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Abstract. Masking is a common countermeasure against side-channel
attacks that encodes secrets into multiple shares, each of which may be
subject to leakage. A key question is under what leakage conditions, and
to what extent, does increasing the number of shares actually improve
the security of these secrets. Although this question has been studied ex-
tensively in low-SNR regimes, scenarios where the adversary obtains sub-
stantial information—such as on low-noise processors or through static
power analysis—have remained underexplored.
In this paper, we address this gap by deriving necessary and sufficient
noise requirements for masking security in both standalone encodings
and linear gadgets. We introduce a decomposition technique that re-
duces the relationship between an extended-field variable and its leakage
into subproblems involving linear combinations of the variable’s bits. By
working within binary subfields, we derive optimal bounds and then lift
these results back to the extended field.
Beyond binary fields, we also present a broader framework for analyz-
ing masking security in other structures, including prime fields. As an
application, we prove a conjecture by Dziembowski et al. (TCC 2016),
which states that for an additive group G with its largest subgroup H, a
δ-noisy leakage satisfying δ < 1− |H|

|G| ensures that masking enhances the
security of the secret.

1 Introduction

Masking to Mitigate Side-Channel Threats. Side-channel information refers to
unintended leakages that an adversary can obtain from the implementation of a
cryptographic algorithm. A leakage model provides an abstraction for describing
such leakages. One widely studied model is the noisy leakage model, introduced
by Prouff and Rivain [28] and subsequently explored in several works [9, 10, 12,
13, 27]. In this model, for each intermediate value X ∈ Fq in the execution of a
cryptographic algorithm, the adversary learns a function L(X), such as the noisy
Hamming weight of X.

A primary countermeasure against side-channel leaks is masking. In this
approach, a secret X is split into random shares X1, . . . , Xn ∈ Fq such that
X = X1+ · · ·+Xn. Rather than processing X directly, the implementation ma-
nipulates these shares, and the adversary only observes leakages L(Xi) from each



share. In the most basic encoding, the only intermediate values are the shares
themselves, but in protected circuits, additional intermediates and secrets may
also be introduced. The effectiveness of masking is typically assessed by how
a security metric—for instance, the adversary’s success rate—degrades as the
sharing order n increases. Since the seminal work of Chari et al. [7], this line
of investigation has remained a central focus for both standalone encodings and
protected gadgets and circuits.

Open Challenge. If L(X) fully reveals X, then masking offers no protection.
Thus, L(X) must introduce some form of noise. Determining the minimal noise
level required to make masking effective in protecting secrets, and understanding
how a chosen security metric scales with the sharing order n under borderline
leakage conditions, remain open problems. This paper addresses these challenges.

Practical Relevance. Low-noise (high-SNR) conditions arise when L(X) reveals
a substantial amount of information about X. Such scenarios have been reported
in various contexts. For instance, low-noise processors—particularly small em-
bedded devices such as the ARM Cortex-M0—exhibit inherently lower noise
levels in their power consumption [6]. Likewise, static power analysis, unlike dy-
namic power analysis, measures a stable leakage signal over an extended period,
resulting in highly precise side-channel observations [25]. Lastly, averaging or
horizontal attacks can combine multiple leakage samples corresponding to the
same or related intermediates to produce a clearer, aggregated leakage trace [3].

Security Metrics. A widely used security metric is the success rate (SR), which
measures the probability that the leakage L(X) correctly identifies X [30]. An-
other common metric is the guessing entropy (GE), defined as the average rank
of the correct X in the adversary’s list of hypotheses [30]. A more technical
measure is the statistical distance (SD) between the prior distribution of X
and its posterior distribution X | L(X). We denote this distance by δ; a larger
value of δ indicates less noise. Additionally, a more mathematically rigorous
metric is the mutual information (MI) between X and L(X), a measure well-
studied in information theory and used in various papers [4,10,20]. The quantity
MI(X ; L(X)) lies in [0, log(q)], where lower values correspond to higher noise.
Security metrics are not mutually independent. For instance, MI and SD are
linked through Pinsker’s inequality [10,15], and SR also has a relationship with
SD (see Lemma 1). However, these connections are not tight in general.

In this work, we focus on the success rate metric, because it is more intuitive
and directly indicates how many leakage traces are required for a successful at-
tack. In typical divide-and-conquer scenarios where a secret is split into multiple
chunks, checking multiple guesses for each chunk is impractical; the adversary
usually needs to identify each chunk correctly in a single guess. This practical
consideration further motivates our choice of the SR metric.

2



1.1 Evaluating the Security of Single Encoding

Building on the reduction proposed in [9], Duc et al. [10] proved that qδ <
1 is sufficient to ensure the effectiveness of masking. Improving this bound,
Dziembowski et al. [13] derived an optimal threshold δ < 1

2 for binary extended
fields (q = 2u). Their result states that if, for a given leakage function L(X),
the corresponding δ is less than one-half, masking will be effective. However, the
case δ ≥ 1

2 is not covered by their analysis.
Seeking more concrete guidelines and using mutual information (MI) as the

security metric, Ito et al. [20] proposed a threshold of MI(X ; L(X)) < 0.72 for
all shares. Béguinot et al. [4] relaxed the requirement to MI(X ; L(X)) ≤ 1 for
at least some of shares, under the assumption that different shares may have
distinct leakage functions. Despite these contributions, the question of whether
masking is effective for a given leakage L(X) remains only partially resolved.

Our Contribution to the Problem. We address this gap by relaxing the
noise requirements and showing that masking can improve security if and only
if L(X) does not completely determine any bit combination of X. Specifically,
for a u-bit X, the leakage L(X) must not fully reveal the binary bitwise inner
product

⟨X,h⟩ =

u−1⊕
j=0

xj hj

for any h ∈ [1, 2u − 1], where xj and hj are the individual bits of X and h,
respectively. In terms of mutual information, this requirement is

MI
(
⟨X,h⟩ ; L(X)

)
< 1.

We first prove a tight security bound for binary fields. Building on this result,
we analyze the security of various binary variables ⟨X,h⟩ and derive a new secu-
rity bound for binary extension fields. This allows us to accurately compute the
adversary’s success probability, thereby relaxing the noise constraints previously
imposed on L(X).

Moreover, we introduce a general framework for quantifying masking secu-
rity (via the SR metric) in other algebraic structures, including prime fields and
additive groups. Employing this framework, we confirm a conjecture by Dziem-
bowski et al. [13]: for an additive group G with its largest subgroup H, if a given
leakage satisfies

δ < 1 − |H|
|G|

,

then masking can indeed enhance the security of X.

1.2 Evaluating the Security of Protected Circuits

The security requirements for an encoded secret do not immediately translate
into those for a protected circuit. Prouff and Rivain [28] pioneered the study of
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noisy leakage in masked circuits; this work was later extended by Masure and
Standaert [24]. However, analyzing noisy leakages in complete protected circuits
remains challenging, often requiring unrealistic assumptions such as leak-free
refresh gadgets.

Duc et al. [9] tackled this issue by introducing a reduction from noisy leakage
to the random probing model. This reduction allows security proofs in the ran-
dom probing model to carry over to the noisy leakage setting. While subsequent
works [12,26,27] have refined the approach, gaps remain, limiting the reduction’s
applicability in certain scenarios.

Our Contributions for Security of Circuits. We demonstrate that our
decomposition strategy can yield improved reductions from noisy to random
probing under certain assumptions, specifically for linear protected circuits. This
focus is motivated by recent results of Jahandideh et al. [21], who showed that
linear circuits can provide side-channel security bounds even in settings involving
some non-linear gadgets.

1.3 Outline

Section 2 introduces security metrics and relations among them for single vari-
ables. Section 3 focuses on masking, presenting our decomposition approach and
a general framework for additive groups. Section 4 extends the discussion to the
broader context of linear circuits.

2 Security of a Single Variable

In this section, we formalize the noisy leakage model and introduce the adver-
sary’s advantage, which is a normalized version of the success rate. In Lemma 1,
we establish a connection between two key metrics, δ and this advantage. Sub-
section 2.2 presents a reduction from the noisy leakage model to the random
probing model, and Lemma 2 demonstrates that this reduction is tight in the
binary-field setting. Finally, Lemma 3 applies the reduction to derive a bound
on the adversary’s advantage.

2.1 Preliminaries

Let X be a random variable uniformly distributed over Fq, representing an inter-
mediate value in a cryptographic implementation. This implementation might
leak side-channel information modeled by a probabilistic function L(X) ∈ Rm.
Given L(X), the adversary’s goal is to determine the actual value of X. If the
joint distribution of (X, L(X)) is known, the optimal strategy is maximum a
posteriori (MAP) estimation, also called Bayesian estimation [19].

Upon observing l← L(X), the MAP estimator outputs:

X̂ ←$
{
argmax
α∈Fq

Pr
(
X = α | l

)}
.
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The probability that X̂ = X depends on the particular realization l. For example,
if L(X) is the Hamming weight HW(X) =

∑
xi, where xi are the bits of X, then

upon observing l = 0, the adversary can correctly deduce that X = 0.
To account for different leakage realizations, we define Pc as the expected

success probability, averaged over all possible outputs of L(X):

Pc ≜ E l←L(X)

[
Pr

(
X̂ = X | l

)]
=

∑
l∈Rm

Pr
(
L(X) = l

)
Pr

(
X̂ = X | l

)
.

A more practical metric for the adversary’s effectiveness is the advantage over
random guessing:

AdvX ≜ Pc −
1

q
.

The advantage AdvX indicates how informative L(X) is about a single random
variable X. However, masking schemes involve multiple variables and their joint
distributions. In the remainder of this section, we briefly review other metrics
that quantify the information content of L(X).

