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Abstract. This paper introduces Neo, a new lattice-based folding scheme
for CCS, an NP-complete relation that generalizes R1CS, Plonkish, and
AIR. Neo’s folding scheme can be viewed as adapting the folding scheme
in HyperNova (CRYPTO’24), which assumes elliptic-curve based linearly
homomorphic commitments, to the lattice setting. Unlike HyperNova, Neo
can use “small” prime fields (e.g., over the Goldilocks prime). Additionally,
Neo provides plausible post-quantum security.

Prior to Neo, folding schemes in the lattice setting, notably Lattice-
Fold (ePrint 2024/257), worked with constraint systems defined over a
cyclotomic polynomial ring. This structure allows packing a fixed batch of
constraint systems over a small prime field into a single constraint system
over a polynomial ring. However, it introduces significant overheads, both
for committing to witnesses (e.g., the commitment scheme cannot take
advantage of bit-width of values), and within the folding protocol itself
(e.g., the sum-check protocol is run over cyclotomic polynomial rings).
Additionally, the required ring structure places restrictions on the choice
of primes (e.g., LatticeFold is not compatible with the Goldilocks field).

Neo addresses these problems, by drawing inspiration from both Hyper-
Nova and LatticeFold. A key contribution is a folding-friendly instan-
tiation of Ajtai’s commitments, with “pay-per-bit” commitment costs
i.e., the commitment costs scale with the bit-width of the scalars (e.g.,
committing to a vector of bits is 32× cheaper than committing to a vector
of 32-bit values). This scheme commits to vectors over a small prime field.
It does so by transforming the provided vector into a matrix and commit-
ting to that matrix. We prove that this commitment scheme provides the
desired linear homomorphism for building a folding scheme. Additionally,
like HyperNova, Neo runs a single invocation of the sum-check protocol,
where in HyperNova it is over the scalar field of an elliptic curve and in
Neo it is over an extension of a small prime field.
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1 Introduction

A folding scheme [44] is a cryptographic primitive that reduces the task of
checking that two instance-witness pairs are in some NP relation to the task of
checking that a single instance-witness pair is in the same relation. As an example,
for a circuit C and two public inputs (i.e., instances) x1 and x2, a folding scheme
reduces the task of checking that there exists witnesses w1 and w2 such that
C(w1, x1) = 1 and C(w2, x2) = 1 to the task of checking that there exists a single
witness w for a specific public input x such that C(w, x) = 1. Furthermore, the
verifier’s work in a folding scheme is limited to roughly taking the weighted sum
of the commitments to underlying witnesses. By using a folding scheme in a
recursive manner, one can continually fold many instance-witness pairs into a
single instance-witness pair, providing powerful primitives such as incrementally
verifiable computation (IVC) [62] and proof-carrying data (PCD) [13].

Benefits of folding schemes. Folding schemes provide a more efficient approach
to construct SNARKs [37,49] that can scale to large computations.

A modern approach to construct SNARKs is to combine a polynomial
interactive oracle proof (PIOP) [19, 25, 57] with a polynomial commitment
scheme (PCS) [36], and then apply the Fiat-Shamir transformation [33]. In
particular, the PIOP reduces the task of checking the validity of an instance-
witness pair in some relation (e.g., R1CS) to a collection of tasks where each task
is to check if a (committed) polynomial evaluates to a certain value at a certain
point in their domain (i.e., a set of polynomial evaluation instance-witness pairs).
In turn, the polynomial evaluation argument provided by the PCS is used by the
prover to prove those polynomial evaluation instances. However, this approach
only provides a “monolithic” SNARK, meaning that a prover must prove a
fixed-sized computation at once. To scale to larger computations, one typically
breaks the computation into smaller pieces and then uses SNARK recursion (a
la IVC or PCD) to produce a succinct argument in a scalable manner [12].

Folding schemes provide a more direct and a more efficient approach. In
particular, folding schemes allow recursion to operate at the “statement” level
(i.e., prior to producing a PIOP or a PCS evaluation argument). This has two
concrete benefits. First, the overheads from recursion are far lower than traditional
SNARK recursion. For example, even with one of the earliest folding schemes,
Nova [44], it only takes 10,000 R1CS gates to fold a proof. Whereas, traditional
SNARK recursion takes millions of gates [24,26]. Second, the prover incurs far
less work from not having to produce a PIOP or a PCS evaluation argument.
For instance, the prover in monolithic SNARKs such as Marlin [25] perform at
least 20× higher work over simply committing to a witness. In contrast, with
state-of-the-art folding schemes [17, 29, 42, 43], the prover’s work is dominated by
the cost to commit to a witness. This results in at least an order of magnitude
speedup over monolithic SNARKs, and up to two orders of magnitude speedup
when the witness contains values from a small subset of the entire field.1

1 If the witness contains “small” field elements (e.g., they are from a small subset of the
entire finite field say {0, 1, . . . , 232 − 1}), the state-of-the-art folding schemes perform

3



State-of-the-art folding schemes. Nova [44] formally introduced folding schemes.
It also provides a folding scheme for R1CS, where the prover’s work is dominated
by two multi-scalar multiplications (MSMs) of size proportional to the circuit
size, and the recursive verifier circuit is dominated by two group scalar multi-
plications and hashing a constant number of field elements.2 Folding schemes
further developed in HyperNova [42], Protostar [17], ProtoGalaxy [29], and Neu-
tronNova [43]. These works provide folding schemes for more expressive relations
such as CCS [59], a generalization of R1CS, Plonkish, and AIR, including lookup
checks. With recent works, the prover’s work is dominated by a single MSM that
commits to a purported witness, and the verifier circuit size is dominated by 3
group scalar multiplications and hashing a constant number of field elements.

These state-of-the-art folding schemes [2, 17, 28, 29, 40–44, 52, 65] rely on
cryptographic groups. Specifically, they leverage linearly homomorphic commit-
ments for vectors over a finite field. In practice, these commitments are instan-
tiated with Pedersen commitments over regular cycles of elliptic curves (e.g.,
Pallas/Vesta) or with KZG commitments over half pairing cycles of elliptic
curves (e.g., BN254/Grumpkin).

The area of folding schemes has witnessed significant progress in just the last
year. There is a lot of recent work to extend folding schemes with additional
constructs such as a read-only and a read-write memory [8, 21, 30, 34], and some
works prove non-uniform constraint systems (e.g., Plonkish) in a space-efficient
manner [53] while others focus on providing an efficient on-chain verifier [64]. Due
to their efficiency, some projects have adopted folding schemes as a foundation
for proving virtual machine executions [3, 4]. In a similar vein, a recent work [43]
provides a systematic framework to build efficient folding schemes for complex
relations in a composable manner, which can then be used to prove virtual
machine executions more efficiently.

up to 200× less work than a monolithic SNARK prover such as Marlin [25] because
Marlin ends up committing to “random” field elements as part of its PIOP and PCS
evaluation argument, which are at least an order of magnitude more expensive than
committing to a witness with “small” field elements. Proof systems such as Spartan
and variants [57, 59] incur lower overheads than Marlin, but they must still produce
a PIOP and PCS evaluation argument.

2 Prior to Nova [44], Halo [16] provides a recursive SNARK for achieving IVC/PCD
where the verifier circuit does not verify a full SNARK proof. However, this approach
still requires producing a PIOP and a PCS evaluation argument. Furthermore, Halo’s
verifier circuit is significantly larger than Nova’s. Folding schemes not only aim
to minimize work in a recursive verifier circuit, but also aim to avoid producing a
SNARK in the first place. Following Halo and in concurrent with Nova, Bunz et al. [18]
achieve IVC/PCD while only requiring NARKs in which the verifier provides a split-
accumulation scheme. Folding schemes offer a cleaner abstraction and a more efficient
instantiation. They also lead to IVC/PCD without even arguments of knowledge.
Nova [44] provides additional context on works that inspired folding schemes.

4



1.1 Open problems and recent progress on those problems

Despite the above progress, there are two downsides associated with the afore-
mentioned state-of-the-art folding schemes.

1. They rely on cryptographic groups based on elliptic curves. As a result,
constraint systems that they work with are defined over the scalar field of
an elliptic curve. For security (e.g., to ensure the hardness of DLOG), this
field is a prime field where the modulus is approximately 256 bits. Even
if the original computation is naturally represented with “small” numbers,
the computation must be lifted to work with 256-bit fields. This incurs
an “embedding” overhead. For example, computations on a real machine
are naturally expressed with 32-bit or 64-bit field, but when using the
aforementioned folding schemes, they must be expressed with 256-bit fields.

2. Due to their reliance on the hardness of the discrete logarithm problem, they
are not post-quantum secure.

In the rest of this paper, when we say “small” prime fields, we refer to
prime fields where the prime modulus q fits within a machine register. Examples
of such prime modulus include M61 (q = 261 − 1) and the Goldilocks prime
(q = 264 − 232 + 1). Prime fields with such a modulus provide fast arithmetic;
they also allow the use of vector instructions (SIMD) to perform multiple field
operations at once.

Research question. Can we construct a folding scheme that provides better effi-
ciency than the aforementioned state-of-the-art folding schemes while addressing
the two problems noted above?

Recent progress and their downsides. Boneh and Chen [14] make significant
progress toward addressing the above research question. They construct Lat-
ticeFold [14], a new folding scheme for CCS [59], where security holds under a
structured lattice assumption. More recently, Lova [31] provides a Nova-like fold-
ing scheme using an unstructured lattice assumption. In another work, Arc [20]
provides a folding scheme for general constraint systems including CCS while only
relying on hash functions. However, compared to existing group-based folding
schemes, all these works incur significant overheads.

Lova [31] constructs a folding scheme for the subset sum problem defined
over the integers. In particular, it does not provide a folding scheme for CCS or
even R1CS. So, if one were to use Lova for real world problems of interest, one
must transform their CCS or R1CS instance-witness pairs to instance-witness
pairs in the subset sum relation over the integers. This likely incurs significant
overheads. Even ignoring these overheads, based on Lova’s reported performance
for the subset sum relation, Lova (for subset sum) is already multiple orders of
magnitude slower than Nova (for R1CS). For a subset sum instance length of
219, Lova reports a prover time of ≈3,000 seconds [31, Table 2]. On a machine
with the same number of vCPUs and lower speed, Nova reports 500ms for an
R1CS instance of size 219. Given this, Lova appears to be at least 6, 000× slower
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than Nova. Representing R1CS with subset sum likely blows up the size of the
corresponding subset sum instance substantially. If we include the overhead from
R1CS to subset sum transformation (which could be at least 10× and likely far
higher), Lova is more than four orders of magnitude slower than Nova.

Arc [20] incurs high folding overheads.3 To fold two instances, Arc requires
λ/ log(1/ρ) Merkle tree openings in the recursive verifier circuit, where λ is the
security parameter and ρ is the Reed-Solomon code rate used. For λ = 128 and
the widely used rate of ρ = 1/2 (which leads to the fastest encoding time for
Reed-Solomon codes), Arc requires 128 Merkle tree openings. This translates to
about 800, 000 constraints in R1CS when using a SNARK-friendly hash function
such as Poseidon [35]. Note that this is a lower bound on the verifier circuit size
as the verifier must perform other tasks besides verifying Merkle proofs. As a
comparison point, Nova [1, 44] only needs ≈10,000 R1CS constraints in total for
the entire verifier circuit.

LatticeFold [14] is arguably more “practical” than Lova (for the prover) and
Arc (for the verifier circuit). However, LatticeFold has many significant downsides,
especially when compared to existing state-of-the-art group-based folding schemes.
For instance, LatticeFold is not a replacement for existing group-based schemes
(e.g., HyperNova [42]) unless one is willing to accept a significant prover slow
down. We now provide details of these downsides.

1. LatticeFold works with CCS defined over cyclotomic polynomial rings rather
than over (small) prime fields. LatticeFold partially mitigates this issue with
an approach to “pack” a batch of independent constraints defined over a
“small” prime field into a single constraint over a cyclotomic polynomial
ring [14, Remark 4.1]. However, this imposes a requirement that one must
have a “data parallel” (or SIMD) constraint system. Additionally, “packing”
introduces a significant performance problem: The prover’s cost to commit
to a vector of values is the same regardless of the bit-width of the values. For
example, for a given vector length, it costs the same to commit to a vector
of 64-bit values or a vector of 1-bit values.4

2. For security and to support packing of constraint systems over a small prime
field (see [14, §3.3]), LatticeFold requires a particular type of cyclotomic
polynomial ring that is not “fully splitting”. This requires rephrasing Lat-
ticeFold’s relations and modifying the overall protocol to accommodate the

3 In an earlier work, Bunz et al. [22] provide a different hash-based folding scheme.
However, the verifier circuit overheads of this construction is worse than those
of Arc [20, Table 1]. Additionally, that construction only provides a “bounded
depth” IVC (i.e., there exist concrete attacks if the depth of recursion exceeds a
pre-determined bound).

4 This is because CCS witness values are packed and embedded in the NTT form
of cyclotomic ring elements. Additionally, LatticeFold’s commitment scheme must
decompose the corresponding ring elements in their coefficient form to ensure norm
bounds. This entire process unfortunately prevents LatticeFold’s commitment scheme
from leveraging the bit-width of the original witness elements to provide a pay-per-bit
commitment costs. We provide more details of this issue in Section 3.
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smaller field, since the protocol descriptions assume a large prime field that
causes the cyclotomic ring to fully split. Additionally, using small prime fields
adds a τ (extension field degree) multiplicative factor loss to the efficiency
of LatticeFold’s protocols, due to the need to run a further τ instances in
parallel. In LatticeFold’s sample parameterization (see [14, §5]), despite the
field being 64-bits in size, the extension field degree is required to be τ = 4.
This leads to a 4× overhead in LatticeFold’s protocols (due to the required
repetition) and requires the use of a much larger (extension) field Fq4 (if the
NTT representation is used).

3. As part of its folding scheme, LatticeFold runs the sum-check protocol over
cyclotomic polynomial rings. Cyclotomic polynomial ring operations are
10–100× more expensive than (extension) field operations and even 256-bit
fields, making the overall protocol significantly more expensive than desired.5

4. LatticeFold’s use of cyclotomic polynomial rings imposes many requirements
on the ring structure. This in turn limits the choice of the underlying “small”
prime field. We find that LatticeFold’s requirements do not allow one to use
popular small field modulus such as Golidlocks’ prime or M61.6

Beyond these, there is a less fundamental issue. LatticeFold runs two sequential
invocations of the sum-check protocol, making the verifier perform twice the work.
LatticeFold addresses this problem with an optimization that rearranges the
protocol steps, allowing the batching of the two sum-check invocations [14, §4.3].
However, this protocol does not fit within LatticeFold’s modular framework, so
the security proofs provided in the paper do not cover this stand-alone protocol.

1.2 Our work in a nutshell: Neo

We address the aforementioned problems with our work, which we refer to as
Neo. Our work draws inspiration from prior works including HyperNova [42]
and LatticeFold [14], but introduces several new techniques. Before we introduce
Neo’s underlying techniques, we provide a brief overview.

Neo provides a folding scheme for CCS [59], an NP-complete relation that
generalizes widely used arithmetizations such as R1CS, Plonkish, and AIR. Unlike
HyperNova (where constraints are defined over the scalar field of an elliptic curve
group) and LatticeFold (where the constraints are defined over a cyclotomic
polynomial ring), the constraints that Neo folds are defined natively over a small

5 Recent benchmarks report that a polynomial ring multiplication costs ≈213 ns [51].
Whereas, a field multiplication with M61 costs a fraction of a ns.

6 As described, LatticeFold [14] works with cyclotomic polynomial rings where the
modulus polynomial is of the form Xd+1 and d is a power of 2. If the polynomial ring
is instantiated with a popular small field such as a prime field over the Goldilocks’
prime (q = 264 − 232 + 1, which is a 64 bit prime), the polynomial ring splits
completely. This ruins the security of LatticeFold as this complete split makes the
ring Rq isomorphic to F d

q , so LatticeFold instantiated with this prime gives at most
64 bits bits of security. See Section 6 and [14, §3.3] for more details.
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prime field. Specifically, our construction supports the use of popular fields such
as M61 and the Goldilocks field. These fields feature extremely efficient field
arithmetic implementations. Additionally, unlike LatticeFold, Neo does not have
to pack multiple constraints over a prime field into a single constraint over a
ring. So, Neo’s folding scheme, like HyperNova, runs a single invocation of the
sum-check protocol. In Neo, the sum-check protocol is run over an extension of a
small prime field.7

Beyond this, Neo provides a new folding-friendly lattice-based commitment
scheme. Unlike the commitment scheme in LatticeFold, our scheme provides a
key performance property: the commitment costs scale linearly with the bit width
of the values in the vectors committed. For example, for n > 1, it is 64× cheaper
to commit to a length-n vector of bits than it is to commit to a length-n vector
of 64-bit values. This commitment scheme may be of independent interest.

Overall, Neo provides a folding scheme similar to HyperNova with the two
added benefits: (1) Neo supports “small” prime fields (e.g., M61) and a light-
weight commitment scheme, opening door for a faster prover; and (2) Neo is
plausibly post-quantum secure.

1.3 A technical overview of Neo

We now provide an overview of various components in Neo.

(1) Folding-friendly lattice-based commitments with pay-per-bit commitment costs.
A key contribution of our work is a new folding-friendly lattice-based commitment
(Ajtai with a new embedding for elements). As discussed above, it works with
vectors over a “small” prime field and provides a pay-per-bit commitment cost.

A starting point for Neo’s commitment scheme is Ajtai commitments [5], which
commits to a vector of cyclotomic polynomial ring elements, and the security
holds under a structured lattice assumption: Module SIS. In particular, to commit
to a vector of small field elements, we provide a more efficient mapping from a
vector of elements from a small field Fq to a vector of cyclotomic polynomial ring
elements, where the cyclotomic polynomial is defined over Fq. The vector of ring
elements is then committed with Ajtai’s commitment scheme.

