
Post-Quantum Blind Signatures from
Matrix Code Equivalence

Veronika Kuchta1, Jason T. LeGrow2,3, and Edoardo Persichetti1

1 Department of Mathematics, Florida Atlantic University
2 Department of Mathematics, Virginia Polytechnic Institute and State University

3 Virginia Tech Center for Quantum Information Science and Engineering

Abstract. We construct a novel code-based blind signature scheme, us-
ing the Matrix Equivalence Digital Signature (MEDS) group action. The
scheme is built using similar ideas to the Schnorr blind signature scheme
and CSI-Otter, but uses additional public key and commitment informa-
tion to overcome the difficulties that the MEDS group action faces: lack of
module structure (present in Schnorr), lack of a quadratic twist (present
in CSI-Otter), and non-commutativity of the acting group. We address
security concerns related to public key validation, and prove the security
of our protocol in the random oracle model, using the security framework
of Kastner, Loss, and Xu, under a variant of the Inverse Matrix Code
Equivalence problem and a mild heuristic assumption. We also discuss
alternative techniques for constructing a code-based blind signature and
consider possible parameter sets and corresponding performance metrics.
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1 Introduction

A blind signature scheme is an interactive protocol between a signer and user,
which allows the user to obtain the signer’s signature on a message of their
choice, without revealing any information about that message. These protocols
were first proposed by Chaum [13] for digital currency, and they are now known
to have applications to e-voting [13], anonymous credentials [9], and blockchain
[38]. Blind signatures have been well studied by the cryptographic community
and there are many proposed protocols based on the RSA problem, the Diffie-
Hellman problem, and their variants [30,32,18,19,12].
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Unfortunately, schemes based on RSA and the Diffie-Hellman problem are
susceptible to quantum attacks due to Shor’s algorithm [37]. Given the huge
global investment currently being made in the development of large-scale quan-
tum computers, we must develop cryptographic protocols that are believed to re-
sist quantum attacks. We call these protocols post-quantum. The vast majority of
existing post-quantum blind signatures are lattice-based (e.g, [35,4,20,26,28,2]);
outside of these, there exist one multivariate blind signature scheme [29], and
one isogeny-based scheme [23,24]. There are also some proposals for code-based
schemes built from syndrome decoding (e.g., [8]), but these schemes either have
impractically large public key/signature sizes, or lack rigorous security proofs.

Many blind signature schemes are built from a Sigma protocol using a vari-
ant of the Fiat-Shamir transform. Unfortunately, unlike the “basic” Fiat-Shamir
protocol (which transforms any Sigma protocol into an ordinary digital signa-
ture), the transforms used to construct blind signatures typically use additional
structure present in the underlying Sigma protocol. In particular, Diffie-Hellman-
based protocols and many lattice-based protocols admit a module structure,
which makes their underlying Sigma protocols more amenable to blinding. In
contrast, the CSI-FiSh Sigma protocol [6], which is ubiquitous in isogeny-based
signature schemes, is built from a much more restrictive cryptographic group
action, and so it is not clear how to adapt prior techniques to the CSI-FiSh
setting. In [23,24], Katsumata, Lai, LeGrow, and Qin note that the group ac-
tion used in CSI-FiSh is slightly more expressive than a generic group action;
in particular, the presence of the quadratic twist makes it possible to compute
[a−1]∗E0 from [a]∗E0. This additional structure is sufficient for the construction
of isogeny-based blind signatures.

The cryptographic group action framework was first introduced by Bras-
sard and Yung [10], considered in the isogeny context by Couveignes [15] and
Rostovtsev and Stolbunov [34], and formalized and abstracted by Alamati, De
Feo, Montgomery, and Patranabis [3]. The cryptographic group framework has
been used almost exclusively in the description and analysis of CSIDH [11] and
derivative protocols. However, very recent works by Biasse, Micheli, Persichetti
and Santini [7] and Chou et al. [14] propose LESS and MEDS, two new sig-
nature schemes from code-based group actions. Schemes built from these group
actions run much faster than isogeny-based schemes, making them more useful
in contexts when space is not at a premium. However, these new group actions
some drawbacks compared with CSIDH: the groups are non-commutative, which
makes it difficult to construct a key exchange protocol (indeed, no such key ex-
change protocol has been proposed), and these group actions are less expressive
than the CSIDH group action, since they possess no module structure and no
analogue of the quadratic twist. Though LESS and MEDS can both naturally
be transformed into ring signature and linkable ring signature schemes, the non-
commutativity and lack of structure beyond that of an abstract group action
limit their flexibility, and so it is not obvious how to construct other exotic sig-
nature schemes or other advanced functionalities from LESS and MEDS. This
difficulty brings us to the main question of this work:
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Is it possible to construct a code-based post-quantum blind signature scheme
using the LESS or MEDS group action?

1.1 Our Contributions

We answer this question in the affirmative, through the following contributions.
Our primary contribution is to construct a novel code-based blind signa-
ture protocol, built upon the MEDS group action. Our scheme, MEDS-BS, is
similar to the construction of CSI-Otter, but crucially avoids the need for the
quadratic twist by including additional information in both the public key and in
the commitment phase of the interactive signing protocol. We prove the security
of our scheme in the model of Kastner, Loss, and Xu [21], establishing that our
scheme is secure in the classical random oracle model against polylogarithmic
concurrent signing sessions, assuming the difficulty of (a slight variant of) the
Inverse Matrix Code Equivalence problem [14, Problem 3].

Our new blind signature scheme also has a restriction on the kind of secret
keys that can be used. In particular, a MEDS public key is a single matrix
code X(1). This code should be equivalent to a fixed global public code X(0);
that is, X(1) = (A,B) ∗ X(0) for some (A,B) ∈ GLm(Fp) × GLn(Fp). This
equivalence is implicitly verified in the Sigma protocols used in the MEDS-
based constructions of [14]. Our protocol requires that the secret key matrices be
symmetric or antisymmetric, and requires additional public key information: in
particular, along with X(1), the signer must provide X(−1) := (A−1, B−1)∗X(0).
The analogous piece of information in CSI-Otter need not be included explicitly,
thanks to the quadratic twist. Since MEDS has no known equivalent feature, we
simply include the information in the public key. This introduces a wrinkle: a
dishonest signer could potentially create a malformed public key, which could
lead to violations of blindness. To counteract this, our next contribution is to
introduce novel proofs of public key well-formedness for MEDS-BS. More
specifically, we introduce zero-knowledge proofs of knowledge for the relations

R(±1)
X(0) =

{(
X = (X(1), X(−1)),
W = (A,B)

)
:

X(1) = (A,B) ∗X(0),
X(−1) = (A−T , B−T ) ∗X(0)

}

RS
X(0) =


(
X = X(1),
W = (A,B)

)
:
X(1) = (A,B) ∗X(0)

AT = ±A
BT = ±B


which, when used together, prove that a pair (X(1), X(−1)) is a well-formed pub-
lic key. These proofs of knowledge may be of independent interest for researchers
developing other protocols based on MEDS.

1.2 Overview

In this section we provide a brief overview of our journey towards constructing
a code-based blind signature scheme.
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Schnorr Blind Signatures. Schnorr blind signatures, a conceptual predecessor
to CSI-Otter and to the blind signature schemes we propose in this work, are
obtained via a modified version of the Schnorr Sigma protocol [36]. The basic
Schnorr sigma protocol is depicted in Figure 1.

Alice Bob
sk, pk = gsk pk

r
$← {0, 1, . . . , p− 1}

comm← gr
comm−−−−−−→
chal←−−−−−− chal

$← {0, 1, . . . , p− 1}

resp← r + chal · sk resp−−−−−−→
Accept if gresp = comm · pkchal

Fig. 1. The Schnorr Sigma protocol over the group G = ⟨g⟩ with |G| = p.

From Schnorr to Isogeny-Based Blind Signatures. The verification pro-
cedure of Schnorr signatures crucially uses the fact that the public keys and
commitments come from a group G, so that comm ·pkchal can be computed. This
group structure is also used in Bob’s blinding procedure. Unfortunately, it is pre-
cisely this group structure that makes Schnorr signatures vulnerable to quantum
attacks using Shor’s algorithm. The cryptographic group action framework yields
an alternative to Schnorr’s construction with many of the same properties, but
which is believed to resist quantum attacks (for certain group actions). Given a
group action G ⟳X, it is easy to define a “Schnorr-like” Sigma protocol [6].

