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Abstract. Multi-signatures allow a set of parties to produce a single signature for a com-
mon message by combining their individual signatures. The result can be verified using the
aggregated public key that represents the group of signers. Very recent work by Lehmann and
Özbay (PKC ’24) studied the use of multi-signatures for ad-hoc privacy-preserving group sign-
ing, formalizing the notion of multi-signatures with probabilistic yet verifiable key aggregation.
Moreover, they proposed new BLS-type multi-signatures, allowing users holding a long-term key
pair to engage with different groups, without the aggregated key leaking anything about the
corresponding group. This enables key-reuse across different groups in a privacy-preserving way.
Unfortunately, their technique cannot be applied to Schnorr-type multi-signatures, preventing
state-of-the-art multi-signatures to benefit from those privacy features.
In this work, we revisit the privacy framework from Lehmann and Özbay. Our first contribution
is a generic lift that adds privacy to any multi-signature with deterministic key aggregation. As
our second contribution, we study two concrete multi-signatures, and give dedicated transforms
that take advantage of the underlying structures for improved efficiency. The first one is a slight
modification of the popular MuSig2 scheme, achieving the strongest privacy property for free
compared to the original scheme. The second is a variant of the lattice-based multi-signature
scheme DualMS, making our construction the first post-quantum secure multi-signature for ad-
hoc privacy-preserving group signing. The light overhead incurred by the modifications in our
DualMS variant still allow us to benefit from the competitiveness of the original scheme.
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1 Introduction

Multi-signatures allow the aggregation of several signatures by different parties on the same messages
into one compact signature. If the scheme further supports key aggregation [MPSW19], the signers’
individual public keys can also be combined into a single short key. Verification is then carried out
using the aggregated key and aggregated signature, and thus completely independent of the number
of signers. This makes multi-signatures particularly useful in applications with large groups of signers,
like cryptocurrencies.

Since their introduction by Maxwell et al. [MPSW19], multi-signatures with key aggregation have
attracted significant attention not only in academia [BDN18, DGNW20, NRS21, TZ23, PW23, Che23]
but also in real-world applications. Most notably, driven by their relevance in large-scale blockchain
deployments, Nick et al. [NRS21] introduced MuSig2, a two-round multi-signature scheme that has
been standardized for use in the Bitcoin network [Cho24] very recently.

A reason for multi-signatures’ popularity is their convenient key management. All parties generate
their individual key pairs fully autonomously, allowing them to form signing groups in an ad-hoc
manner. Each group is represented through their aggregated public key, and signatures for that
group key then require the consensus input from all parties. Signers can also decide to re-use the same
signing key across different groups, making it attractive for hardware-protected user keys, e.g., for
cryptocurrency wallets [CCK+23] or two-factor authentication [MPs19]. This use of individual and
long-term keys is a main advantage over threshold signatures, where each group requires a dedicated
key generation.

Lack of Privacy in Multi-Signatures. Apart from their benefits in terms of efficiency and convenience,
multi-signatures were also advertised to provide privacy protection, claiming that aggregated keys do
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not leak information about the amount or identities of individual signers [MPSW19]. However, in a
recent work, Lehmann and Özbay [LÖ24] show that these privacy claims are not correct. This is due
to the deterministic nature of multi-signatures, or rather their aggregated keys, which enables the
tracking of users that re-use their key across groups. More precisely, if users’ individual public keys
are assumed to be publicly known, all existing multi-signatures trivially reveal sensitive information
such as the number of signers and individual signer keys behind an aggregated public key.

Interestingly, this is in stark contrast to the expectations users have in multi-signatures: a recent
study [MDM+23] on users’ preferences for cryptocurrency wallets reveals that users who prefer multi-
device wallets, expect the wallet to hide the internal structure and individual signers. Thus, while
multi-signatures provide convenient key management, this convenience comes at the cost of privacy.

For existing multi-signature schemes, privacy was shown to be possible only in a rather weak
model – called the all-but-one-public-key (AbOPK) model – that assumes that there is at least one
unknown public key in each signer set. Despite being less realistic, the AbOPK model shows which
level of privacy can be provided by multi-signatures with deterministic key aggregation [LÖ24].