Our mapping provides two key properties. First, it provides the aforementioned
pay-per-bit commitment costs.8 Discrete-log based commitment schemes such as
Pedersen [54] and KZG [15,36,64], which can be used with HyperNova [42], also
provide the property that it is cheaper to commit to a vector of bits than it is
to commit to a vector of arbitrary field elements. But, as noted earlier, they do

7 When using a 64-bit field, a degree-2 extension is sufficient for 128 bits of security.
8 As noted earlier, pay-per-bit commitment cost property is not achieved by Lattice-
Fold’s commitment scheme because it uses a different map that must preserve more
complex properties including the satisfiability of packed CCS constraints. Addition-
ally, in our context, we are not restricted to the power-of-2 cyclotomic polynomial
rings. This allows a wider choice of q.
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not provide post-quantum security.9 In other words, Neo’s commitment scheme
allows porting a performance property that is currently available within the
discrete-log setting to the lattice setting while providing post-quantum security.

Second, we show that our commitment scheme provides the required linear
homomorphism property. In particular, we treat a vector underneath a commit-
ment as a multilinear polynomial represented in evaluation form over the Boolean
hypercube. For example, a vector of size n uniquely determines a multilinear
polynomial in ℓ = log n variables. The commitment scheme then provides a fold-
ing scheme for evaluation claims. Informally, suppose that we have a collection of
β ≥ 2 commitments and claimed multilinear evaluations at an evaluation point
over their entire domain: {(Ci, r, yi)}i∈[β]. Suppose we have the corresponding
witnesses: {wi}i∈[β]. That is, witnesses are satisfying if and only if for i ∈ [β], Ci

is a commitment to wi and that w̃i(r) = yi. Neo’s commitment scheme provides
a reduction of knowledge (RoK) that outputs a new instance (C, r, y) and a
witness w such that the new instance-witness pair is satisfying if and only if
all the original instances are satisfying. With discrete-log-based commitments,
it is quite easy to construct such a RoK. Whereas, in the lattice setting, many
challenges arise. We provide details of these challenges and how we address them
in Section 3. In a nutshell, the RoK must tame the norm growth when taking a
random linear combination of commitments, which we address by adapting prior
decomposition techniques along with a use of “small norm” challenges.

(2) A folding scheme for CCS. With the lattice-based commitment scheme in
hand, devising a folding scheme for CCS is relatively straightforward. Our starting
point here is the folding scheme in HyperNova [42],10 which assumes a discrete-
log-based linearly homomorphic commitments. Roughly speaking, we replace the
commitment scheme in HyperNova with the aforementioned commitment scheme
that provides the required linear homomorphism with respect to multilinear
polynomial evaluation claims.

There are however some challenges. As mentioned above, our commitment
scheme relies on decomposition techniques to tame norm growth of committed
vectors. This decomposition process requires the prover to establish that the
prover indeed decomposed its vectors correctly. We phrase these checks as a
sum-check claim that is then proven with the sum-check protocol. At a high level,
this idea is similar to how LatticeFold proves norm checks of decomposed vectors.

9 Hash-based commitments such as FRI [11] and the commitment schemes used in
Arc [20] do not provide a pay-per-bit cost. Some recent hash-based commitments,
such as Binius [27], provide a pay-per-bit commitment costs, but as they are hash
based, they incur much higher recursion overheads than group-based folding schemes.
Binius also requires the use of binary fields and the constraint systems are defined
over binary fields. Such constraint systems are not widely used in practice.

10 An alternative is Protostar [17] or NeutronNova [43], both of which provide folding
scheme verifier with a constant size whereas with HyperNova it is logarithmic-sized.
Unfortunately, they require a truly linearly homomorphic commitment scheme, not
just a scheme that can fold multilinear evaluation claims associated with committed
vectors. Our commitment scheme cannot be used with those folding schemes.
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However, due to a different mapping that we use to map CCS witness vectors to
cyclotomic polynomial ring elements, we are able to avoid running the sum-check
protocol over cyclotomic polynomial rings. In fact, we simply batch the norm
check claim with the sum-check claim arising from CCS, and run the sum-check
protocol over an extension of a small prime field. Section 4 provides details.

Note that this norm-check claim introduces additional work for the prover
in the sum-check protocol as well as in the commitment scheme, relative to
HyperNova. However, one can tame this with the following. Neo’s folding scheme,
like HyperNova’s, can be naturally extended to a multi-folding scheme [42] i.e.,
it can fold multiple CCS instances at once. In particular, the additional work
related to decomposition is performed only for the “running” instance-witness
to which multiple CCS instance-witness pairs are folded. So, by folding multiple
CCS instance-witness pairs at once, we can amortize the costs of decomposition.

(3) Security analysis. Proving the security of our commitment scheme as well as
of the folding scheme for CCS is non-trivial. We structure our folding scheme
for CCS with three reductions: (1) a reduction that allows decomposing an
evaluation claim about a committed vector with a particular norm B into a batch
of k instances with a lower norm b < B1/k (for some chosen value of k); (2) a
reduction that folds a batch of k + 1 instances with norm b into a single instance
with norm at most B; and (3) a reduction that transforms a claim about a CCS
instance-witness pair into a claim about linearized form of CCS instance-witness
pair (this reduction is inherited from HyperNova). The first one is a RoK with
standard completeness and knowledge soundness properties. Unfortunately, the
second and the third reductions are not. To formally capture their properties, we
introduce relaxed notions of knowledge soundness. Additionally, we prove that
by sequentially composing these reductions with relaxed knowledge soundness
guarantees, we get a RoK with standard knowledge soundness. These proof
techniques may be of independent interest. Ultimately, we obtain Neo’s folding
scheme for CCS. Section 5 provides details.

(4) Concrete parameter choices. To instantiate Neo’s folding scheme, we must
choose a prime q as well as a suitable cyclotomic polynomial ring. The sum-check
protocol will be run on an extension of a field Fq. For efficiency, it is imperative to
choose a value of q that minimizes operations over these structures. We provide
multiple different options for q including the very efficient Mersenne-61 i.e.,
q = 261 − 1, the widely used Goldilocks field q = 264 − 232 + 1, and a third field
that we refer to as “almost” Goldilocks field (AGL). The AGL field allows the
use a power-of-2 cyclotomic polynomial ring. Section 6 provides details.

1.4 Lattice-based folding scheme for lookups and read-write memory

Neo extends easily to support folding lookup checks. Specifically, Shout [58] is
a recent sum-check-based lookup argument. It can be viewed as a RoK from
the lookup relation to the multilinear polynomial evaluation relation. Similar
to how Neo transforms HyperNova [42] to a lattice-based folding scheme for
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CCS, by leveraging our instantiation of Ajtai’s commitments, we can use Shout’s
RoK to fold lookup relations alongside CCS, as both our folding scheme and
Shout’s RoK use the sum-check protocol [46]. The same approach works with
Twist [58] to support a lattice-based folding scheme for read-write memory.
For high performance, Shout and Twist rely on commitment schemes that can
commit to sparse vectors efficiently. Prior to this work, the choice of commitment
schemes includes group-based commitment schemes such as Pedersen [54] and
HyperKZG [64], or hash-based commitment schemes over binary fields such
as Binius [27]. Fortunately, Neo’s commitment scheme provides the required
performance property in the lattice setting.

Beyond this, supporting lookups alongside CCS opens up the possibility
improving Neo further. In particular, within Neo’s folding scheme, the prover
establishes that every value in a committed vector are within a certain range. For
a range of [−b, b], our current approach, which is adapted from LatticeFold [14]
to the prime field setting, is somewhat naive: the range check is performed by
representing it with a degree-2b sum-check instance. To minimize work in the
sum-check protocol, b must be chosen to be small (e.g., b = 2). Instead of the
naive approach, by using our adaptation of Shout, the degree of the multivariate
polynomial in the sum-check can be made independent of b. We leave it to future
work to incorporate these ideas into our folding scheme.

1.5 Constructing an IVC/PCD scheme, with proof compression

By applying prior compilers from folding schemes to IVC [42,44] and PCD [65] to
Neo’s folding scheme, we immediately obtain a lattice-based IVC/PCD scheme.
Note that operations in the folding scheme verifier (e.g., extension field operations)
can be natively represented in the finite field over which the constraint system
is defined. Also, constructing an IVC/PCD scheme using Neo’s folding schemes
does not require any cycles of elliptic curves [41,52].

With prior compilers, the IVC proof is a pair of instance-witness pairs, one
in the CCS relation and another in a linearized version of the CCS relation
(Section 4.1 provides details of the specific relations used in Neo). If IVC proof
size is a concern, as in prior work [44], Neo’s prover can instead provide a SNARK
proof which proves the knowledge of a valid IVC proof. The SNARK proof can be
exponentially smaller than the size of the underlying IVC proof. In particular, we
can apply Neo’s folding scheme to fold the two instance-witness pairs in an IVC
proof into a single instance-witness pair in the linearized variant of CCS. We can
then apply (Super)Spartan [57,59] to reduce the task of proving the knowledge
of a valid witness to a linearized CCS relation to a set of multilinear polynomial
evaluation claims. Unfortunately, our lattice-based commitment scheme does
not provide an efficient procedure to prove polynomial evaluations directly.
Fortunately, we can use Spartan with a FRI-based polynomial commitment
scheme [11] to prove the multilinear polynomial evaluations. Note that this
preserves plausible post-quantum security. It also does not require any non-
native arithmetic or “wrong” field emulation, since we natively support SNARK
friendly fields like Goldilocks. In particular, the size of the circuit proven with
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Spartan+FRI will be O(n), where n is the size of the CCS witness polynomial.
Note that the Spartan-based proof is an evaluation argument for our lattice-based
commitment scheme, but a more direct approach would be preferable.

2 Preliminaries

In this section, we fix our notation and recall reductions of knowledge and the
sum-check protocol. In Appendix A, we formally present multilinear polynomials
and relevant properties. We adapt some preliminaries from a prior work [43].

2.1 Notation

We let λ to denote the security parameter. We let negl(λ) to denote a negligible
function in λ. Throughout the paper, the depicted asymptotics depend on λ, but
we elide this for brevity. We let PPT denote probabilistic polynomial time and
let EPT denote expected probabilistic polynomial time. We let [n] denote the set
{1, . . . , n}. We let {ui}i∈[n] denote the set {u1, . . . , un}.

We let F denote a prime field of order q, and K ⊇ F be the smallest degree
extension field of F such that 1/ |K| = negl(λ). Let F n denote vectors of length
n over elements in F . For a scalar s ∈ F , we define the scalar matrix s := s · Id,
where Id is the d× d identity matrix.

We write F d[X1, . . . , Xn] to denote multivariate polynomials over field F in the
variables (X1, . . . , Xn) with degree bound ≤ d for each variable. We omit the su-
perscript if there is no degree bound. We let eq(x, y) ∈ F 1[X1, . . . , Xℓ, Y1, . . . , Yℓ]
denote the polynomial that outputs 1 if x = y and 0 otherwise for x, y ∈ {0, 1}ℓ.
We define ZSℓ as the set of all multivariate polynomials F ∈ F [X1, . . . , Xℓ] such
that for all x ∈ {0, 1}ℓ, F (x) = 0 (i.e. vanish over the Boolean hypercube).
For vector v ∈ F n we let ṽ ∈ F 1[X1, . . . , Xlogn] denote the multilinear polyno-
mial extension of v (i.e., ṽ(i) =

∑
j eq(i, j) · vj). For matrix M ∈ F d×n we let

M̃ ∈ F 1[X1, . . . , Xlog(dn)] denote the multilinear polynomial extension of M (i.e.,
ṽ(i, j) =

∑
u,v eq((i, j), (u, v)) ·Mu,v). In other words, the multilinear extension of

a matrix M is the multilinear extension of the vector m := M (1)||M (2)|| . . . ||M (d)

which is the concatenation of the rows of M . For a vector r ∈ Klogn (for n a

power of two), we denote the tensor as r̂ =
⊗logn

i=1 (ri, 1 − ri). Notably, for a

vector f ∈ F n, we have f̃(r) = ⟨ f, r̂ ⟩. M⊺ is the transpose of the matrix M .

Norm For an element a ∈ F , we define ∥a∥∞ as follows: Let a′ ∈ [0, q − 1]
denote the integer representation of a mod q. If a′ ≤ (q − 1)/2, then ∥a∥∞ = a′.
Otherwise, if a′ > (q − 1)/2, then ∥a∥∞ = a′ − q. This maps each F element into
the interval [−(q − 1)/2, (q − 1)/2] ⊆ Z. For a matrix Z ∈ F d×m, we define the
ℓ∞-norm ∥Z∥∞ to be the max infinity norm of its elements.

The sum-check protocol [46] The sum-check protocol is a classic interactive
proof protocol between two PPT algorithms (P,V) that checks that the sum
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of evaluations of a ℓ-variate polynomial Q ∈ F≤d[X1, . . . , Xℓ] on the Boolean
hypercube results in some value T. The output of the sum-check protocol is a

claim that v
?
= Q(r) for some random point r ∈ F ℓ and claimed evaluations v,

which the verifier V can query Q to check. The protocol is public-coin, has a
completeness error of 0, and has a soundness error of ≤ ℓd/ |F |. More generally,
the field can be chosen to be an extension field K. In this case, the soundness
error is ≤ ℓd/ |K|. A self-contained description of the sum-check protocol can be
found in this note [61].

2.2 Reductions of knowledge

We now recall the reductions of knowledge framework, introduced by Kothapalli
and Parno [39]. Reductions of knowledge are a generalization of arguments of
knowledge, in which a verifier interactively reduces checking a prover’s knowledge
of a witness in a relation R1 to checking the prover’s knowledge of a witness
in another (simpler) relation R2. In particular, both parties take as input a
claimed instance u1 to be checked, and the prover additionally takes as input a
corresponding witness w1 such that (u1, w1) ∈ R1. After interaction, the prover
and verifier together output a new instance u2 to be checked in place of the
original instance, and the prover additionally outputs a corresponding witness
w2 such that (u2, w2) ∈ R2.

Definition 1 (Reduction of knowledge [38, 39]). A reduction from R1

to R2 is defined by PPT algorithms (G,K,P,V) called the generator, encoder
(deterministic), prover, and verifier respectively with the following interface.

– G(1λ, sz)→ pp: Takes as input a security parameter 1λ and size parameters
sz. Outputs public parameters pp.

– K(pp, s)→ (pk, vk): Takes as input public parameters pp and a structure s.
Outputs a prover key pk and a verifier key vk.

– P(pk, u1, w1)→ (u2, w2): Takes as input a proving key pk and an instance-
witness pair (u1, w1). Interactively reduces the task of checking (pp, s, u1, w1) ∈
R1 to the task of checking (pp, s, u2, w2) ∈ R2.

– V(vk, u1) → u2: Takes as input a verifier key vk and an instance u1 in
R1. Interactively reduces the task of checking the instance u1 to the task of
checking a new instance u2 in R2.

Let ⟨P,V⟩ denote the interaction between P and V. We treat ⟨P,V⟩ as a
function that takes as input ((pk, vk), u1, w1) and runs the interaction on the
prover’s input (pk, u1, w1) and the verifier’s input (vk, u1). At the end of the
interaction, ⟨P,V⟩ outputs the verifier’s instance u2 and the prover’s witness
w2. A reduction of knowledge is a reduction, (G,K,P,V), that satisfies the
following properties:

(i) Completeness: For any EPT adversary A, given pp← G(1λ, sz), (s, u1, w1)
← A(pp) such that (pp, s, u1, w1) ∈ R1, we have that the prover’s output
instance is equal to the verifier’s output instance u2, and that

(pp, s, ⟨P,V⟩((pk, vk), u1, w1)) ∈ R2.
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(ii) Knowledge soundness: For any EPT adversary (A,P∗), there exists an
EPT extractor E such that if the success probability of the adversary

ϵ(A,P∗) := Pr

 (pp, s, ⟨P∗,V⟩((pk, vk), u1, st)) ∈ R2

∣∣∣∣∣∣
pp← G(1λ, sz)
(s, u1, st)← A(pp)
(pk, vk)← K(pp, s)


≥ 1/poly(λ), then we have that

Pr

(pp, s, u1, w1) ∈ R1

∣∣∣∣∣∣∣∣
pp← G(1λ, sz)
(s, u1, st)← A(pp)
(pk, vk)← K(pp, s)
w1 ← E(pp, s, u1, st)

 ≥ ϵ(A,P∗)− negl(λ).

(iii) Public Coin: All of the verifier’s messages are uniformly random strings of
some prescribed length. Furthermore, the verifier’s messages contain all of
the random coins (randomness) used by the verifier.11

Typically, we are interested in reducing several relations at once. We can
interpret several relations as a single relation using the following product operator.

Definition 2 (Relation product). For relations R1 and R2 over public pa-
rameter, structure, instance, and witness pairs we define the relation product as
follows.

R1×R2 =
{
(pp, s, (u1, u2), (w1, w2))

∣∣ (pp, s, u1, w1) ∈ R1, (pp, s, u2, w2) ∈ R2

}
.

We let Rn denote R× . . .×R for n times.

A motivating property of reductions of knowledge is that they are composable,
allowing us to build complex reductions by stitching together simpler ones. In
particular, given reductions of knowledge Π1 : R1 → R2 and Π2 : R2 → R3 we
have that Π2 ◦ Π1 (i.e., running Π1 first and then running Π2 on the outputs) is
a reduction of knowledge from R1 to R3. We define the formal semantics of the
sequential composition operator ◦.
Lemma 1 (Sequential composition [38,39]). For reductions of knowledge
Π1 = (G,K,P1,V1) : R1 → R2 and Π2 = (G,K,P2,V2) : R2 → R3, we have that
Π2 ◦ Π1 = (G,K,P,V) : R1 → R3 is a reduction of knowledge where K(pp, s)
computes (pk, vk) and where

P(pk, u1, w1) = P2(pk,P1(pk, u1, w1))

V(vk, u1) = V2(vk,V1(vk, u1, w1))

In this work, we are primarily interested in building folding schemes, a
particular type of reduction of knowledge that reduces the task of checking
instances in some relation R2 into a running instance in a relation R1.