For blind signatures, moving to a generic group action protocol presents a new
challenge. In fact, Bob will receive a commitment comm from Alice, and must
blind this commitment to construct comm′, which is independent from comm.
He will derive chal′ = H(comm′,msg), and then he must construct an indepen-
dent challenge chal. Then, using Alice’s response resp to challenge chal, he must
construct a response resp′ which yields a valid transcript (comm′, chal′, resp′).

In this more restrictive setting, it seems that Bob is limited to blinding
the commitment by acting by a random group element s: comm′ ← s ∗ comm.
Similarly, Bob can construct chal as chal = chal′ + r with r

$← {0, 1}. But then
when r = 1 (so that chal′ ̸= chal), Bob will not be able to construct the correct
response, as we will now show. Suppose without loss of generality that chal = 0,
so that chal′ = 1. Bob will receive resp = g, which satisfies resp ∗ x0 = comm.
Bob must construct resp′ which satisfies resp∗pk = comm′ = s∗ comm. But then

pk = (resp′)−1 ∗ (s ∗ comm) =
(
(resp′)−1 · s · resp

)
∗ x0

so that (resp′)−1 · s · resp is an equivalent secret key to Alice’s—thus, Bob must
be unable to construct such resp′.
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Katsumata, Lai, LeGrow, and Qin [23,24] proposed a technique to over-
come this difficulty by working in the setting of CSI-FiSh [6] and exploiting
the quadratic twist ; this notion, denoted x(−1) for x ∈ X, given carefully chosen
x0 ∈ X, allows anyone to efficiently compute g−1 ∗ x0 from g ∗ x0 alone. The
quadratic twist gives rise to a richer blinding procedure which, when combined
with a modified challenge space, yields CSI-Otter, the blind signature scheme
of [23,24]. A simplified version of CSI-Otter—which includes this new challenge
space and blinding procedure, but omits other, more standard, aspects of the
secure construction—is depicted in Figure 2.

Alice Bob
sk, pk = sk ∗ x0 pk,msg

g
$← G s

$← G, d
$← {−1, 1}

comm← g ∗ x0
comm−−−−−→

comm′ = s ∗ comm(d)

chal′ = H(comm′,msg)
chal = chal′ · d

chal←−−−−−

resp← g · sk−chal resp−−−−−→
If resp ∗ pk(chal) ̸= comm

return ⊥
Else

return σ = (comm′, chal′, resp′ = s · respd).

Fig. 2. A simplified version of CSI-Otter.

Structural Difficulties in the Code-Based Setting. The cryptographic
group action framework was designed as an abstraction that encompasses the
functionality of CSI-FiSh without reference to the particular group action used
in that setting, but in principle any abelian group action can be used in place of
the CSI-FiSh action. Moreover, many protocols—including Fiat-Shamir-based
digital signatures—can be instantiated with nonabelian group actions. In par-
ticular, the Linear Equivalence Signature Scheme (LESS) [7] and the Matrix
Equivalence Digital Signature (MEDS) [14] use matrix groups acting as isomor-
phisms on sets of error-correcting codes as the base for the Sigma protocol.

In the case of MEDS, the group G = GLm(Fq)×GLn(Fq) acts on the set X of
k-dimensionalm×nmatrix codes defined over Fq. The action is by multiplication
on the left and right simultaneously: (A,B) ∗ C = ACBT = {AXBT : X ∈ C}.
The MEDS group action, unfortunately, cannot be used as a drop-in replacement
for the CSI-FiSh group action in the CSI-Otter Sigma protocol. The first compli-
cation is straightforward: there is no quadratic twist analogue, and thus Bob has
no way to compute comm(−1) = g−1 ∗ x0 or pk(−1) = sk−1 ∗ x0. But even if Bob
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could compute them, the protocol is not correct for nonabelian group actions. To
see this, suppose that Alice and Bob act honestly, and that Bob chooses d = −1.
Then the transcript (comm, chal, resp) will satisfy resp ∗ pk(chal) = comm. But in
Bob’s signature, we will have resp′ = s · resp−1, so that

resp′ ∗ pk(chal
′) = (s · resp−1 · sk−chal) ∗ x0 = (s · skchal · g−1 · sk−chal) ∗ x0 ̸= comm′.

The problem that has arisen is that inversion is order reversing, and so in the
nonabelian setting the skchal which appears in resp−1 does not cancel with the
sk−chal that appears in pk(−chal), because g−1 appears between them.

Overcoming Noncommutativity and Lack of Quadratic Twist. Setting
aside the issue of computing comm(d) and pk(chal), we first attempt to tackle
the problem of noncommutativity. The MEDS group G = GLm(Fq)×GLn(Fq)
admits another order-reversing involution given by transposition in both com-
ponents: (A,B) 7→ (AT , BT ). Combining inversion with transposition yields an
order-preserving involution (A,B) 7→ (A−T , B−T ). Writing g = (A,B), we de-
note g(1) = g = (A,B) and g(−1) = (A−T , B−T ). If we replace all inversions

in Figure 2 with our order-preserving involution and redefine comm(d) and pk(chal)

as comm(d) = g(d) ∗ x0 and pk(chal) = sk(d) ∗ chal, then Bob’s signature satisfies

resp′ ∗ pk(chal
′) = (s · g(d) · sk(−d·chal)) ∗ (sk(d·chal) ∗ x0)

= (s · g(d)) ∗
(
(sk(−d·chal) · sk(d·chal)) ∗ x0

)
At this point, we must consider the product sk(−d·chal) ·sk(d·chal). Note that either
−d · chal = 1 and d · chal = −1 or vise versa; without loss of generality, suppose
we are in the first case. Writing sk = (A,B), we have

sk(−d·chal) · sk(d·chal) = (A,B) · (A−T , B−T ) = (AA−T , BB−T ).

If we can guarantee that (AA−T , BB−T ) is in the stabilizer of x0, then we will

have (sk(−d·chal) · sk(d·chal)) ∗ x0 = x0, so that

resp′ ∗ pk(chal
′) = (s · g(d)) ∗ x0 = s · comm(d) = comm′.

This can be achieved by enforcing that A and B be (anti)symmetric, so that
AA−T = ±Im and BB−T = ±In. Thus, by slightly retooling the basic CSI-
Otter protocol and enforcing a constraint on the secret key, we obtain a protocol
that is correct—provided that Bob has access to comm(−1) and pk(−1). In the
CSI-FiSh setting Bob computed comm(−1) and pk(−1) using the quadratic twist;
however, they can actually be included as part of Alice’s first message and public
key, respectively. At the cost of some additional communication, Bob will be able
to use comm(−1) and pk(−1) without having to compute them himself.

While the above approach plausibly leads to a correct and secure blind sig-
nature protocol, it has introduced some new problems: the secret key matrices
must be (anti)symmetric, and the public key and commitment must satisfy

pk =
(
pk(1) = sk(1) ∗ x0, pk

(−1) = sk(−1) ∗ x0

)
6



comm =
(
comm(1) = g(1) ∗ x0, comm(−1) = g(−1) ∗ x0

)
.

There is no obvious way for Bob to check these conditions, and so a dishon-
est signer could construct a secret key, public key, or commitment that does
not satisfy the structural requirements, which could lead to security vulnerabil-
ities. In the isogeny-based setting this was not a problem, because the secret
key did not have any special structure and Bob was not relying on Alice for
pk(−1) and comm(−1), since he could construct them himself. To overcome this
potential security issue, we design a new noninteractive proof protocol that en-
sures that Alice’s secret key matrices are (anti)symmetric, and her public key
is well-formed. As for the commitments, Bob checks their well-formedness when
the response is revealed, so no additional noninteractive proofs are required.

The Security Model and Security Proof. The Schnorr blind signature, sim-
plified CSI-Otter protocol we describe in Figure 2, and blind signature protocol
we describe in the preceding sections are not known to be secure in the random
oracle model (ROM) alone [5]. Several variants have been proposed [31,33,1],
and the OR-proof construction of [1] which was used in CSI-Otter also gener-
alizes to the setting of this work. We prove the security of our protocol in a
slightly modified version of the model of Kastner, Loss, and Xu [21]. We will
recap security notions in Section 2.2.

2 Preliminaries

2.1 Sigma Protocols and Blind Signatures

Definition 2.1 (Sigma Protocol). A Sigma protocol for an NP relation R ⊆
{0, 1}∗ × {0, 1}∗ is a three-move interactive protocol which consists of two PPT
algorithms P = (P1,P2),V which works as follows:

1. On input (X,W) ∈ R, the prover runs algorithm P1 to obtain a commitment
comm and state state. It sends comm to the verifier.