Class of δ-Noisy Leakages [9]. The statistical distance (SD) between X and
X | L(X) is a measure of the informativeness of the leakage. It quantifies how
much the distribution of X changes when the leakage L(X) is observed. Concept
of this metric was first introduced in the work of Prouff and Rivain [28], and it
aligns well with practical side-channel analysis experiences.

The SD betweenX andX | L(X) is an expected value, defined over all possible
leakage values as:

SD(X ; X | L(X)) ≜
∑
l∈Rm

Pr (L(X) = l)TV(X ; X | l), (1)

where the total variation distance (TV) between the (uniformly distributed) X
and X | l, for a fixed leakage instance l, is defined as follows:

TV (X ; X | l) ≜ 1

2

∑
α∈Fq

∣∣∣∣Pr(X = α | l)− 1

q

∣∣∣∣
=

∑
α∈Fq,Pr(X=α|l)> 1

q

(
Pr(X = α | l)− 1

q

)

=
∑

α∈Fq,Pr(X=α|l)< 1
q

−
(
Pr(X = α | l)− 1

q

)
.

(2)

We say that the leakage L(X) is δ-noisy if SD (X;X | L(X)) = δ. From (2),
we deduce that the range of TV is 0 ≤ TV (X;X | l) ≤ 1− 1

q . Consequently, by

taking the expectation over l ← L(X), we conclude that δ lies within the range
[0, 1− 1

q ].
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Relation Between δ and AdvX . A lower δ indicates that the leakage L(X)
is noisier, meaning the adversary gains less advantage from it. More concretely,
we have the following lemma.

Lemma 1. For a random variable X over Fq with leakage function L(X), if
SD (X ; X | L(X)) = δ, then the adversary’s advantage in guessing the value of
X from learning L(X) is bounded as:

δ

q − 1
≤ AdvX ≤ δ. (3)

As a corollary, in the special case of binary fields (i.e., q = 2), we have AdvX = δ.

Proof. For each instance l← L(X), we have:

Pr
(
(X̂ = X) | l

)
− 1

q
= max

α∈Fq

Pr(X = α | l)− 1

q

≤
∑

α∈Fq,Pr(X=α|l)> 1
q

(
Pr(X = α | l)− 1

q

)
= TV(X ; X | l).

Taking the expectation over l← L(X) on both sides of the inequality proves the
right-hand side of the lemma. The proof of the left-hand side follows similarly,

noting that the cardinality of the set
{
α ∈ Fq | Pr(X = α | l) > 1

q

}
is at most

q − 1. ⊓⊔

2.2 Leakage Simulation

The probabilistic mapping ϕϵ : Fq → {⊥,Fq} is known as an erasure channel
[8, 18], and it is computed as follows:

ϕϵ(X) =

{
X with probability ϵ,

⊥ otherwise.

Duc et al. [9] demonstrated that for sufficiently noisy leakage L(X), one can
construct a (probabilistic) function L′ such that for any value of X, L′(ϕϵ(X))
and L(X) are statistically identical, i.e.,

∀α ∈ Fq, TV (L′(ϕϵ(X)) | X = α ; L(X) | X = α) = 0.

This holds only when ϵ ≥ ϵmin, where:

ϵmin ≜ 1−
∑
l

min
α∈Fq

Pr(l | X = α) ≤(I) qδ. (4)

The summation is over all possible leakage values. This result is particularly
useful for deriving security bounds, especially when considering masked encoding
and circuits. The value of ϵmin, also known as Doeblin coefficient [5], lies in
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[0, 1], where ϵmin = 0 indicates that L(X) and X are independent, and ϵmin = 1
indicates that L′ always depends on X, rendering the technique ineffective.

The right-hand side of inequality (I) in (4) was proved in [9]. Here, we prove
that for the specific case of q = 2, the inequality is in fact an equality.

Lemma 2. For a joint distribution (X, L(X)) where SD(X ; X | L(X)) = δ,
let ϵmin be defined as in (4). If X is a uniform binary random variable, then
ϵmin = 2δ.

Proof.

ϵmin = 1−
∑
l

min
α∈{0,1}

Pr(l | X = α)

=
∑
l

Pr(L(X) = l)−
∑
l

min
α∈{0,1}

Pr(l | X = α)

=(I)

∑
l

Pr(L(X) = l)− 2
∑
l

Pr(L(X) = l) min
α∈{0,1}

Pr(X = α | l)

=
∑
l

Pr(L(X) = l)

[
1− 2 min

α∈{0,1}
Pr(X = α | l)

]
=

∑
l

Pr(L(X) = l)

[
max

α∈{0,1}
Pr(X = α | l)− min

α∈{0,1}
Pr(X = α | l)

]
=

∑
l

Pr(L(X) = l)

[∣∣∣∣Pr(X = 1 | l)− 1

2

∣∣∣∣+ ∣∣∣∣Pr(X = 0 | l)− 1

2

∣∣∣∣]
= 2SD(X ; X | L(X)) = 2δ.

The second summation in (I) follows from applying Bayes’ rule. ⊓⊔

In the binary case, we have δ ≤ 1
2 , and Lemma 2 gives ϵmin = 2δ, which leads

to ϵmin < 1 for δ ̸= 1
2 . The case δ = 1

2 only occurs when L(X) uniquely identifies
X. We conclude that, if there remains some uncertainty about X after observing
the leakage, it will be reflected in the ϵmin metric, and this tight phenomenon
only occurs when q = 2.

Example 1. Let X ∈ F2u , and let the leakage function L(X) be defined as x0⊕e,
where x0 is the least significant bit (LSB) of X, and Pr(e = 1) = e, with
e ≤ 1

2 . The leakage L(X) provides noisy information about the LSB of X, while
revealing no information about the remaining bits, from bit 1 to bit u−1. Upon
receiving leakage l, the posterior distribution of X becomes:

∀ α ∈ {0, 1}u−1||l, Pr(X = α | l) = 1− e

2u−1
,

∀ α ∈ {0, 1}u−1||(1⊕ l), Pr(X = α | l) = e

2u−1
.

This leads to the following results:

AdvX =
1− 2e

2u
, SD(X ; X | L(X)) =

1

2
− e, and ϵmin = 1− 2e.
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Notably, as u increases, the gap for the upper bounds provided in equations (3)

and (4) widens, while the lower bound
1
2−e
2u−1 ≤ AdvX in equation (3) becomes

tighter. ⊓⊔

A Security Reduction. The joint distributions (X, L′(ϕϵ(X))) and (X, L(X))
are identical. Therefore, an adversary cannot distinguish between samples drawn
from these distributions. This implies that the adversary’s advantage, denoted
by AdvX , when leakage l is sampled from L(X), is equal to the advantage when l
is sampled from L′(ϕϵ(X)). Otherwise, the adversary could distinguish between
the two leakage functions. We express this equality as:

AdvX [l← L(X)] = AdvX [l← L′(ϕϵ(X))] .

We will write AdvX [.] to specify the leakage source and avoid ambiguity.
The random variables (RVs)X, ϕϵ(X), L′(ϕϵmin(X)), and L(X) form aMarkov

chain:
X → ϕϵ(X)→ ϕϵmin(X)→ L′(ϕϵmin(X))→ L(X),

where ϵ ≥ ϵmin. As we move along the direction of the chain, we receive increas-
ingly degraded versions of X. Consequently, the success probability of computing
any metric related to X decreases as the available information is taken from links
farther from X. For instance:

AdvX [l← L(X)] ≤ AdvX [l← ϕϵ(X)] . (5)

Similarly:
SD(X ; X | L(X)) ≤ SD(X ; X | ϕϵ(X)). (6)

In general, to prove security with leakage L(X), it suffices to prove it with leak-
age ϕϵmin(X). This result from Duc et al. [9] is known as the reduction of δ-noisy
leakage to ϵ-random probing leakage. The following lemma demonstrates an ap-
plication of this reduction.

Lemma 3 ( [5] Proposition 1). For a random variable X ∈ Fq, let L(X) be a
leakage with Doeblin coefficient ϵmin. The adversary’s advantage when observing
this leakage is bounded by:

AdvX ≤
q − 1

q
ϵmin. (7)

This result is a simplified version of Proposition 1 from the work of Béguinot
et al. [5].

ϵmin Metric is not a Tight Indicator. The reduction from noisy leakage to
random probing leakage is highly useful. However, it is not always tight. For some
leakage models, such as when L(X) = HW(X) (Hamming weight), we compute
ϵmin = 1. Intuitively, this occurs because, for any leakage value l, there are some
values of X that cannot produce that l. From the perspective of the reduction,
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this implies there is no difference between L(X) = HW(X) and L(X) = X, even
though the Hamming weight function does not fully reveal X.

It may seem that this result occurs because HW(X) is too informative. To
illustrate this point, we define a leakage function, ZV(X), where the amount
of information conveyed in the leakage is less than one bit, yet we still have
ϵmin = 1.

Inspired by the zero-value leakage model [22], ZV(X) only distinguishes when
X = 0 and returns a constant value for all other inputs. Specifically, for some
real values νa and νb, we define:

ZV(X) =

{
νa if X = 0,

νb ̸= νa otherwise.
(8)

Our refined reduction approach, introduced in the next section, will be able
to distinguish the noise embedded in leakage functions like ZV(X).