Definition 3 (Folding scheme). A folding scheme for R1 and R2 is a reduction
of knowledge of type R1 ×R2 → R1.
11 If a reduction of knowledge is public-coin, then it trivially satisfies the property

of public reducibility described in [39] as the execution of the verifier V can be
emulated using the randomness from the transcript.
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2.3 Rings and Modules

Definition 4 (Modules). Modules are a generalization of vector spaces for
which the field of scalars is replaced by a ring R. Suppose R is a commutative
ring with identity 1 and G is an abelian (commutative) group. The group G is
an R-module if there is an operation · : R × G → G such that for all r, s ∈ R
and x, y ∈ G, r · (x + y) = r · x + r · y, (r + s) · x = r · x + s · x, (rs) · x =
r · (s · x), 1 · x = x. Suppose G1 and G2 are R-modules. Similarly, an R-module
homomorphism is a map L : G1 → G2 that is a generalization of a linear map of
vector spaces. L is an R-module homomorphism if for all x, y ∈ G1 and r ∈ R,
f(x+ y) = f(x) + f(y), f(r · x) = r · f(x).

Definition 5 (Cyclotomic ring). Let η ∈ N be a prime power, and Φη is the
η-th cyclotomic polynomial with degree d.12 We define the cyclotomic ring that
we operate over as the quotient ring Rq := F [X]/(Φη), whose elements can be
viewed as polynomials over F with degree less than d.

Definition 6 (Coefficient maps). We denote the coefficient vector of an
element a ∈ Rq as a′ = cf(a) ∈ F d and a = cf-1(a′) ∈ Rq to be the in-
verse map which takes a vector of d coefficients and outputs the correspond-
ing ring element. Given a vector z ∈ Rm

q , we denote cf(z) to be the matrix

Z =
[
cf(z1) cf(z2) · · · cf(zm)

]
∈ F d×m and cf-1(Z) to be the inverse map

which takes a matrix in F d×m and outputs the corresponding vector of ring
elements.

Norm. For an element a ∈ Rq, we define ∥a∥∞ to be the ℓ∞-norm of the vector
cf(a). Similarly, for a vector z ∈ Rm

q , we define ∥z∥∞ to be the ℓ∞-norm of the
matrix cf(Z).

Definition 7 (Rotation matrices). We define a shift matrix F ∈ F d×d and
rotation matrix, rot(a) ∈ F d×d for an element a ∈ Rq [50, pg. 11]:

F :=


0 - c0

- c1

Id−1
...

- cd−1

 , rot(a) :=
[
cf(a) F · cf(a) · · · Fd−1 · cf(a)

]

where the coefficients of the cyclotomic polynomial are Φη = xd + cd−1x
d−1 +

cd−2x
d−2 + · · ·+ c0. For all a ∈ Rq, we have cf(X · a) = F · cf(a). Hence, for all

a, b ∈ Rq, rot(a) · cf(b) = cf(ab).

Remark 1 (Visualizing rotation matrices). The shift matrix F effectively rotates
a vector and shifts by the coefficents of the cyclotomic polynomial scaled by the

12 If d is a power of two, then Φη = Xd+1 for η = 2d. If η = 34, then Φη = X54+X27+1.
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last entry of the vector. Below, we have an example for a rotation matrix for an
element a ∈ Rq where Φη = Xd + 1.

F · cf(a) =


0
a0
...

ad−2

+ ad−1


-c0
-c1
...

-cd−1

 , rot(a) :=


a0 -ad−1 . . . -a1
a1 a0 . . . -a2
...

...
. . .

...
ad−1 ad−2 . . . a0


Definition 8 (Module short integer solution [45,47,55]). Define the ring
R := Z[X]/(Φη). The MSIS∞,κ,q

m,B problem is defined as follows: Given a matrix

M
$← Rκ×m

q sampled uniformly at random, find a non-zero vector z ∈ R such
that Mz = 0 mod q and ∥z∥∞ ≤ B.

Definition 9 (Ajtai commitment scheme [5]). Assume the MSIS∞,κ,q
m,2B

problem is hard. Let message length m ∈ N. The Ajtai commitment scheme
com := (Setup,Commit) consists of the following algorithms:

– Setup(κ,m)→ pp: Sample a random matrix M
$← Rκ×m

q . Output pp←M .
– Commit(pp, z)→ c: Given public parameters pp and vector z ∈ Rm

q such that
∥z∥∞ ≤ B, output Mz.

Theorem 1 (Low norm invertibility [48, Theorem 1.1]). Let z ∈ N such
that z | η, q ≡ 1 (mod z), and ordη(q) = η/z. Define binv := 1/

√
τ(z) · q1/ϕ(z)

where τ(z) := z if z is odd, otherwise τ(z) = z/2. For an arbitrary a ∈ Rq, if
0 < ∥cf(a)∥∞ < binv, then a is invertible in Rq.

Definition 10 (Strong sampling sets [23]). Define CR ⊆ Rq to be any set of
ring elements such that for any distinct elements a, b ∈ CR, ∥cf(a− b)∥∞ < binv
(Theorem 1).

3 Neo’s folding-friendly lattice-based commitments

This section describes Neo’s lattice-based commitment scheme that can be used
to construct folding schemes. We begin with requirements on this commitment
scheme and highlight challenges that must be addressed.

3.1 Requirements

To construct our lattice-based folding scheme for CCS, we need a lattice-based
commitment scheme for a vector of field elements z ∈ Fm (e.g., a witness vector
for CCS). We require this commitment scheme to satisfy several properties.

(1) Linear homomorphism for folding multilinear evaluation claims. Given a
collection of commitments (ci)i∈[k] and the corresponding claimed evaluations
(ri, yi)i∈[k], we want to be able to reduce the task of proving that the commit-
ments indeed open to corresponding vectors, (zi)i∈[k], such that their multilinear
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extension polynomials evaluate to the claimed evaluations to the task of proving
that a single commitment C opens to a vector, z, whose multilinear extension
polynomial evaluates to some value y.13

Challenges. For discrete-log based commitments (e.g., Pedersen [54], Hy-
perKZG [64]), this simply amounts to taking a random linear combination of
the commitments to get a single commitment c, and proving that a vector z
underneath c evaluates to some y at r, where y is the weighted sum of {yi}i∈[k]
(the weights used for combining evaluations is the same as the weights used for
combining commitments). However, for lattice-based commitments such as Ajtai
(Definition 9), the binding of the commitment scheme depends on the norm of the
vector z. Thus, there are two main challenges when taking linear combinations.
First, the norm of the vector z may be larger than allowed for the binding of the
commitment scheme, and the extraction procedure of the folding scheme (for
knowledge soundness) may not preserve the original norm. Second, how can we
even commit to arbitrary vectors z ∈ Fm, when the norm of z may be large?

(2) Pay-per-bit costs. We require that the cost to commit to a vector of values
scales with the bit width of the values in the vector. This is not necessary for
constructing a folding scheme for CCS, but it is a highly desirable property in
practice as often times the witness values are in a small subset of the field.

Challenges. With discrete-log based commitments, the cost of committing
to a vector z scales with the bit-width of its elements. When moving to Ajtai
commitments, this is non-trivial to achieve. For example, prior works such as
LatticeFold [14] do not provide such a cost profile. We now provide details.

LatticeFold does not provide pay-per-bit commitment costs because of the way
it embeds a vector z ∈ Fm into the cyclotomic ring z′ ∈ Rm

q prior to committing
with Ajtai’s commitment scheme. In particular, for certain choices of cyclotomic
rings, the ring Rq ≃ (Fqτ )

t (for which t · τ = d and d is the degree of Φη) is
isomorphic to multiple copies of an extension field Fqτ . This is often referred to as
the NTT representation of an Rq element. When committing to a vector z ∈ Fm

(e.g., the CCS witness), LatticeFold first embeds the vector z into the extension
field Fqτ . Together with t−1 other vectors, LatticeFold applies the so-called NTT
transformation to obtain a ring vector z′ ∈ Rm

q whose NTT representation equals
to those t vectors. The important point here is that the NTT transformation
does not preserve the norm of the input vectors. If z ∈ Fm has a low norm, then
that does not mean z′ ∈ Rm

q has a low norm. Hence, the final step to commit
using Ajtai’s commitment scheme is to decompose z′ ∈ Rm

q into a longer vector

z′′ ∈ Rm·ℓ
q whose ring elements have low enough norm or into multiple vectors

(z′i)i∈[k], which further increases the cost to commit. Thus, regardless of the
bit-width of the original vectors, the cost to commit is the same (i.e., LatticeFold
does not achieve pay-per-bit commitment costs).

13 We treat a vector z ∈ Fn, where n is a power of 2, as evaluations of a multilinear
polynomial over the Boolean hypercube {0, 1}logn. Since a logn-variate multilinear
polynomial is uniquely determined by its evaluations over {0, 1}logn, committing to
z commits to the unique multilinear extension polynomial ṽ.
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(3) Support for small fields and for folding linear transforms. To fold CCS
instance-witness pairs, we need to fold evaluations of not only the multilinear
extensions of CCS witness vector z, but also evaluations of M̃z for some CCS
constraint matrix M .

Challenges. In prior work [14], this is achieved by taking random linear
combinations of the witness commitments and evaluations, where the witnesses
are embedded in the NTT representation of ring elements. However, as noted [14,
Section 3.3], when supporting “small” fields (i.e., fields whose order is not 2λ),
this strategy leads to a τ multiplicative factor blow-up in the cost of the protocols,
where τ is the degree of the extension field in the NTT representation. For example,
in LatticeFold’s example parameterization [14, Sec. 5] for 64-bit fields, one would
need to set τ = 4. This is due to security requirements and a mapping between
coefficient and NTT representation that loses a τ factor of packing. Furthermore,
this transformation between coefficient and NTT representation incurs another
factor of 2, because evaluations over both NTT representation and coefficient
representation need to be accounted for. In LatticeFold’s folding protocol, the
prover and the verifier must execute the sum-check protocol over cyclotomic
polynomial rings (instead of fields). When using the NTT representation (Fqτ )

t for
ring elements, this sum-check can be performed as operations over Fqτ . Despite
the field being 64-bits in size, they must work over a larger extension field∣∣Fq4∣∣ ≈ 2256. As we describe later, Neo’s folding scheme does not have to operate
over such a large extension field, since we avoid this security issue entirely. In
our parameterization Section 6, the sum-check protocol can draw challenges over
Fq2 instead when q is about 64 bits.

3.2 Neo’s solution, part-1: A matrix commitment scheme

Research question. Can we construct a simple and efficient lattice-based com-
mitment scheme that can satisfy all of our requirements and that works natively
over small prime fields (e.g., M61)?

Our starting point is Ajtai’s commitment scheme (Definition 9). This scheme
commits to a vector of low-norm ring elements z ∈ Rm

q (i.e., the coefficients
of ring elements have low-norm) by multiplying the vector with a matrix M
sampled in the setup algorithm. Looking ahead, we can view the vector z of ring
elements as a matrix of its coefficients.

The first question that we need to resolve is the following: given a vector
z ∈ Fm, how can we embed z into a low-norm vector z′ ∈ Rm

q such that z′ can
be committed directly with Ajtai’s commitment scheme while preserving the
required homomorphism properties?

We map each element zi ∈ F to a single ring element z′i ∈ Rq by embedding

the b-bit words of zi :=
∑d

j=1 b
j−1zi,j into the coefficients z′i :=

∑d
j=1 zi,j ·Xj−1.

This embedding guarantees that z′i has low-norm. More formally, we define several
decomposition mappings that we employ: (1) Decompb maps z ∈ Fm into a matrix
Z ∈ F d×m with low-norm; and (2) Given a matrix Z ∈ F d×m, splitb splits Z into
multiple matrices with low-norm.
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Definition 11 (Decomposition and splitting). Let b,m ∈ N. We define
Decompb : F

m → F ∗×m as the map which takes a vector z and performs the b-ary
decomposition into a matrix Z := Decompb(z) ∈ F ∗×m. For example, if z ∈ Fm

such that ∥z∥∞ < bd, then we have

Decompb(z) :=


Z(1)

Z(2)

· · ·
Z(d)

 such that z =

d∑
i=1

bi−1 · Z(i) and
∥∥∥Z(i)

∥∥∥
∞

< b

where Z(i) is the i-th row of Z.

We define splitb : F
d×m → (F d×m)∗ to be the b-ary decomposition map, which per-

forms the b-ary decomposition of a matrix Z ∈ F d×m into matrices Z1, Z2, . . . , Z∗.
For example, if Z ∈ F d×m such that and ∥Z∥∞ < bk, then we have

splitb(Z) := (Z1, Z2, . . . Zk) such that Z =

k∑
i=1

bi−1 · Zi and ∥Zi∥∞ < b

We then apply Ajtai’s commitment scheme to commit to low-norm matrices
Z ∈ F d×m (Theorem 2). In particular, each column of a low-norm matrix gets
mapped as the coefficients of a single ring element. Each ring element corresponds
1-to-1 with the decomposition of a single witness element. We refer to the resulting
vector as z′ ← cf-1(Z). To compute the commitment to Z, we compute the Ajtai
commitment Mz′. Since Z is low-norm, Ajtai’s commitment scheme provides the
desired binding property.

Bit-width scaling multiplication. We now discuss how the cost of Ajtai’s com-
mitment scheme, with our particular embedding of witnesses into ring elements,
scales linearly with the bit-width of the witness z. Recall that Ajtai’s commitment
scheme is merely a ring matrix multiplication Mz′.

We show how the cost of a ring multiplication for which a, b ∈ Rq where b
only has binary coefficients scales with the number of non-zero coefficients of b.
As a result, this shows that the cost of the matrix multiplication Mz′ scales with
the bit-width of z′. By the definition of rotation matrices (Definition 7),

cf(a · b) = rot(a) · cf(b) =

a1 a2 . . . ad



b1
b2
...
bd

 =

d∑
i=1

bi · ai

where ai denotes the i-th column of rot(a). Since coefficients (bi)i are bits, this
amounts to just adding the columns which correspond to the bi = 1. For a choice of
cyclotomic ring (Definition 5) (with a cyclotomic polynomial containing a constant
number of coefficients), computing these columns ai requires just a rotation of
the prior column and adding a constant number of field elements (Remark 1).
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Homomorphism. When Ajtai’s commitment scheme is viewed as a commitment
scheme for vectors z ∈ Rm

q , there is a natural understanding of taking linear
combinations, namely the Ajtai commitment scheme is an Rq-module homomor-
phism L : Rm

q → Rκ
q (i.e. c1 + r · c2 = L(z1 + r · z2) for r ∈ Rq). But, what is the

analogue for matrices? We now provide details.

Definition 12 (Ring of rotation matrices). Let Rq be a cyclotomic ring. We
define S := { rot(a) | a ∈ Rq } ⊆ F d×d to be the ring of all rotation matrices
for elements in Rq. For our purposes, S can be thought of as a commutative
subring of matrices F d×d, which contains all scalar matrices (exactly the rotation
matrices for the constant ring elements).

It turns out that the ring Rq is isomorphic to the ring of rotation matrices
S ⊆ F d×d (Theorem 7). Hence, instead of an Rq-module homomorphism, the
commitment scheme can be viewed as a S-module homomorphism L : F d×m →
F d×κ, where the matrices Z ∈ F d×d and commitments in F d×κ (i.e., the coefficient
matrix of the ring elements) are left multiplied by elements r ∈ S ⊆ F d×d. We
formalize this view with the following definition.

Definition 13 (Matrix commitment scheme). Let F be a field. A matrix
commitment scheme com := (Setup,Commit) consists of two algorithms.

– Setup(1λ, d,m) → pp: Takes as input a security parameter 1λ and matrix
dimensions d,m ∈ N, outputs public parameters pp.

– Commit(pp, Z) → c: Takes as input public parameters pp and a matrix
Z ∈ F d×m, outputs a commitment c ∈ C.

These algorithms can satisfy the following properties.

S-homomorphic: Let space S ⊂ F d×d be a commutative sub-ring of d×d matri-
ces. For all m ∈ N and public parameters pp output by Setup(1λ, d,m), we have
that for all matrices Z1, Z2 ∈ F d×m and ρ1, ρ2 ∈ S that

ρ1 · Commit(pp, Z1) + ρ2 · Commit(pp, Z2) = Commit(pp, ρ1 · Z1 + ρ2 · Z2)

More formally, the commitment algorithm Commit(pp, · ) : F d×m → C is an
S-module homomorphism.

(d,m,B)-Binding: For all expected polynomial time adversaries A, we have

Pr

Commit(pp, Z1) = Commit(pp, Z2)

∧ Z1 ̸= Z2

∧ ∥Z1∥∞, ∥Z2∥∞ < B

∣∣∣∣∣∣∣
pp← Setup(1λ, d,m)

Z1, Z2 ∈ F d×m ← A(pp)


≤ ϵbind(com, d,m,B) ≤ negl(λ). We refer to the pair of messages (Z1, Z2) which
satisfies the conditions in the probability as an (d,m,B)-binding collision.

Theorem 2. Let Rq be a cyclotomic ring (Definition 5) and S be the ring
of all rotation matrices (Definition 7). If the MSIS∞,κ,q

m,2B problem is hard then
Ajtai’s commitment scheme (Definition 9) is a matrix commitment scheme
(Definition 13) that is S-homomorphic and (d,m,B)-binding.