2. On input comm the verifier chooses a challenge chal ∈ C uniformly at random
and sends it to P.

3. On input (chal, state), the prover runs algorithm P2 to construct a response
resp which it sends to the verifier.

4. The verifier runs V(X, comm, chal, resp) and outputs a bit b, indicating whether
the proof is valid (1) or invalid (0).

A correct and secure Sigma protocol satisfies the following properties:

Correctness: If the prover and verifier follow the protocol description, then the
verifier will output 1 with probability 1.

Honest Verifier Zero-Knowledge (HVZK): There exists a PPT simulator
Sim that, given a statement X outputs a valid transcript (comm, chal, resp),
in such a way that the simulator’s distribution of outputs is identical to the
distribution of outputs of honest transcripts.
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Special Soundness: There exists a deterministic polynomial-time extractor
Ext that, given valid transcripts (comm, chal0, resp0) and (comm, chal1, resp1)

with respect to X, satisfying chal0 ̸= chal1, outputs Ŵ such that (X, Ŵ) ∈ R.

A related property is witness indistinguishability, which requires transcripts com-
ing from different witnesses to the same statement to be indistinguishable.

Definition 2.2 ([23]). An NP relation R is associated with an instance gen-
erator (IG) if IG, given as input the security parameter 1n, outputs a statement-
witness pair (X,W). The instance generator is hard if the following holds for any
PPT adversary A: Pr[(X,W)← IG(1n),W′ ← A(X) : (X,W′) ∈ R] = negl(n).

We are now prepared to define blind signatures.

Definition 2.3 (Blind Signature). A blind signature scheme consists of the
four algorithms ΣBS = (BS.KGen,BS.S,BS.U,BS.Verify) which are as follows:

BS.KGen(1λ) : On input a security parameter 1λ it outputs a private signing key
sk and a public verification key pk

BS.S = (BS.S1,BS.S2) : An interactive protocol consisting of two phases.
– BS.S1(sk): On input a secret key sk, it outputs an internal state stateS

and a first-sender response ρS,1.
– BS.S2(stateS, ρU): On input a state stateS, and a user message ρU, it

outputs a second-sender response ρS,2.
BS.U = (BS.U1,BS.U2) : An interactive protocol consisting of two phases:

– BS.U1(pk,msg, ρS,1) : On input a public key pk, a message msg, and a
response ρS,1, it outputs a user state stateU and a user message ρU.

– BS.U2(stateU, ρS,2) : On input a user state stateU and a second-sender
response ρS,2 it outputs a signature σ on a message msg.

BS.Verify(pk,msg, σ) : On input a public key pk, a message msg and a signature
σ, it outputs 1 if σ is a valid signature on msg or 0 otherwise.

2.2 Security Definitions for Blind Signatures

A correct and secure blind signature scheme must satisfy the following properties:

Completeness: A blind signature scheme ΣBS is complete if for any λ ∈ N,
msg ∈M, and (sk, pk)← BS.KGen(1λ) we have

P

BS.Verify(pk,msg, σ) = 1

∣∣∣∣∣∣∣∣
(stateS, ρS,1)← BS.S1(sk)
(stateU, ρU)← BS.U1(pk,msg, ρS,1)

ρS,2 ← BS.S2(stateS, ρU)
σ ← BS.U2(stateU, ρS,2)

 = 1.

Blindness: For a three-move blind signature scheme ΣBS, we define the blind-
ness game BlindBS with an adversary S (playing the signer) as follows:

Setup: Sample a bit b
$← {0, 1}. Then run S on input 1λ.
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Online Phase: When S outputs messages m̃sg0, m̃sg1 and a public key pk, the
game checks if pk is valid and if so, it assigns msg0 := m̃sgb, msg1 := m̃sg1−b.
If pk is not valid, the game aborts and outputs 0. S is given access to oracles
OU1 and OU2 , which work as follows:
Oracle OU1

: On input a bit b′ ∈ {0, 1} and a S1 response ρS,1, if the session
b′ is not yet open, the oracle marks session b′ as open and generates
a state and a challenge as (stateU,b′ , ρU,b)

$← BS.U1(pk,msgb′ , ρS,1). It
returns ρU,b to S. Otherwise, it returns ⊥.

Oracle OU2
: On input a bit b′ ∈ {0, 1} and a second-signer message ρS,2,b′ ,

if the session b′ is open, it computes a signature σb′ := BS.U2(pk, stateU,b′ ,
ρS,2,b′). It marks session b′ as closed and saves σb′ . If both sessions are
closed and they have produced signatures, the oracle outputs the two
signatures σ0, σ1 to S.

Output Determination. If both sessions are closed and produced signatures,
the game outputs 1 iff S outputs a bit b′ = b. Otherwise, return 0.

We define the advantage of S as AdvBlindS,BS = |Pr[BlindBS = 1] − 1/2|, where the
probability goes over the randomness of the game as well as the randomness of
the adversary S. We say the scheme ΣBS is (t, ϵ)-blind if for any adversary S
running in time t, AdvBlindS,BS ≤ ϵ.

One-More Unforgeability: Let ΣBS = (BS.KGen,BS.S,BS.U,BS.Verify) be a
blind signature and λ be the security parameter. We define the ℓ-one more un-
forgeability game ℓ-OMUFPBS with an adversary A (playing the user) as follows:

Setup: Sample a pair of keys (sk, pk)
$← BS.KGen(1λ). Initialize ℓclosed := 0 and

run A on input pk.
Online Phase: A is given access to oracles OS1 and OS2 , which work as follows:

Oracle OS1
: The oracle samples a fresh session identifier sid. It sets opensid :=

true and generates (stateS,sid, ρS,1)
$← BS.S1(sk). Then it returns the re-

sponse ρS,1 to A.
Oracle OS2

: If ℓclosed < ℓ the oracle takes as input a user message ρU and
a session identifier sid. If ℓclosed ≥ ℓ or opensid = false, it returns ⊥.
Otherwise, it sets ℓclosed + + and opensid := false. Then it computes the

response ρS,2
$← BS.S2(stateS,sid, ρU) and returns ρS,2 to A.

Output Determination. WhenA outputs distinct tuples (msg1, σ1), . . . , (msgk,
σk), return 1 if k ≥ ℓclosed+1 and BS.Verify(pk,msgi, σi) = 1 for all 1 ≤ i ≤ k.
Otherwise, return 0.

The advantage of A is Advℓ−OMUFBS

A,BS (λ) = Pr[ℓ−OMUFBS = 1], where the prob-
ability goes over the randomness of the game as well as the randomness of the
adversary A. We say the scheme ΣBS is ℓ-one-more unforgeable if for any adver-
sary A that makes at most ℓ queries to OS1

, we have Advℓ-OMUFPBS

A,BS (λ) ≤ negl(λ).

2.3 Proof Technique for Blind Signatures

In a blind signature scheme built from a Sigma protocol, the role of the signer is
played by the prover, while the role of the user is played by the Sigma protocol’s
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verifier. To prove one-more unforgeability, we reduce the unforgeability property
to the special soundness of the underlying Sigma protocol. While in the standard
Fiat-Shamir-like blind signatures the simulation of a signature follows from the
HVZK property of the scheme, in our case this is not possible since the adversary
is controlling the challenge. To circumvent these difficulties and to simulate the
conversation between the adversary and a user we use a public key with two
valid secret keys, where the underlying hard problem is embedded into one of
these keys and the other is a tag key which is used for simulation.

The general idea for extracting the witness is borrowed from [21]. The reduc-
tion in the security proof uses the widely-known forging technique for rewind-
ing the adversary and solving the underlying hard problem. First we define a
deterministic wrapper which provides a simplified interface to the reduction. A
wrapperW takes as input an instance I, a random tape rand and a random hash
vector h. The reduction will run the wrapper on inputs (I, rand,h) and output
an index J ∈ [|h|]. It then resamples the vector h from position J and obtains
h̃, while the first J − 1 positions are kept unchanged. The reduction returns the
wrapper on inputs (I, rand, h̃). The two tuples (I, rand,h) and (I, rand, h̃) are
called partnering runs and the witness extracted from these runs is independent
the fact which witness was used by the reduction. Next, we define the basic
definitions needed for the security proof:

Definition 2.4 (Instances [23]). Assume the public key of our blind signature
scheme has exactly two corresponding secret keys sk0 = (0,W0), sk1 = (1,W1).
There are two types of instances I: A 0-side instance consists of sk0 (and sk1,
respectively) and the randomness used by the honest signer algorithm when the
secret key is fixed to sk0 (or sk1, respectively)

Let Succ := {(I, rand,h) |W(I, rand,h) ̸= ⊥} be the set of all successful tuples
used as input to the wrapper W.