Privacy-Preserving Multi-Signatures. To remedy the lack of privacy, Lehmann and Özbay [LÖ24]
introduce multi-signatures with verifiable key aggregation. These schemes use randomized aggregated
keys that can be verified through an aggregation proof π. By using a randomized key aggregation
instead of deterministic one, the desired privacy properties can be formulated in a realistic known-
public-key (KPK) model, where the adversary is assumed to know all signers’ public keys but not π.
The necessary security and privacy properties are captured by presenting a comprehensive framework
that includes group unforgeability (signatures cannot be reused in other context than the group for
which they were issued) as well as privacy notions, ranging from hiding the number of signers to even
hiding the fact that a signature was produced via key aggregation.

They also present two schemes based on BLS multi-signatures: randBLS-1 and randBLS-2. The first
one satisfies the strongest privacy property in the KPK model (FullPriv) but falls short to achieve group
unforgeability. The second one provides both properties, but at the expense of slightly modifying the
signature structure, making it different from standard BLS signatures.

Filling the Gap. While BLS multi-signatures are attractive due to their simplicity and non-interactive
nature, their privacy-preserving variants trade-off group unforgeability for privacy, offering strong
guarantees for one but not both. Additionally, they require pairing-friendly curves, which lack stan-
dardization, and therefore, hinder practical adoption. Thus, pairing-free signatures would have great
advantages for immediate real-world deployment. Further, as soon as efficient quantum computers
exist, BLS-based constructions will no longer provide security – making them a non-ideal candidate
for long-term strategies either. Thus, while it was shown that privacy-preserving multi-signatures are
possible, there is still no scheme that is deployable in the targeted applications today or provides
post-quantum guarantees. Our aim is to fill this gap.

1.1 Our Contributions

Our work advances the study of privacy-preserving multi-signatures on multiple fronts. To begin
with, in Section 4, we present a generic construction that lifts privacy from the AbOPK model to the
KPK model for any scheme that meets certain (minimal) conditions. Subsequently, sections 5 and 6
are dedicated to introducing privacy-preserving variants of state-of-the-art constructions. The first
is based on MuSig2 [NRS21], which is secure in the discrete logarithm setting. The second one is
based on DualMS [Che23] whose security is reduced to a hard problem in the lattice setting, widely
considered to offer post-quantum security [NIS24].

Along the way, we revisit the multi-signature framework from [LÖ24], extending it to account for
multiple signing rounds and the optional use of the aggregation proof in the signing algorithm to
cover all scenarios. Additionally, we introduce a new privacy notion, wSetPriv, which is particularly
useful for lattice-based constructions. Below, we elaborate on each contribution in more detail.

Generic Techniques. In the AbOPK model, group privacy hinges on the presence of a party whose
public key is unknown to the adversary. While hiding a public key seems an unrealistic assumption
for real-world use cases, it provides insights into designing privacy-preserving schemes in the more
realistic KPK model. Indeed, consider the following idea: every group generates an additional (virtual)
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dummy user so that its signature share can be computed by any party that knows it’s dummy secret
key. If this scheme is private in the AbOPK model, then privacy in the KPK model seems linked to
the former. With this in mind, we present a generic transformation that lifts privacy of a scheme in
the AbOPK model to the KPK model while preserving unforgeability. Our generic construction only
requires the use of a pseudorandom function (PRF) but presents one drawback: it requires signers
to use the key aggregation proof in signing protocol. Fortunately, for some schemes we are able to
remove those limitations as discussed in the technical overview.

Pairing-Free Constructions. MuSig2 produces standard Schnorr signatures while ensuring concurrent
security and key aggregation, all with minimal overhead compared to the original scheme. We present
PP-MuSig2, a privacy-preserving variant of MuSig2 that provides the strongest guarantees for privacy-
preserving group signing with no overhead compared to the original MuSig2. These modifications allow
to get the privacy property for free, favoring its adoption.