Proof. For brevity, we defer the proof to Appendix B.1.
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3.3 Neo’s solution, part-2: linear homomorphism for folding
multilinear evaluation claims

Based on the description thus far, we have a commitment scheme that commits
to CCS witnesses z := x ||w ∈ Fm as low-norm matrices Z := X ||W ∈ F d×m.
As discussed earlier, we want to be able to fold evaluations of the multilinear
extensions M̃z for some matrix M (e.g., the CCS constraint matrices).

Our starting point is the following lemma, which observes that linear combi-
nations of commitments respect right multiplication of their openings. Looking
ahead, we carefully choose the matrix V to be M⊺r̂ which will allow us to fold
the desired multilinear evaluations at a point r. In particular, consider a vector
Z ← Decompb(z) ∈ F d×m (Definition 11). For a matrix M ∈ F n×m and r ∈ Klogn

(r̂ ∈ Kn), observe that

ZM⊺r̂ = [Z(1)M⊺r̂, Z(2)M⊺r̂, . . . , Z(d)M⊺r̂]

= [M̃Z(1)(r), M̃Z(2)(r), . . . , M̃Z(d)(r)]

where Z(i) is the i-th row of Z. To obtain the evaluation M̃z(r), it suffices

to compute the sum
∑d

i=1 b
i−1Z(i)M⊺r̂ = (

∑d
i=1 b

i−1Z(i))M⊺r̂ = zM⊺r̂ =

M̃z(r). Another way to view ZM⊺r̂ is as a partial evaluation y ∈ F d such that

ỹ(X1, . . . , Xd) = Z̃M⊺(X1, . . . , Xd, r).

Lemma 2 (Linear combination lemma). Let S ⊆ F d×d be any commutative
sub-ring of d × d matrices and m,n, k ∈ N. Let L : F d×m → C be a S-module
homomorphism. Consider arbitrary ρ1, . . . , ρk ∈ S, Z1, . . . , Zk ∈ F d×m, and
V ∈ Km×n. For all i ∈ [k], define

ci := L(Zi) ∈ C and vi := ZiV ∈ Kd×n

Define

c :=
∑
i∈[k]

ρici ∈ C Z :=
∑
i∈[k]

ρiZi ∈ F d×m v :=
∑
i∈[k]

ρivi ∈ Kd×n

Then, c = L(Z) and v = ZV .

Proof. First, we will prove that c = L(Z). Since L is a S-module homomorphism,
the following holds

c =
∑
i∈[k]

ρici =
∑
i∈[k]

ρiL(Zi) = L
(∑

i∈[k] ρiZi

)
= L(Z).

Now, we will prove that v = ZV , as follows

v =
∑
i∈[k]

ρivi =
∑
i∈[k]

ρiZiV =
(∑

i∈[k] ρiZi

)
V = ZV

This concludes our proof.
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The following corollary can be immediately obtained from Lemma 2 by defining
V := M⊺

j r̂ for each j ∈ [t] and choosing Lx as the trivial S-homomorphism,
which projects the first min columns of Z.

Corollary 1. Let S ⊆ F d×d be any commutative sub-ring of d × d matri-
ces and m,n, k ∈ N. Let L : F d×m → C and Lx : F d×m → F d×min be S-
module homomorphisms. Consider arbitrary ρ1, . . . , ρk ∈ S, Z1, . . . , Zk ∈ F d×m,
M1, . . . ,Mt ∈ F n×m, r ∈ Klogn. Define

∀ i ∈ [k], ci := L(Zi) ∈ C, Xi := Lx(Zi) ∈ F d×min

∀ i ∈ [k], j ∈ [t], y(i,j) := ZiM
⊺
j r̂ ∈ Kd

Define
c :=

∑
i∈[k] ρici ∈ C X :=

∑
i∈[k] ρiXi ∈ C

Z :=
∑

i∈[k] ρiZi ∈ F d×m yj :=
∑

i∈[k] ρi · y(i,j) ∈ Kd

Then, c = L(Z), X = Lx(Z), and for all j ∈ [t], yj = ZM⊺
j r̂.

3.4 Challenge sets

As hinted earlier, when taking random linear combinations of lattice-based
commitments, there are two concerns: (1) the random combination of the openings
might be larger than the norm-bound required for binding; and (2) for extraction
(i.e., knowledge soundness of the folding scheme), we need the differences between
challenges to be invertible. We formalize these requirements by lifting strong
sampling sets over cyclotomic rings Rq (Definition 10) to our setting.

Definition 14 (Strong sampling set). Let S ⊆ F d×d be any commutative
sub-ring of d× d matrices. A strong sampling set for S is a subset C ⊆ S such
that for any two distinct elements ρ, ρ′ ∈ C, (ρ− ρ′) is invertible in the ring S.
Furthermore, we define the

expansion factor of C := max
v∈Fd

ρ∈C

∥ρv∥∞
∥v∥∞

Lattice instantiation. Consider a strong sampling set CR over the cyclotomic
ring Rq (Definition 10). By definition, for any distinct elements a, b ∈ CR,
∥cf(a− b)∥∞ < binv. Thus, by Theorem 1, a − b is invertible in Rq. Since Rq

and S (Definition 12) are isomorphic, we can define a strong sampling set
C := { rot(c) | c ∈ CR } to be the correspond set of rotation matrices. Con-
sider arbitrary distinct elements rot(a) , rot(b) ∈ C. By Theorem 7, we have
(rot(a)− rot(b))−1 = rot

(
(a− b)−1

)
.

Theorem 3 (Expansion factors). Let CR be a strong sampling set over the
cyclotomic ring Rq (Definition 10), and C := { rot(c) | c ∈ CR } be the corre-
sponding set of rotation matrices. We denote the Euler totient function as ϕ. We
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must have that the expansion factor (Definition 14) of C is

max
v∈Fd

ρ∈C

∥ρv∥∞
∥v∥∞

≤ 2 · ϕ(η) · max
ρ′∈CR

∥ρ′∥∞

Proof. For brevity, we defer the proof to Appendix B.3.

Looking ahead, our security analysis will require a different notion of binding
called relaxed binding. Here, we lift the notion from prior works to the matrix
setting, where C will be a challenge set with which we take linear combinations
of commitments.

Definition 15 ((d,m,B, C)-relaxed binding [9, 10, 14]). Let com := (Setup,
Commit) be an arbitrary matrix commitment scheme (Definition 13) that is S-
homomorphic. Let C be any subset of S. The commitment scheme com satisfies
(d,m,B, C)-relaxed binding if for all expected polynomial time adversaries A,
we have

Pr


∆1 · c = Commit(pp, Z1)

∧ ∆2 · c = Commit(pp, Z2)

∧ ∥Z1∥∞, ∥Z2∥∞ < B,

∧ ∆1Z2 ̸= ∆2Z1

∣∣∣∣∣∣∣∣∣
pp← Setup(1λ,m) c ∈ C,

∆1, ∆2 ∈ (C − C),
Z1, Z2 ∈ F d×m

← A(pp)


≤ ϵrelax(com, d,m,B, C) ≤ negl(λ). We refer to a tuple of elements (c,∆1, ∆2, Z1,
Z2) which satisfies the conditions in the probability as an (d,m,B, C)-relaxed
binding collision.

It turns out that regular binding implies relaxed binding. Here, we lift the
corresponding lemmas from prior work to our setting.

Lemma 3 (Binding implies relaxed binding [9,10,14]). Let com := (Setup,
Commit) be an arbitrary matrix commitment scheme (Definition 13) that is
S-homomorphic and C ⊆ S be a strong-sampling set with expansion factor
T (Definition 14). If com is (d,m, 2TB)-binding (Definition 13), then com is
(d,m,B, C)-relaxed binding (Definition 15).

Proof. For brevity, we defer the proof to Appendix B.2.

4 Neo’s folding scheme for CCS

This section describes Neo’s folding scheme for CCS. At a high level, we leverage
the commitment scheme we provided in Section 3 in conjunction with HyperNova’s
folding scheme for CCS [42]. To make this sketch work, we first lift the CCS
relation [59] to the matrix setting, and provide three reductions. These reductions
can also be viewed as adapting the ideas in LatticeFold [14] to the prime field
setting in a way that natively supports “small” primes. The security analysis of
some of our reductions will require new security definitions and a new composition
theorem for reductions, which we provide in Section 5. By composing the three
reductions, we obtain a lattice-based folding scheme for CCS.
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4.1 Relations

The CCS structure contains the CCS constraint matrices {Mj}j∈[t] and a con-
straint polynomial f .

Definition 16 (Structure). Let m,n, u, t ∈ N. We define a structure as a
collection of elements

s :=
{{

Mj ∈ F n×m}
j∈[t] , f ∈ F<u[X1, . . . , Xt]

}
,

which consists of matrices and a degree-u polynomial.

Below, we provide an analogue of the CCS relation updated to match our low
norm requirement (which is enforced by decomposition) and a matrix commitment
scheme (more generally, any S-module homomorphism).

Definition 17 (Matrix constraint system relation). Let L : F d×m → C be
a S-module homomorphism. Let s be a structured as defined in Definition 17. We
define the Matrix constraint system relation as follows:

MCS(b,L) :=


(
s; (c ∈ C, x ∈ F

min); w ∈ F
m−min

)
:

For z := x ||w and

Z := Decompb(z),

c = L
(
Z
)

f
(
M̃1z, . . . , M̃tz

)
∈ ZSn


HyperNova’s folding scheme [42] can be viewed as providing a reduction

from CCS to linearized CCS, a variant of CCS that they define. In a nutshell,
linearized CCS amounts to the multilinear evaluations of (M1z, . . . ,Mtz). Here,
we define the analogue of linearized CCS in our setting, where we get the partial
evaluation instead. Ultimately, we fold these partial evaluations using random
linear combinations as hinted in our linear combination lemma (Corollary 1).

Definition 18 (Matrix evaluation relation). Let L : F d×m → C be a
S-module homomorphism. Let Lx : F d×m → F d×min be the trivial S-module
homomorphism which projects the first min columns. Let s be a structure as
defined in Definition 17.

ME(b,L) :=


s;


c ∈ C,

X ∈ F d×min ,

r ∈ Klogn,

{yj ∈ Kd}j∈[t]

; Z ∈ F
d×m

 :

c = L(Z) ∧ X = Lx(Z)

∥Z∥∞ < b

∀ j ∈ [t], yj = ZM⊺
j r̂


The condition yj = ZM⊺

j r̂ is equivalently expressed as ỹj = Z̃M⊺
j

(
X[1, log d], r

)
.

4.2 Constructing a folding scheme via reductions of knowledge

In this section, we provide an overview of three reductions. By sequentially
composing the three, we obtain a lattice-based folding scheme for CCS.
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(1) CCS reduction ΠCCS. This reduction takes as input ME(b,L)k×MCS(b,L),
which contains k b-norm partial evaluation claims and one CCS claim, and
reduces to k + 1 b-norm partial evaluation claims ME(b,L)k+1. This reduction
can be viewed as the lattice analogue of the CCS to linearized CCS reduction in
HyperNova [42], which reduces CCS claims to evaluation claims by invoking the
sum-check protocol [46].

(2) Random linear combination reduction ΠRLC. This reduction takes as
input k+1 b-norm partial evaluation claims ME(b,L)k+1, and reduces to a single
(B = bk)-norm partial evaluation claim ME(B,L). This reduction simply takes
linear combinations of the input commitments and claims using challenges from
a strong sampling set (Definition 14).

(3) Decomposition reduction ΠDEC. This reduction takes as input a single
B-norm partial evaluation claim ME(B,L) and reduces to k b-norm partial eval-
uation claims ME(b,L)k. Informally, the prover effectively sends k commitments
which represent the decomposition of the original B partial evaluation claim.
This reduction does not use any randomness from the verifier, and is required to
keep the norm of the commitments lower than the binding requirement for the
commitment scheme.

In terms of security, the composition ΠRLC ◦ΠCCS is a reduction of knowl-
edge from ME(b,L)k × MCS(b,L) to ME(B,L), and ΠDEC alone is a reduc-
tion of knowledge from ME(B,L) to ME(b,L)k. All together, the composition
Π := ΠDEC ◦ΠRLC ◦ΠCCS is a reduction of knowledge from ME(b,L)k×MCS(b,L)
to ME(b,L)k. This allows for the continual folding of MCS(b,L) claims. Thus, we
obtain a folding scheme for CCS.

4.3 Reduction parameters

Here, we define global parameters for all the three reductions.
– Let S ⊆ F d×d be a commutative subring of d × d matrices (Definition 12)

and m,n, b, k,B = bk < q/2 ∈ N.
– Let C ⊆ S be a strong sampling set (Definition 14) with expansion factor T

such that (k + 1)T (b− 1) < B and 1/ |C| = negl(λ).
– Let com := (Setup,Commit) be an commitment scheme (Definition 13),

which is S-homomorphic and (d,m, 2B, C)-relaxed binding (Definition 15).
For pp ← Setup(1λ, d,m), define L := Commit(pp, · ) : F d×m → C, which is
a S-module homomorphism by definition.

– Let Lx : F d×m → F d×min be the trivial S-module homomorphism that
projects the first min columns.

– Let s denote a structure as defined in Definition 17.

4.4 CCS Reduction – ΠCCS

For notational simplicity, we describe the protocol as a reduction fromMCS(b,L)×
ME(b,L)k−1 to ME(b,L)k instead of MCS(b,L)×ME(b,L)k to ME(b,L)k+1. This
only affects indexing.
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Overview. In this reduction, we first construct a multivariate polynomial Q(X1,
. . . , Xlog(dn)) such that we can encode the CCS constraints (encoded as the
polynomial F), norm constraints (encoded as polynomials NCi for i ∈ [k]), and
evaluation claims ZiM

⊺
j r̂ (encoded as polynomials Evali,j for i ∈ [k], j ∈ [t]) to

a claimed sum of a polynomial Q(X1, . . . , Xlog(dn)) over the Boolean hypercube

{0, 1}log(dn). Then, we rely on the classic sum-check protocol [46] to reduce this

sum claim to a single evaluation claim for v
?
= Q((α′, r′)), which can be derived

by the partial evaluations of each sub-component polynomial on r′. This leaves k
new partial evaluation claims over r′.14

Without loss of generality, assume that m = n and n, d · n are both powers of
two and that M1 = In is the identity matrix. By choosing M1 = In, we simplify
our notation as folding M1z evaluations is equivalent to folding z evaluations.

CCS reduction ΠCCS

Parameters: Refer to Section 4.3.

Input:
(
s; (c1 ∈ C, x1 ∈ F

min); w1 ∈ F
m−min

)
,(

s; ci ∈ C, Xi ∈ F
d×min , r ∈ K

logn, {y(i,j) ∈ K
d}j∈[t]; Zi ∈ F

d×m
)k

i=2

∈ MCS(b,L)×ME(b,L)k−1

Output:
(
s; ci ∈ C, Xi ∈ F d×min , r′ ∈ Klogn, {y′

(i,j) ∈ Kd}j∈[t]; Zi ∈ F d×m
)
i∈[k]

∈ ME(b,L)k

Setup G(1λ, sz) → pp: Output pp ← Setup(1λ, sz), which defines L := Commit
(pp, · ) : F d×m → C.

Encoder K(pp, s)→ (pk, vk): Output
(
(pp, s),⊥

)
.

Reduction ⟨P,V⟩((pk, vk), u1, w1)→ (u2;w2):

1. V: Send challenges α
$← Klog d, β

$← Klog(dn), γ
$← K to P.

2. V ↔ P: Define z1 := x1 ||w1, X1 := Decompb(x1), Z1 := Decompb(z1), for all
i ∈ [k], j ∈ [t], M(i,j) := ZiM

⊺
j , and

F
(
X[1, logn]

)
:= f

(
M̃1z1, . . . , M̃tz1

)
NCi

(
X[1, log(dn)]

)
:=

∏b−1
j=−b−1

(
Z̃i(X)− j

)
∀ i ∈ [k]

Eval(i,j)
(
X[1, log(dn)]

)
:= eq

(
X, (α, r)

)
· M̃(i,j)(X) ∀ i ∈ [2, k], ∀ j ∈ [t]

14 Note that the polynomial Q to which the sum-check protocol is applied includes
Evali,j because we rely on the sum-check protocol to rerandomize all evaluation
claims, including those arising from F, to be over the same random point r′. This is
important to be able to take a random linear combination of all evaluation claims.
HyperNova [42] and LatticeFold [14] also perform a similar rerandomization.
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Q
(
X[1, log(dn)]

)
:= eq(X, β)

(
F(X[log(d)+1, log(dn)]) +

∑
i∈[k] γ

iNCi(X)
)

+ γk ∑t,k
j=1,i=2 γ

i+(j−1)k−1 · Eval(i,j)(X)

Define claimed sum of Q over {0, 1}log(dn) as

T := γk ∑t,k
j=1,i=2 γ

i+(j−1)k−1 · ỹ(i,j)(α)

Perform SumCheck (T; Q) which reduces to evaluation claim v
?
= Q(α′, r′) for

(α′, r′) ∈ F log d × F logn.

3. P: For all i ∈ [k] and j ∈ [t], send y′
(i,j) := ZiM

⊺
j r̂

′ ∈ Kd (i.e. ỹ′
(i,j) =

M̃(i,j)

(
X[1, log d], r

′)).
4. V: Check the evaluation claim v

?
= Q

(
α′, r′

)
as follows,

∀j ∈ [t], mj :=
∑

ℓ∈[d] b
ℓ−1 · y′

(1,j),ℓ

F := f(m1, . . . , mt), ∀i ∈ [k], Ni :=
∏b−1

j=−b−1

(
ỹ′
(i,1)(α

′)− j
)
,

∀ i ∈ [2, k], ∀ j ∈ [t], E(i,j) := eq((α′, r′), (α, r)) · ỹ′
(i,j)(α

′)

v
?
= eq

(
(α′, r′), β

)
·
(
F +

∑
i∈[k] γ

i ·Ni

)
+ γk ∑t,k

j=1,i=2 γ
i+(j−1)k−1 · E(i,j)

5. Output
(
s; ci, Xi, r′, {y′

(i,j)}j∈[t]; Zi

)
i∈[k]

Lemma 4. The CCS reduction ΠCCS is a complete and public coin reduction
from MCS(b,L)×ME(b,L)k−1 to ME(b,L)k.

