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Abstract. The secure management of private keys is a fundamental
challenge, particularly for the general public, as losing these keys can re-
sult in irreversible asset loss. Traditional custodial approaches pose secu-
rity risks, while decentralized secret sharing schemes offer a more resilient
alternative by distributing trust among multiple parties. In this work, we
extend an existing decentralized, verifiable, and extensible cryptographic
key recovery scheme based on Shamir’s secret sharing. We introduce a
refresh phase that ensures proactive security, preventing long-term expo-
sure of secret shares. Our approach explores three distinct methods for
refreshing shares, analyzing and comparing their security guarantees and
computational complexity. Additionally, we extend the protocol to sup-
port more complex access structures, with a particular focus on threshold
access trees, enabling fine-grained control over key reconstruction.

Keywords: secret sharing · decentralized key management · proactive
security · threshold access trees · access policies.

1 Introduction

Decentralized systems are increasingly being seen as an attractive alternative
to centralized ones, due to their benefits in data management, such as avoiding
single points of failure or securely storing crypto-assets. In this context, secret
sharing is used in wallet key management to improve the security and accessi-
bility of private keys by splitting them into multiple shares, distributed among
different participants or providers. No single participant holds the complete key,
and access to the wallet requires a minimum number of shares to reconstruct it.
An example of this application is illustrated in [14], where a decentralized wallet
model is described from an engineering standpoint.

Similarly, key recovery schemes allow to reconstruct a key when some shares
are lost. These schemes also exploit secret sharing and decentralized key genera-
tion, and enhancing these primitives directly translates to enabling new features
or improving security in many application scenarios. For example, [4] shows how
a distributed key generation scheme with some extensibility can be exploited
to build a key recovery infrastructure where an emergency party may remain
offline even during the enrollment of new clients, and come into play for key
reconstruction only when the client loses their shares.
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Related Works The prolific field of Secure Secret Sharing has been pioneered
by Shamir in 1979 [13], opening the door to countless applications in many fields
of cryptography. In 1987, Feldman [5] extended this primitive by adding ver-
ifiability of shares, then the first step towards decentralization came in 1991,
when [11] introduced a 2-round Decentralized Key Generation scheme (DKG),
where each participant acts as a dealer in a Feldman VSS protocol. Quite a few
years later [6] demonstrated a weakness in [11], and proposed a secure variant by
adding a commitment step (3-round DKG). The application of DKGs to thresh-
old signatures sparked new life into the field: FROST [8] uses a variant of Ped-
ersen DKG called PedPop, where each participant proves the knowledge of their
key by using a ZKP. In [3] is presented variant of PedPoP (Simpl.PedPoP) where
dishonest participants trigger the abort of the protocol. Our starting point is [1],
which introduces the extensibility property, that is new shares can be created
after generation (by any threshold of parties), which are verifiably compatible
with old ones.

The key reconstruction policy of all these schemes is a simple t-out-of-n
threshold. In general, one may want to use more expressive policies. As far as we
know, no prior work has ever integrated more complex policies into decentralized
key generation.

Another important addition for various multi-party protocols is proactive se-
curity. An established technique to achieve it is to introduce a refresh phase [15,16].
However, to the best of our knowledge, no prior work has applied this approach
to a protocol that is simultaneously decentralized, verifiable, extensible and ap-
plicable to any access policy. This gap is the motivation behind our work, that
aims to ensure that security guarantees are maintained over time while preserv-
ing all the features listed above.

Our Contribution We extend the protocol by integrating more complex ac-
cess structures that define the sets of participants authorized to reconstruct
the secret. Among these, the most expressive and encompassing structures are
threshold access trees. There participants are represented as leaves, and each in-
ternal node enforces a threshold condition specifying the minimum number of
child nodes required for activation. With this access structures is possible to
compactly express any monotone access policy, that is any policy which can be
described by a boolean formula with an arbitrary combinations of AND and OR.
The term monotone comes from the fact that if A is an authorized set of user
and A′ ⊇ A, then A′ is also an authorized set of users [7].

Given their expressive power, we focus on extending each phase of the secret
sharing protocol to support threshold access trees. In [9], the theory of mono-
tone span programs is used to derive an LSSS matrix implementing the policy
described by a threshold access tree. Our work bridges the gap in the literature
by offering a more intuitive proof and integrating the results in the secret sharing
protocol. We follow a recursive strategy for describing the generator matrix that
encodes the secret vector into the final shares of the tree, extending Shamir’s
strategy layer-by-layer.
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Moreover, we analyze the introduction of a refresh phase to the protocol,
ensuring proactive security, i.e. the maintenance of security thresholds over time.
We consider a snapshot, mobile and adaptive adversary and we propose three
distinct methods.

The first method for refreshing the shares is ZeroSharesRefresh and in-
volves generating and adding a polynomial with a zero constant term to the
Shamir polynomial, while the second method RegenRefresh involves regener-
ating the Shamir polynomial while keeping the constant term fixed. These two
strategies are shown to be equivalent and proactive-secure against the snapshot,
mobile and adaptive adversary model.

The third method MatrixRefresh involves periodically updating the ma-
trix that encodes the secret, exploiting the parallelism between MDS codes and
secret sharing. This strategy, together with proactive security against the snap-
shot, mobile and adaptive adversary model, achieves also forward secrecy against
an adversary that steals a sufficient number of old shares. However, unlike the
first two methods, it is shown to be insecure against a continuous-shot, non-
mobile, adaptive adversary.

Organization We start with some preliminaries in section 2, then in section 3
we present the results obtained by extending the protocol to Threshold Access
Trees. Finally, in section 4 we present the integration of a refresh phase to achieve
proactive security.

2 Preliminaries

In this section we introduce the notation used for our constructions, and
recall all the necessary definitions and concepts.

2.1 Notation

We use a blackboard-bold font to indicate algebraic structures (i.e. sets,
groups, rings, fields and elliptic curves). When speaking about a generic group
G, we use multiplicative notation unless stated otherwise. When describing data
exchanged by two users we will use two indexes: the first denotes the sender,
while the second denotes the receiver (i.e. the symbol xi,j denotes that the value
was generated by party i and sent to party j). With an abuse of notation we
sometimes say that a list is a subset of a set. In this context we simply mean
that every element of that list is an element of the set.

In Section 3 background colors will be used to help the reader to navigate
diagrams and formulas: parts highlighted with the same color are related or refer
to the same things.

2.2 Link between Codes and Secret Sharing

Let α be an agreed-upon primitive element of Fq and let p =
∑t−1

k=0 pkx
k, a

polynomial of degree t− 1 with coefficients pk ∈ Fq, and define βj = p(αj) with



4 Sara Montanari, Riccardo Longo, and Alessio Meneghetti

j ∈ 1, . . . , q − 1. In the context of Shamir Secret Sharing, p(0) = p0 is the secret
and βj is a share.

Definition 1. Let J = [j1, . . . , jn] be a list of n distinct integers in the set
{1, . . . , q − 1}. We define the t× n matrix GJ =

[
αj·k]

k∈{0,...,t−1}, j∈J
. If n = 1

then J = [j] and we sometimes simply use Gj instead of G[j].

The following proposition summarizes the properties of the matrix defined
in Definition 1 and the link with Reed-Solomon codes. Moreover, since p has
degree at most t − 1, given any list J ⊆ {1, . . . , q − 1} of cardinality at least t,
with the list of evaluations [βj ]j∈J it is possible to interpolate the polynomial
p. This process can be executed exploiting the matrix GJ , as the proposition
describes.

Proposition 1. For any t ≤ n ≤ q − 1 and for any J = [j1, . . . , jn], the matrix
GJ (constructed as in Definition 1) is the generator matrix of a punctured [n, t]q
Reed-Solomon code. In particular:

– GJ has maximum rank for any J = [j1, . . . , jn];
– if n = t then GJ is invertible;
– if J = [j1, . . . , jt] is a list of t distinct integers in {1, . . . , n}, then, (p0, . . . , pt−1) =

(βj1 , . . . , βjt) ·G−1
J .

For the proof see [1].

Remark 1. The vector containing all the shares (β1, . . . , βn) can be viewed as the
codeword obtained by encoding the secret vector (p0, . . . , pt−1) with the matrix
G[1,...,n].

2.3 Access Structures and Linear Secret Sharing Schemes

Definition 2. An access structure (respectively, monotone access structure) is a
collection (respectively, monotone collection) A of nonempty subsets of
{P1, P2, . . . , Pn}, i.e., A ⊆ 2{P1,P2,...,Pn} \ {∅}. The sets in A are called the au-
thorized sets, and the sets not in A are called the unauthorized sets.

Any monotone access structure can be realized by a linear secret sharing scheme,
as shown in [2].