We also introduce PP-DualMS, the first privacy-preserving multi-signature to offer post-quantum
security. To that end, we extend DualMS [Che23], a two-round lattice-based multi-signature that
follows the Fiat-Shamir with aborts paradigm. Our choice is based on a simpler alternative to previous
lattice-based multi-signature schemes like DOTT [DOTT21] and MuSig-L [BTT22], as the security
proof for DualMS is done using straight-line simulation. Unfortunately, unlike PP-MuSig2 (which we
prove to offer full-privacy), we are only able to prove a weaker notion of set-privacy, which seems the
best possible hope for lattice-based (SIS) constructions as discussed in Section 6.2. The parameters
of PP-DualMS are similar to those of DualMS, making the overhead light to achieve weak set privacy.

1.2 Related Work

Multi-Signatures with Verifiable Key Aggregation. The privacy framework of [LÖ24] discusses group
unforgeability and three privacy properties. Group unforgeability states that it is infeasible to create a
signature for a message m and group key apk when not all signers in the group provided a signature on
m for apk. Regarding privacy, full privacy (FullPriv) ensures that the aggregated keys and signatures
of a multi-signature scheme are indistinguishable from those generated by the standard counterpart.
In other words, an aggregated public key does not leak anything about a group nor its members. In
contrast, a weaker property called set privacy (SetPriv) guarantees that aggregated public keys and
signatures of different signing groups are indistinguishable. Finally, membership privacy (MemPriv),
the most limited privacy property, focus on the indistinguishability for two signer groups that differ
by one member only.

It is worth noting that in the KPK model, all three privacy properties of Lehmann and Özbay
[LÖ24] guarantee the unlinkability of aggregated keys of a single group. In other words, multiple runs
of key aggregation for the same signer group must generate aggregated keys that are not linkable to
each other by outsiders. The definitions differ based on their privacy requirements for the aggregated
keys across distinct signer groups. Our work builds upon their privacy framework, which we revisit
in Section 3.

Signatures with Re-randomizable Keys. Fleischhacker et al. [FKM+16] introduced signatures with re-
randomizable keys that allow randomizing key pairs of a signature scheme. Randomized key pairs must
be indistinguishable from freshly generated key pairs, which gives a similar property to that achieved
by privacy-preserving multi-signatures. Subsequent works defined various forms of key malleability.
Backes et al. proposed signatures with flexible public keys, allowing keys to be re-randomized within
equivalence classes [BHKS18]. Mercurial signatures were proposed by Crites and Lysyanskaya in
[CL19], further allowing the re-randomization of both messages and public keys. However, none of
those works specifically targets multi-signatures. For a more detailed literature review on signatures
with randomizable keys, we lead the reader to [CGH+25].

Threshold Signatures with Re-randomizable Keys. Recently, there have been two works that addressed
key re-randomizability in threshold signatures. Abe et al. [ANPT25] built upon the concept of mer-
curial signatures to create a new scheme for the threshold setting. In a similar vein, Gouvea and
Komlo [GK24] extended the notion of signatures with re-randomizable keys to threshold signatures.
Both works have potential applications in deriving an unlinkable group public key from an existing
one. However, despite their benefits, these schemes still inherit a similar key management overhead as
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traditional threshold signatures: signers must store a separate secret key share for each signing group
they are in. Thus, they do not offer the ad-hoc key aggregation properties of multi-signatures.

Multi-Signatures from Key-Homomorphic Signatures. A key-homomorphic signature is a scheme that
includes an additional algorithm called Adapt. This algorithm, given a signature σ, a message m, a
public key pk, and a linear shift function ∆, produces an adapted signature σ′ for the same message
m that verifies under an adapted public key pk′. This concept was studied and formalized by Derler
and Slamanig, who proposed a definitional framework in [DS19].

At a minimum, the secret and public key elements should belong to groups (H,+) and (E, ·),
where group operations, inversions, membership testing, and uniform sampling can be done effi-
ciently. Additionally, adapted signatures must verify under the corresponding public key and should
be indistinguishable from freshly computed signatures. This property is captured in their definition
of signature adaptability (see Appendix C.1 for formal definitions).