Proof. For brevity, we defer the proof to Appendix B.4.

Security of ΠCCS. We defer the formal security analysis of the reduction ΠCCS

to Section 5, because the reduction by itself is not a reduction of knowledge
(Definition 1). This is because ΠCCS is not directly knowledge sound (against
arbitrary adversaries). Instead, in Section 5, we introduce new security properties
which ΠCCS satisfies. In particular, ΠCCS is knowledge sound against restricted
adversaries (A,P∗) which can only output the same output witnesses w2 with
all but negligible probability. A trivial property of ΠCCS is that it always outputs
the same commitments from the instance regardless of what the potentially
malicious prover P∗ does. This property will help with our composition with
ΠRLC. Ultimately, we prove that the composition ΠRLC ◦ΠCCS is a ROK.

4.5 Random linear combination reduction – ΠRLC

Overview. This reduction takes a random linear combination of the inputs using
challenges from a strong sampling set C (Definition 14).
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Random linear combination reduction ΠRLC

Parameters: Refer to Section 4.3.

Input:
(
s; ci ∈ C, Xi ∈ F d×min , r ∈ Klogn, {y(i,j) ∈ Kd}j∈[t]; Zi ∈ F d×m

)
i∈[k+1]

∈
ME(b,L)k+1

Output:
(
s; c ∈ C, X ∈ F d×min , r ∈ Klogn, {yj ∈ Kd}j∈[t]; Z ∈ F d×m

)
∈ ME(B,L)

Setup G(1λ, sz)→ pp: Output pp← Setup(1λ, sz), which defines L := Commit(pp,
· ) : F d×m → C.

Encoder K(pp, s)→ (pk, vk): Output
(
(pp, s),⊥

)
.

Reduction ⟨P,V⟩((pk, vk), u1, w1)→ (u2;w2):

1. V: Sample ρ1, . . . , ρk+1
$← C and compute:

c←
∑

i∈[k+1]

ρici, X ←
∑

i∈[k+1]

ρiXi, and yj ←
∑

i∈[k+1]

ρi · y(i,j)

Send ρ1, . . . , ρk+1 to P.

2. P: Compute Z ←
∑

i∈[k+1] ρiZi .

3. Output
(
s; c, X, r, {yj}j∈[t]; Z

)
.

Lemma 5. The random linear combination protocol ΠRLC is a complete and
public coin reduction from ME(b,L)k+1 to ME(B,L).

Proof. For brevity, we defer the proof to Appendix B.5.

Security of ΠRLC. As with ΠCCS, the reduction ΠRLC is not knowledge-sound
against arbitrary adversaries (A,P∗). However, it satisfies a relaxed notion
of knowledge-soundness for which the extractor is able to extract witnesses
(Zi)i∈[k+1] such that (s, ci, Xi, . . . ;Zi)i∈[k+1] belongs to ME(q/2,L)k+1 (which

has a trivial norm bound) instead of ME(b,L)k+1, which is the original input
relation. Furthermore, this extractor can only output the same witnesses (Zi)i
with all but negligible probability, or else we could use the extractor to construct
a (d,m, 2B, C)-relaxed binding (Definition 15) adversary which succeeds with non-
negligible probability. These properties are formalized in Section 5. In particular,
using this extractor, we will be able to construct a restricted adversary for ΠCCS.

4.6 Decomposition reduction – ΠDEC

Overview. Our final reduction aims to reduce the norm of claims from B = bk to
b, which will allow us to continually fold CCS claims without increasing the norm
of the openings (Zi)i to the commitments. Otherwise, the norm would eventually
exceed the norm-bound requirement of the commitment scheme.
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This reduction works by having the prover do a bit-decomposition of the
witness Z into k lower norm witnesses (Zi)i. Then, the prover sends over new
commitments and partial evaluation claims for this new witnesses. The verifier
checks these new commitments and evaluations with respect to the original input
commitment and evaluation.

Decomposition reduction ΠDEC

Parameters: Refer to Section 4.3.

Input:
(
s; c ∈ C, X ∈ F d×min , r ∈ Klogn, {yj ∈ Kd}j∈[t]; Z ∈ F d×m

)
∈ ME(B,L)

Output:
(
s; ci ∈ C, Xi ∈ F d×min , r ∈ Klogn, {y(i,j) ∈ Kd}j∈[t]; Zi ∈ F d×m

)
i∈[k]

∈
ME(b,L)k

Setup G(1λ, sz)→ pp: Output pp← Setup(1λ, sz), which defines L := Commit(pp,
· ) : F d×m → C.

Encoder K(pp, s)→ (pk, vk): Output
(
(pp, s),⊥

)
.

Reduction ⟨P,V⟩((pk, vk), u1, w1)→ (u2;w2):

1. P: Compute
(
ci, {y(i,j)}j∈[t]; Zi

)
i∈[k]

as follows,

(Z1, . . . , Zk)← splitb(Z), ci ← L(Zi), y(i,j) ← ZiM
⊺
j r̂ ∈ K

d

Send
(
ci, {y(i,j)}j∈[t]

)
i∈[k]

to V.

2. V: Compute (X1, . . . , Xk)← splitb(X). Check for all j ∈ [t],

c
?
=

∑k
i=1b

i−1 · ci and yj
?
=

∑k
i=1b

i−1 · y(i,j)

3. Output
(
s; ci, Xi, r, {y(i,j)}j∈[t]; Zi

)
i∈[k]

Unlike ΠCCS and ΠRLC, the reduction ΠDEC is directly a reduction of knowledge.

Theorem 4. The reduction ΠDEC is a reduction of knowledge (Definition 1)
from ME(B,L) to ME(b,L)k.

Proof. For brevity, we defer the proof to Appendix B.6.

5 Security analysis of reductions

This section provides a formal security analysis of the ΠCCS and ΠRLC reductions.
In particular, we design new security properties that a reduction can satisfy, and
prove that ΠCCS and ΠRLC satisfy these properties. Finally, we show that the
composition ΠRLC ◦ ΠCCS is a reduction of knowledge by using a new general
composition theorem for reductions (Theorem 5).
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5.1 New properties

We begin with an informal description of each of our new properties, and then
provide their formal definitions (Definition 19)

– ϕ-restricted. Regardless of the adversary, the evaluation of ϕ on the output
instance u2 remains the same (with all but negligible probability). For example,
in ΠCCS, the reduction always preserves the instance commitments (ci)i.

– ϕ-relaxed knowledge soundness. Nearly identical to knowledge soundness, but
with two major differences: (1) the extractor only succeeds in extracting
witnesses that satisfy a relaxed relation (a superset of the original relation);
and (2) if the adversary is restricted in its choice of input instances by ϕ,
then the extractor can only output a single witness with all but negligible
probability. For example, in ΠRLC, the extractor will only be able to extract
witnesses with potentially large norm; furthermore, if the commitments in
the instance remain the same across executions, then the extractor can only
output at most one satisfying witness; otherwise, the extractor could break
the relaxed binding of the commitment scheme.

– restricted knowledge soundness. Nearly identical to knowledge soundness,
except that the extraction only succeeds against restricted adversaries. In
particular, the potentially malicious prover P∗ is restricted to outputing the
exact same witness w2 with all but negligible probability. For example, in
ΠCCS, the prover P∗ would be restricted to only one possible set of openings
(Zi)i for the output commitments.

Theorem 5 (Composition Theorem). Let ϕ be an arbitrary function. Con-
sider relations R1 and R2 ⊆ R′2 and R3. Given a reduction (Definition 1)
Π1 := (G,K,P1,V1) from R1 to R2 (R′2) such that Π1 is (1) complete and
public-coin, (2) ϕ-restricted, (3) and has restricted knowledge soundness and a
reduction Π2 := (G,K,P2,V2) from R2 (R′2) to R3 such that Π2 is (1) complete
and public-coin (2) and has ϕ-relaxed knowledge soundness then the composition
Π := Π2 ◦Π1 is knowledge sound.

Proof. For brevity, we defer the proof to Appendix B.10.

Corollary 2. The composition Π := ΠRLC ◦ΠCCS is a reduction of knowledge
(Definition 1) from ME(b,L)k ×MCS(b,L) to ME(B,L).

Proof. Follows directly from ΠCCS’s completeness and public-coin (Lemma 4),
ΠRLC’s completeness and public-coin (Lemma 5), the new composition theo-
rem (Theorem 5), ΠCCS’s ϕ-restricted (Lemma 6), ΠCCS’s restricted knowledge
soundness (Lemma 7), and ΠRLC’s ϕ-relaxed knowledge soundness (Lemma 8).

Corollary 3. The composition Π := ΠDEC ◦ ΠRLC ◦ ΠCCS is a reduction of
knowledge (Definition 1) from ME(b,L)k ×MCS(b,L) to ME(b,L)k.

Proof. Follows directly from Corollary 2, ΠDEC is a reduction of knowledge
(Theorem 4), and the sequential composition of reductions (Lemma 1).

30



Definition 19. Consider relations R1 and R2 over public parameters, structure,
instance, and witness tuples. Further, consider relations R′1 and R′2 such that
R1 ⊆ R′1 and R2 ⊆ R′2. We will refer to these relations as the relaxed versions
of R1 and R2, because they are supersets. Let ϕ be an arbitrary function. A
reduction (G,K,P,V) (Definition 1) from R1 (R′1) to R2 (R′2) can satisfy the
following properties,

(i) ϕ-restricted: For any expected polynomial-time adversary (A,P∗),

Pr


u2, u

′
2 ̸= ⊥
⇓

ϕ(u2) = ϕ(u′2)

∣∣∣∣∣∣∣∣∣∣
pp← Gen(1λ)
(s, u1, st1)← A(pp)
(pk, vk)← K(pp, s)
(u2, w2)← ⟨P∗,V⟩((pk, vk), u1, st)
(u′2, w

′
2)← ⟨P∗,V⟩((pk, vk), u1, st)

 = 1

(ii) ϕ-relaxed knowledge soundness: For any expected polynomial-time adver-
sary (A,P∗), there exists an expected polynomial-time extractor E such that
if the success probability of the adversary ϵ(A,P∗) ≥ 1/poly(λ), then

Pr

(pp, s, u1, w1) ∈ R′1

∣∣∣∣∣∣∣∣
pp← G(1λ, sz)
(s, u1, st)← A(pp)
(pk, vk)← K(pp, s)
w1 ← E(pp, s, u1, st)

 ≥ ϵ(A,P∗)− negl(λ).

and if A := (B,B′) such that

Pr


u1, u

′
1 ̸= ⊥
⇓

ϕ(u1) = ϕ(u′1)

∣∣∣∣∣∣∣∣∣
pp← G(1λ, sz)
(s, st∗)← B(pp)

(u1, st)← B′(st∗)
(u′1, st

′)← B′(st∗)

 = 1,

then

Pr


w1, w

′
1 ̸= ⊥

∧ w1 ̸= w′1

∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, sz)
(s, st∗)← B(pp)

(u1, st)← B′(st∗)
w1 ← E(pp, s, u1, st)

(u′1, st
′)← B′(st∗)

w′1 ← E(pp, s, u′1, st′)


≤ negl(λ)

(iii) Restricted Knowledge Soundness: For any expected polynomial-time
adversary (A,P∗), there exists an expected polynomial-time extractor E such
that if the relaxed success probability of the adversary

ϵ′(A,P∗) := Pr

 (pp, s, ⟨P∗,V⟩((pk, vk), u1, st)) ∈ R′2

∣∣∣∣∣∣
pp← G(1λ, sz)
(s, u1, st)← A(pp)
(pk, vk)← K(pp, s)
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≥ 1/poly(λ), and

Pr


w2, w

′
2 ̸= ⊥
∧

w2 ̸= w′2

∣∣∣∣∣∣∣∣∣∣
pp← Gen(1λ)
(s, u1, st)← A(pp)
(pk, vk)← K(pp, s)
(u2, w2)← ⟨P∗,V⟩((pk, vk), u1, st)
(u′2, w

′
2)← ⟨P∗,V⟩((pk, vk), u1, st)

 ≤ negl(λ)

then we have that

Pr

(pp, s, u1, w1) ∈ R1

∣∣∣∣∣∣∣∣
pp← G(1λ, sz)
(s, u1, st)← A(pp)
(pk, vk)← K(pp, s)
w1 ← E(pp, s, u1, st)

 ≥ ϵ′(A,P∗)− negl(λ).

Lemma 6. Let ϕ be the function which projects commitments (ci)i∈[k] from the
instance. The reduction ΠCCS is ϕ-restricted.

Proof. For brevity, we defer the proof to Appendix B.7.

Lemma 7. The reduction ΠCCS is a restricted knowledge sound reduction from
MCS(b,L)×ME(b,L)k−1 to ME(b,L)k (ME(q/2,L)k).

Proof. For brevity, we defer the proof to Appendix B.8.

Lemma 8. Let ϕ be the function which projects commitments (ci)i∈[k+1] from
the instance. The reduction ΠRLC is a ϕ-relaxed knowledge sound reduction from
ME(b,L)k+1 (ME(q/2,L)k+1) to ME(B,L).

Proof. For brevity, we defer the proof to Appendix B.9.

6 Concrete parameters

This section provides three efficient parameterizations over ≤ 64-bit fields. Ad-
ditionally, Appendix B.11 and Appendix B.12. provide the corresponding sage
scripts that we used to determine valid parameterizations. In Section 4.3, we re-
quire the commitment scheme to be (d,m, 2B, C)-relaxed binding (Definition 15).
Thus, by Lemma 3, we need the commitment scheme to be (d,m, 4TB)-binding
(Definition 15). Finally, Ajtai’s commitment scheme is (d,m, 4TB)-binding if
MSIS∞,κ,q

m,8TB is hard. We estimate the hardness of Module-SIS using the lattice
estimator library provided by [7] using our script (Appendix B.12).

6.1 Almost Goldilocks: (264 − 232 + 1) − 32

We provide a new field, which we refer to as Almost Goldilocks. This field’s order
is q = (264 − 232 + 1) − 32, which is close to the order of the Goldilocks field
264 − 232 + 1. Because of this, the field admits an efficient implementation with a
small change to the Solinas prime reduction algorithm (which is typically used
for the Goldilocks field).
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Parameterization. η = 128, Φη = X64 + 1, d = 64, Rq := Fq[X]/(Φη), κ = 13,
m = 226, b = 2, k = 11, B = 211. Define CR to be the set polynomials in Rq whose
coefficients belong to [−1, 0, 1, 2], and C = {rot(a) | a ∈ CR}. By Theorem 3,
T = 128. By Theorem 1, binv ≈ 4. K = Fq2 .

Security |C| = 2128, |K| ≈ 2128, MSIS∞,κ,q
m,8TB ≈ 127 bits of security.

6.2 Goldilocks: 264 − 232 + 1

This is a popular choice of field for SNARKs as the field admits an efficient
implementation: field operations can be implemented with essentially only bit-
shifts and the field has high 2-adicity (232 | (p−1)), which is useful for compressing
Neo’s IVC proofs with SNARKs.

Parameterization. η = 81, Φη = X54 + X27 + 1, d = 54, Rq := Fq[X]/(Φη),
κ = 16, m = 224, b = 2, k = 12, B = 212. Define CR to be the set polynomials in
Rq whose coefficients belong to [−2,−1, 0, 1, 2], and C = {rot(a) | a ∈ CR}. By
Theorem 3, T = 216. By Theorem 1, binv ≈ 2.5 · 109. K = Fq2 .

Security |C| ≈ 2125, |K| ≈ 2128, MSIS∞,κ,q
m,8TB ≈ 128 bits of security.

Remark 2 (Incompatibility with Latticefold [14]). In LatticeFold [14], the construc-
tions and analysis are limited to power-of-two cyclotomic polynomials, namely
of the form Xd + 1 with d being a power-of-two. Since the Goldilocks field has
high 2-acidity, the cyclotomic polynomial completely factors into linear terms.
This means that the ring Rq is isomorphic to F d

q (the NTT representation). The
security of LatticeFold’s construction depends on the size of the field in the NTT
representation [14, Sec 3.3], which here is only 64 bits.

6.3 Mersenne 61: 261 − 1

This field admits an incredibly efficient implementation as it is only one off from a
power-of-two. Specifically, modular arithmetic over this field can be implemented
with simple bit-shifts with an algorithm more efficient than Goldilocks.

Parameterization η = 81, Φη = X54 + X27 + 1, d = 54, Rq := Fq[X]/(Φη),
κ = 16, m = 222, b = 2, k = 12, B = 212. Define CR to be the set polynomials in
Rq whose coefficients belong to [−2,−1, 0, 1, 2], and C = {rot(a) | a ∈ CR}. By
Theorem 3, T = 216. By Theorem 1, binv ≈ 383. K = Fq2 .

Security |C| ≈ 2125, |K| ≈ 2122, MSIS∞,κ,q
m,8TB ≈ 129 bits of security.

Remark 3 (Incompatibility with Latticefold [14]). As stated earlier, LatticeFold’s
constructions and analysis are limited to power-of-two cyclotomic polynomials,
namely of the form Xd+1 for d being a power-of-two. For Mersenne 61, there is no
choice of power-of-two cyclotomic polynomials, which satisfies the requirements
of Theorem 1. Hence, it cannot be determined whether a choice of parameters
with Φη = Xd + 1 leads to a secure construction.
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Supplementary Material

A Additional Background

A.1 Polynomials and multilinear extensions

We adapt this some of this subsection from prior work [57]. We recall several
definitions and results regarding multivariate polynomials.

Definition 20 (Multilinear polynomial). A multivariate polynomial is called
a multilinear polynomial if the degree of the polynomial in each variable is at
most one.