Definition 3. A secret sharing scheme Π = (M,ρ) over a set of parties P is
called linear (over Fq) if:

1. the shares for each party form a vector over Fq, and
2. there exists a matrix M called the share-generator matrix for Π with t rows

and n columns such that the following property holds. For i = 1, . . . , n, the
i-th column Mi of M is labeled by a party ρ(i) where ρ is a function from
{1, . . . , n} to P. Given the row vector p = (s, r1, . . . , rt−1), where s ∈ Fq is
the secret to be shared and r1, . . . , rt−1 ∈ Fq are randomly chosen, p·M gives
the vector of n shares of the secret s according to Π. The share βi = (pM)i,
i.e., the inner product p ·Mi, belongs to party ρ(i).
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Moreover, n is the size of Π.

Note that the map ρ that associates each share and column of M to a party
is non-necessarily injective. In this way, one participant is allowed to own more
than one share. The share-generator matrix M coincides with the matrix denoted
G[1,...,n] in observation 1, i.e. the matrix that encodes the secret into the shares,
and it defines the access structure A of the scheme, specifying which subsets of
participants can reconstruct the secret.

2.4 Adversary Models

In this subsection we collect some adversary models definition that are used
later on. Each definition distinguishes between two opposite models.

Definition 4. We distinguish between:
– Static Adversary: An adversary whose strategy is fixed and determined

before the protocol begins.
– Adaptive Adversary: An adversary that can adapt their strategy based on

the information gathered during the protocol’s execution.

Definition 5. We distinguish between:
– Mobile Adversary: An adversary that can move between different players

over time, as long as the total number of corrupt players is less than or
equal to t. A mobile adversary is adaptive, but an adaptive adversary is not
necessarily mobile.

– Non-Mobile Adversary: An adversary that does not change the set of
controlled players during the execution of the protocol.

Definition 6. We distinguish between:
– Snapshot Adversary: An adversary that captures and analyzes the sys-

tem’s state at a single point in time, without the ability to monitor or inter-
fere with the protocol after that point.

– Continuous Shot Adversary: An adversary that continuously observes the
system over an extended period. The adversary controls the corrupt players
continuously in time.

2.5 Commitments

A commitment scheme is composed by two algorithms: Com(m, r) (given the
message m to commit and some random value r outputs the commitment KGC

and the decommitment KGD) and Ver(KGC, KGD) (given a commitment and its
decommitment outputs the committed message m if the verification succeeds, ⊥
otherwise). It must have the following two properties:
– Binding: given KGC, it is infeasible to find values m′ ̸= m and KGD, KGD′

such that Ver(KGC, KGD) = m and Ver(KGC, KGD′) = m′. We say that the
commitment is perfectly binding if the binding property holds even if the
adversary has unbounded computational power.
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– Hiding: Let [KGC1, KGD1] = Com(m1, r1) and [KGC2, KGD2] =
Com(m2, r2) with m1 ̸= m2, then it is infeasible for an attacker having only
KGC1, KGC2, m1 and m1 to identify which KGCi corresponds to which mi with
more than negligible advantage. We say that the commitment is perfectly
hiding if the hiding property holds even if the adversary has unbounded
computational power.

Notice that perfect hiding and perfect binding are mutually exclusive properties,
in fact in a perfectly binding commitment KGC can be decommitted in at most one
way, so a computationally unbounded adversary can violate the hiding property
via a brute-force search.

In this work we need a homomorphic commitment, that is a commitment
HCom for which the following properties hold for all m0,m1, z0, z1, γ ∈ Fq:

1. HCom(m0; z0) ·HCom(m1; z1) = HCom(m0 +m1; z0 + z1)

2. HCom(m0; z0)
γ = HCom(γ ·m0; γ · z0)

The Pedersen commitment [12], based on the difficulty of the discrete loga-
rithm, is a perfectly hiding homomorphic commitment scheme which works as
follows:

Setup let G be a group of prime order q where the DLOG problem is hard (for
the binding property to hold), and g, h be random generators of G, then the
message space of the commitment scheme is Zq, the randomizer space is Zq

and the commitment space is G;
Commitment to commit to m ∈ Zq using the randomizer z ∈ Zq, the commit-

ter computes C = HCom(m, z) = gm · hz;
Verification the decommitment is the pair (m, z), and Ver(C,m, z) simply out-

puts m if C = gm · hz, ⊥ otherwise.

2.6 Extensible DKG

In this subsection, we mention a decentralized variant of the Verifiable Secret
Sharing Scheme (VSSS) by Pedersen [12] presented in section 3 of paper [1]. It
will be the starting point of our original contributions. It has three important
features, illustrated in figure 1: it is extensible (possibility to add new parties),
decentralized (no presence of a dealer) and verifiable (possibility to check received
values). We refer to [1] for a complete description of the protocol and the secu-

Fig. 1. Properties of the protocol.
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rity analysis of the three main phases: SecGen (secret and share generation),
SecRec (secret reconstruction), AddNew (addition of new participants).

Complexity Analysis Here we present the results of a detailed complexity
analysis that we performed. We take into consideration the following factors:

– Number of Communications: The total number of communications between
participants, divided into: private communications (secret values between
two participants), public communications (published values, i.e. commit-
ments).

– Data Storage: The amount of data (values in Fq or in G) that needs to be
stored divided into: Initial Data Storage (the amount of data that needs
to be stored for starting the phase), Runtime Data Storage (the amount
of data that needs to be stored during the execution of the phase), Final
Data Storage (the amount of data that needs to be stored at the end of the
phase). All these three categories are furthermore divided into Private data
(secret private values of a single participant, i.e. the amount of data that
each participant must store) and Public data (public global parameters).
Hence the amount of data that each participant needs to store is the sum of
the two previous categories. It is always specified whether the values to be
stored are in Fq or in G, as elements of G will occupy more space than those
in Fq.

– Number of Random Values to Generate: The total number of random values
that must be generated during the protocol.

– Computational Cost: The computational cost is measured in terms of the
most expensive operation in the phase. In particular, the relevant operations
require the following average time: exponentiation in G → 0.135 ms, multi-
plication in Fq → 0.00334 ms. Consistent with what can be expected from
a theoretical standpoint, exponentiation in G is much more expensive than
multiplication in Fq. 1

Table 1 summarizes the complexity analysis for SecGen, SecRec, AddNew.
Table 2 shows the total data storage requested comprehensively for a single
run (SecGen + AddNew + SecRec). Finally, we tested a proof-of-concept
implementation to verify the theoretical results obtained. Moreover, we compare
the time cost changing the elliptic curve on which the commitment is based: we
found that Ed25519 is always better in terms of time, especially when n or τ
increases; however, as expected, the choice of the curve does not influence the
computational complexity in terms of its asymptotic behavior.

1 Tests are executed using PC and softwares with the following characteristics:
Processor Intel(R) Core(TM) i5-10210U CPU 1.60-2.11 GHz
RAM 8,00 GB (7,72 GB usable)
Operating system Windows 11 Home, version 23H2, 64 bit
Python 3.10.12
Sagemath 9.5
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SecGen SecRec AddNew
Communications Private τn - t2 + t

Public τt - t2

Initial Data Storage Private - 1 in Fq 2 in Fq

Public 2 in G t2 in Fq (t2 + t+ 1) in
Fq

1 in Fq (2 + tτ) in G

Runtime Data Storage Private (2t+ 2τ) in Fq - (2t+ 2) in Fq

Public - 1 in Fq t2 in G

Final Data Storage Private 2 in Fq - 2 in Fq

Public tτ in G - -

Random Generations 2τt - 2t(t− 1)

Computational Cost τ(nt+ 2n+ 2t) O(t3) (t3 + 7t2 + 4t)
(exp in G) (mul in Fq) (exp in G)

Table 1. Complexity Analysis of SecGen, SecRec, AddNew. G is the group used for
the commitment, Fq is the base field for the secret sharing (as introduced in subsection
2.2), n is the total number of parties, t is the threshold and τ is the number of parties
that execute SecGen.

Total Data Storage Private 2 in Fq

Public 1 in Fq

(tτ + 2) in G
Table 2. Total data storage for a run.

3 DKG for general access policies

Up until now, the set of participants has been considered as a set of n equally
powerful members, such that any t distinct participants can collaborate to re-
cover the secret, while fewer than t participants cannot obtain any information
about the secret. In this section, we will demonstrate how it is possible to extend
a Shamir threshold secret sharing scheme to more general access policies. For
example, with this technique it is possible to have some groups of participants
more powerful than others or force specific collaborations.

To achieve this, we will first analyze the theory of access structures following
[9], to discover that the most general and efficient structure, encompassing all
others, is the threshold access tree. For this reason, in the following subsections,
we will aim to extend the sharing scheme to any threshold access tree of partici-
pants. The results obtained can also be applied in the context of attribute-based
encryption [7], where the role of parties is defined by attributes.

Besides the theoretical way of describing access policies using access struc-
tures, there are several more practical and efficient ways for describing policies.
Let us see these structures.
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Minimal Form Access Structures Due to the monotonicity, a monotone ac-
cess structure A can be efficiently described by a set A−, which consists of
the minimal elements (sets) in A, i.e., the elements in A for which no proper
subset is also in A. For any party set S ⊆ P, if and only if there exists some
set A ∈ A− such that S ⊇ A, S is an authorized set (i.e., S ∈ A, or S satisfies
A). We refer to A− as the minimal form of A. Obviously, it is more efficient
to use the minimal form to describe an access policy rather than the access
structure itself which may contain many redundancies.