3 Security of Mask Encoding

We begin by introducing the basics of masking and defining the adversary’s ad-
vantage in this setting. In Lemma 4, we use the leakage parameter δ to bound
the statistical distance associated with mask encoding. Next, Lemma 5 shows
that security metrics become simpler to compute in binary fields, laying the
groundwork for our main contribution in Subsection 3.2, which is formalized in
Theorem 1. Lemma 6 further refines the result of that theorem. Finally, we con-
clude with an examination of prime fields and additive groups in Subsection 3.3.

3.1 Mask Encoding

A standard technique for improving the side-channel security of a variable X
is masking. Under this approach, X is encoded via a random n-tuple of shares,
X = (X1, . . . , Xn), such that

X =

n∑
i=1

Xi.

In this context, the side-channel adversary observes the leakage vector

L(X) =
[
L1(X1), . . . , Ln(Xn)

]
.

For simplicity, we assume that each leakage function Li is identical (i.e., Li = L)
and that all are independent in their internal randomness. A central question
is how AdvX [l ← L(X)] is influenced by both the number of shares n and the
structure of the field Fq.
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Impracticality of Exact Computation. Because the distribution space of L(X)
grows exponentially with n, exact calculations of security metrics quickly become
infeasible. An alternative is to approximate the metrics of L(X) using known
properties of L(X). While this strategy circumvents exponential complexity, it
also introduces a potential gap between the estimated and the exact metrics.

A Not-So-Tight Bound. Duc et al. [10] investigated the practical relevance of the
noisy-to-random probing reduction, which assumes that each share is revealed to
the adversary with probability ϵmin ≤ qδ. Under this assumption, the adversary
learns all shares with probability (qδ)n. Denote the corresponding leakage vector
by

ϕϵ(X) =
[
ϕϵ(X1), . . . , ϕ

ϵ(Xn)
]
.

Generalizing from (6), we have

∆ = SD
(
X ; X | L(X)

)
≤ SD

(
X ; X | ϕϵ(X)

)
. (9)

If any one share does not leak, then SD
(
X ; X | ϕϵ(X)

)
is zero. Conversely, if

all shares leak, it equals 1− 1
q . Combining these observations yields

∆ ≤ SD
(
X ; X | ϕϵ(X)

)
=

(
1− 1

q

)
qn δn. (10)

A Tighter Bound. The bound in (10) grows exponentially with the field size
q. However, Duc et al. [10] noted that experimental evidence does not exhibit
such a factor, leading them to conjecture that dependence on q might be a
proof artifact. A subsequent result by Masure et al. [23] removed the factor of q
from (10):

Lemma 4 ( [23], Proposition 4). Let X = (X1, . . . , Xn) be a masking of
X ∈ Fq, and assume the leakage function satisfies SD(X ; X | L(X)) = δ.
Then, for ∆ = SD

(
X ; X | L(X)

)
, we have

∆ ≤ 2n−1 δn. (11)

Dziembowski et al. [13] showed—reaffirmed here—that as long as δ < 1
2 , the

posterior distribution of X (after observing the leakages) becomes increasingly
uniform as n grows, independent of the underlying field structure. Consequently,
the highest point in the posterior distribution converges to the uniform value 1

q .
Applying Lemma 1 to this scenario leads to

AdvX
[
l ← L(X)

]
≤ 2n−1 δn. (12)

Case of q = 2. For binary fields, we show via direct computation that the
inequalities in (11) and (12) become equalities. In fact, it suffices to verify this
for (12), as the other inequality follows as a corollary of Lemma 1, which states
that AdvX [l← L(X)] = ∆.
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Lemma 5. In the setting of Lemma 4, if the underlying field is F2, we have
AdvX [l← L(X)] = 2n−1δn.

Proof. We prove this lemma by extending a technique originally due to Wyner
[32] in the context of wire-tap channels.

To recover X = X1 ⊕ · · · ⊕Xn from the leakage vector L(X), the adversary
must estimate eachXi. Let X̂i represent the estimate ofXi after observing L(Xi),
and let ei = Pr(X̂i ̸= Xi) be the average probability of error. The averaging is
done over both the uniform choice of Xi ∈ {0, 1} and the leakage space of L(Xi).
That is,

ei = E
Xi

$←{0,1}
l←L(Xi)

[
Pr

(
(X̂i ̸= Xi) | l

)]
.

We assume ei ≤ 1
2 ; the case ei >

1
2 can be handled similarly. By subtracting,

the random guessing factor 1
2 , we express the adversary’s advantage as AdvXi =

(1− ei)− 1
2 = 1

2 − ei. According to Lemma 1, for a single random variable Xi,
we have AdvXi

[l ← L(Xi)] = δ, which implies ei =
1
2 − δ. We can simplify by

dropping the subscript i and setting e = 1
2 − δ.

The adversary can estimate X from the values X̂1, . . . , X̂n using X̂ = X̂1 ⊕
· · ·⊕ X̂n. The estimate X̂ will match X if an even number of errors occur. Thus,
the average probability of success is:

Pr(X̂ = X) =

⌊n2 ⌋∑
i=0

(
n

2j

)
e2j(1− e)n−2j

=
1

2

[
n∑

i=0

(
n

i

)
ei(1− e)n−i +

n∑
i=0

(
n

i

)
(−e)i(1− e)n−i

]

=(I)
1

2
[(e+ (1− e))

n
+ (−e+ (1− e))

n
]

=
1

2
[1n + (1− 2e)n] =

1

2
+ 2n−1(

1

2
− e)n =

1

2
+ 2n−1δn,

where step (I) follows from the binomial expansion:

(±e+ (1− e))
n
=

n∑
i=0

(
n

i

)
(±e)i(1− e)n−i.

Subtracting the random guessing contribution 1
2 , we obtain:

AdvX [l← L(X)] = Pr(X̂ = X)− 1

2
= 2n−1δn. ⊓⊔

The binary case will serve as the foundation for our reasoning when work-
ing with extended fields. Before proceeding, we pause to make another useful
observation.
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Optimality of the Reduction at q = 2. Lemma 2 proves that the δ-noisy to ϵ-
random reduction for q = 2 is possible with ϵmin = 2δ. Substituting this into
(10), we get:

∆ ≤ SD(X ; X | ϕϵmin(X)) = (1− 1

2
)2nδn = 2n−1δn

On the other hand, from Lemma 5, we know that ∆ = 2n−1δn, which implies
that ∆ = SD(X ; X | ϕϵmin(X)). This equality indicates the tightness of the
reduction in the broader context of multiple random variables (RVs), at least for
the metrics ∆ and AdvX .1 If the leakages functions for the shares are different,
the corresponding δi will also vary among them. In this case, we can show that
∆ = 2n−1

∏n
i=1 δi.

For q > 2, the Bound in Lemma 3 is Loose. We work out an example at
q = 4, for which we are able to determine exact metrics at order n. The result
illustrates that the bound is not necessarily tight for non-binary fields.

Example 2. Suppose for X ∈ F22 , the leakage function is L(X) = (x1⊕e1)∥(x0⊕
e0), where xi denotes the ith bit of X, and e0 and e1 are independent binary
RVs with Pr(e0 = 1) = Pr(e1 = 1) = e for some e < 1

2 . For this leakage function,
we compute:

δ = SD(X ; X | L(X)) = (
1

2
− e)(

3

2
− e). (13)

The leakage function is essentially a concatenation of two independent binary
leakages, each corresponding to one bit of X.

In a masked encoding, using a method similar to the proof of Lemma 5, we
can show that the adversary estimates each bit of X with an error probability of
en = 1

2 [1− (1− 2e)n] from the leakage information. Using this, we can replace
the leakage observations L(X1) to L(Xn) with an equivalent leakage function
L′(X) = (x1 ⊕ e′1)∥(x0 ⊕ e′0), where e′0 and e′1 are independent binary RVs such
that Pr(e′0 = 1) = Pr(e′1 = 1) = en. Since L

′ and L only differ in their parameters,
we can use (13) to write:

∆ = SD(X ; X | L(X)) = SD(X ; X | L′(X)) = (
1

2
− en)(

3

2
− en)

= 2n−1(
1

2
− e)n(1 +

1

2
(1− 2e)n).

Lemma 3 gives the bound ∆ ≤ 2n−1δn. However, in this example, we obtain:

∆ = 2n−1(
1

2
− e)n(1 +

1

2
(1− 2e)n)

<(I) 2
n−1(

1

2
− e)n(1 +

1

2
(1− 2e))n = 2n−1δn−1,

1 For other metrics, such as the mutual information between L(X) and X, this tight-
ness may not necessarily hold.
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where step (I) follows because, for any 0 ≤ t < 1, (1 + 1
2 t

n) decreases, whereas
(1 + 1

2 t)
n increases by n while they are equal at n = 1. ⊓⊔

The conclusion of this example that ∆ < 2n−1δn, implies that the bound in
Lemma 4 is likely not tight for q > 2.

Need for More Fine-Tuned Analysis. Our discussion thus far has made it clear
that for q = 2u with u > 1, there exists a gap in both the noisy-to-random
probing reduction (as illustrated with L(X) = ZV(X) instance) and in indirect
metric estimation (as pointed out in Example 2). The main contribution of this
paper is to narrow these gaps by introducing a decomposition approach that
works for q = 2u fields.

3.2 Decomposition into Binary Subfields

The observation that in binary fields exact metrics are easy to compute and the
reduction is tight, motivates us to decompose relations in a F2u field into binary
relations, where metrics can be efficiently calculated, and then translate the
results back. In this section, we demonstrate the applicability of this approach
for masked encoding, and in the following section, we extend it to linear circuits.
Below, we provide the foundational concepts of such a decomposition.