Definition 2.5 (Query Transcript [21]). Consider the wrapper W running
on input (I, rand,h). The query transcript, denoted by e(I, rand,h) is the vector
of signing queries queries esid made to Osign2 by the adversary A.

Definition 2.6 (Full Transcript [21]). Consider the wrapper W running on
input tuple (I, rand,h). We denote by tr(I, rand,h) the transcript produced be-
tween W and the adversary A.

Definition 2.7 (Successful Forking [21]). Two successful input tuples (I,

rand,h), (I, rand, ĥ) ∈ Succ fork from each other at index i ∈ [ℓ+ 1] if h[i−1] =

ĥ[i−1], but hi ̸= hi. The set of hash vectors (h, ĥ) whose input tuples fork at
index i is denoted as Fi(I, rand).

Definition 2.8 (Partners [21]). Two successful tuples (I, rand,h), (I, rand, ĥ)
are partners at index i ∈ [ℓ+ 1] if the following holds:

– (I, rand,h) and (I, rand, ĥ) fork at index i.

– −→e (I, rand,h) = −→e (I, rand, ĥ)

10



Let prti(I, rand) denote the set of hash vector pairs (h, ĥ) such that (I, rand,h)
and (I, rand,h) are partners.

Definition 2.9 (Triangles [21]). A triangle at index i ∈ [ℓ+1] with respect to
I, rand is a tuple of three successful tuples in the following set:

∆i(I, rand) =


 (I, rand,h),

(I, rand, ĥ),

(I, rand, ˆ̂h)

∣∣∣∣∣∣
(h, ĥ) ∈ prti(I, rand)

(h, ˆ̂h) ∈ Fi(I, rand)

(ĥ, ˆ̂h) ∈ Fi(I, rand)


For a triangle ((I, rand,h), (I, rand, ĥ), (I, rand, ˆ̂h)) ∈ ∆i(I, rand) we call the pair

of tuples ((I, rand,h), (I, rand, ĥ)) the base, and ((I, rand,h), (I, rand, ˆ̂h)) and

((I, rand, ĥ), (I, rand, ˆ̂h)) the sides.

Next, we define a transformation from b-side to (1− b)-side instances.

Definition 2.10 (Mapping Instances via transcript [21,23]). For (I, rand,
h) ∈ Succ, we define Φrand,h as a function that maps a 0-side instance I (resp.
1-side instance I) to a 1-side instance I ′ (resp. 0-side instance I ′).

If Φrand,h is a bijection preserving transcripts for rand and h, then a partner tuple
with a b-side instance maps to an instance with a (1− b)-side according to [21,
Corollary 1 and Lemma 3]. This would imply that the extracted witness from
the partner tuple is independent of the secret key of the reduction.

The original framework of Kastner, Loss, and Xu defines a notion of witness
extractor, and it is slightly generalized in [23]. We present this in Definition 2.11.

Definition 2.11 ([23]). Fix I, rand and let h, ĥ ∈ Fi(I, rand) for some i ∈
[ℓ+1]. Moreover, denote by σi, σ̂i the signatures that correspond to hi, ĥi, respec-
tively. We say that the deterministic algorithms (Ext0,Ext1) are witness extrac-
tors if (Ext0(σi, σ̂i),Ext1(σi, σ̂i)) ∈ {(sk0,⊥), (⊥, sk1), (sk0, sk1)}. For b ∈ {0, 1},
we say that the b-side witness can be extracted from (I, rand,h) and (I, rand, ĥ)
at the index i if Extb(σi, σ̂i) outputs skb.

Our protocol uses a more general partial witness extractor. In contrast with
[23,24], our blind signature is not built on an HVZK Sigma protocol: in partic-
ular, a secret key cannot be extracted from σi, σ̂i. Nevertheless, we can extract
significant partial information about a secret key—more precisely, f(sk) for some
fixed function f . This can be enough to break a plausible cryptographic assump-
tion. We define partial witness extractors precisely in Definition 2.12.

Definition 2.12. Fix I, rand and let h, ĥ ∈ Fi(I, rand) for some i ∈ [ℓ + 1].

Denote by σi, σ̂i the signatures that correspond to hi, ĥi, respectively. The deter-
ministic algorithms (Ext0,Ext1) are partial witness extractors for the function
f if (Ext0(σi, σ̂i),Ext1(σi, σ̂i)) ∈ {(f(sk0),⊥), (⊥, f(sk1)), (f(sk0), f(sk1))}. For
b ∈ {0, 1}, we say that the b-side partial witness information can be extracted

from (I, rand,h) and (I, rand, ĥ) at the index i if Extb(σi, σ̂i) outputs skb.

11



During extraction, we will use the sides of a triangle instead of the base. This
follows from the observation that if a b-side (partial) witness can be extracted
from a base of the triangle, then it can also be extracted from at least one of the
sides. A reduction with a b-side (partial) witness hits one corner of the base of
the triangle in the first run, and after rewinding it hits the top of the triangle,
yielding a side with a (1− b)-(partial) witness with probability roughly 1/2.

The following two lemmas from [21] will be required to invoke the main the-
orem proving one-more unforgeability. The first shows that the blind signature
is perfectly witness-indistinguishable. The second shows the above-described ob-
servation that if a (partial) witness can be extracted from a base of a triangle
then it can also be extracted from at least one of the triangle’s sides.

Lemma 2.13 ([21, Lemma 2]). Fix rand,h. For all tuples (I, rand,h) ∈ Succ,
Φrand,h is a self-inverse bijection and trans(I, rand,h) = trans(Φrand,h(I), rand,h).

Lemma 2.14 ([21, Corollary 3]). Fix I, rand and let (h, ĥ, ˆ̂h) ∈ ∆i(I, rand),
for some i ∈ [ℓ+1]. If the 0-side (1-side) witness can be extracted from the base

(I, rand,h), (I, rand, ĥ) of the triangle at index i, then one can also extract the

0-side (1-side) witness from at least one of the sides (I, rand,h), (I, rand, ˆ̂h) or

(I, rand, ĥ), (I, rand, ˆ̂h) at index i.

2.4 Matrix Codes

LetMm,n(F) be the set of m×n matrices over a field Fq. A [m×n, k] matrix code
is a k-dimensional subspace C ofMm,n(Fq), measured with the rank metric. In
this metric the distance between two codewords, i.e. matrices A,B ∈Mm,n(Fq),
is defined as d(A,B) = rank(A−B). A matrix code is generated by any set of k
linearly independent codewords, that is, by a basis ⟨C1, . . . , Ck⟩ for the subspace.

Matrix codes can be represented via a generator matrix, as follows. Let vec
denote the vectorization operator, which “flattens” matrices row-wise:

vec



x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn


 = [x11 · · · x1n x21 · · · x2n · · · xm1 · · · xmn]

If C is an [m× n, k] matrix code, then vec(C) := {vec(X) : X ∈ C} is an [mn, k]
linear code†, which can be represented by an k ×mn generator matrix G—that
is, vec(C) = {yG : y ∈ Fk}. We call G a generator matrix of C.

Given a generator matrix G for a code vec(C), we can apply any row operation
to G without affecting the code; that is, for any S ∈ GLk, the matrix MG is
also a generator matrix for vec(C). To represent codes uniquely, we will bring
our generator matrices into systematic form (or reduced row echelon form). For

† The usual metric on linear codes is the Hamming metric d(x,y) = |{1 ≤ i ≤ mn :
xi ̸= yi}|. This bears no relation to the rank metric used for the unvectorized code.
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a matrix G, we denote its systematic form by sf(G). From now on, we assume
that each generator matrix is of the form G = [G1 | G2] where G1 ∈ GLk so
that sf(G) = [I | G−10 G1]. This will dramatically reduce the communication
requirements of our protocols.
The group GLm(F)×GLn(F) acts on the set X of codes by conjugation:

(A,B) ∗ C = ACBT = {AXBT : X ∈ C}

(note that it is necessary to take the transpose of B here, to ensure that the
resulting operation is a left group action). Indeed, this action is an isometry,
i.e. a map which preserves the distances of the code. This leads to the following
notion of isomorphism between matrix codes.

Definition 2.15. Let C and C′ be two [m × n, k] matrix codes over Fq. We
say that C and C′ are equivalent if there exist two matrices A ∈ GLm(Fq) and
B ∈ GLn(Fq) such that C′ = (A,B)∗C, i.e. for all codewords C ∈ C, ACBT ∈ C′.