Monotone Boolean Formulas A monotone boolean formula is a boolean for-
mula without NOT. For any minimal form monotone access structure, say
A− = {A1, . . . , AnA}, an equivalent monotone boolean formula, say FA =∨

1≤i≤nA

(∧
x∈Ai

x
)
, can be compressed and simplified further to obtain a

version with smaller size, e.g. (A ∧ B) ∨ (A ∧ C) = A ∧ (B ∨ C). On the
other hand, given a monotone boolean, to transform it to an equivalent min-
imal form access structure, we need to first convert the boolean formula to
an equivalent Disjunctive Normal Form (DNF: dis-junction (OR) of con-
junctions (AND) of literals, where each literal consists of variables or their
negations), whose size may be larger than the original boolean formula.

Monotone Access Trees On a monotone access tree, each leaf node corre-
sponds to a party, and each non-leaf node represents an internal gate, which
is described by its children and its label. If internal nodes are threshold-gate
nodes, the tree is generally termed as a Threshold-gate access tree. Whether
a party set S satisfies a monotone Threshold-gate access tree is determined
as follows. For a leaf node, if the corresponding party appears in S, the leaf
node is said to be satisfied. For a (t, n)-threshold gate (where n is the number
of its children and 1 ≤ t ≤ n is the threshold value), iff at least t out of n
child nodes are satisfied, the (t, n)-threshold node is satisfied. Finally, if and
only if the root node of the access tree is satisfied, the access tree is said to
be satisfied by S.
An AND-OR-gate access tree is a special case of the Threshold-gate access
tree in which the label of each internal node is either an AND (equivalent to
t = n) or OR (equivalent to t = 1) gate. As a result, given an AND-OR-gate
access tree, we can obtain a Threshold-gate access tree with the same number
of leaf nodes. Conversely, to express a general (t, n)-threshold gate, multiple
AND and OR gates have to be used and therefore, an equivalent AND-OR-
gate access tree will have more leaf nodes than the original Threshold-gate
access tree. Also note that an AND-OR-gate access tree is the same as an
equivalent monotone boolean formula in terms of generality and efficiency,
where AND gate corresponds to ∧ and OR gate to ∨.

The expressivity of these structures are equivalent. If we use A ≻ B (resp.
A ∼ B) to represent that form A is more efficient than form B (resp. form A
is equally efficient to form B), we have the following relationships: monotone
access structure ≺ minimal form access structure ≺ monotone boolean formula
∼ AND-OR-gate access tree ≺ Threshold-gate access tree. An example is shown
in figure 2, where several options are listed from top to bottom in order of
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efficiency. Therefore, Threshold-gate access tree is the most general and efficient

Fig. 2. Different forms for describing a (2, 4)-threshold access policy over the universe
{A,B,C,D}.

form.
Recall that any monotone access structure can be realized by a linear secret

sharing scheme, regardless of the method used to express it, as shown in [2].
Starting from a general Threshold-gate access tree, we aim to realize a LSSS
matrix that describes its access policy in the context of our Shamir secret sharing
scheme. In this section, we explore this path starting from our Secret Sharing
protocol defined on a simple threshold policy, and we extend it to a general
Threshold-gate access tree. Remember the link between the secret s and the
shares βi in a (t, n) Secret Sharing protocol:

1. The secret s is equal to the constant term of the polynomial p(x) of degree
t− 1, i.e. s = p0.

2. The other (t − 1) coefficients of p(x) are random values: (p1, . . . , pt−1) =
(r1, . . . , rt−1).

3. n shares (β1, . . . , βn) are obtained from the vector (p0, p1, . . . , pt−1) through
the multiplication with a generator matrix G that encodes the secret:
(p0, p1, . . . , pt−1) ·G = (β1, . . . , βn).

4. The matrix G integrates the access policy through the independence relation-
ships among its columns. Each column is associated to a single participant.
In a (t, n)-Shamir Secret sharing protocol, G is a generator matrix for an
[n, t, n− t+ 1] MDS code (any t columns of G are linearly independent)
with the following structure:

G =


1 1 . . . 1
α α2 . . . αn

...
...

. . .
...

αt−1 α2(t−1) . . . αn(t−1)

 .
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5. Whenever t parties (with J = {j1, . . . , jt} set of party-indexes) collaborate
to recover the secret, a new square-matrix of size (t×t) named G (in previous
chapters it was named GJ) is obtained from G, selecting all the columns of
G with index in J .

6. G is invertible and allows to recover the secret: (p0, . . . , pt−1) = (βj1 , . . . , βjt)·
G

−1
.

Suppose that we have a general Threshold-gate access tree. To recover the secret,
an authorized set of participants (leaves) must satisfy all the Threshold-gates
from the bottom up to the root node. We can imagine the tree as a layered
repetition of individual cascading secret sharing thresholds. The root node en-
codes the secret vector in a set of shares. These shares become secrets for the
second layer, that are encodes in sets of shares for the next layer and so on,
until the final shares of the last layer. Figure 3 explains this idea. Ideally, shares

Fig. 3. Key idea for extending Secret Sharing to Threshold-gate access trees.

are computed top-down from the secret, while the secret is recovered bottom-up
from an authorized set of shares. More formally, each (ti, ni) Threshold-node is
represented by a MDS matrix with parameters [ni, ti, ni − ti + 1]. Remembering
these observations, now we focus on a simple example of Threshold-gate access
tree, showed in figure 4. First of all, let us see how the secret reconstruction

Fig. 4. Example of Threshold-gate access tree. Colors will be used in the explanation
for better clarity.

works in this precise tree:

1. t1,1 valid distinct shares {β(1,1)
j }j∈J1,1

among the n1,1 of the pink node are
selected and the corresponding columns of G1,1 are used to build G1,1. In
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this way, the coefficients of the polynomial related to this node are recovered:(
β
(1,1)
j

)
j∈J1,1

· G−1
1,1 = (p

(1,1)
0 , . . . , p

(1,1)
t1,1−1) .

2. Similarly for the green and blue nodes:
(
β
(1,2)
j

)
j∈J1,2

· G−1
1,2 = (p

(1,2)
0 , . . . , p

(1,2)
t1,2−1) ,

(
β
(1,3)
j

)
j∈J1,3

· G−1
1,3 = (p

(1,3)
0 , . . . , p

(1,3)
t1,3−1) .

3. From the floor level (the one with final shares), we obtained the coefficients
of the polynomials of all the nodes in the middle layer. Among these co-
efficients, we select only the constant terms: these values are “secrets” for
the middle level, but also shares for the top level. Now, t0 constant terms{
p
(1,j)
0

}
j∈J0

=

{(
β
(1,j)
i

)
i∈J1,j

·G−1

1,j · eT1
}

j∈J0

among the n0 of the middle

nodes are selected and the corresponding columns of G0 are used to build G0.
In this way, the coefficients of the polynomial related to the root node are re-
covered:

(
p
(1,j)
0

)
j∈J0

· G−1
0 = (p

(0)
0 , . . . , p

(0)
t0−1) . In particular, the first component

is the secret: s =
(
p
(1,j)
0

)
j∈J0

·G−1

0 · eT1 .

Our goal is to build a single matrix that encodes the secret directly in the final
shares. In particular, the values that must be encoded are the secret together with
all the random elements (in a single Threshold-gate the random elements are just
(t− 1)). Let us see what are the encoded elements considering a Threshold-gate
access tree:

– The secret s together with (t0 − 1) random values form the vector
(p

(0)
0 , . . . , p

(0)
t0−1) of coefficients of the root polynomial. This vector is encoded

by G0 in a vector of shares. This vector of shares contains all constant terms
of the polynomials of lower level nodes.

– For each of these nodes, other (t(1,j) − 1) random values are generated and
the vector containing the constant term plus these random values describes
the polynomial of the node (p

(1,j)
0 , . . . , p

(1,j)
t1,j−1). Finally, each of these vectors

is encoded by G1,j in final shares.
– Therefore, the random (except for the secret) values from which we start

and that we need to encode with the single matrix we are looking for, are
all the coefficients of the root polynomial plus the coefficients of the other
polynomials except for their constant terms:

p
(0)
0 , p

(0)
1 , . . . , p

(0)
t0−1

p
(1,1)
1 , . . . , p

(1,1)
t1,1−1

p
(1,2)
1 , . . . , p

(1,2)
t1,2−1

p
(1,3)
1 , . . . , p

(1,3)
t1,3−1.

With these observations, we can start building our matrix. Focusing on the
middle level, we can observe that the encoding process can be executed for all
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the three nodes together with the following matrix:

(
p
(1,1)
0 , . . . , p

(1,1)
t1,1−1 , p

(1,2)
0 , . . . , p

(1,2)
t1,2−1 , p

(1,3)
0 , . . . , p

(1,3)
t1,3−1

)
·

 G1,1

G1,2

G1,3

 =

=
(
β
(1,1)
1 , . . . , β(1,1)

n1,1
, β

(1,2)
1 , . . . , β(1,2)

n1,2
, β

(1,3)
1 , . . . , β(1,3)

n1,3

)
.