Consider two u-bit integers, A and B, and define their bitwise inner product
as:

⟨A,B⟩ = ⊕u−1
i=0 aibi,

where ai and bi are bits of A and B. For an RV X ∈ F2u , with masked encoding
as X = [X1, . . . , Xn], any integer h ∈ [1, 2u − 1], in its u-bit representation, can
be deployed to map X = X1 ⊕ . . .⊕Xn equation into a binary equation as:

⟨X,h⟩ = ⟨X1, h⟩ ⊕ . . .⊕ ⟨Xn, h⟩. (14)

We will later establish the validity of this mapping in a broader context, specifi-
cally within Boolean systems of equations. To illustrate the practical usefulness
of this mapping, in Theorem 1 will prove that if an adversary fails to learn any
of the 2u−1 binary random variables ⟨X,h⟩ from the leakage L(X), they cannot
successfully deduce X from this leakage.

Theorem 1. Given the leakage L(X) for X ∈ F2u , the adversary’s advantage
in learning X is limited as:

1

2u−1
max
h

Adv⟨X,h⟩ ≤ AdvX ≤
1

2u−1

2u−1∑
h=1

Adv⟨X,h⟩ < 2max
h

Adv⟨X,h⟩. (15)

Here, Adv⟨X,h⟩ denotes the adversary’s advantage in learning the binary random
variable ⟨X,h⟩.

Proof. For ease of notation, let us denote Adv⟨X,h⟩ by µh. Given the 2u−1 values
{µ1, µ2, . . . , µ2u−1}, we aim to study the behavior of AdvX . Specifically, we will
show that the values µh are sufficient for determining the maximum value that
AdvX can attain.
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Proof Overview. The proof follows a structured sequence of steps: (A) Formulat-
ing the problem as a system of equations involving the probability distributions of
X | l and the values µi. (B) Transforming this system into the Hadamard repre-
sentation, which corresponds to computing the Walsh transform. (C) Leveraging
the properties of Hadamard matrices, particularly the inverse Walsh transform,
to characterize the solution space. (D) Incorporating constraints expressed in
terms of expectation values. (E) Establishing bounds on the advantage term
AdvX .

Proof Detail. Let {pl0, pl1, . . . , pl2u−1} be the posterior distribution of X given an
instance l of the leakage. Using this notation, for a given h, µh is computed as
follows:

µh = E
l

[
max

α∈{0,1}
Pr(⟨X,h⟩ = α | l)

]
− 1

2

= E
l

 max
α∈{0,1}

∑
⟨β,h⟩=α

Pr(X = β | l)

− 1

2

= E
l

 max
α∈{0,1}

∑
⟨β,h⟩=α

plβ

− 1

2
.

(16)

Since the values plβ represent probability masses, we have the following con-
straint: ∑

⟨β,h⟩=0

plβ +
∑
⟨β,h⟩=1

plβ = 1,

where β enumerates over F2u . With reordering the terms, we derive:

∑
⟨β,h⟩=1

plβ−
1

2
= −(

∑
⟨β,h⟩=0

plβ−
1

2
)⇒ max

α∈{0,1}

 ∑
⟨β,h⟩=α

plβ −
1

2

 =

∣∣∣∣∣∣
∑
⟨β,h⟩=1

plβ −
1

2

∣∣∣∣∣∣ .
Since ⟨β, h⟩ ∈ {0, 1}, we can use the following simplification:∑

⟨β,h⟩=1

plβ =
∑
β

⟨β, h⟩ · plβ .

Now, we define a new set of random variables as θlh ≜
∑

β⟨β, h⟩ · plβ −
1
2 . The

steps of the proof verify that El

[
|θlh|

]
= µh. We can also reorder the terms as:∑

β

⟨β, h⟩ · plβ =
1

2
+ θlh. (17)

By collecting the relations in (17) for all values of h ∈ [1, 2u − 1], we obtain
the following system of 2u equations in terms of the variables plβ and θlh.
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∑
β∈F2u

plβ = 1,∑
β∈F2u

⟨β, 1⟩ · plβ = 1
2 + θl1,∑

β∈F2u
⟨β, 2⟩ · plβ = 1

2 + θl2,
...∑

β∈F2u
⟨β, 2u − 1⟩ · plβ = 1

2 + θl2u−1,

(18)

The first equation is sum of all plβ values, which is 1.
We update the given system of equations by applying a simple row operation

to every row ri except for the first row r0. For 1 ≤ i ≤ 2u − 1, each row
ri is multiplied by the scalar −2 and then added to r0. In other words, each
row ri is updated as ri ← −2ri + r0. This operation results in a new system
of equations in a familiar format without altering the solution space. Using a
matrix representation, and observing that (−1)⟨i,j⟩ = −2⟨i, j⟩+ 1, the updated
system is expressed as:


(-1)⟨0,0⟩ (-1)⟨1,0⟩ . . . (-1)⟨2

u−1,0⟩

(-1)⟨0,1⟩ (-1)⟨1,1⟩ . . . (-1)⟨2
u−1,1⟩

(-1)⟨0,2⟩ (-1)⟨1,2⟩ . . . (-1)⟨2
u−1,2⟩

...
...

. . .
...

(-1)⟨0,2
u−1⟩ (-1)⟨1,2

u−1⟩ . . . (-1)⟨2
u−1,2u−1⟩

×


pl0
pl1
pl2
...

pl2u−1

 =


1
0
0
...
0

+


0

2θl1
2θl2
...

2θl2u−1

 (19)

For convenience, we denote the matrices participating in (19) as M , P , C1, and
C2, respectively. Thus, we can write:

M × P = C1 +C2.

The description of the solution(s) for this system depends on the structure
of M . For some initial values, we compute M . At u = 1, M is:

M =

[
(−1)⟨0,0⟩ (−1)⟨0,1⟩

(−1)⟨1,0⟩ (−1)⟨1,1⟩
]
=

[
1 1
1 -1

]
.

At u = 2, M is:

M =


1 1 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 -1 1

 .

Upon closer inspection, it turns out that M is equivalent to a Hadamard
matrix of size 2u×2u, denotedH2u . The Hadamard matrix is recursively defined,
with H1 = [1], and H2k defined as:

H2k =

[
H2k−1 H2k−1

H2k−1 −H2k−1

]
. (20)
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The equivalence of M and H2u is based on the following property of the
(−1)⟨i,j⟩ mapping. Let A and B be u-bit variables, and let A′ and B′ be u+1-bit
variables constructed from A and B by prepending bits au and bu as A′ = au∥A
and B′ = bu∥B. We have:

(−1)⟨A
′,B′⟩ =

{
−(−1)⟨A,B⟩ if both au and bu are 1,

(−1)⟨A,B⟩ otherwise.

Returning to our main discussion, by the properties of Hadamard matrices,
the inverse of M is computed as:

M−1 =
1

2u
M .

Since M is full rank, there is a unique solution for P that satisfies:

M × P = C1.

We denote this solution by P 1. Finding P 1 is straightforward, and it can be
readily verified that P 1 is the uniform distribution, i.e., all entries of P 1 are 1

2u .
It remains to study the structure of the solutions for:

M × P = C2.

We denote these solutions by P 2, and they can be derived as:

M × P 2 = C2 ⇒ P 2 =
1

2u
M ×C2.

Hence, each entry P 2(β) for 0 ≤ β ≤ 2u − 1 is given by:

P 2(β) =
1

2u

2u−1∑
h=1

2M(β, h)θlh =
1

2u−1

2u−1∑
h=1

M(β, h)θlh. (21)

By adding the solutions corresponding to C1 and C2, we can write:

∀β ∈ F2u , plβ =
1

2u
+

1

2u−1

2u−1∑
h=1

M(β, h)θlh.

Finally, we have:

AdvX = E
l

[
max
β∈F2u

Pr(X = β|l)− 1

2u

]
= E

l

[
max

β
plβ −

1

2u

]

= E
l

[
max

β

1

2u−1

2u−1∑
h=1

M(β, h)θlh

]

≤(I) E
l

[
max

β

1

2u−1

2u−1∑
h=1

∣∣∣M(β, h)θlh

∣∣∣]

=(II) E
l

[
1

2u−1

2u−1∑
h=1

∣∣∣θlh∣∣∣
]

=(III)
1

2u−1

2u−1∑
h=1

µh < 2max
h

µh,

(22)
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where,

– step (I) is because sum of elements is less than sum of their absolute values.
– step (II) follows since all entries of M are either +1 or −1.
– step (III) follows from El

[∣∣θlh∣∣] = µh, shown at the initial parts of the proof.

The right side of (III) equals the upper bound claimed in the lemma. For the
lower bound, assuming that h∗ = argmaxh µh, we revisit (22) and write as
follows:

AdvX = E
l

[
max

β

1

2u−1

2u−1∑
h=1

M(β, h)θlh

]

≥(I) E
l,M(β,h∗)=Sign(θl

h∗ )

[
1

2u−1

2u−1∑
h=1

M(β, h)θlh

]

=(II)
1

2u−1 E
l

[∣∣∣θlh∗

∣∣∣]+ 1

2u−1 E
l

 ∑
h ̸=h∗

E
M(β,h∗)=Sign(θl

h∗ )

[M(β, h)]θlh


=(III)

1

2u−1
max

h
µh,

(23)

where,

– step (I) follows since instead of choosing β that maximizes the sum, β is
chosen randomly from those that satisfy M(β, h∗) = Sign(θlh∗). For com-
pleteness, we also assume that Sign(0) = 1.

– step (II) follows since Sign(θlh∗)θlh∗ = |θlh∗ |. Also, for any a, b in {−1, 1} and
h ̸= h∗, we can show that Pr(M(β, h) = a |M(β, h∗) = b) = 1

2 . Hence, we
have EM(β,h∗)=b[M(β, h)] = 0.