Definition 21 (Multilinear polynomial extension). Given a vector v ∈ F n a
multilinear polynomial extension of v is an (log n)-variate multilinear polynomial,
denoted ṽ, such that ṽ(x) = vx for all x ∈ {0, 1}logn. Specifically, ṽ can be
computed as follows.

ṽ(x) =
∑

y∈{0,1}ℓ
vy · eq(x, y)

where eq(x, y) =
∏ℓ

i=1(xi · yi + (1 − xi) · (1 − yi)), outputs 1 if x = y and 0
otherwise for x, y ∈ {0, 1}logn.

For any r ∈ F ℓ, ṽ(r) can be computed in O(2ℓ) operations in F [60, 63].

Lemma 9 (Schwartz-Zippel [56]). let g : F ℓ → F be an ℓ-variate polynomial
of total degree at most d. Then, on any finite set S ⊆ F ,

Pr
x←Sℓ

[g(x) = 0] ≤ d/|S|.

Lemma 10. Let Q ∈ F [X1, . . . , Xℓ] be an arbitrary multivariate polynomial.
Define multivariate polynomial Q′(X,Z) := eq(X,Z) ·Q(X).

0 =
∑

x∈{0,1}log ℓ

Q′(x,Z) if and only if Q(X) ∈ ZSℓ

Definition 22 (Special sets [32]). Let C be a set and ℓ ∈ N. Consider two
vectors x, y ∈ Cℓ. We define the relation ≡i for i ∈ [ℓ] as follows:

x ≡i y ⇐⇒ xi ̸= yi ∧ xj = yj for all j ∈ [ℓ] \ {i}.

A special set SS(C, ℓ) is as follows:

SS(C, ℓ) =
{
(c, c1, . . . , cℓ) ∈ (Cℓ)ℓ+1 :

∀ i ∈ [ℓ],
c ≡i ci

}
,
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Theorem 6 (Coordinate-wise extraction [32, Lemma 7.1]). Let C be a
finite set, ℓ ∈ N, and C := Cℓ be a challenge space. Let A : C → {0, 1}∗ be
an arbitrary (probabilistic) expected polynomial-time algorithm (adversary), and
V : C × {0, 1}∗ → {0, 1} be an arbitrary (probabilistic) polynomial-time function
(verification). Define the success probability of adversary A as

ϵV(A) := Pr
c

$←C
[V (c, A(c)) = 1]

Then, there exists an expected polynomial-time oracle algorithm EA (extractor)
that makes at most ℓ+ 1 queries to A in expectation and with probability at least
ϵV(A)− ℓ

|C| outputs ℓ+ 1 pairs (c, w), (c1, w1), . . . (cℓ, wℓ) such that

– V (c, w) = 1,
– for all i ∈ [ℓ], V (ci, wi) = 1,
– and (c, c1, . . . , cℓ) ∈ SS(C, ℓ).

B Deferred theorems and proofs

Theorem 7. The rings Rq (Definition 5) and S (Definition 7) are isomorphic.
That is, the rotation matrix mapping rot : Rq → S is an isomorphism.

Proof. We first show that rot is a homomorphism:

rot(a) + rot(b) =
[
cf(a) + cf(b) F · cf(a) + F · cf(b) · · · Fd−1 · cf(a) + Fd−1 · cf(b)

]
=

[
cf(a+ b) F · cf(a+ b) · · · Fd−1 · cf(a+ b)

]
= rot(a+ b)

rot(a) · rot(b) = rot(a) ·
[
cf(b) F · cf(b) · · · Fd−1 · cf(b)

]
=

[
rot(a) · cf(b) rot(a) · F · cf(b) · · · rot(a) · Fd−1 · cf(b)

]
=

[
rot(a) · cf(b) rot(a) · cf(X · b) · · · rot(a) · cf

(
Xd−1 · b

) ]
=

[
cf(ab) cf(X · ab) · · · cf

(
Xd−1 · ab

) ]
=

[
cf(ab) F · cf(ab) · · · Fd−1 · cf(ab)

]
= rot(ab)

rot(1) =
[
cf(1) cf(X) · · · cf

(
Xd−1) ]

= Id

We can observe that rot is trivially a bijection because the first column contains
the polynomial coefficients; hence rot is additionally a ring isomorphism.

B.1 Proof of Theorem 2

Proof. We make a small notational modification to Ajtai’s commitment scheme
to adapt it to our matrix setting. In particular, the commitment scheme is
functionally exactly identical.
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Ajtai’s commitment scheme. Let m ∈ N denote the message length. Ajtai’s
commitment scheme com := (Setup,Commit) consists of the following algorithms:

– Setup(κ,m)→ pp: Sample a random matrix M
$← Rκ×m

q . Output pp←M .

– Commit(pp, Z ∈ F d×m) → c: Parse M ← pp. Assign z := cf-1(Z) ∈ Rm
q .

Output c← cf(Mz).

We will first show that the commitment scheme is homomorphic. We
can trivially observe that the groups F d×m and F d×κ are S-modules by left
multiplication, and Rm

q and Rκ
q are isomorphic (as groups) to F d×m and F d×κ,

respectively. That is, the coefficient map cf( · ) is a trivial group isomorphism.
Consider two arbitrary matrices A,B ∈ F d×m and rot(s) ∈ S. We must have

Commit(pp, A) + Commit(pp, B) = cf
(
Mcf-1(A)

)
+ cf

(
Mcf-1(B)

)
(1)

= cf
(
Mcf-1(A) +Mcf-1(B)

)
(2)

= cf
(
M(cf-1(A) + cf-1(B))

)
= cf

(
Mcf-1(A+B)

)
(3)

= Commit(pp, A+B) (4)

rot(s) · Commit(pp, A) = rot(s) · cf
(
Mcf-1(A)

)
(5)

= cf
(
s ·Mcf-1(A)

)
(6)

= cf
(
M · s · cf-1(A)

)
= cf

(
M · cf-1(rot(s) ·A)

)
(7)

= Commit(pp, rot(s) ·A) (8)

where (1), (4), and (5), (8) are by the definition of Ajtai’s commitment scheme,
(2) and (3) are by the homomorphism of the cf( · ) map, and (6) and (7) come
from the fact that rot(a) · cf(b) = cf(ab) for any a, b ∈ Rq.

Now, we will show that the commitment scheme is (d,m,B)-binding. For this, it
suffices to show that a (d,m,B)-binding collision produces an MSIS∞,κ,q

m,2B solution
with respect to the uniformly sampled M in the pubic parameters pp. Consider an
arbitrary (d,m,B)-binding collision Z1, Z2 ∈ F d×m. We will show cf-1(Z1 − Z2)
is an MSIS∞,κ,q

m,2B solution. By the definition of collision, we must have

Commit(pp, Z1) = Commit(pp, Z2)

Commit(pp, Z1 − Z2) = 0 ∈ F d×κ (9)

cf
(
Mcf-1(Z1 − Z2)

)
= 0 ∈ F d×κ (10)

Mcf-1(Z1 − Z2) = 0 ∈ Rκ
q (11)

where (9) is by homomorphism, (10) is by the definition of Ajtai’s commit-
ment scheme, and (11) is by applying the map cf-1( · ) to both sides. Since
∥Z1∥∞ , ∥Z2∥∞ < B (from the definition of an (d,m,B)-binding collision), we
must have ∥Z1 − Z2∥∞ < 2B, and therefore

∥∥cf-1(Z1 − Z2)
∥∥
∞ = ∥Z1 − Z2∥∞ <

2B.
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B.2 Proof of Lemma 3

Proof. It suffices to show that an arbitrary (d,m,B, C)-relaxed binding collision
(c,∆1, ∆2, Z1, Z2) can be used to construct a (d,m, 2TB)-binding collision. Specif-
ically, we will show the pair (∆1Z2, ∆2Z1) is an (d,m, 2TB)-binding collision.
We must have

∆1Z2 ̸= ∆2Z1 (12)

∆1 · c = Commit(pp, Z1) (13)

∆2 ·∆1 · c = ∆2 · Commit(pp, Z1)

∆1 · Commit(pp, Z2) = ∆2 · Commit(pp, Z1) (14)

Commit(pp, ∆1Z2) = Commit(pp, ∆2Z1) (15)

∥∆1Z2∥∞ , ∥∆2Z1∥∞ ≤ 2TB (16)

where (12) and (13) follow from the definition of relaxed binding collision, (14)
is by commutativity and substitution, and (15) follows from C ⊆ S and ho-
momorphism. Since expansion factor of C is T and ∆1, ∆2 ∈ (C − C), we
must have that that ∥∆1Z2∥∞ ≤ 2T ∥Z2∥∞ and ∥∆2Z1∥∞ ≤ 2T ∥Z1∥∞. Since
∥Z1∥∞, ∥Z2∥∞ < B by definition, we have (16) holds. From (12), (15), and (16),
we have the pair (∆1Z2, ∆2Z1) is an (d,m, 2TB)-binding collision.

B.3 Proof of Theorem 3

Proof. By [6, Proposition 2], we have that

max
u,v∈Rq

∥uv∥∞
∥u∥∞ · ∥v∥∞

≤ 2 · ϕ(η) (17)

For all u, v ∈ Rq, we must have that

∥uv∥∞
∥v∥∞

≤ 2 · ϕ(η) · ∥u∥∞ (18)

∥rot(u) · cf(v)∥∞
∥cf(v)∥∞

≤ 2 · ϕ(η) · ∥u∥∞ (19)

where (18) follows from (17), and (19) follows from rot(u) · cf(v) = cf(uv) and
the definition of norm ∥ · ∥∞ for ring elements. Therefore, we must have for all
u ∈ Rq, v ∈ F d that

∥rot(u) · v∥∞
∥v∥∞

≤ 2 · ϕ(η) · ∥u∥∞ (20)

Since CR ⊆ Rq, we must also have the prior bound holds for all u ∈ CR, v ∈ F d.
Since C := { rot(u) | u ∈ CR }, we must have for all ρ := rot(u) ∈ C, v ∈ F d,

∥ρ · v∥∞
∥v∥∞

≤ 2 · ϕ(η) · ∥u∥∞ ≤ 2 · ϕ(η) · max
ρ′∈CR

∥ρ′∥∞ (21)

which is exactly what we wanted to show.
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B.4 Proof of Lemma 4

We first provide a lemma that will be helpful for both the security and complete-
ness of the reduction.

Lemma 11. Consider an arbitrary structure s, a vector z1 ∈ Fm, matrices(
Zi ∈ F d×m)k

i=2
, a point r ∈ Klogn, and vectors ({y(i,j) ∈ Kd}j∈[t])ki=2. Define

Z1 := Decompb(z1). For all i ∈ [k], j ∈ [t], define M(i,j) := ZiM
⊺
j . Define δ :=

log d and ζ := log(dn). Define polynomials F(X[1,n]) and NCi(X[1,ζ]) for i ∈ [k]
as in ΠCCS. Define indeterminates X := X[1,ζ], A := A[1,δ], and B := B[1,ζ].
Additionally, define polynomials

Evali,j(X,A) := eq
(
X,A, r

)
· M̃i,j(X) ∀ i ∈ [k + 1, 2k], ∀ j ∈ [t]

Q(X,A,B, C) := eq(X,B)
(
F(X[δ+1, ζ]) +

∑
i∈[k] C

i · NCi(X)
)

+ Ck ∑t,k
j=1,i=2 C

i+(j−1)k−1 · Eval(i,j)(X)

Further, define quantity T := Ck
∑t,k

j=1,i=2 C
i+(j−1)k−1 · ỹ(i,j)(A). We must have

T ̸=
∑

x∈{0,1}ζ Q(x,A,B, C) if and only if

1. F(X[δ+1,ζ]) ̸∈ ZSn (identically, F(X[1,n]) ̸∈ ZSn),

2. OR there exists an i ∈ [k] for which ∥Zi∥∞ ≥ b,

3. OR there exists an i ∈ [2, k] for which ỹ(i,j)(A) ̸= M̃i,j(A, r) (identically,
y(i,j) = ZiM

⊺
j r̂)

Proof. Since the powers of indeterminate C are linearly independent, T ̸=∑
x∈{0,1}ζ Q(x,A,B, C) if and only if

0 ̸=
∑

x∈{0,1}ζ
eq(x,B) · F(x[δ+1,ζ]), (22)

OR ∃ i ∈ [k], 0 ̸=
∑

x∈{0,1}ζ
eq(x,B) · NCi(x), (23)

OR ∃ i ∈ [2, k], j ∈ [t] ỹ(i,j)(A) ̸=
∑

x∈{0,1}ζ
Evali,j(x,A) (24)

By Lemma 10, we must have (22) if and only if F(X) ̸∈ ZSdn (Item 1). Since, for
all i ∈ [k], ∥Zi∥∞ ≥ b if and only if NCi(X) ̸∈ ZSζ , by Lemma 10, we have that
(23) if and only if there exists an i ∈ [k] for which ∥Zi∥∞ ≥ b (Item 2). Observe
for all i, j that ∑

x∈{0,1}ζ
Evali,j(x,A) =

∑
x∈{0,1}ζ

eq
(
x, A, r

)
· M̃i,j(x)

=
∑

x∈{0,1}ζ
eq
(
x, A, r

)
· M̃i,j(x)
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= M̃i,j(A, r) (25)

where (25) follows from the definition of a multilinear extension. Thus, by (25),

we have (24) if and only if there exists an i ∈ [2, k] for which ỹi,j(A) ̸= M̃i,j(A, r)
(Item 3).

In conclusion, we have shown T ̸=
∑

x∈{0,1}ζ Q(x,A,B, C) if and only if (22),

(23), or (24), which holds if and only if (Item 1), (Item 2), or (Item 3). This
concludes our proof.

Now, we provide the proof of Lemma 4.

Proof.

Completeness: We will first argue that the sum-check verifier does not reject if
the original tuples belong to the input relations. Consider the contrapositive of
Lemma 11,
1. F(X[δ+1,ζ]) ∈ ZSn (identically, F(X[1,n]) ∈ ZSn),

2. for all i ∈ [k], ∥Zi∥∞ < b, and

3. for all i ∈ [2, k], ỹ(i,j)(A) ̸= M̃i,j(A, r) (identically, y(i,j) = ZiM
⊺
j r̂)

if and only if T =
∑

x∈{0,1}ζ Q(x,A,B, C). We will show each condition is

guaranteed by the input tuples belonging to MCS(b,L)×ME(b,L)k−1.
By the definition of MCS(b,L) (Definition 17), (s; (c1, x1); w1) ∈ MCS(b,L)
guarantees that F(X[δ+1,ζ]) ∈ ZSn and ∥Z1∥∞ < b. By the definition of ME(b,L)
(Definition 18), (

s; ci, Xi, r, {y(i,j)}j∈[t]; Zi

)k
i=2
∈ ME(b,L)k−1

guarantees that for all i ∈ [2, k], we have both ∥Zi∥∞ < b and y(i,j) = ZiM
⊺
j r̂.

Thus, in total, we have by the contrapositive of Lemma 11 that T =
∑

x∈{0,1}ζ Q(x,

A,B, C), where T := Ck
∑t,k

j=1,i=2 C
i+(j−1)k−1 · ỹ(i,j)(A). Thus, since the sum

holds for indeterminate variables A,B, C, they must hold for the verifier chal-
lenges α, β, γ. Therefore, the verifier will not reject during the honest execution
of the sum-check protocol, since the Q does sum to T.

Now, we will argue that the verifier’s evaluation check passes. Consider an
arbitrary j ∈ [t]. By construction (Item 3), ỹ′(1,j) = Z1M

⊺
j r̂
′, where Z1 =

Decompb(z1). By the definition of Decompb, for all ℓ ∈ [d], we have y′(1,j),ℓ =

Z
(ℓ)
1 M⊺

j r̂
′, where Z

(ℓ)
1 is the ℓ-th row of Z1. Therefore, we have

mj =
∑

ℓ∈[d] b
ℓ−1y′(1,j),ℓ =

∑
ℓ∈[d] b

ℓ−1Z
(ℓ)
1 Mj r̂

′∑
ℓ∈[d] b

ℓ−1y′(1,j),ℓ =
(∑

ℓ∈[d] b
ℓ−1Z

(ℓ)
1

)
M⊺

j r̂
′∑

ℓ∈[d] b
ℓ−1y′(1,j),ℓ = z ·M⊺

j r̂
′ = M̃jz(r

′)
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Therefore, the value F = F(r′) = f(m1, . . . ,mt), since we considered an arbitrary
j ∈ [t]. Since we required M1 = In, we must have for all i ∈ [k], ỹ′(i,1)(α

′) =

Z̃iM
⊺
1 (α

′, r′) = Z̃i(α
′, r′). Therefore, the value Ni = NC(α′, γ′) for all i ∈ [k].

By construction (Item 3), we can trivially observe that E(i,j) = Eval(i,j)(α
′, r′).

All together, the verifier’s check in Item 4 must pass by construction, since the
values F , Ni for all i ∈ [k], and E(i,j) for all i ∈ [k], j ∈ [t], exactly match their
corresponding evaluations in the definition of Q(α′, r′).

Now, we will argue the output tuple does belong to ME(b,L)k. The condition
that for all i ∈ [2, k], ci = L(Zi) and Xi = Lx(Zi) is trivially guaranteed by the
input tuples belonging to ME(b,L)k−1 (Definition 18). By the construction of
X1 ← Decompb(x1) and the first tuple belonging to MCS (Definition 17), we have
c1 = L(Z1) and X1 = Lx(Z1). Finally, by construction in step Item 3, we exactly
have that y′(i,j) = ZiM

⊺
j r̂
′ for all i ∈ [k] and j ∈ [t]. All together, we have that

all of the conditions are satisfied for the output tuples to belong to ME(b,L)k.