Then we have to integrate the matrix G0. Since each column of it corresponds
to a lower node, we highlight them with the same color of the nodes:

G0 =

(
g1,1 g1,2 g1,3
g2,1 g2,2 g2,3
g3,1 g3,2 g3,3

)
t0×n0

.

These columns encode the coefficients of the root polynomial into the constant
terms of the lower polynomials, therefore we build the following matrix (named
A) for the encoding process of the root level:(

p
(0)
0 , p

(0)
1 . . . , p

(0)
t0−1 , p

(1,1)
1 , . . . , p

(1,1)
t1,1−1 , p

(1,2)
1 , . . . , p

(1,2)
t1,2−1 , p

(1,3)
1 , . . . , p

(1,3)
t1,3−1

)
·

·



g1,1 g1,2 g1,3

g2,1 g2,2 g2,3

g3,1 g3,2 g3,3

1

. . .
1

1

. . .
1

1

. . .
1


(t0+

∑3
i=1

(t1,i−1))×(
∑3

i=1
t1,i)

= (1)

=

(
p
(1,1)
0 , p

(1,1)
1 , . . . , p

(1,1)
t1,1−1 , p

(1,2)
0 , p

(1,2)
1 , . . . , p

(1,2)
t1,2−1 , p

(1,3)
0 , p

(1,3)
1 , . . . , p

(1,3)
t1,3−1

)
.

Remark 2. The matrix A in the previous equation can be obtained as a column
permutation of a simpler matrix:

A =
(

G0

I∑3
i=1

(t1,i−1)

)
·


1

1
1

It1,1−1

It1,2−1

It1,3−1

 .
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Finally, we have to put together the two layers obtaining a unique encoding
process that encodes the starting values into the final shares.(

p
(0)
0 , p

(0)
1 . . . , p

(0)
t0−1 , p

(1,1)
1 , . . . , p

(1,1)
t1,1−1 , p

(1,2)
1 , . . . , p

(1,2)
t1,2−1 , p

(1,3)
1 , . . . , p

(1,3)
t1,3−1

)
·

·A ·


G1,1

G1,2

G1,3

 = (2)

=
(
β
(1,1)
1 , . . . , β(1,1)

n1,1
, β

(1,2)
1 , . . . , β(1,2)

n1,2
, β

(1,3)
1 , . . . , β(1,3)

n1,3

)
.

The matrix obtained from the product of the two matrices in the previous equa-
tion is the generator matrix we were looking for. If the Threshold-gate access
tree has more levels, it is sufficient to iterate the procedure up to the root node.
Consider for example the tree in figure 5. Firstly, we analyze orange and violet

Fig. 5. Example of a 3 levels Threshold-gate access tree. Colors will be used in the
explanation for better clarity.

sub-trees independently, following the procedure done until now and obtaining
the two matrices:

A1,1 ·
(
G2,1

G2,2

)
, A1,2 ·

(
G2,3

G2,4

)
,

where G1,1 is encoded in A1,1 and G1,2 in A1,2, as showed in equation 1. Then
we integrate the root node with the same strategy, obtaining the final matrix:

A0 ·


A1,1 ·

(
G2,1

G2,2

)

A1,2 ·
(
G2,3

G2,4

)
 , (3)

where G0 is encoded in A0 as showed in equation 1.

Remark 3. Observe that the starting vector is obtained collecting the starting
polynomial coefficients of each node, following the same node-order of a DEPTH-
FIRST-SEARCH of the tree-graph.
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3.1 Computing the Final Matrix

We finally found the structure of the generator matrix we were looking for,
but until now we are able to write it only as a multiplication of matrices. In
this section we try to find its final structure. Since the procedure to obtain the
matrix is iterative, it is sufficient to describe how the matrix change whenever
a new node is inserted. Then, starting from the simple generator matrix that
describes only the threshold root node, it is possible to obtain the final structure
of the matrix related to the whole tree following the instructions step by step
(adding one node at a time).

Suppose that we start from a generator matrix M1 related to a Threshold-
gate access tree with root label t0 and we want to describe the new matrix M
that describes the tree after the insertion of a new threshold-node labeled t1
described by the generator matrix M2. The situation is described in figure 6. In

Fig. 6. Insertion of a threshold-node.

M1 we denote with v the column vector that corresponds to the party instead
of which the new node is inserted, with M1,1 the sub-matrix containing the set
of h1 columns that precedes v and with M1,2 the sub-matrix containing the set
of h2 columns that succeeds v: M1 =

(
M1,1 v M1,2

)
t0×n0

. In M2 we denote
with u the first row and with M2,1 the sub-matrix containing the other rows of

M2: M2 =

(
u

M2,1

)
t1×n1

. Following the strategy explained in equations 1, 2, the

matrix that describes the final tree is the product of the two following matrices:

M =

(
M1,1 v M1,2

It1−1

)
·

 Ih1

M2

Ih2

 .

The sizes of these two matrices are (t0 + t1 − 1)× (h1 + t1 + h2) and (h1 + t1 +
h2)× (h1+n1+h2), respectively. By carrying out the multiplication and paying
attention to the dimensions of sub-matrices, we obtain the final matrix:

M =

(
M1,1 v ⊗ u M1,2

M2,1

)
(t0+t1−1)×(h1+n1+h2)

, (4)

where v ⊗ u is the matrix obtained from the tensor product: (v ⊗ u)i,j :=
vi · uj . We finally found a way to describe the LSSS matrix related to a general
Threshold-gate access tree and we did it extending the strategy of Shamir Secret
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sharing layer-by-layer. The result found in this subsection matches the algorithm
proposed in paper [9], in which the authors exploit the theory of Monotone Span
Programs (MSP) to generate a LSSS matrix related to a general Threshold-gate
access tree. In section 3.2 we describe carefully the algorithm proposed in [9],
adapting it to our more convenient notation and mentioning also its relevant
computational efficiency.

3.2 Efficient Algorithm

In this subsection we present the algorithm proposed in [9] that coincides
with the result we obtained in section 3.1, adapted with our notation. It is based
on the following strategy:

1. Write the LSSS matrix for a single (t, n)-threshold gate.
2. Repeatedly perform the insertion operation according to the structure of the

input Threshold-gate access tree.
3. Use a formatted string to describe the input tree and design an algorithm

which can output (M,ρ) based on the formatted string alone.

Firstly, let us describe how to associate a string to a tree.

1. Leaves (participants or attributes) are described with letters: A,B,C, . . . or
P1, P2, . . .

2. “()” will be used to define non-leaf nodes and “,” will work as a separator
to separate the child nodes of each non-leaf node and the threshold value.
For example, a Threshold-gate with threshold 2 and child leaves A,B,C,D
corresponds to the string (A,B,C,D, 2).

3. A Threshold-gate access tree A is described by a string that describes its
root node. In particular, suppose that the root node is a (t, n)-threshold
gate. The access tree can then be described by a string (F1, F2, . . . , Fn, t)
where Fi (1 ≤ i ≤ n) are strings that represent the children of the root
node.

4. Fi can be a letter corresponding to a leaf node, or a non-leaf node described
by its children and a threshold value, i.e.
Fi = (Fi,1, Fi,2, . . . , Fi,ni

, ti), where Fi,1, Fi,2, . . . , Fi,ni
represent the ni chil-

dren of Fi and ti is a threshold value with 1 ≤ ti ≤ ni.

We refer to such a recursive-form string as a threshold-tree-string. Furthermore,
given a threshold-tree-string FA, when we say “ith attribute of FA” we mean the
ith attribute, indexed from left to right, ignoring the symbols “(”, “)” and “,”.

Remember that, for a (t, n)-threshold access structure described by the
threshold-tree-string (P1, . . . , Pn, t), we can construct the corresponding LSSS
as in definition 1:

M =
[
αj·k]

k∈{0,...,t−1},j∈{1,...,n} ; ρ(i) = Pi, ∀i ∈ {1, . . . , n}. (5)

Note that M is completely determined by the values n and t, and (M,ρ) is
completely determined by the string (P1, P2, . . . , Pn, t), as ρ(i) = Pi. Using an



Tighter Control for DKG: Refreshing and Reconstruction Policies 17

LSSS as in Equation 5 for each Threshold-gate, we can follow the threshold-tree-
string’s structure to repeatedly execute the one-column-insertion, and eventually
output an LSSS (M,ρ) for A, where ρ is determined by FA as the ith row of M is
labeled by the ith attribute of FA. In particular, each node of the access tree is
regarded as a participant of a threshold access structure specified by its parent
node. For this reason, we start with a (1, 1)-threshold LSSS and consider the
root node of the tree as its participant. Let us see precisely the algorithm.