– step (III) follows from El

[∣∣θlh∣∣] = µh. ⊓⊔

Properties of the Upper Bounds in Theorem 1. We continue with the
convention established in the proof and denote Adv⟨X,h⟩ as µh.

Theorem 1 limits the adversary’s advantage AdvX by stating that:

AdvX ≤
1

2u−1

∑
h̸=0

µh.

Our first objective is to show that, for certain leakage models, this bound is
achievable. Then, we will prove that for any δ-noisy leakage function, 1

2u−1

∑
h̸=0 µh

is less than δ, which aligns with the bound AdvX ≤ δ as shown in Lemma 1.

Achievability. Consider the extreme case where L(X) = X. In this case, we have
µh = 1

2 for all h ∈ [1, 2u − 1]. Substituting this into the inequality AdvX ≤
1

2u−1

∑
h̸=0 µh, we get:

AdvX ≤
1

2u−1

(
(2u − 1)

1

2

)
= 1− 1

2u
.
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On the other hand, from the definition of AdvX , we have:

AdvX = Pr(X̂ = X)− 1

2u
= 1− 1

2u
.

The equivalence of these two expressions demonstrates that the upper bound is
indeed achievable in this case.

Tightness. In the following, we prove a more interesting property of the given
upper bound, demonstrating its closeness to the actual value of AdvX .

Lemma 6. For X ∈ F2u with a leakage function such that SD(X ; X | L(X)) =
δ, we have:

1

2u−1

2u−1∑
h=1

µh ≤ δ.

Proof. Let {pl0, pl1, . . . , pl2u−1} be the posterior distribution of X given a leakage
instance l. Since ⟨X,h⟩ is a binary random variable, we can compute µh as:

µh =
1

2
E
l

∣∣∣∣∣∣
∑
⟨β,h⟩=0

plβ −
1

2

∣∣∣∣∣∣+
∣∣∣∣∣∣

∑
⟨β,h⟩=1

plβ −
1

2

∣∣∣∣∣∣
 , (24)

where β ranges over F2u . Using this notation, we also have:

δ =
1

2
E
l

∑
β

∣∣∣∣plβ − 1

2u

∣∣∣∣
 .

Define qlβ as:

qlβ = plβ −
1

2u
.

Then, we have
∑

β q
l
β = 0, and since for any h ̸= 0, ⟨β, h⟩ is 1 for half of the β

values and 0 for the other half, the computations of δ and µh become:

µh =
1

2
E
l

∣∣∣∣∣∣
∑
⟨β,h⟩=0

qlβ

∣∣∣∣∣∣+
∣∣∣∣∣∣

∑
⟨β,h⟩=1

qlβ

∣∣∣∣∣∣
 , δ =

1

2
E
l

∑
β

∣∣qlβ∣∣
 . (25)

By applying the triangle inequality to absolute values, it is straightforward to
see that for any h, we have µh ≤ δ. However, this result alone does not prove
the lemma, so we require a more detailed analysis.

We first observe that if the signs of a and b differ in a sum like |a + b + c|,
then:

|a+ b+ c| ≤ |a+ b|+ |c| = |a|+ |b| − 2min{|a|, |b|}+ |c|.

We will use this inequality successively in the proof. However, direct application
poses a challenge: we need to know the outcome of many pairs of the form
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min{qlβ , qlβ′}. To address this, we propose decomposing the qlβ values to avoid
this ordering issue.

For each qlβ > 0, there exists a decomposition as qlβ = aβ,0 + aβ,1 + · · · +
aβ,2u−1, where each aβ,i is positive. For any qlα ≤ 0, we can write:

qlα = −

2u−1∑
β=0

aβ,α

 .

When qlβ > 0 and qlα ≤ 0 appear in an absolute value sum, applying the inequal-
ity yields:

|qlβ + qlα + c| ≤ |qlβ |+ |qlα| − 2aβ,α + |c|.

This rule can be generalized to sums involving multiple positive and negative
terms. Suppose qlβi

are positive and qlαj
are negative. Generalizing the inequality,

we can write:∣∣∣∣∣∣
∑
i∈I

qlβi
+
∑
j∈J

qlαj

∣∣∣∣∣∣ ≤
∑
i∈I
|qlβi
|+

∑
j∈J
|qlαj
| − 2

∑
i∈I

∑
j∈J

aβi,αj
.

Now, applying this to the computation of µh in (25), we can show that
each pair qlβ > 0 and qlα ≤ 0 appears in the same absolute sum for half of
the h ∈ [1, 2u − 1]. For each such pair, there will be a loss factor of −2aβ,α.
Corresponding to each such pair inside

∑2u−1
h=1 µh, there will be a loss factor of

− 2u−1
2 (2aβ,α). The total amount of loss for all pairs is:

−
∑
β

∑
α

2u − 1

2
(2aβ,α) = −(2u − 1)

∑
α

∑
β

aβ,α

 = (2u − 1)
∑

α,qlα≤0

(−qlα).

Since
∑

i q
l
i = 0, we have:

∑
α,qlα≤0

−qlα =
∑

β,qlβ>0

qlβ =
1

2

2u−1∑
i=0

|qli|.

Putting everything together, we obtain:

2u−1∑
h=1

µh ≤
2u − 1

2
E
l

[
2u−1∑
i=0

|qli|

]
−2u − 1

4
E
l

[
2u−1∑
i=0

|qli|

]
=

2u − 1

4
E
l

[
2u−1∑
i=0

|qli|

]
=

2u − 1

2
δ.

(26)

Consequently, we have:

1

2u−1

2u−1∑
h=1

µh ≤
2u − 1

2u
δ < δ.

This proves the lemma. ⊓⊔
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Application of Theorem 1. This theorem expresses the side-channel security
ofX in terms of the security of the binary random variables ⟨X,h⟩. This approach
simplifies the relatively difficult task of estimating AdvX [l← L(X)] by reducing it
to the more straightforward computation of the terms µh = Adv⟨X,h⟩[l← L(X)].
The power of this technique becomes especially evident when dealing with more
complex structures. In this subsection, we apply it to the case of single mask
encoding.

We recall that in the masking domain, given the leakage L(X) for an encod-
ing X = {X1, . . . , Xn} of a secret X, our goal is to estimate AdvX [l ← L(X)].
Additionally, for each value of h, we have the following binary equation:

⟨X,h⟩ = ⟨X1, h⟩ ⊕ · · · ⊕ ⟨Xn, h⟩.

This equation can be interpreted as the masked encoding of ⟨X,h⟩ using the
shares ⟨Xi, h⟩. Moreover, from Lemma 5, we deduce that for a binary secret
⟨X,h⟩, the following holds:

Adv⟨X,h⟩[l← L(X)] = 2n−1
(
Adv⟨Xi,h⟩[l← L(Xi)]

)n
.

Now, applying Theorem 1, we obtain:

AdvX [l← L(X)] ≤ 1

2u−1

2u−1∑
h=1

2n−1µn
h = 2n−u

2u−1∑
h=1

µn
h ≤ ∆ ≤(I) 2

n−1δn, (27)

where ∆ = SD(X;X | L(X)), and (I) follows from Lemma 4.

Interpretation in Terms of Mutual Information. The inequality

AdvX [l← L(X)] ≤ 1

2u

2u−1∑
h=1

(2µh)
n

shows that if (2µh) < 1 for all h, then AdvX converges to zero as n increases.
Furthermore, the condition µh < 1

2 is satisfied whenever MI
(
⟨X,h⟩; L(X)

)
< 1.

From information theory [8], for the binary random variable ⟨X,h⟩, we have:

MI
(
⟨X,h⟩; L(X)

)
= 1 − H

(
1
2 ± µh

)
, (28)

where H(·) denotes the binary entropy function.2 The mutual information attains
its maximum value of 1 only when 1

2 ± µh is 0 or 1, which requires µh = 1
2 . In

this scenario, the leakage L(X) fully reveals ⟨X,h⟩.

2 Recall that the capacity of a Binary Symmetric Channel (BSC) between A and B
is MI(A;B) = H(A) − H(A | B) = log2

(
|A|

)
− H(Pe) = 1 − H(Pe), where Pe is the

probability of incorrectly estimating A given B. In our setting, µh = |(1−Pe)− 1
2
| =

|Pe − 1
2
|, so Pe = 1

2
± µh.
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Example 3. We revisit Example 2 to demonstrate the power of our decomposi-
tion approach. In that example, for X ∈ F22 with L(X) = (x1 ⊕ e1)∥(x0 ⊕ e0)
and Pr(e0 = 1) = Pr(e1 = 1) = e, we had:

δ = SD(X ; X | L(X)) =

(
1

2
− e

)(
3

2
− e

)
.

For masked encoding, we derived:

∆ = SD(X ; X | L(X)) = 2n−1
(
1

2
− e

)n (
1 +

1

2
(1− 2e)n

)
.

For this leakage function, from Example 1 (by setting u = 1), we know µ1 = µ2 =
1
2−e. Recall that µ1 and µ2 represent the adversary’s advantage in estimating the
first and second bits of X, respectively. Similarly, µ3 represents the adversary’s
advantage in estimating x0 ⊕ x1, for which we can show that:

µ3 =
1

2
− 2e(1− e).

Alternatively, by deploying Theorem 1, we get:

AdvX [l← L(X)] ≤ 1

2
(µ1 + µ2 + µ3) =

(
1

2
− e

)(
3

2
− e

)
= δ.