Public coin. The sum-check protocol itself is a public-coin protocol. The remaining
randomness from the verifier are the challenges α ∈ Klog d, β ∈ Klog(dn), γ ∈ K,
which are sampled uniformly at random.

B.5 Proof of Lemma 5

Completeness: Since (s; ci, Xi, r, {y(i,j)}j∈[t]; Zi)i∈[k+1] ∈ ME(b,L)k+1, by
Corollary 1, we must have c = L(Z) and ∀j ∈ [t], yj = ZM⊺

j r̂. Furthermore, we
must have

∥Z∥∞ =
∥∥∥∑k+1

i=1 ρi · Zi

∥∥∥
∞
≤

∑k+1
i=1 ∥ρi · Zi∥∞ ≤

∑k+1
i=1 T ·∥Zi∥∞ ≤ (k+1)T (b−1) < B,

where the second inequality is from the expansion factor of C being T , the third
inequality is from the definition of ME(b,L)k+1, which enforces a norm bound of
b, and the last inequality is by assumption (Section 4.3). Hence, we must have
that the output tuple

(
s; c, X, r, {yj}j∈[t]; Z

)
∈ ME(B,L).

Public coin. The only randomness from the verifier is the challenges ρ1, . . . , ρk+1,
which are sampled uniformly at random from C.

B.6 Proof of Theorem 4

Completeness: First, we show that the verifier’s checks pass. By the definition of
ME(B,L), we must have that ∥Z∥∞ < B. Thus, by definition of splitb, we must

have Z =
∑k

i=1b
i−1 · Zi. Therefore, we must have

Z =
∑k

i=1b
i−1 · Zi

Z =
∑k

i=1b
i−1 · Zi (26)

L(Z) = L(
∑k

i=1b
i−1 · Zi),
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c =
∑k

i=1b
i−1 · L(Zi), (27)

c =
∑k

i=1b
i−1 · ci, (28)

Since Zi ∈ F d×m, (26) follows from b ∈ F d×d being a scalar matrix. Since all
scalar matrices are contained in S, (27) follows directly from L being a S-module
homomorphism. (28) follows by construction, in step 1, ci ← L(Zi). Starting
from equation (26), we must have for all j ∈ [t],

Z =
∑k

i=1b
i−1 · Zi

Z ·M⊺
j r̂ = (

∑k
i=1b

i−1 · Zi) ·M⊺
j r̂

yj =
∑k

i=1

(
b
i−1 · ZiM

⊺
j r̂

)
(29)

yj =
∑k

i=1b
i−1 · y(i,j) (30)

(29) follows from the definition of ME(B,L) and distribution. (30) follows by
construction, in step 1, y(i,j) ← ZiM

⊺
j r̂. Thus, by (28) and (30), we have the

verifier’s checks must pass.

Next, we show that the output tuple, (s; {ci, Xi, r, {y(i,j)}j∈[t]}i∈[k]; {Zi}i∈[k]),
belongs to ME(b,L)k. By the definition of splitb, we must have that ∥Zi∥∞ < b
for all i ∈ [k]. Since Lx is the trivial S-module homomorphism which projects the
first min columns, we must have that, by construction in step 2, that Xi = Lx(Zi)
for all i ∈ [k]. Thus, in total, we must have, along with the construction of(
ci, {y(i,j)}j∈[t]

)
i∈[k] in step 1, that the output tuple belongs to ME(b,L)k.

Knowledge soundness: Consider an arbitrary expected-polynomial time adversary
(A,P∗) for ΠDEC with success probability, ϵ(A,P∗) ≥ 1/poly(λ). We construct
an extractor E for ΠDEC as follows,

E
(
pp, s, u1 :=

{
c, X, r, {yj}j∈[t]

}
, st

)
:

1. Execute encoder (pk, vk)← K(pp, s).
2. Simulate (u2, w2)← ⟨P∗(pk, u1, st), V(vk, u1)⟩.
3. If u2 = ⊥, output ⊥.
4. Parse (Z1, . . . , Zk)← w2.

5. Output w1 :=
∑k

i=1 b
i−1

Zi.

Extractor runtime: The extractor runs in expected polynomial time, since it
simulates only one execution between the adversary P∗ and verifier V, which
both run in expected polynomial time.

Extractor success probability: Assume that the simulated adversary (A,P∗)
succeeds in convincing the verifier V and the parties jointly output (s, u2, w2) ∈
ME(b,L)k; note that this occurs with probability ϵ(A,P∗). Define (ci, Xi, r,
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{y(i,j)}j∈[t])i∈[k] := u2 and Z1, . . . , Zk := w2. By the definition of ME(b,L)k, we
have for all i ∈ [k] and j ∈ [t],

ci := L(Zi), Xi := Lx(Zi), ∥Zi∥∞ < b and y(i,j) := ZiM
⊺
j r̂

(31)

Since the adversary succeeds in convincing the verifier, we must have that for all
j ∈ [t],

c =
∑k

i=1b
i−1 · ci and yj =

∑k
i=1b

i−1 · y(i,j) (32)

By construction in step 2 (i.e. definition of splitb), we also must have X =∑k
i=1b

i−1 ·Xi. By defining Z :=
∑k

i=1b
i−1

Zi, observe that X =
∑k

i=1b
i−1 ·Xi,

(31), and (32) satisfy the remaining conditions stated in Corollary 1. Since S
contains all scalar matrices, by Corollary 1, we must have c = L(Z), X = Lx(Z),
and for all j ∈ [t], yj = ZM⊺

j r̂. Since in (31), we have for all i ∈ [k], ∥Zi∥∞ < b,

we must also have ∥Z∥∞ < B = bk. These are exactly the conditions for (s; u1 :=
{c, X, r, {yj}j∈[t]}; w1 := Z) to belong to ME(B,L). Therefore, since the
adversary succeeds with probability ϵ(A,P∗), we must have by construction, that
E outputs a satisfying witness such that (s, u1, w1) ∈ ME(B,L) with probability
ϵ(A,P∗).

Public coin: The verifier uses no randomness in this protocol. Thus, the protocol
is trivially public coin.

B.7 Proof of Lemma 6

Proof. By construction, the verifier trivially outputs the same commitments
(ci)i∈[k] from the original instance u1 to u2. Hence, for repeated executions with
respect to the same original instance u1, the commitments in the output instances
u2 must be the same.

B.8 Proof of Lemma 7

Proof. Consider an arbitrary expected polynomial-time adversary (A,P∗), such
that the relaxed success probability of the adversary ϵ′(A,P∗) ≥ 1/poly(λ) and

Pr


w2, w

′
2 ̸= ⊥
∧

w2 ̸= w′2

∣∣∣∣∣∣∣∣∣∣
pp← Gen(1λ)
(s, u1, st)← A(pp)
(pk, vk)← K(pp, s)
(u2, w2)← ⟨P∗,V⟩((pk, vk), u1, st)
(u′2, w

′
2)← ⟨P∗,V⟩((pk, vk), u1, st)

 ≤ negl(λ) (33)

then we will show that there exists an expected polynomial-time extractor E
such that

Pr

(pp, s, u1, w1) ∈ R1

∣∣∣∣∣∣∣∣
pp← G(1λ, sz)
(s, u1, st)← A(pp)
(pk, vk)← K(pp, s)
w1 ← E(pp, s, u1, st)

 ≥ ϵ′(A,P∗)− negl(λ).
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Namely, the following extractor E ,

E(pp, s, u1, st)→ w1 :
1. (pk, vk)← K(pp, s).
2. Assign result := ⊥.
3. While result = ⊥:

– Simulate result← ⟨P∗
1 ,V1⟩((pk, vk), u1, st

∗)
– If result ̸= ⊥
• Parse (u2, w2)← result.
• If (pp, s, u2, w2) ̸∈ R′

2, then set result = ⊥.
4. Simulate result′ ← ⟨P∗

1 ,V1⟩((pk, vk), u1, st
∗)

5. If result′ ̸= ⊥:
– Parse (u′

2, w
′
2)← result′.

– If (pp, s, u′
2, w

′
2) ̸∈ R′

2, then set result′ = ⊥.
6. If result′ = ⊥, then output ⊥.
7. Parse (u2, w2)← result and (u′

2, w
′
2)← result′.

8. If w2 ̸= w′
2, then output ⊥.

9. Parse (Z1, . . . , Zk)← w2.

10. Assign z1 ←
∑d

i=1 b
i−1 · Z(i)

1 .
11. Output w1 := (z1, Z2, . . . , Zk).

Extractor runtime. We will show that the extractor E makes at most 1 +
1/ϵ′(A,P∗) calls to P∗ in expectation. Since ϵ′(A,P∗) ≥ 1/poly(λ), we have
that the extractor makes at most a polynomial number of calls to P∗ in ex-
pectation. Hence, since K and V1 run in poly(λ) time, we have that overall the
extractor runs in expected polynomial-time.

By construction, the while loop (Item 3) terminates when the adversary
(A,P∗) succeeds. Since the relaxed success probability is ϵ′(A,P∗), the while loop
executes 1/ϵ′(A,P∗) times in expectation. This implies the while loop performs
1/ϵ′(A,P∗) calls to P∗ in expectation. Finally, Item 4 performs one call to P∗.

Extractor success probability. First, we will show

Pr

 result′ ̸= ⊥
∧

w2 = w′2

∣∣∣∣∣∣∣∣
pp← G(1λ, sz)
(s, u1, st)← A(pp)
(pk, vk)← K(pp, s)
w1 ← E(pp, s, u1, st)

 ≥ ϵ′(A,P∗)− negl(λ). (34)

Item 5 exactly checks that the simulated adversary in Item 4 succeeds. Thus, the
event that result′ ̸= ⊥ occurs with probability ϵ′(A,P∗). Assume that the event
result′ ̸= ⊥ occurs. By (33), w2 ̸= w′2 with at most negl(λ) probability. Thus, all
together, we have (34) holds.

Assume that the event result′ ̸= ⊥∧w2 = w′2 occurs, which implies the extractor
outputs a witness w1 := (z1, Z2, . . . , Zk) ̸= ⊥ (as the extractor passes the checks
in Item 6 and Item 8). We will show that (pp, s, u1, w1) ̸∈ R1 with probabilty at
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most negl(λ). Hence,

Pr

(pp, s, u1, w1) ∈ R1

∣∣∣∣∣∣∣∣
pp← G(1λ, sz)
(s, u1, st)← A(pp)
(pk, vk)← K(pp, s)
w1 ← E(pp, s, u1, st)


≥

(
ϵ′(A,P∗)− negl(λ)

)
− negl(λ) = ϵ′(A,P∗)− negl(λ).

Since result′ ̸= ⊥, by construction (Item 5), we must have (pp, s, u′2, w
′
2) ∈ R′2

and during the simulation ⟨P∗1 ,V1⟩((pk, vk), u1, st
∗) in Item 4, the verifier V1 did

not abort. Namely, that the sum-check verifier in protocol (Item 2) did not abort
and the evaluation checks Item 4 were satisfied. By definition ofR′2 = ME(q/2,L)k,
we must know that for all i ∈ [k], Xi := Lx(Zi) and ci := L(Zi). This also
implies, by construction (Item 2 and Item 10), that X1 := Decompb(x1) and
c1 = L(Decompb(z1)).

Assume that (pp, s, u1, w1) ̸∈ R1. Recall that R1 := MCS(b,L)×ME(b,L)k−1.
Since the commitments agree with the witnesses, we must have that (pp, s, u1, w1) ̸∈
R1 implies that either (using notation from Lemma 11)

1. F(X[δ+1,ζ]) ̸∈ ZSn (identically, F(X[1,n]) ̸∈ ZSn),

2. OR there exists an i ∈ [k] for which ∥Zi∥∞ ≥ b,

3. OR there exists an i ∈ [2, k] for which ỹ(i,j)(A) ̸= M̃i,j(A, r) (identically,
y(i,j) = ZiM

⊺
j r̂)

By Lemma 11, we must have T ̸=
∑

x∈{0,1}ζ Q(x,A,B, C). By the construction

of the verifier’s checks in Item 4 and definition of (pp, s, u′2, w
′
2) ∈ R′2, we must

have that the sum-check evaluation check v = Q(α′, r′) is true. Note, that the
randomness used in the second simulation of the protocol (Item 4) is fresh and
independent of the first simulation of the protocol (Item 3). Additionally, note
that the witness from the first execution, w2, agrees with the witness from the
second execution, w′2 := (z1, Z2, . . . , Zk) . Thus, in order for the sum-check verifier
to have passed, either the adversary P∗

– violated the soundness of the sum-check protocol since T ̸=
∑

x∈{0,1}ζ Q(x,A,

B, C)
– OR the non-zero polynomial

T−
∑

x∈{0,1}ζ Q(x,A,B, C)

for T := Ck
∑t,k

j=1,i=2 C
i+(j−1)k−1 · ỹ(i,j)(A) evaluated to zero on random

point (α ∈ Klog d, β ∈ Klog(dn), γ ∈ K).

By the soundness error of the sum-check protocol, the first event occurs with prob-
ability at most ϵSC := max(u+1, 2b+1, 2) · log(dn)/|K|. By the Schwartz–Zippel
lemma, the second event occurs with probability at most ϵSZ := max(log dn, (t+
1)k − 1)/|K|. Thus, all together, (pp, s, u1, w1) ̸∈ R1 with probability at most
negl(λ) := ϵSC + ϵSZ.
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B.9 Proof of Lemma 8

Proof. Consider an arbitrary expected-polynomial time adversary (A,P∗) for
ΠRLC with success probability, ϵ(A,P∗) ≥ 1/poly(λ). First, we can construct an
adversary and verification function for Theorem 6,

A(pp,s,u1,st)(c) :
1. Execute encoder (pk, vk)← K(pp, s).
2. Simulate (u2, w2)← ⟨P∗(pk, u1, st), V(vk, u1)⟩ with verifier randomness c.
3. Output w2

V(pp,s,u1,st)(c, w2)→ {0, 1} :
1. Execute encoder (pk, vk)← K(pp, s).
2. Simulate (u2, )← ⟨P∗(pk, u1, st), V(vk, u1)⟩ with verifier randomness c.
3. Output accept if and only if (u2, w2) ∈ ME(B,L).

Let E(pp,s,u1,st) be the corresponding extractor from Theorem 6. We define
E(pp, s, u1, st) as the trivial algorithm that executes E(pp,s,u1,st) by simulating
calls to A(pp,s,u1,st). We construct an extractor for adversary (A,P∗) as follows:

E(pp, s, u1, st) :

1. result← E(pp, s, u1, st).

2. If u1 = ⊥ or result = ⊥, output ⊥.
3. Parse (c, w′

1), (c1, w
′
1), . . . (ck+1, w

′
k+1)← result.

4. Parse ρ1, . . . , ρk+1 ← c.

5. For i ∈ [k + 1],

(a) Parse ρ
(i)
1 , . . . , ρ

(i)
k+1 ← ci.

(b) Parse Z ← w′
1 and Zi ← w′

i.

(c) Assign Zi ←
(
ρi − ρ

(i)
i

)−1 · (Z − Z(i)).

6. Parse (ci, Xi, r, {y(i,j)}j∈[t])i∈[k+1] ← u1.

7. Output w1 := (Zi)i∈[k+1] if and only if
(
s; ci, Xi, r, {y(i,j)}j∈[t]; Zi

)
i∈[k+1]

∈
ME(q/2,L)k+1

Extractor runtime. By Theorem 6, we are guaranteed E(pp,s,u1,st) makes in
expectation at most k+2 calls to A(pp,s,u1,st). Hence, our overall extractor E runs
in expected polynomial time.

Extractor success probability. By Theorem 6, we are guaranteed that E(pp, s, u1, st)
outputs k + 2 pairs (c, w′1), (c1, w

′
1), . . . (ck+1, w

′
k+1) such that

– V (c, w′1) = 1,

– for all i ∈ [k + 1], V (ci, w
′
i) = 1, and

– (c, c1, . . . , ck+1) ∈ SS(C, k + 1)

with probability ϵV(pp,s,u1,st)(A(pp,s,u1,st)) − k+1
|C| . Since A(pp,s,u1,st) and V(pp,s,u1,st)

simulate the interaction between P∗ and V and checks if the output pair (u2, w
′
1)

belongs to ME(B,L), we must have ϵV(pp,s,u1,st)(A(pp,s,u1,st)) − k+1
|C| = ϵ(A,P∗) −
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(k + 1)/|C|. Assume that this event occurs. Since V (c, w′1) = 1, by construction
of ΠRLC, we haves;

c =
∑k+1

i=1 ρici,

X =
∑k+1

i=1 ρiXi,
r,{

yj =
∑k+1

i=1 ρiy(i,j)

}
j∈[t]

; Z

 ∈ ME(B,L) (35)

Furthermore, since V (ci, w
′
i) = 1, we have for all i ∈ [k + 1],s;

c(i) =
∑k+1

i=1 ρ
(i)
i ci,

X(i) =
∑k+1

i=1 ρ
(i)
i Xi,

r,{
y
(i)
j =

∑k+1
i=1 ρ

(i)
i y(i,j)

}
j∈[t]

; Z(i)

 ∈ ME(B,L) (36)

Since (c, c1, . . . , ck+1) ∈ SS(C, k + 1), we must have for all i ∈ [k + 1] that

(ρ1, . . . , ρk+1) ≡i (ρ
(i)
1 , . . . , ρ

(i)
k+1) (37)

which means the challenges differ only on index i. Thus, we have for all i ∈ [k + 1],∑k+1
i=1 ρici −

∑k+1
i=1 ρ

(i)
i ci = L(Z)− L

(
Z(i)

)
,∑k+1

i=1 ρiXi −
∑k+1

i=1 ρ
(i)
i Xi = Lx(Z)− Lx

(
Z(i)

)
(38)(

ρi − ρ
(i)
i

)
· ci = L(Z)− L

(
Z(i)

)
,(

ρi − ρ
(i)
i

)
·Xi = Lx(Z)− Lx

(
Z(i)

)
(39)

ci = L
((

ρi − ρ
(i)
i

)−1 · (Z − Z(i)
))

,

Xi = Lx

((
ρi − ρ

(i)
i

)−1 · (Z − Z(i)
))

(40)

ci = L(Zi), Xi = Lx(Zi)

where equation (38) follows from the definition of ME(B,L) and both (35) and
(36). Equation (39) follows from the equivalence (37). Equation (40) follows
from L,Lx being S-homomorphisms and C ⊆ S being a strong sampling set

(Definition 14) which because ρi ̸= ρ
(i)
i (guaranteed by (37)) means ρi − ρ

(i)
i is

invertible. Similarly, we must have for all i ∈ [k + 1] and j ∈ [t],∑k+1
i=1 ρiy(i,j) −

∑k+1
i=1 ρ

(i)
i y(i,j) = ZM⊺

j r̂ − Z(i)M⊺
j r̂ (41)(

ρi − ρ
(i)
i

)
· y(i,j) =

(
Z − Z(i)

)
M⊺

j r̂ (42)

y(i,j) =
(
ρi − ρ

(i)
i

)−1 · (Z − Z(i)
)
M⊺

j r̂ = ZiM
⊺
j r̂ (43)
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where equation (41) follows from the definition of ME(B,L) and both (35) and
(36), equations (42) follows from the equivalence (37), and (43) follows from

C ⊆ S being a strong sampling set (Definition 14) which because ρi ̸= ρ
(i)
i

(guaranteed by (37)) means ρi − ρ
(i)
i is invertible. Therefore, by (40) and (43),

we must have with probability ϵ(A,P∗) − (k + 1)/|C|, the extractor outputs
Z1, . . . , Zk+1 such that

(
s; ci, Xi, r, {y(i,j)}j∈[t]; Zi

)
i∈[k+1]

∈ ME(q/2,L)k+1,

which has the trivial norm bound of q/2.