Input A threshold-tree-string FA for a Threshold-gate access tree A.
Output A matrix M and a function ρ, which maps the ith row of M to the ith

attribute in FA, (M,ρ) is the LSSS realizing A.
Algorithm description Steps:

1. Let M := (1)1×1 matrix and L := (FA) vector of strings.
2. Repeat the following steps until all coordinates of L are single letters

(attributes or participants):
(a) Scan the coordinates of L = (L1, . . . , Lm) to find the first coordinate

that is a threshold-tree-string rather than a single letter. Suppose
the index of this coordinate is i and Li = (Fi,1, . . . , Fi,ni , ti).

(b) Let M2 be the LSSS matrix that describes the Threshold-node asso-
ciated to this coordinate, computed as in equation 5.

(c) Execute one-column insertion (equation 4) of M2 on the ith column
of M to obtain a new M .

(d) Set L = (L1, . . . , Li−1, Fi,1, . . . , Fi,ni , Li+1, . . . , Lm)
3. Return the matrix M .

Remark 4. If we denote with n the number of leaves (participants or attributes)
of A and with t0, t1, t2, . . . , tw the thresholds of the root node and all the internal
nodes, respectively, then the size of the output matrix M is: (t0+

∑w
i=1(ti−1))×n.

The time complexity of this algorithm is O(n2), in particular 10n2. We refer to
[9] for the complexity analysis.

3.3 Extension of the Phases

In this subsection we show how the phases of our protocol can be adapted
to the case of a Threshold Access Tree. We carefully describe the new versions
of SecGen and SecRec, while for AddNew and Refresh we just give the
guideline to adapt them, since the strategy is very similar and trivial.

SecGen The matrix M that describes the Threshold-access tree is supposed
to be known and public. The algorithm described in 3.2 allows to compute
it starting from the Threshold-gate access tree. Recall that the size of M is
(t0 +

∑w
i=1(ti − 1))× n, where n is the number of leaves, t0 is the threshold

of the root node, w is the number of internal nodes, ti is the threshold of an
internal node.
To adapt SecGen we have to substitute:
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– t0 +
∑w

i=1(ti − 1) instead of t.
– A secret vector p(i) = (p

(i)
0 , . . . , p

(i)
(t0+

∑w
i=1(ti−1))−1) instead of the secret

polynomial p(i)(x), a random vector z(i) = (z
(i)
0 , . . . , z

(i)
(t0+

∑w
i=1(ti−1))−1)

instead of the random polynomial z(i)(x).
– The secret is the sum of the first components p0 =

∑τ
i=1 p

(i)
0 .

– The values βi,j := p(i) ·Mj ,γi,j := z(i) ·Mj , (where Mj is the column of
M associated to Pj), instead of the evaluations βi,j := p(i)(αj), γi,j :=
z(i)(αj).

– (M)k,j instead of αi·k, in checks.

SecRec If J is a list of distinct indexes corresponding to an authorized set of
participants, then with the vector of shares (βj)j∈J it is possible to recon-
struct the secret p0 as follows: p0 =

∑
j∈J ωjβj , where ωjj∈J are the solutions

of the linear system
∑

j∈J ωjMj = (1, 0, . . . , 0)T , where Mj is the column of
M corresponding to Pj . The system has (t0 +

∑w
i=1(ti − 1)) equations and

|J | (≤ (t0 +
∑w

i=1(ti − 1))) unknowns.
AddNew An authorized set J of participants with a more restricted request

(see Definition 7 below) must collaborate to generate a new share and add
a new column to the matrix M . In particular, suppose that we start from a
Threshold-gate access tree described by the matrix M1 and we want to add
h new participants obtaining a Threshold-gate access tree described by the
matrix M2.

Remark 5. M2 must be an ”extension” of M1, i.e. M1 with new columns.
This is needed because the column of M1 must remain immutable in M2, in
this way the shares of all the participants before the addition remain valid.

In order to add h new participants, we execute an adaptation of AddNew h
times: at each time a column is added to M1 and a new share is generated for
the new leaf. To add a new share, we have to recover the entire secret vector
p that has the secret p0 as first component (and other random elements).
Knowing this vector and the new column v that has to be added, the new
share will be equal to p · v. The length of p is (t0 +

∑w
i=1(ti − 1)), therefore,

we need (t0 +
∑w

i=1(ti − 1)) number of shares, i.e. this is the number of
participants that have to collaborate to add a new share. In particular, it
is needed that EVERY threshold-node is fulfilled, according to the following
notion:

Definition 7. The root node is fulfilled if its threshold t0 is achieved. An
internal node is fulfilled if its threshold minus one (ti − 1) is achieved.

Collecting together a set of shares that fulfills all nodes, it is possible to
recover p and compute a new share. The sub-matrix MJ with the columns
of M corresponding to the parties in J is a square invertible matrix of size
(t0 +

∑w
i=1(ti − 1)) × (t0 +

∑w
i=1(ti − 1)) that plays the role of GJ in the

original protocol. To adapt AddNew we have to substitute:
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– MJ instead of GJ .
– The column of M2 that we are adding (named v) instead of Gn+1.
– (M1)k,jl instead of αjl·k.
– The kth element of v instead of α(n+1)·k.

3.4 Complexity

Finally, we report the complexity of the phases adapted to a Threshold-gate
access tree.

– SecGen: same of section 2.6, with (t0 +
∑w

i=1(ti − 1)) instead of t.
– SecRec: The computational cost is that of solving the linear system of size

(t0 +
∑w

i=1(ti − 1)) × |J |, hence it depends (generally O((t0 +
∑w

i=1(ti −
1))2 |J |)).

– AddNew: h times the cost of adding one share that is the same of section
2.6 with (t0 +

∑w
i=1(ti − 1)) instead of t.

– Refresh: same of section 4.3 with (t0 +
∑w

i=1(ti − 1)) instead of t.

4 Share Refreshing

If the information stored by participants to share a secret remains unchanged
throughout the system’s lifetime, an adversary could eventually breach enough
participants to recover the secret. To counteract this risk, proactive security
introduces the concept of dividing time into periods known as epochs. At the start
of each epoch, the shares held by participants are updated, although the shared
secret itself remains constant. This approach enhances protection for long-lived
secrets, especially against a mobile adversary, which is an adversary that can
move among players over time but can only control a limited subset of players
at any given moment (as explained in [10]). By periodically refreshing the shares,
proactive security ensures that the adversary does not have enough time to break
into the necessary number of participants. Moreover, the information they get at
a certain time, becomes obsolete. This means that what they learned during one
epoch is useless in subsequent epochs, forcing the adversary to start its attack
afresh with each new period. In practice, the system’s lifetime is divided into
epochs according to a global clock. As shown in Figure 7, at the end of each
epoch, participants engage in an interactive update protocol named Refresh,
which ensures the secret’s value is not revealed nor changed. Consequently, at
the beginning of each new epoch, participants hold updated shares of the secret,
reinforcing the security of the system.

Proactive security does not make sense if we consider a Non-Mobile (defi-
nition 5) or Static (definition 4) adversary. In these cases, the adversary does
not change strategy or corrupted participants over time; the set of corrupted
players remains the same from the start. This set has a cardinality less than t.
A refresh phase will not add security since the adversary will not discover new
shares, whether old or new. On the other hand, if we consider a Continuous Shot
Adversary (definition 6), proactive security will be useless since the adversary
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Fig. 7. Refresh general idea: periodically and proactively restore the security of the
system.

has full control of the corrupted players. This means they will possess all the new
shares of the corrupted players, and therefore, no additional security is provided.
In conclusion, for our purposes, we consider a Snapshot, Mobile and Adaptive
adversary. More precisely, suppose that the adversary has full control of x par-
ticipants while possesses y lost or stolen shares. It holds x+ y ≤ t− 1, otherwise
the adversary is able to recover the secret. Proactive security aims to reset the
threshold to t−x, rending useless the y lost or stolen shares. Moreover, in case we
consider Snapshot Adversary, the threshold is reset to t. Finally, we can consider
also active adversaries thank to the use of commitment. In particular, we use
Pedersen commitment that is perfectly hiding but only computationally binding.
Therefore we consider computationally bounded adversaries, even if the hiding
property is secure even if the adversary has unbounded computational power.

Remark 6. If instead of Pedersen commitment, a perfectly binding but only com-
putationally hiding is used, the adversary type is still Computationally Bounded,
even if the biding property is secure even if the adversary has unbounded com-
putational power. Computationally Unbounded Adversaries can not be taken
into consideration since the commitment can not be both perfectly hiding and
perfectly binding (as explained in subsection 2.5).

We propose three distinct methods for the refresh phase, let us see them in
details.

4.1 First Decentralized Refresh (ZeroSharesRefresh)

τ ≤ n participants P1, . . . , Pτ collaborate to refresh shares and checking
values for the players P1, . . . , Pn. The secret remains p0, the threshold t.