The equivalence between two matrix codes can be compactly expressed using
the Kronecker product AT ⊗BT . If C and C′ are equivalent with C′ = ACBT , and
respective generator matrices G and G′, then since vec(ACBT ) = vec(C)(AT ⊗
BT ), there must exist S ∈ GLk(Fq) such that G′ = SG(AT ⊗BT ).

The notion of code isomorphism naturally leads to the notion of the auto-
morphism group of a code:

Definition 2.16 (Automorphism Group). Let C ∈ X . The automorphism
group of C is Aut(C) = {(A,B) ∈ GLm(F)×GLn(F) : (A,B) ∗ C = C}.

Since any [m × n, k] code C over F is a linear subspace of Mm,n(F), we see
that γC ∈ C whenever C ∈ C. Thus, if A = αIm and B = βIn with α, β ∈ F,
then ACB = αβC ∈ C whenever C ∈ C. Therefore, for any code C we have

Aut(C) ⊇ {αIm : α ∈ F} × {βIn : β ∈ F} = Z (GLm(F)×GLn(F)) (1)

Codes which satisfy Equation (1) with equality are called rigid [27]:

Definition 2.17 (Rigid Matrix Code). A matrix code C over a field F is
rigid if Aut(C) = {αIm : α ∈ F} × {βIn : β ∈ F}.

2.5 Code Equivalence and Related Computational Problems

Definition 2.18 (Computational Matrix Code Equivalence Problem (MCE)).
Given two equivalent matrix codes C, C′ ∈ X , find (A,B) ∈ GLm(F) × GLn(F)
such that C′ = (A,B) ∗ C.

Definition 2.19 (Computational Inverse Matrix Code Equivalence Prob-
lem (IMCE)). Given three equivalent matrix codes C, C′, C′′ ∈ X such that
C′ = (A,B) ∗ C and C′′ = (A−1, B−1) ∗ C, find (Â, B̂) ∈ GLm(F)×GLn(F) such
that C′ = (Â, B̂) ∗ C and C′′ = (Â−1, B̂−1) ∗ C.
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Let Sk(F) = {A ∈ GLk(F) : ∃α ∈ F s.t. AT = αA} denote the set of invertible
matrices which are symmetric up to a scalar. In our blind signature scheme,
we require the secret keys to satisfy (A,B) ∈ Sm(F) × Sn(F). For an invertible
matrix A over a field, the equation AT = αA implies α = ±1. Thus, we more
precisely say that A and B must be symmetric or antisymmetic.

Definition 2.20 (Modified Inverse Matrix Code Equivalence Problem
(MIMCE)). Let C ∈ X , and let (A,B) ∈ Sm(F)×Sn(F). Given C′ = (A,B)∗C
and C′′ = (A−1, B−1)∗C, find (D,F ) ∈ Sm(F)×Sn(F) such that (D,F )∗C′′ = C′.

The MIMCE Problem of Definition 2.20 is essentially a computational version of
IMCE [14], except that the secret key matrices are symmetric or antisymmetric.
The best currently-known way to solve this problem is an extended algebraic
attack which recovers A,B, us a technique similar to the one used for MCE.
We expect that the difficulty of this problem is closely related to that of MCE,
after accounting for an inevitable loss that will arise from the additional equa-
tions available, which will effect a consequent increase in parameters. An exact
quantification of this loss factor is beyond the scope of this paper.

Remark 2.21. Given the pair (A2, B2), it is likely possible to recover (A,B) in
polynomial time from the original instance C, C′ = (A,B) ∗ C. Thus, if C is
a rigid code, the MIMCE problem of Definition 2.20 should be equivalent to
Inverse Matrix Code Equivalence problem. We do not prove this result here.

2.6 Notation

The multiplicative group {−1, 1} acts on GLk(F) by the inversion-transposition
action, which we denote by an exponent in parentheses; in particular, for A ∈
GLk(F), we will denote A(1) = A and A(−1) = A−T . This notation will allow us
to introduce much more compact notation for our signature scheme in Section 4.

We will also make use of vectorized operations to further condense our
notation. In particular, for A ∈ GLk(F),A = (Ai)

κ
i=1 and B = (Bi)

κ
i=1 ∈

GLk(F)κ, c ∈ {−1, 1}, and c = (ci)
κ
i=1 ∈ {−1, 1}κ we define

A(c) = (A(ci))κi=1, A(c) = (A
(c)
i )κi=1, A⊙B = (AiBi)

κ
i=1, A(c) = (A

(ci)
i )κi=1

3 Public Key Validation

Our blind signature protocol is constructed by applying a variant of the Fiat-
Shamir heuristic, as in [23]. Unlike in [23], however, our protocol will require
private and public keys with special structure, and there is no known mechanism
to determine whether a public key of the form we require is well-formed. In
this section we introduce Sigma protocols which can be compiled (by the Fiat-
Shamir heuristic) into non-interactive zero-knowledge proofs of public-key well-
formedness in our protocol. For a fixed code X(0) ∈ X , define the relations

R(±1)
X(0) =

{(
X = (X(1), X(−1)),
W = (A,B)

)
:

X(1) = (A,B) ∗X(0),
X(−1) = (A−T , B−T ) ∗X(0)

}
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RS
X(0) =

{(
X = X(1),
W = (A,B)

)
:
X(1) = (A,B) ∗X(0)

A ∈ Sm(F), B ∈ Sn(F)

}
with corresponding languages L(±1)

X(0) and LS
X(0) , respectively. A valid public key

for our blind signature will have the form ((A,B) ∗ X(0), (A−1, B−1) ∗ X(0)),
with A and B symmetric or antisymmetric. In contrast with CSI-Otter, where
it is easy to verify the validity of a public key (any supersingular curve with the
correct number of points is a valid key), there is no obvious way to verify that
a public key in our protocol is valid. Thus, we will include with the public key
additional NIZKs which ensure that a public key is well-formed. In particular, we
include two separate proofs: one for each of the two relations above. To achieve
this, in this section, we introduce novel Sigma protocols for these relations.

For space reasons, we simply present the two Sigma protocols here in Fig-
ures 3 and 4, and defer their proofs of correctness and security to Appendix A.

P :

W = (A ∈ GLm(Fp), B ∈ GLn(Fp))

X =

 X(1) = (A,B) ∗X(0),

X(−1) = (A−T , B−T ) ∗X(0)

 V : X = (X(1), X(−1))

(Ã, B̃)
$← GLm(Fq)×GLn(Fq)

comm(1) ← (Ã, B̃) ∗X(0)

comm(−1) ← (Ã−T , B̃−T ) ∗X(0)

comm−−−−−−−−→

chal←−−−−−−−− chal
$← {0, 1}.

resp = (ÃA−chal, B̃B−chal)
resp

−−−−−−−−→ Accept if resp ∗X(chal) = comm(1)

resp−T ∗X(−chal) = comm(−1)

Fig. 3. Our Sigma protocol for the relation R(±1)

X(0) .

P :
W = (A ∈ Sm(Fp), B ∈ Sn(Fp))

X = X(1) = (A,B) ∗X(0)
V : X = X(1)

(Ã, B̃)
$← GLm(Fq)×GLn(Fq)

comm(1) ← (Ã, B̃) ∗X(0)

comm(−1) ← (Ã−T , B̃−T ) ∗X(1) comm−−−−−−−−→
chal←−−−−−−−− chal

$← {0, 1}.

resp = (ÃA−chal, B̃B−chal)
resp

−−−−−−−−→ Accept if resp ∗X(chal)= comm(1)

resp−T ∗X(1−chal)= comm(−1)

Fig. 4. Our Sigma protocol for the relation RS
X0 .

15



4 Our Blind Signature Scheme

Let p, n,m,X(0) be the public parameters and let H : {0, 1}∗ → {−1, 1}κ be
a hash function that is modeled as a random oracle in the security proof. Our
blind signature scheme is depicted in Figure 5.