For some key-homomorphic schemes is possible to define a Combine algorithm that takes a set of
signatures for the same message and produces a signature under the combined public key, without
requiring knowledge of the original secret keys. As noted in [DS19], this naturally leads to a black-box
construction of multi-signatures from publicly key-homomorphic signatures (see Appendix C.2), with
BLS signatures being perhaps the most straightforward example.

Unfortunately, the above approach does not easily translate to privacy-preserving multi-signatures.
As previously discussed, one of the root issues is that compatibility with standard signature verifi-
cation is essential to ensure privacy. However, any straightforward construction of multi-signatures
from a publicly key-homomorphic signature preserves adaptability, now at odds with the strongest
unforgeability requirement for group signing. This trade-off seems inherent in multi-signatures based
on publicly key-homomorphic signatures as evidenced with the constructions from [LÖ24].

1.3 Technical Overview

Lifting Privacy Generically. As mentioned before, to get privacy in the KPK model, we consider a
virtual dummy user whose public key is the unknown public key in the AbOPK model. Naturally, our
initial idea is to use such virtual user to produce a signature share that finalizes the multi-signature.
More in detail, since its secret key is clearly unknown to outsiders of the group, we can think of
it as the aggregation proof π. Consequently, the randomized aggregated key can be computed from
the deterministic aggregated key that represents the group and the dummy secret key, which acts
as the secret key-randomizer. If signers know π, they can play the role of the dummy user during
signature generation to produce consistent shares. Whilst simple and seemingly straightforward, this
idea requires careful considerations to generically apply it.

First of all, we set up the dummy key in a certain way. Instead of sampling a random key pair,
the dummy key pair (dpk, dsk) is created by explicitly fixing the random coins of the key generation
algorithm with the hash value H(seed, PK) for a fresh seed and list of public keys PK. This extra step
in the dummy key pair generation will help us to ensure the unforgeability of our generic construction.
The secret value seed is kept internal to the group, by making it part of the aggregation proof. Further,
during generation of the aggregated key, we also sample a fresh PRF key, obtaining an aggregation
proof given by (seed, k, π). The PRF key will be used to simulate the partial signatures of dsk.

The remaining challenge is to create valid signatures for the aggregated public key apk, which
contains the contributions under dpk. All signers of apk already know seed, so they can locally compute
dsk and run the signing protocol for dsk on their own. However, to ensure the correctness of the signing
protocol, all signers must compute the identical dummy signature shares. We achieve this by letting
all signers derive the dummy signature in a deterministic manner. To do so, signers use the PRF key
k to derive the random coins of the signing algorithms for dsk as further described in Section 4.

A Generic Template for Key-Homomorphic Signatures. Our generic construction does not rely on
any specific property of the underlying signature scheme. However, previous works presented how
to get multi-signatures from publicly key-homomorphic schemes in a black-box way [DS19] or from
identification schemes [BN06]. Bellare and Neven [BN06] discussed how to obtain multi-signatures
from identification schemes, provided that “some homomorphism” is allowed by the underlying scheme.
Recently, Tessaro and Zhu [TZ23] constructed multi-signatures by using linear hash functions which
are identification schemes with such homomorphic properties. We also consider key-homomorphic
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signatures from canonical identification schemes (see Appendix C.1 for related background) to derive
a generic template for privacy-preserving multi-signatures, which we apply to Schnorr-based multi-
signatures.

More in detail, let us consider the structure of two-round Schnorr-based multi-signatures as used
in this work. In the first round, known as the commitment phase, all parties generate commitments,
which are then aggregated into a single commitment. This aggregated commitment is used to compute
a common challenge. In the second round, the signing phase, each party generates a partial signature
based on the agreed-upon challenge. Once all shares are gathered, they are combined to produce
the final signature. With this in mind, let us further assume that only the party that generated the
aggregated public key for the group has access to the dummy secret key. This party might not actually
take part in the commitment phase. However, as it receives all the shares to compute the aggregated
signature, it can add its contribution at the end. We exploit this fact to produce the final signature
and the aggregated public key consistently. As a result, users can execute the signing protocol without
knowledge of the aggregated proof, overcoming the limitation of our generic lift.