Player Pi, i ∈ {1, . . . , τ}
Private Input: (βi, γi)
Public Input: α, g, h

Private Output: (βn+1, γn+1)
Public Output: -

1. Each Pi for i ∈ {1, . . . , τ} generates a secret polynomial h(i) ∈ Fq[x] of
degree t − 1, by sampling the coefficients h

(i)
k uniformly at random in Fq,

with h0 = 0.
2. Each Pi samples another random polynomial e(i) ∈ Fq[x] of degree t−1 with

e0 = 0, and uses its coefficients to compute and publish the commitments to
the coefficients of their secret polynomial h(i): Ci,k = HCom

(
h
(i)
k ; e

(i)
k

)
fork ∈

{1, . . . , t− 1}.
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3. After having received every single commitment Cj,k, for j ∈ {1, . . . , τ} and
k ∈ {0, . . . , t− 1}, each Pi sends to each Pj the evaluations
δi,j = h(i)(αj) and ϵi,j = e(i)(αj).

4. Each Pi for i ∈ {1, . . . , τ} sends the pair (δi,j , ϵi,j) also to every party Pj for
j ∈ {τ + 1, . . . , n}.

5. By exploiting the homomorphic properties of the commitment scheme, each
Pi for i ∈ {1, . . . , n} checks the values received against the published com-
mitments:

HCom(δj,i; ϵj,i)
?
= HCom(0, 0) ·

t−1∏
k=1

(Cj,k)
(αi)k , ∀j ∈ {1, . . . , τ}. (6)

6. If all of these checks pass, each Pi sets its new share of the same secret as
βi = βi +

∑τ
j=1 δj,i, and the checking value γi = γi +

∑τ
j=1 ϵj,i.

Finally, Pi deletes the old values βi, γi and also the update value δi =∑τ
j=1 δi,j .

Observe that a new polynomial h(x) :=
∑τ

i=1 h
(i)(x) is generated. Con-

sequently, a new polynomial p(x) := p(x) + h(x) is implicitly created. This
new polynomial has the same constant value of the old one: p0 = p0, since
h0 =

∑τ
i=1 h

(i)
0 = 0. This constant value is the secret that is fixed. The idea is

explained in figure in 8 (for simplicity, polynomials are drawn as lines).

4.2 Second Decentralized Refresh (RegenRefresh)

This method is based on the idea of regenerating the polynomials that had
been created in the SecGen phase. Let us see the protocol.

The same set of τ ≤ n participants P1, . . . , Pτ that had carried out the Sec-
Gen, collaborate to refresh shares and checking values for the players P1, . . . , Pn.
The secret remains p0, the threshold t.

Player Pi, i ∈ {1, . . . , τ}
Private Input: p

(i)
0

Public Input: α, g, h, {C0,i,0}1≤i≤τ

Private Output: (βn+1, γn+1)
Public Output: -

1. Each Pi for i ∈ {1, . . . , τ} generates a secret polynomial p(i) ∈ Fq[x] of degree
t− 1, by sampling the coefficients p

(i)
k uniformly at random in Fq, with the

restriction p
(i)
0 = p

(i)
0 .

2. Each Pi samples another random polynomial z(i) ∈ Fq[x] of degree t−1 with
z
(i)
0 = z

(i)
0 , and uses its coefficients to compute and publish the commitments

to the coefficients of their secret polynomial p(i):
Ci,k = HCom

(
p
(i)
k ; z

(i)
k

)
∀k ∈ {1, . . . , t− 1}.

3. After having received every single commitment Cj,k, for j ∈ {1, . . . , τ} and
k ∈ {0, . . . , t− 1}, each Pi sends to each Pj the evaluations
βi,j = p(i)(αj) and γi,j = z(i)(αj).
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4. Each Pi for i ∈ {1, . . . , τ} sends the pair (βi,j , γi,j) also to every party Pj

for j ∈ {τ + 1, . . . , n}.
5. By exploiting the homomorphic properties of the commitment scheme, each

Pi for i ∈ {1, . . . , n} checks the values received against the published com-
mitments:

HCom(βj,i; γj,i)
?
= C0,j,0 ·

t−1∏
k=1

(Cj,k)
(αi)k , ∀j ∈ {1, . . . , τ}. (7)

Recall that C0,j,0 are commitments published and memorized in SecGen.
6. If all of these checks pass, each Pi sets its new share of the same secret as

βi =
∑τ

j=1 βi,j , and the checking value γi =
∑τ

j=1 γi,j .
Finally, Pi deletes the old values βi, γi.

Observe that a new polynomial p(x) := p(x) + h(x) is implicitly generated.
This new polynomial has the same constant value of the old one: p0 = p0, since
p
(i)
0 = p

(i)
0 for i ∈ {1, . . . , τ}. This constant value is the secret that is fixed. The

idea is explained in figure in 8 (for simplicity, polynomials are drawn as lines).

0 0

Fig. 8. Representations for ZeroSharesRefresh (on the left) and RegenRefresh
strategies (on the right) in the case of polynomials of degree 1 (2-out-of-3 reconstruction
policy).

Remark 7. The two methods are completely equivalent. Indeed, in both cases,
a new polynomial p(x) is generated, and the new shares are evaluations of this
polynomial. In the first method, the difference polynomial between p(x) and
p(x) (named h(x)) and its evaluations δi are explicitly used and exchange, while
in the second their are only implicitly set. However, the information used for
the second method are enough to recover all this “hidden” values. Indeed, each
participant can recover their update value δi = h(αi) by computing βi − βi.
Moreover, as in the first method t−1 participants can collaborate to interpolate
and find h(x) (as explained in the next subsection), also in the second one they
can compute h(x):

1. Each participant computes δi = βi − βi.
2. They knows that there exists a polynomial h(x) that passes through their

evaluations (αi, δi) plus the point (0, 0).
3. They use these t information to interpolate and recover h(x). This polyno-

mial is such that p(x) = p(x) + h(x).
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Security Formal security proofs for these two protocols are analogous to that
of SecGen (see [1] for details). Here, we analyze security in more depth, consid-
ering two periods separated by a refresh phase and an adversary. Since the two
methods are equivalent, we handle them in a unique way. Recall that h(x) has
degree t−1 and h(0) = 0. Each Pi knows δi = h(αi). t−1 corrupted participants
can collaborate to recover h(x) by interpolating. Indeed, they know t−1 evalua-
tions plus the info h(0) = 0. Hence they recover also h(αj) for j ∈ {1, . . . , n}, all
the update factors. In this way, if they find a old share βi, they can compute the
corresponding new share βi by computing βi = βi + h(αi). Knowing this new
share, they can recover the secret. Security doesn’t seem to hold up anymore.
However, the assumption requires that, during each period, less than t partici-
pants can not recover any info about the secret. In this case, t− 1 participants
can recover the polynomial h(x), but they still need t shares to recover the secret.
Therefore, the security assumption still holds. More formally, suppose I is the
set of indexes that the attacker has corrupted, obtaining their shares. Then the
participants execute a refresh phase and a new period starts. Now suppose that
J is the set of indexes that the attacker corrupts after the refresh phase, obtain-
ing their new shares. Trivially, suppose |I ∩ J | ≤ t − 1, otherwise the attacker
can already recover the secret. If, |I ∩J | = t−1, the attacker can compute h(x),
but needs a t-th share to recover the secret.

Remark 8. It is important that at the end of the refresh phase, each participant
deletes the old share βi. Otherwise, once the attacker corrupts a participant Pi,
they recover both the old and the new shares (βi and βi respectively). In this
way, whenever |I ∪ J | ≥ t, the attacker has enough old shares to recover the
secret. Moreover, in the first method, it is fundamental that each participant
deletes also the update value δi. Indeed, whenever |J | ≥ t − 1 and there exists
j ∈ I \J , the attacker can use the update values of J to interpolate and compute
h(x), then compute δj and finally βj = βj + δj . At the end the attacker can use
the new shares in J plus βj to recover the secret.

4.3 Third Decentralized Refresh (MatrixRefresh)

The two decentralized refresh protocols that we have seen to be secure,
have some limitations. These two methods are based on the idea of computing
new shares from which the secret can be recovered executing the same protocol
(SecRec). More precisely, the old and the new shares are linked to the secret
through the fixed matrix G: Vandermonde matrix that encodes the coefficients
of the polynomial p into a vector of shares. Consequently, a set of t distinct old
shares can be used to recover the secret, even in a future period. In this way, for-
ward secrecy against an adversary that stoles a sufficient number of past shares
is not granted. To avoid this limitation is necessary to change the matrix G that
links secret and shares. Now we propose and analyze a different approach that
tries to solve this problem. At the end, we will discover that achieving this goal,
we introduce a new limitation that was not present in the two methods discussed
above. The idea is to periodically change both the shares and the matrix G that
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encodes the secret. In this way, old shares can not be used anymore to recover
the secret. Past information becomes useless, even if the quantity exceeds the
threshold t. In this protocol, named MatrixRefresh, new shares are produced
and distributed using a new matrix, past info are not used. The new matrix is
basically the one of the previous epoch premultiplied with a random invertible
matrix. Figure 9 shows the idea.

Fig. 9. MatrixRefresh general idea.

Remark 9. This can be convenient even in a context where we no longer trust a
participant, so we don’t give them the new share, and we are certain they won’t
be able to use their past information.

The new goal of security is: In the current epoch, less than t shares provide
no information about the secret and past shares provide no information about
the secret even if the quantity exceeds the threshold t.