For masked encoding, using (27), we write:

AdvX [l← L(X)] ≤ 2n−2 (µn
1 + µn

2 + µn
3 ) = 2n−1

(
1

2
− e

)n (
1 +

1

2
(1− 2e)n

)
= ∆.

(29)

This result underscores the effectiveness of our approach. For the given leak-
age function, setting e = 0.1 yields δ = 0.56. Because δ > 1

2 , Lemma 4 does
not determine whether secure masking is achievable. Meanwhile, using the MI-
based criterion with e = 0.1 gives MI(X; L(X)) = 1.06, which exceeds the
MI(X; L(X)) < 0.72 threshold required by Ito et al. [20] (see Subsection 1.1).
Thus, neither approach can confirm or deny secure masking in this setting. In
contrast, our method confirms that secure masking is indeed possible. ⊓⊔

Example 4. We previously introduced the leakage model ZV(X), defined as:

ZV(X) =

{
νa if X = 0,

νb ̸= νa otherwise.

For this model, we derive ϵmin = 1 using (4). Thus, the noisy-to-random probing
reduction cannot be used to analyze the security of masking in the presence of
this leakage function.

Alternatively, using our decomposition approach, we can compute µh as µh =
1
2u (using relation (24)) and obtain AdvX [l← L(X)] (using relation (27)) as:

AdvX [l← L(X)] ≤ 2n−u
2u−1∑
h=1

µn
h = (2u − 1)2n−u−nu,
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which indicates that the adversary’s advantage decreases with increasing mask-
ing order for u > 1. ⊓⊔

Application to Leakage Certification. Leakage certification laboratories
evaluate a given device and its cryptographic implementation to assess leak-
age and robustness against side-channel attacks (see [11, 29]). In doing so, they
typically compute metrics such as MI(X; L(X)) and SD(X;X | L(X)). Estimat-
ing these metrics requires knowledge of the distribution of (X, L(X)), which can
be obtained either via parametric methods (e.g., assuming a Gaussian distribu-
tion and estimating its parameters) or non-parametric methods (e.g., histogram-
based) [2, 16].

Our work proposes an additional metric for evaluating a device’s leakage.
Specifically, for a u-bit value X, we require that

MI
(
⟨X,h⟩; L(X)

)
< 1 for all h ∈ [1, 2u − 1].

Masking provides side-channel protection if and only if this condition holds for
every h.

Using Equation (28), we can restate the results of Theorem 1 (and the masked
variant in Equation (27)) in terms of mutual information as follows:

1

2u
max
h

∣∣∣∣ 12 − H−1
(
Ih

)∣∣∣∣n ≤ AdvX [l← L(X)] ≤
(
2 max

h

∣∣ 1
2 − H−1

(
Ih
)∣∣)n

, (30)

where Ih = 1−MI
(
⟨X,h⟩; L(X)

)
, and H−1 is the inverse of the binary entropy

function.

3.3 Masking in Odd Prime Fields

Grassi et al. [17], building on earlier results from Dziembowski et al. [13], demon-
strated that when the leakage function is too informative, such as when L(X) =
HW(X), masking is only effective in odd prime fields. This finding has motivated
efforts to better understand the aspects of prime field masking [14].

In this section, we contribute to this line of research by presenting new find-
ings. As a preliminary result, we show that for a specific class of leakage functions,
the adversary’s advantage AdvX decays more rapidly with increasing masking
order n in prime fields (Lemma 7). We then establish a general condition under
which masking effectively reduces the AdvX metric (Lemma 8), and in doing so,
we prove a conjecture posed by Dziembowski et al. [13] (Theorem 2).

Class of Symmetric Leakages. We define a leakage class as symmetric if,
for a uniform X ∈ Fq, observing an instance l of the leakage transforms the

distribution of X | l to (pe0 , pe1 , . . . , peq−1
), where

∑q−1
i=0 pei = 1, and pei denotes

the probability mass on the element X + i. 3 In this notation, pe0 represents the

3 We refer to this as a symmetric leakage class because it generalizes the binary sym-
metric channel.
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probability of a correct estimation, and we have:

AdvX = pe0 −
1

q
.

In a masked encoding with n = 2, let X1 and X2 represent the shares of
X, such that X = X1 +X2. After observing the leakages, the adversary forms
estimates X̂1 and X̂2. We assume that the best estimate of X is derived as
X̂1 + X̂2. The adversary correctly recovers X if there are no errors in either X1

or X2, or if the errors in estimating X1 and X2 are i and q − i, respectively.
Consequently, the adversary’s success probability, denoted p′e0 , is updated as:

p′e0 = (pe0)
2 +

q−1∑
i=1

peipeq−i
. (31)

Lemma 7. For the defined symmetric leakage class, when the field order is
prime, AdvX decays faster with increasing n.

Proof. In a prime field, i and q− i are distinct elements, and we can rewrite (31)
as:

p′e0 = (pe0)
2 +

q−1∑
i=1

peipeq−i
= (pe0)

2 + 2

q−1
2∑

i=1

peipeq−i
.

However, when q = 2u, q − i and i are equal, and we can rewrite (31) as:

p′e0 = (pe0)
2 +

q−1∑
i=1

p2ei .

By applying the inequality 2ab ≤ a2 + b2, we can deduce that:

(pe0)
2 + 2

q−1
2∑

i=1

peipeq−i ≤ (pe0)
2 +

q−1∑
i=1

p2ei .

This proves that p′e0 , and consequently the adversary’s advantage, is smaller in
prime fields than in fields where q = 2u. ⊓⊔

Condition Under Which AdvX Decreases with Masking. For a masked
encoding of the secret X, we show that if there is no hole in the posterior
distribution of the shares after receiving the leakage vector, then AdvX will
decrease.

Definitions. For later reference, we define a leakage instance l as dummy if it
causes no change in the distribution of X | l.4 With a dummy leakage, the
peak point of the posterior distribution will be 1

q . A hole in a distribution is an
element of its domain with zero probability mass, and the support of a random
variable is the number of elements in its domain with non-zero probability mass.
We denote the support of X as |X|.
4 We refer to it as dummy because any random variable that is independent of X will
have a similar effect.
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Problem Statement. Let X1 and X2 be shares of X in Fq, and suppose the
adversary receives leakage instances l1 ← L(X1) and l2 ← L(X2) corresponding
to these two shares. The probability distributions of X1 | l1 and X2 | l2 are
denoted by P1 = (p10, p

1
1, . . . , p

1
q−1) and P2 = (p20, p

2
1, . . . , p

2
q−1), respectively. Let

p1i∗ and p2j∗ be the peak points of the distributions P1 and P2.
To estimate the value of X, the maximum a posteriori (MAP) adversary

computes the distribution of the sum (X1 | l1) + (X2 | l2). We denote the
resultant distribution by P = (p0, p1, . . . , pq−1). The adversary declares the index

of the peak point of P as X̂, and their advantage is denoted as AdvX [l1, l2 ←
L(X1), L(X2)]. We seek conditions that guarantee:

AdvX [l1, l2 ← L(X1), L(X2)] < AdvXi
[li ← L(Xi)],

which implies that masking has strictly improved the side-channel security of X.

Lemma 8. If, for at least one non-dummy instance of leakage, there is no hole
in the posterior distributions P1 and P2, that is, minP1 > 0 and minP2 > 0,
then the adversary’s advantage will strictly decrease.

Proof. For 0 ≤ i ≤ q − 1, define ζi =
p1
i

p1
i∗

and ξi =
p2
i

p2
j∗
. Since p1i∗ and p2j∗ are

the peak values of the probability distributions, we have ζi ≤ 1 and ξi ≤ 1.
Substituting into the normalization conditions

∑q−1
i=0 p1i = 1 and

∑q−1
i=0 p2i = 1,

we obtain:

p1i∗ =
1

ζ0 + ζ1 + · · ·+ ζq−1
, and p2j∗ =

1

ξ0 + ξ1 + · · ·+ ξq−1
.

Let k∗ be the peak point of the distribution P (introduced earlier in the
problem). We now prove that pk∗ ≤ min{p1i∗ , p2j∗}. Without loss of generality,

assume min{p1i∗ , p2j∗} = p1i∗ . Hence, we aim to show that pk∗ ≤ p1i∗ , which implies:

pk∗ =

q−1∑
i=0

p1k∗−i p
2
i = p1i∗ p

2
j∗

q−1∑
i=0

ζk∗−i ξi ≤ p1i∗ .

Since p1i∗ > 0, the above inequality holds if:

q−1∑
i=0

ζk∗−i ξi ≤
q−1∑
i=0

ξi,

which is always true because ζi ≤ 1.
Moreover, equality pk∗ = p1i∗ holds only if:

∀i ∈ [0, q − 1], ζk∗−i ξi = ξi. (32)

Since P2 has no holes (i.e., ξi > 0 for all i), the condition in (32) is only possible
if ζi = 1 for all i. This implies that p1i∗ = 1

q , meaning the leakage is dummy,
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which contradicts our assumptions. Thus, pk∗ = min{p1i∗ , p2j∗} cannot hold, and
we must have pk∗ < min{p1i∗ , p2j∗}.

For all instances of leakage, pk∗ ≤ min{p1i∗ , p2j∗}, and for at least one instance,

pk∗ < min{p1i∗ , p2j∗}. Therefore, taking expectations, we have:

E
l
[pk∗ ] < E

l
[p1i∗ ] = E

l
[p2j∗ ] ⇒ AdvX [l← L(X)] < AdvX [l← L(X)]. ⊓⊔

Reaching a Hole-Free Posterior Distribution. When the leakage function is less
noisy, such as with L(X) = HW(X), there will be holes in the posterior distribu-
tion of Xi | L(Xi), preventing the application of Lemma 8. However, increasing
the number of shares resolves this issue, as we explain below.