The intuition behind why the above works is exactly what gives us a template. Given a valid
signature σ = (s,R) for a message m under public key pk, anyone can publicly adapt it sampling
a secret key ∆ and computing σ′ ← (s′, R) with c ← H1(R,m) and s′ ← s + c · ∆ mod p. As a
result, σ′ verifies under pk′ ← gsk · g∆ This property is known as signature adaptability, not to be
confused with the public adaptability notion previously discussed for BLS signatures. We also note
that key-prefixing for identification schemes is done when computing the challenge c, allowing us to
get group unforgeability for free. Our privacy-preserving version of MuSig2 exploits these features
treating ∆ as the dummy secret key. In Appendix E we also outline how the same template leads to
a privacy-preserving version for Guillou-Quisquater multi-signatures.

2 Preliminaries

We present the notation and cryptographic background used in this work. We recap the algebraic
one-more discrete logarithm assumption in Appendix A.

Notation. We consider cyclic groups G of primer order p as well as a group generator GGen that
outputs (G, g, p) where g is used as the base point. GGen takes λ (the security parameter) as input.
Zp denotes the ring of integers modulo p. Square brackets are used for optional parameters. For
any probabilistic algorithm Alg(in) → out, we define the deterministic variant of the algorithm as
Alg(in; ρ)→ out where ρ is the random tape that Alg is run on.

Pseudorandom Function. A pseudorandom function PRF : K × X → Y is a function such that
Pr

[
k←$ K;APRF(k,·)(λ) = 1

]
− Pr

[
ARO(·)(λ) = 1

]
= negl(λ) where RO : X → Y is a random oracle.

Lattice Assumptions. Let R = Z[x]/(f(x)) be the quotient polynomial ring defined by the polynomial
f(x). In this paper, we consider f(x) = xN + 1, where N is a power of 2. For any q, we write Rq

to denote the ring Zq[x]/(f(x)). We consider an element of R (similarly for Rq) as an element of Zn

using the usual coefficient embedding. The norm of an element in R is the norm of the representation
in Zn. For any element v in R, we write ∥v∥1, ∥v∥, ∥v∥∞ to represent the ℓ1, ℓ2, ℓ∞ norm of the
element v. When computing the norm in Rq, we consider the representations of Zq in the interval
[−(q − 1)/2, (q − 1)/2].

For any x ∈ Rm, we define the discrete Gaussian function with the parameter (v, s) ∈ Rm ×R as
ρv,s(x) = exp(−π∥x−v∥2/s2). The discrete Gaussian distribution is Dm

v,s(x) =
ρv,s(x)

ρv,s(Rm) . We omit the
subscript for the case v = 0. For any ϵ, we define the smoothing parameter ηϵ(Λ) of any lattice Λ as
the smallest positive s such that ρ1/s(Λ∗ \{0}) ≤ ϵ, Λ∗ being the dual lattice of Λ. Following [MR04],
we have ηϵ(R

m) ≤
√
Nm, where ϵ = 2−Nm. Every s used in this paper, the value will be more than

that of ηϵ(Rm). We use the following results on the discrete Gaussian distribution.

Lemma 1 (Gaussian convolution, [MP13], adapted from Theorem 3.3). Let s ≥
√
2ηϵ(R

m).
Let xi be sampled independently from Dm

si . Then
∑n

i=1 xi is statistically close to Dm
si , where s =√∑n

i=1 s
2
i .
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Lemma 2 (Gaussian tail bound, [Lyu12], Lemma 4.4). For any γ > 1,

Pr
[
∥z∥ > γ(s/

√
2π
√
mN : z←$ Dm

s

]
< γmNemN(1−γ2)/2

Lemma 3 (Rejection sampling bound, [Lyu12], Lemma 4.5). Let t such that t = ω(
√
log(mN))

and t = o(log(mN). For any v ∈ Rm, if s ≥
√
2πα∥v∥, then

Pr
[
M ·Dm

v,s ≥ Dm
s : z←$ Dm

s

]
≥ (1− ϵ)

where α is any positive integer, M = et/α+1/(2α2), and ϵ = 2e−t2/2.