BS.KGen(1λ)

101 : δ
$← {0, 1}

102 : for b ∈ {0, 1} do

103 : (Ab, Bb)
$← Sm(Fp)× Sn(Fp)

104 : for c ∈ {−1, 1} do

105 : X
(c)
b ← (A

(c)
b , B

(c)
b ) ∗X(0)

106 : Xb ← (X
(1)
b , X

(−1)
b )

107 : return
(
pk = (X0, X1), sk = (δ, (Aδ, Bδ)

)
BS.U1(pk,msg, ρS,1)

301 : parse (Ỹ0, Ỹ1)← ρS,1

302 : for b ∈ {0, 1} do
303 : db ← {−1, 1}κ

304 : parse Ỹb = (Ỹ
(1)
b , Ỹ

(−1)
b )

305 : (Mb,Nb)← GLm(Fp)
κ ×GLn(Fp)

κ

306 : Yb ← (Mb,Nb) ∗ Ỹ(db)
b

307 : c← H(Y0∥Y1∥msg)

308 : c̃← c⊙ d0 ⊙ d1 ∈ {−1, 1}κ

309 : stateU ← (db, (Mb,Nb), Ỹb)b∈{0,1}

310 : return (stateU, ρU = (c̃)

BS.U2(stateU, ρS,2)

501 : parse (db, (Mb,Nb), Ỹb)b∈{0,1} ← stateU

502 : parse (c̃b, (R̃b, S̃b))b∈{0,1} ← ρS,2

503 : for b ∈ {0, 1} do
504 : for j ∈ {−1, 1} do

505 : if (R̃
(j)
b,i , S̃

(j)
b,i ) ∗X

(j·c̃b)
b ̸= Ỹ

(j)
b

506 : return σ =⊥
507 : cb ← c̃b ⊙ db

508 : (Rb,Sb)←
(
Mb ⊙ R̃

(db)
b ,Nb ⊙ S̃

(db)
b

)
509 : c′ ← H

(
(R0,S0) ∗X(c0)

0 ||(R1,S1) ∗X(c1)
1 ∥msg

)
510 : if c0 ⊙ c1 = c′

511 : return σ = (cb, (Rb,Sb))b∈{0,1}

512 : return σ = ⊥

BS.S1(sk)

201 : parse (δ, (Aδ, Bδ))← sk

202 : (M̃, Ñ)
$← GLm(Fp)

κ ×GLn(Fp)
κ

203 : for c ∈ {−1, 1} do

204 : Ỹ
(c)
δ ← (M̃(c), Ñ(c)) ∗X(0)

205 : Ỹδ ← (Ỹ
(1)
δ , Ỹ

(−1)
δ )

206 : c̃1−δ
$← {−1, 1}κ

207 : (R̃1−δ, S̃1−δ)
$← GLm(Fp)

κ ×GLn(Fp)
κ

208 : for c ∈ {−1, 1} do

209 : Ỹ
(c)
1−δ ← (R̃

(c)
1−δ, S̃

(c)
1−δ) ∗X

(c·c̃1−δ)

1−δ

210 : Ỹ1−δ ← (Ỹ
(1)
1−δ, Ỹ

(−1)
1−δ )

211 : stateS ← ((M̃, Ñ), c̃1−δ, (R̃1−δ, S̃1−δ))

212 : return (stateS, ρS,1 = (Ỹ0, Ỹ1))

BS.S2(stateS, ρU)

401 : parse ((M̃, Ñ), c̃1−δ, (R̃1−δ, S̃1−δ))← stateS

402 : parse c̃← ρU

403 : c̃δ ← c̃⊙ c̃1−δ ∈ {−1, 1}κ

404 : (R̃δ, S̃δ)← (M̃⊙A
(−c̃δ)
δ , Ñ⊙B

(−c̃δ)
δ )

405 : return ρS,2 = (c̃b, (R̃b, S̃b))b∈{0,1}

BS.Verify(pk,msg, σ)

601 : parse (cb, (Rb,Sb))b∈{0,1} ← σ

602 : c′ ← H
(
(R0,S0) ∗X(c0)

0 ||(R1,S1) ∗X(c1)
1 ∥msg

)
603 : if c0 ⊙ c1 = c′

604 : return 1

605 : return 0

Fig. 5. Our blind signature scheme. We assume that the algorithms return ⊥ and
terminate if parse is not in the correct format.

We have the following correctness and security results.

Theorem 4.1. The scheme of Figure 5 is correct.
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Proof. We must show that if the signer and user act honestly, BS.Verify will

always return 1. First, we claim that Ỹ
(c)
b = (R̃

(c)
b , S̃

(c)
b ) ∗X(c·c̃b)

b for b ∈ {0, 1}
and c ∈ {−1, 1}. The b = 1− δ case follows from Figure 5 lines 208–210. For the
b = δ case, by Figure 5 lines 105, 202–203, and 404, the fact that Aδ and Bδ are
symmetric or antisymmetric, and the fact that c2 = 1 for c ∈ {−1, 1}, we have

Ỹ
(c)
δ = (M̃(c), Ñ(c)) ∗X(0) = (M̃(c) ⊙A

(−c·c̃δ)
δ , Ñ(c) ⊙B

(−c·c̃δ)
δ ) ∗X(c·c̃δ)

δ

=
(
(M̃⊙A

(−c̃δ)
δ )(c), (Ñ⊙B

(−c̃δ)
δ )(c)

)
∗X(c·c̃δ)

δ = (R̃
(c)
δ , S̃

(c)
δ ) ∗X(c·c̃δ)

δ

as required. Then, by lines 507 and 306, we have

Yb = (Mb,Nb) ∗ Ỹ(db)
b =

(
Mb ⊙ R̃

(db)
b ,Nb ⊙ S̃

(db)
b

)
∗X(db⊙c̃b)

b = (Rb,Sb) ∗X(cb)
b

so that that the values computed on lines 307 and 602 are the same:

c = H(Y0||Y1||msg) = H((R0,S0) ∗X(c0)
0 ||(R1,S1) ∗X(c1)

1 ||msg) = c′.

Finally, by considering lines 308 and 507, we see that

c′ = c = c̃⊙ d0 ⊙ d1 = (c̃0 ⊙ d0)⊙ (c̃1 ⊙ d1) = c0 ⊙ c1

so that the check on line 603 returns true, and the signature always verifies. ⊓⊔

Theorem 4.2. The scheme of Figure 5 is perfectly blind.

Proof. We will show that for any valid public key pk = (X0, X1), any signer
messages ρS,1 = (Ỹ0, Ỹ1) and ρS,2 = (c̃b, (R̃b, S̃b))b∈{0,1}, and any valid mes-
sage/signature pairmsg, σ = (cb, (Rb,Sb)), there is exactly one user state stateU =
(db, (Mb,Nb))b∈{0,1} which is consistent with pk, ρS,1, ρS,2, and σ.

Indeed, line 507 uniquely determines db = cb⊙ c̃b for b ∈ {0, 1}, and then line

508 uniquely determines Mb,i = Rb,i⊙(R̃
(db+i)
b,i )−1 and Nb,i = Sb,i⊙(S̃

(db+i)
b,i )−1.

It is straightforward to check that this indeed yields a valid signature. Thus, every
interaction S has with U is compatible with every output (msg, σ) pair, and each
correspondence is equally likely; thus, the protocol is blind.

Theorem 4.3. Assume that the public key consists of two instance of the NP
relation R generated by the hard instance generator IG and the underlying Sigma
protocol has challenge space C. If Lemmas 2.13 and 2.14 hold, then for all ℓ ∈ N,
if there exists an adversary A that issues Q hash queries to the random oracle and
breaks the ℓ-one more unforgeability of the blind signature scheme with advantage
ϵA ≥ C1

|C| ·
(

Q
ℓ+1

)
, then there exists an efficient algorithm B that breaks the hard

instance generator for the MIMCE problem (Definition 2.20) with advantage

ϵB ≥ C2 · ϵ2A

( Q
ℓ+1)

2·(ℓ+1)3
, where C1 and C2 are some universal global constants.

Proof. To prove Theorem 4.3 we first need to define instances, the map Φrand,h,
the partial witness extractors (Ext0,Ext1) and prove the lemmas 2.13, 2.14.
We assume an adversary A against the one-more unforgeability game issuing

ℓ-queries to the signing oracle. We use the notation
−→
Z to denote a vector

(Z(1), . . . ,Z(ℓ)) which inherits the operations of Z(k).
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Instances: We prepare a b-side instance Ib, b ∈ {0, 1} as follows:
I0 = (0, (A0, B0), X1, (

−→̃
M,
−→̃
N),
−→̃
c 1, (

−→̃
R1,
−→̃
S 1)) consisting of:

– (0, (A0, B0)) is the secret key sk for δ = 0.
– X1 is the public key component with unknown secret key.

–
(
(M̃

(c)
)
(k)

, (Ñ
(c)

)
(k)

)
is a randomness used in the calculation of commitment

(Ỹ0
(c)

)
(k)

=
(
(M̃

(c)
)
(k)

, (Ñ
(c)

)
(k)

)
∗ (X(0))

(k)
.

– c̃
(k)
1 is the simulated challenge in the k-th first-sender message for δ = 0.