Although Lemma 8 is confined to the simple case of n = 2, the results
generalize easily to higher values of n. Let X1, . . . , X2n be shares of X, and let
L(X1), . . . , L(X2n) represent the corresponding leakage functions. The problem
of estimating X from the leakage vector can be decomposed into two steps: first,
estimating X1 + · · ·+Xn and Xn+1 + · · ·+X2n from their respective leakages,
and second, estimating X from the distribution of their sum.

If, from a certain threshold order n0 onward, the distribution of (X1 + · · ·+
Xn) | (L(X1), . . . , L(Xn)) has no holes, then by applying Lemma 8, we know
that AdvX [l1, . . . , l2n ← L(X1), . . . , L(X2n)] will decrease with n, demonstrating
the security of the mask encoding.

By the independence of shares and the internal randomness of leakage func-
tions, the probability distribution (X1+ · · ·+Xn) | (L(X1), . . . , L(Xn)) simplifies
to X1 | L(X1) + · · ·+Xn | L(Xn). At any instance of the leakage vector, Xi | li
are probability distributions, and we want to know how large the support of
X1 | l1 + · · ·+Xn | ln will be. Specifically, if the support reaches |Fq|, by defini-
tion, there will be no holes in the summed probability distribution.

Lemma 9 (Generalized Cauchy-Davenport Theorem). Let Z1, . . . , Zt be
independent random variables with supports |Z1|, . . . , |Zt| defined in the same
prime field Fq. For the support of their sum, we have:

|Z1 + Z2 + · · ·+ Zt| ≥ min{|Z1|+ |Z2|+ · · ·+ |Zt| − t, q}.

Proof. This is a direct generalization of the Cauchy-Davenport theorem. The
original statement is for t = 2. In the side-channel literature, the t = 2 case was
used in the work of Dziembowski et al. [13]. ⊓⊔

Using this lemma, we deduce that if Xi | li places probability mass on more
than one element of Fq (i.e., if |Xi | li| > 1), then for some n ≥ n0, the distri-
bution X1 | l1 + · · ·+Xn | ln will have no holes. Consequently, from that point
onward, AdvX will be decreasing.

Our discussion here is intended to outline the asymptotic behavior of the
adversary’s advantage; it is not meant to provide an efficient way of obtaining this
advantage. Nonetheless, the methodology helps to prove the following conjecture
for the AdvX security metric. The original conjecture was made for the statistical
distance ∆ metric.
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Theorem 2 (Conjectured in [13]). Let X be a secret in an additive group
G with largest subgroup H, and let Xi be its shares. If the leakage satisfies δ =

SD(Xi ; Xi | L(Xi)) < 1 − |H||G| , then AdvX [l ← L(X)] decreases asymptotically
as n increases.

Proof. We must show that under the given leakage, the summed posterior dis-
tribution (

X1 | L(X1)
)
+ . . . +

(
Xn | L(Xn)

)
eventually has no holes, i.e., no elements in G that are assigned zero probabil-
ity. Once we establish this, Lemma 8 immediately implies that the adversary’s
advantage decreases with n.

Step 1: Showing the existence of mass in G − H. We first prove that
there exists at least one leakage instance l for which the conditional distribution
X | L(X) = l has nonzero mass on some element of G−H. Let A be the set of all
α ∈ G such that Pr(X = α | l) < 1

|G| . Suppose, for the sake of contradiction, that

the support of X | l is contained entirely in H, i.e., it assigns zero probability to
every element in G−H. Then, the statistical distance can be evaluated as:

δ = SD(X ; X | L(X)) =
∑
l

Pr(l)TV
(
X, X | l

)
=

∑
l

Pr(l)
∑
α∈A

[
1
|G| − Pr(X = α | l)

]

=
∑
l

Pr(l)
∑
α∈A
α∈H

[
1
|G| − Pr(X = α | l)

]
+ (|G| − |H|)

(
1
|G| − 0

)
.

(33)

Because G−H is excluded from the distribution, the second term in (33) simpli-

fies to 1− |H||G| . Hence, if the support were entirely in H, we would get δ ≥ 1− |H||G| ,
contradicting the assumption δ < 1 − |H||G| . Therefore, there must be a leakage

instance l such that X | L(X) = l has support on at least one element of G−H.

Step 2: Covering all of G through summation. A result by Stromberg [31]
shows that sums of elements in G − H will eventually cover the entire group
G. In our setting, this implies that the combined posterior distribution over
X1 + · · ·+Xn, conditioned on L(X1), . . . , L(Xn), will place nonzero probability
on every element of G once n is large enough. Thus, the distribution becomes
hole-free.

Step 3: Concluding the proof. By Lemma 8, when the distribution is hole-
free, the adversary’s advantage AdvX [l ← L(X)] decreases with n. This com-
pletes the proof. ⊓⊔

4 Security of Linear Gadgets

Our discussion so far has been focused on standalone secrets and their masked
encodings. In this section, we extend the analysis to study the adversary’s ad-
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vantage in more complex structures, specifically linear gadgets. Our primary goal
is to demonstrate the applicability of the proposed decomposition approach for
security evaluation in these gadgets.

Gates and Gadgets. A gadget is a family of circuits (one for each order n)
designed to compute the masked counterpart of a gate. Let G : (F2u)

t → F2u be
a gate with fan-in (number of input variables) t and fan-out 1. For example, XOR
and AND gates have t = 2. A gadget for gate G, denoted as SG : (Fn

2u)
t → Fn

2u ,
accepts masked encodings as inputs and produces masked encodings as outputs.

A refresh gadget, denoted as X ′ = SR(X), has fan-in and fan-out of 1. It
updates the encoding of input X while preserving the secret, i.e., (⊕n

i=1Xi) =
(⊕n

i=1X
′
i), where Xi and X ′i represent the input and output shares. An example

of an F2-linear refresh gadget is SR-SNI [1], described in Algorithm 1.

Algorithm 1 SR-SNI
Input X = (X1, . . . , Xn)
Output X ′ = (X ′1, . . . , X

′
n)

1: for i = 1 to n do
2: for j = i+ 1 to n do

3: r
$← F2u

4: Xi = Xi ⊕ r
5: Xj = Xj ⊕ r

6: return X ′ = X

4.1 Problem Statement

Let Σn = {V1, . . . , VT(n)} represent the set of intermediate variables in an F2-
linear masked gadget processing a secret X. We assume that X and the elements
of Σn are all within the same field F2u . In addition to the shares of X, Σn

includes other random variables (RVs) whose leakage might assist the adversary
in estimating X. Our goal is to determine the extent to which these leakages
empower the adversary (via MAP estimation).

The assumption that the circuit is F2-linear implies the existence of a matrix

P n ∈ FP(n)×(T(n)+1)
2 such that:

P n × [X,V1, . . . , VT(n)]
† = 0P(n)×1. (34)

P n fully describes the circuit, as it can be used to compute outputs given in-
puts.5 The P(n) rows of P n represent the parity relations among the random
variables [X,Σn], with any other dependencies between [X,Σn] expressible as
linear combinations of these rows. The adversary is assumed to know P n or any
equivalent linear form of it.6 Additionally, by conducting side-channel measure-
ments, the adversary obtains T(n) leakages as:

Ln = [L(V1), . . . , L(VT(n))]. (35)

5 We consider randomness variables as inputs.
6 The results do not depend on the specific representation of P n.
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The adversary’s ultimate objective is to use the leakage information Ln and the
parity relations P n to estimate the realized value of the secret X. Our aim is to
determine their advantage, denoted as AdvX [ln ← Ln].

MAP Adversary and Exact AdvX [ln ← Ln]. Let Sn denote the set of all
solutions that satisfy the system of equations described by P n (given in (34)).
Each element S ∈ Sn is a (T(n)+1)-length tuple. Let S(0) represent the value of
X in this solution. Given a leakage instance ln, the MAP adversary’s estimation
of X, denoted as X̂ (the most probable value of X), is computed as:

X̂ = argmax
α∈F2u

∑
S∈Sn,S(0)=α

Pr(S | ln). (36)

The adversary’s advantage AdvX [ln ← Ln], by definition, is computed as:

AdvX [ln ← Ln] = E
ln

[
Pr

(
(X̂ = X) | ln

)]
. (37)

A Non-Tight Upper Bound for AdvX [ln ← Ln]. By employing the noisy-
to-random probing reduction, we can derive an upper bound for AdvX [ln ← Ln]
that is more practical to compute. The key idea is to replace the leakage L(Vi)
with ϕϵ(Vi), where ϕϵ(.) is the erasure function defined in Section 2.2 with an
erasure probability of 1−ϵ. Here, ϵ ≥ ϵmin, with ϵmin calculated from the leakage
function L via (4). Using similar reasoning to that in (5), we can apply the
reduction to obtain the following upper bound:

AdvX [ln ← Ln] ≤ AdvX
[
l1, . . . , lT(n) ← ϕϵ(V1), . . . , ϕ

ϵ(VT(n))
]
. (38)

For ease of notation, we denote AdvX [l1, . . . , lT(n) ← ϕϵ(V1), . . . , ϕ
ϵ(VT(n))] as

Adv(q, n, ϵ), which represents the adversary’s advantage in estimating the secret
X after receiving the random probing leakage of all intermediates. A lower ϵ
indicates less information for the adversary, and hence a lower advantage. Thus,
we can express:

AdvX [ln ← Ln] ≤ Adv(q, n, ϵmin) ≤ Adv(q, n, ϵ). (39)

Jahandideh et al. [21] recently developed a framework to estimate Adv(q, n, ϵ)
in linear circuits. For example, they estimated Adv(q, n, ϵ) for the SR-SNI gadget
in Algorithm 1, for n < 30 and ϵ < 0.15, as:

Adv(q, n, ϵ) ≤ q − 1

q
ϵ0.6n. (40)

However, the gap in the noisy-to-random reduction for fields Fq with q > 2
can result in a loose or even trivial upper bound. For instance, with L(X) =
ZV(X) (defined in (8)), we have ϵmin = 1. Given that Adv(q, n, 1) equals 1, the
upper bound becomes trivial: Adv [ln ← Ln] ≤ 1.