Now, assume that A := (B,B′) such that

Pr


u1, u

′
1 ̸= ⊥
⇓

ϕ(u1) = ϕ(u′1)

∣∣∣∣∣∣∣∣∣
pp← G(1λ, sz)
(s, st∗)← B(pp)
(u1, st)← B′(st∗)
(u′1, st

′)← B′(st∗)

 = 1

We will show that

Pr


w1, w

′
1 ̸= ⊥

∧ w1 ̸= w′1

∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, sz)
(s, st∗)← B(pp)
(u1, st)← B′(st∗)
w1 ← E(pp, s, u1, st)

(u′1, st
′)← B′(st∗)

w′1 ← E(pp, s, u′1, st′)


≤ ϵbind(d,m, 2B, C)

Assume that the event w1, w
′
1 ̸= ⊥ ∧ w1 ̸= w′1 occurs. Since w1, w

′
1 ̸= ⊥, we

have that u1, u
′
1 ̸= ⊥, since the extractor would have failed otherwise. Thus, we

must have that:

1. ϕ(u1) = ϕ(u′1), which guarantees the instances share identical commitments
(ci)i∈[j].

2. Define (fi)i∈[k+1] = w1 and (f ′i)i∈[k+1] = w′1. Then, w1 ̸= w′1 implies that
there exist an i ∈ [k + 1] such that fi ̸= f ′i .

During the execution of E(pp, s, u1, st), the call to algorithm E(pp, s, u1, st) pro-

duces ρi, ρ
(i)
i , Z, Z(i) and E(pp, s′, u′1, st′), the call to algorithm E(pp, s′, u′1, st

′)

produces ρ′i, ρ
(i)′
i , Z ′, Z(i)′ such that

fi ̸= f ′i ⇐⇒
(
ρi − ρ

(i)
i

)−1 · (Z − Z(i)) ̸=
(
ρ′i − ρ

(i)′
i

)−1 · (Z ′ − Z(i)′) (44)

∥Z∥∞ ,
∥∥∥Z(i)

∥∥∥
∞

, ∥Z ′∥∞ ,
∥∥∥Z(i)′

∥∥∥
∞

< B (45)

where (44) follows from Item 2 and (45) follows from Theorem 6, which guarantees
the verification function V(pp,s,u1,st) accepts (by construction, this verification
function checks if the output tuples belong to ME(B,L), which checks the output
witnesses have norm bound B). By Item 1 and (40), we must have

ci = L
((

ρi − ρ
(i)
i

)−1 · (Z − Z(i)
))

= L
((

ρ′i − ρ
(i)′
i

)−1 · (Z ′ − Z(i)′))
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Thus, since L is a S-homomorphism, we have(
ρi − ρ

(i)
i

)
· ci = L

(
Z − Z(i)

)
∧

(
ρ′i − ρ

(i)′
i

)
· ci = L

(
Z ′ − Z(i)′) (46)

All together, by (44), (45), and (46), we have that (ci, ∆1 = ρi − ρ
(i)
i , ∆2 =

ρ′i−ρ
(i)′
i , Z1 = Z−Z(i), Z2 = Z ′−Z(i)′) is a 2B-relaxed binding collision. Thus,

the probability of the original event must be less than or equal to ϵbind(d,m, 2B, C).
Otherwise, we could construct a corresponding relaxed-binding adversary which
executes the extractor E twice to retrieve the corresponding elements for the
2B-relaxed binding collision with probability greater than ϵbind(d,m, 2B, C).

B.10 Proof of Theorem 5

Proof. Consider an arbitrary expected polynomial-time adversary (A,P∗) for the
composition Π := Π2◦Π1 with success probability ϵ(A,P∗) ≥ 1/poly(λ). Without
loss of generality, the adversary P∗ can be split into two adversaries (P∗1 ,P∗2 )
such that given pp← G(1λ), (s, u1, st1)← A(pp), and (pk, vk)← K(pp, s),

– ⟨P∗1 ,V1⟩((pk, vk), u1, st1)→ (u2, st2)
– ⟨P∗2 ,V2⟩((pk, vk), u2, st2)→ (u3, w3)

Furthermore, we assume that A outputs st1 which contains (s, pp); otherwise, we
could trivially construct an adversary A′ with an identical distribution of prior
outputs that does so. First, we construct an adversary A2 := (B2,B′2) for Π2:

B2(pp)→ (s, st∗) :
1. (s, u1, st1)← A(pp).
2. Output (s, st1).

B′
2(st

∗)→ (u2, st2) :
1. Parse st∗ to obtain (s, pp).
2. (pk, vk)← K(pp, s).
3. Simulate (u2, st2)← ⟨P∗

1 ,V1⟩((pk, vk), u1, st
∗).

4. Output (u2, st2).

A2(pp)→ (s, u2, st2) :
1. (s, st∗)← B2(pp).
2. (u2, st2)← B′

2(st
∗).

3. Output (s, u2, st2).

Observe that, by construction, the success probability ϵ(A2,P∗2 ) of adversary
(A2,P∗2 ) for Π2 is equal to the success probabilty ϵ(A,P∗) of adversary (A,P∗)
for Π. Since Π1 is ϕ-restricted, we must have

Pr


u2, u

′
2 ̸= ⊥
⇓

ϕ(u2) = ϕ(u′2)

∣∣∣∣∣∣∣∣∣
pp← G(1λ, sz)
(s, st∗)← B2(pp)
(u2, st2)← B′2(st∗)
(u′2, st

′
2)← B′2(st∗)

 = 1, (47)
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Thus, we have by (47) and the ϕ-relaxed knowledge soundness of Π2 that there
exists an expected polynomial-time extractor E2 such that

Pr

(pp, s, u2, w2) ∈ R′2

∣∣∣∣∣∣∣∣
pp← G(1λ, sz)
(s, u2, st2)← A2(pp)
(pk, vk)← K(pp, s)
w2 ← E2(pp, s, u2, st2)

 ≥ ϵ(A,P∗)− negl(λ) (48)

and

Pr


w2, w

′
2 ̸= ⊥

∧ w2 ̸= w′2

∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, sz)
(s, st∗)← B2(pp)
(u2, st)← B′2(st∗)
w2 ← E2(pp, s, u2, st)

(u′2, st
′)← B′2(st∗)

w′2 ← E2(pp, s, u′2, st′)


≤ negl(λ) (49)

Next, we will construct an adversary P∗∗1 for Π1:

P∗∗
1 (pk, u1, st1)→ w2 :
1. Parse st1 to obtain (s, pp).
2. (pk, vk)← K(pp, s).
3. Simulate (u2, st2)← ⟨P∗

1 ,V1⟩((pk, vk), u1, st1).
4. w2 ← E2(pp, s, u2, st2).
5. Output w2.

Observe that, by construction, the relaxed success probability ϵ′(A,P∗∗1 ) of
adversary (A,P∗∗1 ) for Π1 is equal to ϵ(A,P∗)− negl(λ) ≥ 1/poly(λ) which is the
success probability of the relaxed extractor E2 from equation (48). Furthermore,
by equation (49) and construction of (B2,B′2), we must have that

Pr


w2, w

′
2 ̸= ⊥
∧

w2 ̸= w′2

∣∣∣∣∣∣∣∣∣∣
pp← Gen(1λ)
(s, u1, st1)← A(pp)
(pk, vk)← K(pp, s)
(u2, w2)← ⟨P∗∗1 ,V⟩((pk, vk), u1, st1)
(u′2, w

′
2)← ⟨P∗∗1 ,V⟩((pk, vk), u1, st1)

 ≤ negl(λ) (50)

Thus, we have by (50) and the restricted knowledge soundness of Π1 that there
exists an expected polynomial-time extractor E1 such that

Pr

(pp, s, u1, w1) ∈ R1

∣∣∣∣∣∣∣∣
pp← G(1λ, sz)
(s, u1, st1)← A(pp)
(pk, vk)← K(pp, s)
w1 ← E1(pp, s, u1, st1)

 ≥ ϵ(A,P∗)− negl(λ) (51)

In conclusion, we have constructed an extractor E := E1 with respect to adversary
(A,P∗) such that

Pr

(pp, s, u1, w1) ∈ R1

∣∣∣∣∣∣∣∣
pp← G(1λ, sz)
(s, u1, st1)← A(pp)
(pk, vk)← K(pp, s)
w1 ← E(pp, s, u1, st1)

 ≥ ϵ(A,P∗)− negl(λ).
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Thus, Π := Π2 ◦Π1 is knowledge sound.

B.11 Finding choices of cyclotomic and fields

# [LS18, eprint 2017-523] pg 6

# m is the cyclotomic polynomial index

def tau(m):

return m if (m % 2) != 0 else m / 2

# [LS18, eprint 2017-523] Thm 1.1, pg 4

# m is the cyclotomic polynomial index

# p is the prime

# z is any divisor of m

# This tests for the condition for thm 1.1 to hold

def thm1_1_cond(m, p, z):

cond1 = (p % z) == 1

cond2 = Mod(p,m).multiplicative_order() == m/z

return cond1 and cond2

# [LS18, eprint 2017-523] Thm 1.1, pg 4

# p is the prime

# z is any divisor of m

# lInf bound for elements to be invertible

# given that m,p,z satisfy thm 1.1 cond

def thm1_1_inv_bound(p, z):

return (1/s1(z)*p^(1/euler_phi(z))).n()

def thm1_1_num_factors(z):

return euler_phi(z)

# Output divisors of m

def divisors(m):

zs = list()

for i in range(1,m+1):

if m % i == 0:

zs.append(i)

return zs

# [LS18, eprint 2017-523] pg 6, pg 9

# We only consider prime power cyclotomics

# m is the cyclotomic polynomial index

def s1(m):

return sqrt(tau(m))

# checks if cyclotomic index m is power of two

def is_pow2(m):

return sum(m.digits(2)) == 1

# [MR09] lattice-based cryptography
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# makes sure characteristic does not lead

# to trivial bound

def non_trivial(q, n, d, delta):

return (q/2).n() >= (2^(2 * sqrt( n*d * log(q,2) * log(delta, 2)))).n()

# [AL21] eprint Prop 2. 2021/202

# for all u,v in R, |u*v| / |v| <= gamma*|u|

# outputs T = gamma * |u|

# assumes we are only testing prime powers

def expansion_factor(m, norm):

if is_pow2(m):

return euler_phi(m) * norm

else:

return 2 * euler_phi(m) * norm

# p is prime

# max_idx is max cyclotomic index

# outputs list of (m, z)

def candidates(p, min_idx=10, max_idx=200):

# prime powers

possible_indices = [i for i in range(min_idx, max_idx) if len(factor(i)) == 1]

c = list()

for m in possible_indices:

zs = divisors(m)

for z in zs:

if thm1_1_cond(m, p, z):

c.append((Integer(m), Integer(z)))

return c

def pre_filter(q, cyclotomic_index, z, n, m, chals):

chals_norm = max({abs(c) for c in chals})

chals_max_diff = chals[-1] - chals[0]

delta = 1.0045 # root hermite factor, chosen from [ESSLL19] eprint 2018/773

phi = cyclotomic_polynomial(cyclotomic_index) # index cyclotomic polynomial

d = phi.degree() # degree of cyclotomic

# return non_trivial(q, n, d, delta) and chals_max_diff < thm1_1_inv_bound(q, z) and log(len(chals)^d,2).n() >= 120

# We remove non_trivial(...) because we use the lattice estimator for hardness

return chals_max_diff < thm1_1_inv_bound(q, z) and log(len(chals)^d,2).n() >= 120

def info(q, cyclotomic_index, z, n, m, chals):

chals_norm = max({abs(c) for c in chals})

chals_max_diff = chals[-1] - chals[0]

delta = 1.0045 # root hermite factor, chosen from [ESSLL19] eprint 2018/773

phi = cyclotomic_polynomial(cyclotomic_index) # index cyclotomic polynomial

d = phi.degree() # degree of cyclotomic

T = expansion_factor(cyclotomic_index, chals_norm)

# Bounds for MSIS to be hard

# [MR09] lattice-based cryptography pg 6

55



# [CMNW24] pg 38 eprint 2024/281

MSIS_B_l2_bound = min(q, 2^(2 * sqrt( n*d * log(q,2) * log(delta, 2))))

MSIS_B_linf_bound = MSIS_B_l2_bound / sqrt(m*d)

# We need MSIS infinity bound 8TB to be hard

B = MSIS_B_linf_bound / (8*T)

print("####")

print("Cyclotomic idx:", cyclotomic_index)

print("Cyclotomic Poly:", phi)

print("z:", z)

#print("Prime is non-trivial?", non_trivial(q, n, d, delta))

print("Csmall norm is small enough?", chals_max_diff < thm1_1_inv_bound(q, z))

print("Csmall large enough?", log(len(chals)^d,2).n() >= 120)

print("Degree of Cyclotomic:", d)

# print("log(B):", log(B, 2).n())

print("Expansion Factor T:", T)

print("Invertible Norm bound:", thm1_1_inv_bound(q, z))

print("log(|C_Small|):", log(len(chals)^d,2).n())

print("Factors of Cyclotomic:", thm1_1_num_factors(z))

print()

def possible_settings(q, n, m, chals):

for (cyclotomic_index, z) in candidates(q):

if pre_filter(q, cyclotomic_index, z, n, m, chals):

info(q, cyclotomic_index, z, n, m, chals)

else:

delta = 1.0045

d = cyclotomic_polynomial(cyclotomic_index).degree()

print("[Does not satisfy security requirements] index: {}, degree: {}, z: {}, non_trivial: {}, log(|C_Small|): {}, Invertible Norm bound: {}".format(cyclotomic_index, d, z, non_trivial(q, n, d, delta), log(len(chals)^d,2).n(), thm1_1_inv_bound(q, z)))

# Primes:

GL = 2^64 - 2^32 + 1

AGL = GL - 32

print("###############################")

print("AGL ###############################")

print("###############################")

# MSIS settings

n = 13 # rows, kappa in latticefold

m = 2^26 # cols

# Small Challenge set

chals = [-1, 0, 1, 2]

possible_settings(AGL, n, m, chals)

print("###############################")

print("M61 ###############################")

print("###############################")

# MSIS settings

n = 16 # rows, kappa in latticefold

m = 2^22 # cols

# Small Challenge set
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chals = [-2, -1, 0, 1, 2]

possible_settings(2^61-1, n, m, chals)

print("###############################")

print("GL ###############################")

print("###############################")

# MSIS settings

n = 16 # rows, kappa in latticefold

m = 2^24 # cols

# Small Challenge set

chals = [-2, -1, 0, 1, 2]

possible_settings(GL, n, m, chals)

print("###############################")

B.12 Lattice Estimator Script

from estimator import *

Logging.set_level(Logging.LEVEL0)

M61 = 2^61 -1

GL = 2^64 - 2^32 +1

AGL = GL - 32

n = 13

d = 64

T = 128

k = 11

b = 2

B = b^k

m = 2^26

q = AGL

n_sis = n*d

m_sis = m*d

B_l2 = sqrt(m*d)*(8*T*B)

params = SIS.Parameters(n=n_sis, q=q, m=m_sis,length_bound=B_l2, norm=2)

_ = SIS.estimate(params)

print((k+1)*T*(b-1) < B)

n = 16

d = 54

T = 216

k = 12

b = 2

B = b^k

m = 2^22

q = M61

n_sis = n*d
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m_sis = m*d

B_l2 = sqrt(m*d)*(8*T*B)

params = SIS.Parameters(n=n_sis, q=q, m=m_sis,length_bound=B_l2, norm=2)

_ = SIS.estimate(params)

print((k+1)*T*(b-1) < B)

n = 16

d = 54

T = 216

k = 12

b = 2

B = b^k

m = 2^24

q = GL

n_sis = n*d

m_sis = m*d

B_l2 = sqrt(m*d)*(8*T*B)

params = SIS.Parameters(n=n_sis, q=q, m=m_sis,length_bound=B_l2, norm=2)

_ = SIS.estimate(params)

print((k+1)*T*(b-1) < B)
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