–
(
(R̃

(c)

1 )
(k)

, (S̃
(c)

1 )
(k)

)
is a randomness used in computation of commitment

(Ỹ1
(c)

)
(k)

=
(
(R̃

(c)

1 )
(k)

, (S̃
(c)

1 )
(k)

)
∗ (X(c·c̃1)

1 )
(k)

.

I1 = (1, (A1, B1), X0, (
−→̃
M,
−→̃
N),
−→̃
c 0, (

−→̃
R0,
−→̃
S 0)), consisting of:

– (1, (A1, B1)) is the secret key sk for δ = 1.
– X0 is the public key component with unknown secret key.

–
(
(M̃

(c)
)
(k)

, (Ñ
(c)

)
(k)

)
is a randomness used in computation of commitment

(Ỹ1
(c)

)
(k)

=
(
(M̃

(c)
)
(k)

, (Ñ
(c)

)
(k)

)
∗ (X(0))

(k)
.

– c̃
(k)
0 is the simulated challenge in the k-th first-sender message for δ = 1.

–
(
(R̃

(c)

0 )
(k)

, (S̃
(c)

0 )
(k)

)
is a randomness used in computation of commitment

(Ỹ0
(c)

)
(k)

=
(
(R̃

(c)

0 )
(k)

, (S̃
(c)

0 )
(k)

)
∗ (X(c·c̃1)

0 )
(k)

.

Next, we define the map Φrand,h that maps a 0-side instance I0 into a 1-side
instance I1 and vice versa.

Map Φrand,h: We define the map Φrand,h which maps a 0−instance I0 = (0, (A0, B0),

X1, (
−→̃
M,
−→̃
N),
−→̃
c 1, (

−→̃
R1,
−→̃
S 1)) into a 1-side instance I1 = (1, (A1, B1), X0, (

−→̃
M,
−→̃
N),

−→̃
c 0, (

−→̃
R0,
−→̃
S 0)) and vice versa.

In the map of a 0-side instance into a 1-side instance the following holds:

X1 = (X
(1)
1 , X

(−1)
1 ) where X

(c)
1 = (A

(c)
1 , B

(c)
1 ) ∗X(0) and

−→̃
c = −→e (I0, rand,h).

In the map of a 1-side instance into a 0-side instance the following holds:

X0 = (X
(1)
0 , X

(−1)
0 ) whereX

(c)
0 = (A

(c)
0 , B

(c)
0 )∗X(0) and and

−→̃
c = −→e (I1, rand,h).

Partial Witness Extractors: We fix I, rand and let (h, ĥ) ∈ Fi(I, rand) for some

i ∈ [ℓ + 1]. Let σ = (cb, (Rb,Sb))b∈{0,1} and σ̂ = (ĉb, (R̂b, Ŝb))b∈{0,1} denote

the signatures corresponding to c(i) and ĉ(i), respectively. (Note: c(i) and ĉ(i)

denotes the i-th entry of h and ĥ respectively.) The partial witness extractor is
defined as in Figure 6.

Lemma 4.4. If X(0) is a rigid code, then the functions (Ext0,Ext1) are partial
witness extractors for f(A,B) = (A2, B2), as defined in Definition 2.12.
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Ext0(σ, σ̂)

101 : if ∃t ∈ [κ] s.t. c0,t ̸= ĉ0,t

102 : D0 ← (R−1
0,t R̂0,t)

c0,t−ĉ0,t
2

103 : F0 ← (S−1
0,t Ŝ0,t)

c0,t−ĉ0,t
2

104 : return (D0, F0)

105 : return ⊥

Ext1(σ, σ̂)

201 : if ∃t ∈ [κ] s.t. c1,t ̸= ĉ1,t

202 : D1 ← (R−1
1,t R̂1,t)

c1,t−ĉ1,t
2

203 : F1 ← (S−1
1,t Ŝ1,t)

c1,t−ĉ1,t
2

204 : return (D1, F1)

205 : return ⊥

Fig. 6. Partial witness extractors for our blind signature. We assume the signatures take
the form σ = (cb, (Rb,Sb))b∈{0,1} and σ̂ = (ĉb, (R̂b, Ŝb))b∈{0,1} with cb, ĉb ∈ {1,−1}κ,
Rb, R̂b ∈ GLm(Fp)

κ and Sb, Ŝb ∈ GLn(Fp)
κ for b ∈ {0, 1}. Note that the exponents

that appear on Lines 102, 103, 202, and 203 are always 1 or −1, so no fractional powers
of matrices are being computed.

Proof. According to the definition of successful forking 2.7 two successful input
tuples (I, rand,h) and (I, rand, ĥ) ∈ Succ fork from each other at index i ∈ [ℓ+1]

and the set of corresponding hash vectors (h, ĥ) is denoted by Fi(I, rand). There-
fore, for the two successful input tuples we have c(i) ̸= ĉ(i) and the corresponding

two signatures σ, σ̂ are valid. We have H
(
(R0,S0) ∗X(c0)

0 ||(R1,S1) ∗X(c1)
1 ∥msg

)
and H

(
(R̂0, Ŝ0) ∗X(ĉ0)

0 ||(R̂1, Ŝ1) ∗X(ĉ1)
1 ∥msg

)
. By definition, h and ĥ agree up

to the i-th entry and the randomnesses of the challenger and the adversary are
fixed, so the input to the hash function must agree as well. Therefore, we have

(Rb,Sb) ∗X(cb)
b = (R̂b, Ŝb) ∗X(ĉb)

b (2)

for b ∈ {0, 1}. Since c(i) ̸= ĉ(i), we must have cb ̸= ĉb for some b ∈ {0, 1}. Let
t ∈ [κ] be an index for which cb,t ̸= ĉb,t, and assume without loss of generality
that cb,t = 1 and ĉb,t = −1. By considering the tth component of Equation (2)

and rearranging, we find that X(1) = (R−1b,t R̂b,t, S
−1
b,t Ŝb,t) ∗X(−1). Since X(0) is

rigid, so are X(1) and X(−1). Thus, up to scalar factors we have

Extb(σ, σ̂) = (R−1b,t R̂b,t, S
−1
b,t Ŝb,t) = (A2, B2).

A totally analogous argument applies when cb,t = −1 and ĉb,t = 1. Indeed, these
functions output valid partial witnesses for f . ⊓⊔

To complete the proof of one-more unforgeability of our blind signature
scheme, we must show that Lemmas 2.13 and 2.14 hold for the definitions of
the map Φrand,h and the extractors (Ext0,Ext1), respectively.

Lemma 4.5. Lemma 2.13 holds for our Φrand,h.

Proof. To prove this lemma we need to consider the 0-side and 1-side instances,
namely I0 and I1, respectively. However since the proof technique for both in-
stances is very similar we will focus on one of them, specifically I0.
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We consider the vector of signing queries on user message ρU issued by the

adversary to the oracle Osign2 . The vector is denoted by −→e (I0, rand,h) =
−→̃
c .

As shown in Theorems A.4 and A.8 the underlying Sigma protocols are honest-
verifier zero-knowledge which implies perfect witness indistinguishability. Then

for each index i ∈ [ℓ] and
−→̃
c (i), there exists a set of randomness described

by Φrand,h(I0), that a signer with the secret key (1, (A1, B1)) could produce
the same view to the adversary A. Therefore the transcript trans(I0, rand,h) =
trans(Φrand,h(I0), rand,h). From the definition of Φrand,h it can be checked that
Φrand,h(Φrand,h(I0)) = I0, which is a bijection. ⊓⊔

Lemma 4.6. Lemma 2.14 holds for our partial witness extractors (Ext0,Ext1).

Proof. Just as in the proof of the previous lemma, we only consider the 0-side
case. We prove this lemma by contradiction by assuming that we can extract
the 0-side witness from the base (I, rand,h), (I, rand, ĥ) but not from either of

the sides (I, rand, ĥ), (I, rand, ˆ̂h) or (I, rand,h), (I, rand, ˆ̂h). By Lemma 4.4 this
assumption holds if and only if c0 = ˆ̂c0 and ĉ0 = ˆ̂c0. This would imply that
c0 = ĉ0. However, by Lemma 4.4, the 0-side witness cannot be extracted from
(I, rand,h), (I, rand, ĥ) which contradicts our assumption. ⊓⊔

This completes the proof of Theorem 4.3. ⊓⊔

Theorem 4.7. Our blind signature scheme in Figure 5 is one more unforgeable.
In particular, if there exists an efficient adversary A that issues Q hash queries to
the random oracle and breaks the ℓ-one more unforgeability of the blind signature
scheme with advantage ϵA ≥ C1

|C| ·
(

Q
ℓ+1

)
, then there exists an efficient algorithm

B that solves the MIMCE problem with advantage ϵB ≥ C2 · ϵ2A

( Q
ℓ+1)

2·(ℓ+1)3
, where

C1 and C2 are some universal global constants.