In the following section, we demonstrate how our decomposition approach
can address this issue for certain leakage functions, leading to a tighter upper
bound for Adv [ln ← Ln] in F2u fields.
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4.2 Decomposition into Binary Systems

Our first observation is that in an F2-linear system such as

P n × [X,V1, . . . , VT(n)]
† = 0, (41)

the variables ⟨X,h⟩ and ⟨Vi, h⟩ are linearly related, and their dependencies are
described by the same matrix P n. More concretely, we present the following
lemma.

Lemma 10. Since the entries of P n are binary, for any h ∈ [1, 2u − 1], the
system P n × [X,V1, . . . , VT(n)]

† = 0 implies that

P n × [⟨X,h⟩, ⟨V1, h⟩, . . . , ⟨VT(n), h⟩]† = 0. (42)

Proof. For the inner product of u-bit integers h, V1, and V2, we can write:

⟨V1 ⊕ V2, h⟩ = ⟨V1, h⟩ ⊕ ⟨V2, h⟩. (43)

For a binary scalar b, by testing both possible values of b, we can verify that:

⟨bV, h⟩ = b⟨V, h⟩. (44)

With iterative application of these rules, for binary coefficients {b1, b2, . . . , bT(n)}
and u-bit variables {X,V1, . . . , VT(n)}, we can show that:

⟨(b1X ⊕ b2V1 ⊕ . . .⊕ bT(n)VT(n)), h⟩ = b1⟨X,h⟩ ⊕ b2⟨V1, h⟩ ⊕ . . .⊕ bT(n)⟨VT(n), h⟩. (45)

Since P n consists of P(n) equations, each with coefficients as in equation (45),
the lemma follows directly by applying these results to all P(n) equations. ⊓⊔

A Tighter Upper Bound for AdvX [ln ← Ln]. The adversary also has access
to side-channel information for each intermediate. From Theorem 1, given the
leakage L(V ), we know that:

AdvV [l← L(V )] < 2max
h

Adv⟨V,h⟩[l← L(V )] = 2µh∗ , (46)

where h∗ is the index of the maximum value. Recall that we defined µh as the ad-
versary’s advantage in recovering the binary ⟨V, h⟩ from L(V ), and from Lemma
1 and 2, the corresponding ϵmin for a binary RV ⟨V, h⟩ is twice its advantage,
i.e.,

ϵhmin = 2µh. (47)

The systems for ⟨X,h⟩ and X are the same. Therefore, we assume that the
adversary’s advantage in attacking the system for X is less than their advan-
tage in attacking the subsystem defined by ⟨X,h∗⟩, which is supplied with a
twice-informative leakage (in the advantage metric)—that is, a leakage with a
binary advantage of 2µh∗ . We denote this hypothetical leakage as L′(⟨V, h∗⟩).
This assumption is valid, at least in cases where the distribution of non-correct
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elements is uniform, such as with ZV(V ) leakage (defined in (8)). Consequently,
we can write:

AdvX [ln ← Ln] ≤ Adv⟨X,h∗⟩[l
′
n ← L′n]. (48)

By applying the noisy-to-random probing reduction to the binary ⟨Vi, h
∗⟩

intermediates, as in (39), we obtain:

Adv⟨X,h∗⟩[l
′
n ← L′n] ≤ Adv(2, n, 2ϵh

∗

min), (49)

where ϵh
∗

min = 2µh∗ . Putting it all together, we have:

AdvX [ln ← Ln] ≤ Adv(2, n, 4µh∗). (50)

Example 5. To illustrate the usefulness of the upper bound in (50), we apply
it to the leakage function ZV(V ) and the SR-SNI gadget. From Example 4, for
ZV(V ), we know that µh = 1

2u , and from (40), we have:

AdvX [ln ← Ln] ≤ Adv(2, n, 4µh∗) ≤ 1

2

(
1

2u−2

)0.6n

,

which is valid if 4µh∗ < 0.15, a condition satisfied when u ≥ 5.

Without the decomposition approach, we had ϵmin = 1, and the bound for
AdvX [ln ← Ln] was trivial. ⊓⊔

We leave the question of under what broader conditions the assumption made
in (48) holds for future research.

5 Conclusion

In this work, we identified the necessary and sufficient noise requirements for
ensuring the security of masked encodings in binary extended fields. Our findings
show that the leakage must not reveal any linear combination of bits of an
intermediate value, thereby resolving a longstanding open question regarding the
minimum noise needed for secure masking. This result is especially relevant in
high-SNR settings, where state-of-the-art noise assumptions are too restrictive.

We further demonstrated the applicability of our decomposition approach
for analyzing the security of masked gadgets and circuits, focusing on linear
gadgets. By decomposing into binary subfields, we showed that security metrics
can be efficiently computed, enabling more precise noise thresholds for secure
implementations.

While our analysis concentrated on linear gadgets, extending this framework
to a broader range of protected circuits remains an open problem. In future
work, we plan to investigate non-linear gadgets and complete circuits, pushing
the limits of noise-based side-channel countermeasures.
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17. Grassi, L., Masure, L., Méaux, P., Moos, T., Standaert, F.: Generalized Feistel
Ciphers for Efficient Prime Field Masking. In: Joye, M., Leander, G. (eds.) Ad-
vances in Cryptology - EUROCRYPT 2024 - 43rd Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Zurich, Switzer-
land, May 26-30, 2024, Proceedings, Part III. Lecture Notes in Computer Science,
vol. 14653, pp. 188–220. Springer (2024). https://doi.org/10.1007/978-3-031-58734-
4“˙7, https://doi.org/10.1007/978-3-031-58734-4 7

18. Guo, Q., Grosso, V., Standaert, F., Bronchain, O.: Modeling
soft analytical side-channel attacks from a coding theory view-
point. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(4),
209–238 (2020). https://doi.org/10.13154/TCHES.V2020.I4.209-238,
https://doi.org/10.13154/tches.v2020.i4.209-238

19. Heuser, A., Rioul, O., Guilley, S.: Good is not good enough. In: Batina, L., Rob-
shaw, M. (eds.) Cryptographic Hardware and Embedded Systems – CHES 2014.
pp. 55–74. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

20. Ito, A., Ueno, R., Homma, N.: On the Success Rate of Side-Channel At-
tacks on Masked Implementations: Information-Theoretical Bounds and Their
Practical Usage. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) Pro-
ceedings of the 2022 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2022, Los Angeles, CA, USA, November 7-11,

32



2022. pp. 1521–1535. ACM (2022). https://doi.org/10.1145/3548606.3560579,
https://doi.org/10.1145/3548606.3560579

21. Jahandideh, V., Mennink, B., Batina, L.: An Algebraic Approach
for Evaluating Random Probing Security With Application to AES.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2024(4), 657–689 (2024).
https://doi.org/10.46586/TCHES.V2024.I4.657-689

22. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Se-
crets of Smart Cards (Advances in Information Security). Springer-Verlag, Berlin,
Heidelberg (2007)

23. Masure, L., Rioul, O., Standaert, F.: A Nearly Tight Proof of Duc et
al.’s Conjectured Security Bound for Masked Implementations. In: Buhan,
I., Schneider, T. (eds.) Smart Card Research and Advanced Applications -
21st International Conference, CARDIS 2022, Birmingham, UK, November 7-
9, 2022, Revised Selected Papers. Lecture Notes in Computer Science, vol.
13820, pp. 69–81. Springer (2022). https://doi.org/10.1007/978-3-031-25319-5“˙4,
https://doi.org/10.1007/978-3-031-25319-5 4

24. Masure, L., Standaert, F.: Prouff and Rivain’s Formal Security Proof of Mask-
ing, Revisited - Tight Bounds in the Noisy Leakage Model. In: Handschuh, H.,
Lysyanskaya, A. (eds.) Advances in Cryptology - CRYPTO 2023 - 43rd Annual
International Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA,
August 20-24, 2023, Proceedings, Part III. Lecture Notes in Computer Science,
vol. 14083, pp. 343–376. Springer (2023). https://doi.org/10.1007/978-3-031-38548-
3“˙12, https://doi.org/10.1007/978-3-031-38548-3 12

25. Moos, T.: Static power SCA of sub-100 nm CMOS asics and the insecurity of mask-
ing schemes in low-noise environments. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2019(3), 202–232 (2019). https://doi.org/10.13154/TCHES.V2019.I3.202-
232, https://doi.org/10.13154/tches.v2019.i3.202-232

26. Obresmki, M., Ribeiro, J., Roy, L., Standaert, F.X., Venturi, D.: Improved Reduc-
tions from Noisy to Bounded and Probing Leakages via Hockey-Stick Divergences.
In: Reyzin, L., Stebila, D. (eds.) Advances in Cryptology – CRYPTO 2024. pp.
461–491. Springer Nature Switzerland, Cham (2024)

27. Prest, T., Goudarzi, D., Martinelli, A., Passelègue, A.: Unifying Leakage Models
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