Remark 10. We will see that this assumption holds except for the shares of the
first epoch, the one that starts with SecGen. Indeed, the matrix G used initially
must be stored through all the future epochs. For this reason we will suggest to
execute a MatrixRefresh protocol few time immediately after SecGen.

Remark 11. Old versions of the generator matrix G must be forgotten and erased
by everyone in order to achieve the desired security.

MatrixRefresh Protocol Time is divided into epochs, each one corre-
sponds to a value of a counter. Between two consecutive epochs there is a refresh
protocol that ends the old period and starts the new one. Each epoch has two
fixed matrices that are updated through the refresh. During epoch h must be
stored (see observation 13):

1) The Vandermonde matrix G used in SecGen: G =
[
αj·k]

k∈{0,...,t−1}, j∈{1,...,n}.
2) The matrix G(h), that is the matrix that encodes the secret (constant term

of the polynomial p) into the shares of epoch h (named β
(h)

i ). In particular
it holds: (p0, . . . , pt−1) ·G(h) = (β

(h)

1 , . . . , β
(h)

n ).
3) The matrix Stot, that is such that G(h) = Stot ·G.

Suppose that we are in epoch h and we want to start a new epoch h + 1.
t participants Pj1 , . . . , Pjt (J = {j1, . . . , jn}) collaborate to refresh shares of all
the participants P1, . . . , Pn.
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Player Pℓ, ℓ ∈ {j1, . . . , jt}
Private Input: (β

(h)
jℓ

, γ
(h)
jℓ

)

Public Input: G,G(h), Stot, α, g, h, {C0,i,k} 1≤i≤τ
0≤k≤t−1

, {C(h)
jℓ,J,i,k

}1≤ℓ≤t
1≤i≤τ
1≤k≤t

Private Output: (β(h+1)
jℓ

, γ
(h+1)
jℓ

)

Public Output: G(h+1), Stot, {C(h+1)
jℓ,J,i,k

}1≤ℓ≤t
1≤i≤τ
1≤k≤t

1. A matrix S with elements in Fq of dimensions (t, t), random, invertible is
generated.

2. The two public matrices are updated: G(h+1) = S ·G(h), Stot = S ·Stot. S is
deleted.

The following steps are executed n times, one for each Pi for i ∈ {1, . . . , n}
that receives their share.

3. Each Pjℓ computes f(β
(h)
jℓ

, i, J, ℓ) := β
(h)
jℓ

· eℓ · G(h)−1

J · G
(h+1)
i

and f(γ
(h)
jℓ

, i, J, ℓ) := γ
(h)
jℓ

· eℓ ·G(h)−1

J ·G(h+1)
i .

4. Each Pjℓ generates random values bi,J,ℓ,k, zi,J,ℓ,k ∈ Fq, for k ∈ {1, . . . , t}
\ {ℓ} and sets bi,J,ℓ,ℓ := f(β

(h)
jℓ

, i, J, ℓ) −
∑t

k=1,k ̸=ℓ bi,J,ℓ,k and zi,J,ℓ,ℓ :=

f(γ
(h)
jℓ

, i, J, ℓ)−
∑t

k=1,k ̸=ℓ zi,J,ℓ,k.
5. Each Pjℓ computes and publishes the commitments

C
(h+1)
i,J,ℓ,k := HCom(bi,J,ℓ,k; zi,J,ℓ,k) ∀k ∈ {1, . . . , t}.

6. After having received every C
(h+1)
i,J,ℓ,k for ℓ, k ∈ {1, . . . , t}, each Pjℓ checks the

coherence of the values received with the previous epoch:

t∏
k=1

C
(h+1)
i,J,ℓ,k

?
=

(
t∏

w=1

t∏
k=1

C
(h)
jℓ,J,w,k

)eℓ·G(h)
J

−1
·G(h+1)

i

∀ℓ ∈ {1, . . . , t}, (8)

where C
(h)
jℓ,J,w,k are the commitments published during the previous refresh

execution, with an abuse of notation since the set J could be different.
Moreover, they check the coherence of each value received with the SecGen
initial phase:

t∏
k=1

C
(h+1)
i,J,ℓ,k

?
=

t−1∏
k=0

 τ∏
j=1

C0,j,k

g
(h)
k,jℓ


eℓ·G(h)

J

−1
·G(h+1)

i

∀ℓ ∈ {1, . . . , t}, (9)

where C0,j,k are the commitments published during the SecGen phase and
g
(h)
k,jℓ

is the element of G(h) in the k-th row, jℓ-th column.
Lastly, they check the coherence of the values received (all together) with
the SecGen initial phase:

t∏
k=1

t∏
ℓ=1

C
(h+1)
i,J,ℓ,k

?
=

t−1∏
k=0

 τ∏
j=1

C0,j,k

g
(h+1)
k,i

. (10)
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7. If everything checks out, Pjℓ sends to each Pjk the values bi,J,ℓ,k, zi,J,ℓ,k for
ℓ, k ∈ {1, . . . , t}.

8. Each Pjℓ checks

HCom(bi,J,k,ℓ, zi,J,k,ℓ)
?
= C

(h+1)
i,J,k,ℓ ∀k ∈ {1, . . . , t}, (11)

and sets bi,J,ℓ :=
∑t

k=1 bi,J,k,ℓ, zi,J,ℓ :=
∑t

k=1 zi,J,k,ℓ.
9. Each Pjℓ sends bi,J,ℓ and zi,J,ℓ to Pi.

10. Pi checks the values received:

HCom(bi,J,ℓ, zi,J,ℓ)
?
=

t∏
k=1

C
(h+1)
i,J,k,ℓ ∀ℓ ∈ {1, . . . , t}, (12)

and checks 8, 9, 10.
If everything checks out, Pi sets their new share and checking value:
β
(h+1)
i :=

∑t
ℓ=1 bi,J,ℓ and γ

(h+1)
i :=

∑t
ℓ=1 zi,J,ℓ.

11. At the end of the protocol G(h) is deleted or overwritten.
Therefore, there is no longer any memory of G(h) and the old Stot.

Remark 12. Correctness of the new share:

β
(h+1)
i =

t∑
ℓ=1

bi,J,ℓ =

t∑
ℓ=1

t∑
k=1

bi,J,k,ℓ =

t∑
k=1

t∑
ℓ=1

bi,J,k,ℓ =

t∑
k=1

f(β
(h)
jh

, i, J, k)

=

t∑
k=1

β
(h)
jk

· ek ·G(h)
J

−1
·G(h+1)

i = (p0, . . . , pt−1) ·G(h+1)
i .

Remark 13. In the protocol described in [1], it is always easy to build GJ , Gi

for general J, i, following the construction explained in Definition 1. This is
possible because the matrix G remain always fixed during time with the same
Vandermonde structure. Now, we change the matrix G at each epoch, hence we
are not able anymore to write GJ , Gi for general J, i. For this reason, each time
we need G

(h)
J , G

(h)
i for some J, i, we need to do: G(h)

J = Stot·GJ or G(h)
i = Stot·Gi.

Therefore, we need to store both G and Stot.

Security analysis First of all, it is fundamental that old versions of G(h) and
Stot are deleted, otherwise old shares can still be used to recover the secret. As
mentioned before, not only the shares of the current epoch can be used, but also
the starting ones, since G is known. For this reason, the advice is to execute
a refresh as soon as possible, in order to reduce the time window during which
initial shares can be stolen. Now let us compare methods ZeroSharesRefresh
and RegenRefresh with the new method MatrixRefresh, introducing a
more clear notation in which s denotes the fixed secret p0.
– In methods ZeroSharesRefresh (4.1) and RegenRefresh

(4.2), each share β(h)
i of some epoch h gives a relation: β(h)

i = (s, r
(h)
1 , . . . , r

(h)
t−1)·

Gi, where:
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• (r
(h)
1 , . . . , r

(h)
t−1) = (p1, . . . , pt−1) are t − 1 random elements that are dif-

ferent for each epoch.
• Gi is a column of G, public and fixed over time.

Therefore, with t distinct (related to distinct parties) shares (β(h)
i )i∈I of the

same epoch h (otherwise random elements are different), it is possible to solve
the system that consists of t equations β

(h)
i = (s, r

(h)
1 , . . . , r

(h)
t−1) ·Gi, ∀i ∈ I,

and t unknowns (s, r
(h)
1 , . . . , r

(h)
t−1), and recover the secret.

Therefore, the attacker can exploit old shares in successive epochs.
– In method 4.3, each share β

(h)
i of some epoch h gives a relation:

β
(h)
i = (s, r1, . . . , rt−1) ·G(h)

i , where:
• (r1, . . . , rt−1) = (p1, . . . , pt−1) are t − 1 random elements that are fixed

over time.
• G

(h)
i is a column of G(h), public and known only in epoch h, it changes

over time.
Therefore, old shares are useless and the only way to solve the system and
recover the secret is to know t shares among the initial ones and the current
ones.

Proposition 2. The attacker can not exploit old shares in successive epochs.