Proof. The instance generator IG outputs an instance of the MIMCE problem,
and Theorem 4.7 follows from the above Lemmas 4.5 and 4.6 and from Theorem
4.3, noting that the partial witnesses obtained from Ext0 and Ext1 are solutions
to the corresponding instances of MIMCE, as per Definition 2.20. ⊓⊔

5 System Parameters

Because our protocols use a restricted secret keyspace, it is likely necessary to
increase the MEDS parameter sizes to ensure that our protocol achieves the
same security as existing MEDS-based protocols. Analysis of brute force at-
tacks is straightforward: when the private key matrices A and B are required

to be symmetric, there are only O(q(
m+1

2 )) possible values for A, and O(q(
n+1
2 ))

possible values for B. Since knowledge of A or of B is sufficient to find the
other in polynomial time [16, Algorithm 2], a brute force attack requires time

Õ(qmin{(m+1
2 ),(n+1

2 )}). When the private key matrices are not restricted to being
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(anti)symmetric, the brute force attack requires time Õ(qmin{n2,m2})—to main-
tain the attack complexity in the (anti)symmetric setting, it suffices to increase
n and m by a factor of approximately

√
2. Since the matrix arithmetic used

in our protocol runs in time O((m + n)2polylog(p)), this would lead only to a
twofold increase in runtime for each basic algorithm. When the private keys are
chosen from S++

Γ (Fp)×S++
∆ (Fp) (where S++

Γ (F) and S++
∆ (Fp) are the sets of sym-

metric matrices in GLk(Fp) which are diagonalizable by a matrix P ∈ GLk(Fp),
and whose diagonal form is precisely Γ or ∆, respectively), the result is similar
provided that Γ and ∆ each have distinct diagonal entries, since the number of

orthogonal matrices over Fp is Ω(p
(n−1)2

2 ). For other attacks discussed in [14], it
is not immediately clear how to use the (anti)symmetry of A and B to achieve
a speedup, making the required changes to parameter sizes difficult to quantify.
We leave this for future work.

Beyond the MEDS parameters, we must also choose κ, i.e. the number of
repetitions of the Σ protocol used in each signing session. In ordinary digital
signatures, to achieve λ bits of security, it suffices to take κ = λ log|C| 2, where C
is the challenge space for a single iteration of the Σ protocol—in our setting, we
would take κ = λ. However, as was pointed out in [17], this is not sufficient in the
setting of blind signatures; instead, we must take κ = 4λ in order to have λ bits
of quantum security in the sequential setting. For NIST category 1 parameters,
we would require κ = 512. The setting of concurrent sessions is more difficult to
analyze; the results of [22,17] indicate that a transformation such as [25] would
be necessary for practical security, but the effect on parameter sizes is again
difficult to quantify. We leave this for future work as well.
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Appendices

A Public Key Validation—Proofs

A.1 The Protocol for R(±1)

X(0)

Proposition A.1. The protocol of Figure 3 is correct.

Proof. Suppose that both parties follow the protocol description. Then, with
notation as in Figure 3,

resp ∗X(chal) = (ÃA−chal, B̃B−chal) ∗ (Achal, Bchal) ∗X(0) = comm(1)

resp−T ∗X(−chal) = (Ã−T (AT )chal, B̃−T (BT )chal) ∗
((

(AT )−chal, (BT )−chal
)
∗X(0)

)
= (Ã−T , B̃−T ) ∗X(0) = comm(−1)

and so the verifier will accept the proof, as required. ⊓⊔

Theorem A.2. The protocol of Figure 3 is 2-special sound.

Proof. Let τ = (comm, chal = 0, resp = (R,S)) and τ̂ = (comm, ĉhal = 1, r̂esp =
(R̂, Ŝ)) be a pair of accepting transcripts. We must have

(R,S) ∗X(0) = comm(1) = (R̂, Ŝ) ∗X(1)

(R−T , S−T ) ∗X(0) = comm(−1) = (R̂−T , Ŝ−T ) ∗X(−1).

Rearranging, this yields X(1) = (R̂−1R, Ŝ−1S) ∗X(0) and

X(−1) = (R̂TR−T , ŜTS−T ) ∗X(0) =
(
(R̂−1R)−T , (Ŝ−1S)−T

)
∗X(0).

So we see that W = (R̂−1R, Ŝ−1S) is a witness to X = (X(1), X(−1)) for the

relation R(±1)
X(0) , as required. ⊓⊔

Corollary A.3. The protocol of Figure 3 is perfectly sound.

Theorem A.4. The protocol in Figure 3 is honest verifier zero-knowledge (HVZK).

Proof. Consider the following simulation algorithm Sim:

Comparing lines 103 and 104, with the verifier’s acceptance condition in Fig-
ure 3, we see that the transcripts produced by Sim will always accept. Moroever,
the challenges and responses are distributed identically to those in honest tran-
scripts, since they are uniformly random in both cases. Finally, with the challenge
and response fixed, the accepting commitments are uniquely determined, so the
distribution of transcripts is in fact the same between the simulator and the
honest protocol. Thus the protocol is honest verifier zero-knowledge. ⊓⊔
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Sim(X(0);X(1), X(−1))

101 : chal
$← {0, 1}

102 : resp
$← GLm(Fp)×GLn(Fp)

103 : comm(1) = resp ∗X(chal)

104 : comm(−1) = resp−T ∗X(−chal)

105 : return τ = ((comm(1), comm(−1)), chal, resp)

Fig. 7. The simulator for the Sigma protocol of Figure 3.

A.2 The Protocol for RS
X(0)

Proposition A.5. The protocol of Figure 4 is correct.

Proof. Suppose that both parties follow the protocol description. Then, with
notation as in Figure 4,

resp ∗X(chal) = (ÃA−chal, B̃B−chal) ∗
(
(Achal, Bchal) ∗X(0)

)
= comm(1)

resp−T ∗X(1−chal) = (Ã−TAchal, B̃−TBchal) ∗
(
(A1−chal, B1−chal) ∗X(0)

)
= (Ã−T , B̃−T ) ∗

(
(A,B) ∗X(0)

)
= comm(−1)

(where, on the second line, we have used the fact that A and B are symmetric to
obtain (A−chal)−T = (A−chal)−1 = Achal (and similar for B)) and so the verifier
will accept the proof, as required. ⊓⊔

Theorem A.6. If X(0) is rigid, then the protocol of Figure 4 is 2-special sound.

Proof. Let τ = (comm, chal = 0, resp = (R,S)) and τ̂ = (comm, ĉhal = 1, r̂esp =
(R̂, Ŝ)) be a pair of accepting transcripts. We must have

(R,S) ∗X(0) = comm(1) = (R̂, Ŝ) ∗X(1)

(R−T , S−T ) ∗X(1) = comm(−1) = (R̂−T , Ŝ−T ) ∗X(0)

Rearranging these, we have

X(1) = (R̂−1R, Ŝ−1S) ∗X(0) = (RT R̂−T , ST Ŝ−T ) ∗X(0).

Since X(0) is rigid, then for some α, β ∈ F we have

R̂−1R = αRT R̂−T = α(R̂−1R)T

Ŝ−1S = βST Ŝ−T = β(Ŝ−1S)T

Thus (R̂−1R, Ŝ−1S) is a witness to the fact that X(1) ∈ LS
X(0) . ⊓⊔

Corollary A.7. The protocol of Figure 4 is perfectly sound.
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Sim(X(0);X(1))

101 : chal
$← {0, 1}

102 : resp
$← GLm(Fp)×GLn(Fp)

103 : comm(1) = resp ∗X(chal)

104 : comm(−1) = resp−T ∗X(1−chal)

105 : return τ = ((comm(1), comm(−1)), chal, resp)

Fig. 8. The simulator for the Sigma protocol of Figure 4.

Theorem A.8. The protocol of Figure 4 is honest verifier zero-knowledge (HVZK).

Proof. Consider the following simulation algorithm Sim:
Comparing lines 103 and 104, with the acceptance condition of the verifier

in Figure 4, we see that the transcripts produced by Sim will always accept.
Morever, the challenges and responses are distributed identically to those in
honest transcripts, since they are uniformly random in both cases. Finally, with
the challenge and response fixed, the commitments which lead to acceptance
are uniquely determined, so the distribution of transcripts is in fact the same
between the simulator and the honest protocol. Thus the protocol of Figure 4 is
honest verifier zero-knowledge. ⊓⊔
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