimensional cases, such as
n = 80 and n = 96. Although the BKW algorithm is generally less efficient than
the hybrid dual attack, our optimizations narrow the performance gap between
these two types of attacks.

Table 5: Comparison of time and memory complexities for coded-BKW [23], our
optimized BKW, and hybrid dual attack [25].

Time Complexity Memory Complexity
n Coded-BKW Ours Hybrid dual Coded-BKW Ours Hybrid dual
64 47.5 42.2 41.4 38.9 28.0 31.5
80 62.8 53.4 68.0 53.8 41.7 66.9
96 65.3 55.5 70.9 55.9 43.5 69.7
112 68.8 57.5 55.6 58.1 45.1 44.7
128 84.5 72.0 60.8 73.3 59.7 57.3
160 101.5 90.2 84.4 91.2 77.2 82.7
224 127.9 117.0 93.8 116.1 97.9 83.7
256 145.1 129.7 105.4 131.5 116.1 101.2
384 221.4 214.3 156.2 209.6 175.9 153.3
512 287.6 261.4 201.9 309.5 238.2 195.6
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7 Conclusion

We optimize the BKW algorithm for LWE by designing a memory-efficient BKW
algorithm that can automatically find the optimal reduction path. Our primary
contributions lie in extending Bogos’s work [9] to the LWE problem, introduc-
ing efficient memory-saving reduction techniques, and constructing a memory-
optimized finite automaton. The proposed c-sum-PCS-reduce technique demon-
strates lower time complexity compared to the state-of-the-art c-sum-dissect-
reduce [17], particularly under a memory constraint to 20.3n. For the selected
LWE instances, our optimized BKW algorithm surpasses the state-of-the-art
coded-BKW [23] in both time and memory complexities across all tested param-
eters.

In the future, several open challenges remain in refining the BKW algorithm
for solving LWE. For instance, the independent heuristic used in the BKW al-
gorithm requires experimental validation or theoretical proof. Additionally, de-
veloping general strategies that slightly trade runtime for better memory man-
agement will be crucial for future research. Finally, finding ways to adapt the
BKW algorithm to stricter memory constraints is also a challenging problem. To
adapt to stricter memory, the reduction phase can be partitioned into smaller
subtasks, storing only the necessary blocks for each step, particularly in large-
scale instances. Alternatively, sparse storage can be employed to record solely
non-zero elements and their positions. Future work will validate whether these
optimizations can effectively reduce the memory consumption of the BKW al-
gorithm.
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Table 6: Total dimension reduction and code lengths for Regev parameters [37]
in our optimized BKW algorithm using Code-reduce technique.

Parameters n b Code-reduce li

Regev [37]

64 2 16 2,2,2,2,2,2,2,2
80 3 14 4,4,3,3
96 3 12 4,4,4
112 3 24 4,4,4,3,3,3,3
128 4 42 6,5,5,5,5,4,4,4,4
160 5 33 7,7,7,6,6
224 6 48 9,9,8,8,7,7
256 7 101 11,10,10,9,9,8,8,8,7,7,7,7
384 10 109 16,15,14,14,13,13,12,12
512 13 229 21,20,19,18,18,17,16,16,15,15,14,14,13,13

Table 7: Total dimension reduction and code lengths for Lindner-Peikert param-
eters [30] in our optimized BKW algorithm using Code-reduce technique.

n b Code-reduce li

Lindner-Peikert [30]

128 4 22 5,5,4,4,4
192 7 55 11,10,9,9,8,8
320 11 110 17,16,15,14,13,12,12,11
512 14 66 18,17,16,15
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Table 8: Total dimension reduction and code lengths for LWE parameters from
the TU Darmstadt challenge [1] in our optimized BKW algorithm using Code-
reduce technique.

n q σ b Code-reduce li

LWE Challenge [1]

40

1601 8.01 2 16 3,3,2,2,2,2,2
1601 16.01 2 16 3,3,3,3,2,2
1601 24.02 2 17 4,4,3,3,3

50

2503 12.52 2 23 3,3,3,2,2,2,2,2,2,2
2503 37.55 3 32 7,6,5,5,5,4
2503 75.09 3 38 8,7,7,6,5,5

70

4903 24.52 3 33 5,5,5,4,4,4,3,3
4903 49.03 3 39 6,6,5,5,5,4,4,4
4903 73.55 3 46 7,6,6,5,5,5,4,4,4

120

14401 72.01 5 78 10,10,9,8,8,7,7,7,6,6
14401 144.01 4 71 10,9,8,8,7,7,6,6,5,5
14401 216.02 4 77 11,10,9,8,8,7,7,6,6,5
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