Proof. Suppose that we are in epoch h and an attacker gets t shares of a
old epoch k. We prove that they are not able to recover any info about the
secret. The attacker knows: G(h), Stot, G, {β(k)

i }i∈I,|I|=t. In epoch k, the used
matrix was G(k) = S · G, for some unknown t × t invertible matrix S. The
attacker knows only G, while G(k), S are not known in epoch h. We denote
with v = (s, r1, . . . , rt−1) the vector with secret as first component and other
components random. Exploiting the shares obtained, the system that consists
of t equations β(k)

i = v·S ·Gi, ∀i ∈ I holds. In this system, v, S are unknowns.
We can reduce the unknowns by denoting x := (x1, . . . , xt) := v · S. Now
the system can be rewritten as (. . . , β

(k)
i , . . .)i∈I = (x1, . . . , xt) ·GI . This is

a linear system of rank t and it can be solved knowing the t shares, hence
the attacker can find the vector x. Knowing x, it is possible to compute
every share of epoch k, but they are useless, as we are proving. In order to
discover the secret, the attacker should recover at least the first component
of v, solving v · S = (x1, . . . , xt), that consists of t equations < v, Si >=
xi, i ∈ {1, . . . , t}, where Si denotes the i-th column of S. This is a quadratic
system. To summarize: the attacker knows the vector (x1, . . . , xt), that is the
image of the unknown secret vector v through the linear random invertible
unknown map S. Hence, knowing only x, it is impossible for the attacker to
discover v and in particular its first component.

Limits and Scenario In this last subsection, we will show a limit of the Ma-
trixRefresh protocol. The newly discovered limitation in the protocol indi-
cates a lack of security under a different adversarial model, which suggests that
the protocol may not be generally advantageous except in a specific scenario.
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We consider a new model of adversary different from the previous one: Con-
tinuous Shot, Non-Mobile, Adaptive adversary. In particular, suppose that the
attacker has full control on a party Pi. Therefore, they see everything that Pi

sees. We are going to show that, collecting t shares {β(hk)
i }1≤k≤t of Pi related

to distinct epochs, the attacker could be able to recover the secret (it is theoret-
ically possible but difficult). This is caused by the fact that the matrix S, that
premultiplies G, could alter the dependency relationships between the columns
G

(h)
i of different epochs h (related to the same party Pi).

Conversely, in the two methods ZeroSharesRefresh (4.1) and Regen-
Refresh (4.2), the matrix G is fixed across epochs, and in particular it is the
Vandermonde matrix described in 1, with J = [1, . . . , n]. Consequently, two
shares of different epochs but related to the same Pi, correspond to the same
column Gi and therefore they produce two dependent linear equations (one is
useless).

Since the attacker controls Pi, we suppose that they know also all the matrices
G(h1), G(h2), . . . , G(ht) and the respective Stot. We denote with S(h1),
S(h2), . . . , S(ht) the matrices t× t such that G(hk) = S(hk) ·G, ∀k ∈ {1, . . . , t}.

Recalling the notation of the proof of Proposition 2, the system that consists
of the following t equations holds:

β(hk) = v · S(hk) ·Gi ∀k ∈ {1, . . . , t}. (13)

The attacker knows everything except v. This is a linear system of easy solution
only if the t equations are linearly independent. In general, it depends on the
matrices S(hk), but we will see at least an example with independent equations.
The t equations are linearly independent whenever the equation c1(S

(h1) ·Gi) +
c2(S

(h2) ·Gi)+ . . .+ct(S
(ht) ·Gi) = 0 holds if and only if (c1, . . . , ct) = (0, . . . , 0).

Rewriting: Gi(c1S
(h1)+ c2S

(h2)+ . . .+ ctS
(ht)) = 0, where Gi is the i-th column

of the Vandermonde matrix G, hence it is not equal to the zero vector, while
c1S

(h1) + c2S
(h2) + . . .+ ctS

(ht) is a matrix that can be either singular or non-
singular.

In conclusion, whenever the matrices {S(hk)}1≤k≤t are such that every non-
trivial (ci not all zeros) linear combination of them gives a non-singular matrix,
then the equations in 13 are linearly independent and so the attacker can recover
the secret. Therefore, with MatrixRefresh method, we lose a security goal
guaranteed by the structure of G: the uselessness of shares owned by the same
party Pi.

Example 1. Suppose t = 2. We take S(h1) =

(
1 1
0 1

)
and S(h2) =

(
1 0
1 1

)
. Then

we have c1 · S(h1) + c2 · S(h2) = c1 ·
(
1 1
0 1

)
+ c2 ·

(
1 0
1 1

)
=

(
c1 + c2 c1

c2 c1 + c2

)
.

We compute det

(
c1 + c2 c1

c2 c1 + c2

)
= c21 + c22 + c1c2 ̸= 0,∀(c1, c2) ̸= (0, 0). Since

the determinant is always different from zero, S(h1), S(h2) are such that every
non-trivial linear combination of them gives a non-singular matrix, hence the
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columns S(h1) · Gi, S
(h2) · Gi are linearly independent for every i ∈ {1, . . . , n}.

Consequently, the related system in 13 can be resolved, recovering the secret.

Remark 14. S(h1), S(h2) are also such that there exists a matrix S, invertible

t× t, s.t. S(h2) = S · S(h1), indeed
(
1 0
1 1

)
=

(
1 −1
1 0

)
·
(
1 1
0 1

)
.

In conclusion, in methods 4.1 and 4.2 we have vertical security (t shares of
the same Pi across different epochs are useless) but not horizontal security (with
t distinct shares of a past epoch the secret is discovered), whereas in method 4.3,
we have horizontal security (t distinct shares of a past epoch are useless) but
not always vertical security (with t shares of the same Pi across different epochs
could be possible to recover the secret), as explained in figure 10.

Fig. 10. Horizontal and vertical security for Refresh methods.

To sum up, MatrixRefresh method 4.3 has a vertical lack of security that
makes it unsuitable for many decentralized contexts. A potential scenario where
it could be applied is an embedded system in which the shares from various epochs
are the only values stored locally and privately by each participant, while the
G(h) and Stot matrices are not saved. These matrices are managed by a resource-
constrained processor dedicated solely to computations that can also manage
the generation of the matrix S (step 1 of protocol 4.3). In this way, even if a
participant is corrupted and controlled over time, G(h) and Stot matrices remain
unknown, thus ensuring vertical security.

Complexity Analysis Table 3 summarizes the complexity analysis for Ze-
roSharesRefresh, RegenRefresh, MatrixRefresh following the notation
introduced in 2.6.
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ZeroSharesRefresh RegenRefresh MatrixRefresh
Communic. Priv τn τn nt2 + nt

Pub τ(t− 1) τ(t− 1) nt2

Initial DS Priv 2 in Fq 1 in Fq 2 in Fq

Pub 2 in G 1 in Fq (2tn+ t2 + 1) in Fq

1 in Fq (τ + 2) in G (t2τ + tτ + 2) in G

Runtime DS Priv 2(t− 1 + τ) in Fq 2(t− 1 + τ) in Fq (2tn+ 2n) in Fq

Pub τ(t− 1) in G τ(t− 1) in G -

Final DS Priv 2 in Fq 2 in Fq 2 in Fq

Pub - - (tn+ t2) in Fq

(t2τ) in G

Rand. Gen. 2τ(t− 1) 2τ(t− 1) t2 + 2tn(t− 1)

Comp. Cost 2τ(t− 1) + nτ(t+ 1) 2τ(t− 1) + nτ(t+ 1) t3n+ 8t2n+ 5tn
(exp in G) (exp in G) (exp in G)

Table 3. Complexity Analysis of ZeroSharesRefresh, RegenRe-
fresh,MatrixRefresh.

5 Conclusions

In this paper, starting from a basic threshold policy, we extended a secret
sharing protocol to a general threshold-gate access tree. In particular, we found
a recursive strategy for describing the generator matrix that encodes the secret
vector into the final shares of the tree, extending Shamir’s strategy layer-by-layer.
Furthermore, we explored the introduction of a Refresh phase to the secret shar-
ing protocol, in order to achieve proactive security. We contributed to the current
state of the art by describing three distinct methods: ZeroSharesRefresh,
RegenRefresh and MatrixRefresh. We proved that all of them are secure
against a snapshot, mobile, adaptive, active and computationally bounded ad-
versary. We also demonstrated that the first two methods are perfectly equivalent
and secure even against a continuous-shot, non-mobile, and adaptive adversary
(vertical security), though they lack forward secrecy against a snapshot, mobile,
and adaptive adversary. In contrast, the third method is secure with respect to
forward secrecy against a snapshot, mobile, and adaptive adversary (horizon-
tal security), but it is not secure against a continuous-shot, non-mobile, and
adaptive adversary. We also performed an in-depth complexity analysis for each
phase of the protocol, taking into account computational time, required memory,
communication rounds, and the number of random generations. This work rep-
resents a significant contribution to the study of secure secret sharing techniques
that remain resilient over time and can be adapted to complex access structures.
Future research could explore integrating post-quantum cryptography to ensure
security against quantum computing capable adversaries.
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