Lemma 4 (Theorem 4.6, [Lyu12]). Let m,B > 0 and σ = ω(B
√
logm). Then there exist some

constant M such that for all v ∈ Zm such that ∥v∥ < B, the distribution of the following algorithm
are within statistical distance εrej = 2−ω(logm)/M :

– Algorithm A: z←$ Dm
σ,v; Output (z,v) with probability RejSamp(σ,M, z,v)

– Algorithm B: z←$ Dm
σ ; Output (z,v) with probability 1/M

where RejSamp(σ,M, z,v) = min(1,Dm
σ (z)/MDm

σ,v(z))).

Definition 1 (MSISq,k,l,β Problem). The advantage of any algorithm A against the MSISq,k,l,β
problem is defined as

AdvMSIS
q,k,l,β = Pr

[
[A|I]x = 0, 0 < ∥x∥ ≤ β : A←$ Rk×l

q ,x← A(A) ∈ Rl+k
q

]
Definition 2 (MLWEq,k,l,η Problem). The advantage of any algorithm A against the MLWEq,k,l,η

problem is defined as

AdvMLWE
q,k,l,η =|Pr[A(A, t) = 1 : A←$ Rk×l

q ; s←$ Sl+k
η ; t = [A|I]s]

− Pr[A(A, t) = 1 : A←$ Rk×l
q ; t←$ Rk

q ]|

where Sη ⊂ R is defined as Sη = {x ∈ R : ∥x∥∞ ≤ η}.

3 Multi-Signatures with Verifiable Key Aggregation

In this section, we revisit the notion of multi-signatures with verifiable key aggregation (MSvKA) from
[LÖ24] and propose two extensions. First, we extend its syntax to cover interactive signing protocols
and allow the proof of aggregation π to be an optional input to the signing phase, and adapt the
security definitions accordingly. Second, we propose a new privacy notion (weak set privacy), that lies
in between membership and set privacy, and captures the weakened version of set privacy as achieved
by our lattice-based construction from Section 6.

Definition 3 (MS with verifiable key aggregation). A multi-signature (MS) is a tuple of algo-
rithms (Pg,Kg,KAg,VfKAg,MulSign,Combine,Vf) such that:

Pg(1λ)→ pp: On input security parameter 1λ, it outputs public parameters pp. We only make pp
explicit in key generation and assume it to be an implicit input to all other algorithms.

Kg(pp)→ (sk, pk): Probabilistic key generation, outputs a key pair (sk, pk).
KAg(PK)→ (apk, π): (Possibly probabilistic) key aggregation, that on input a set of public keys PK =
{pki}, outputs an aggregated public key apk and a proof of aggregation π.

VfKAg(PK, apk, π)→ b: Checks if π is a valid proof of aggregation for PK and apk and outputs the
boolean result for it.

MulSign(ski, PK, apk,m, [π])→ psi: On input the secret key ski, message m, a set of public keys
PK = {pki}, and aggregated key apk, outputs a signature share psi. If MulSign is an interactive
protocol of ℓ > 1 rounds, we notate sub-algorithms MulSignj of the signing protocol as follows.

(st
(1)
i , ps

(1)
i )← MulSign1(ski, PK, apk,m, [π])

(st
(j)
i , ps

(j)
i )← MulSignj(st

(j−1)
i , in(j−1))

ps
(ℓ)
i ← MulSignℓ(st

(ℓ−1)
i , in(ℓ−1))
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where st
(j)
i corresponds to the internal state of the signer i at the end of round j, ps

(j)
i is the

partial signature of the signer i in round j, and in(j) is the set of partial signatures for round j
for all signers in PK. We will omit i when this is clear from the context. We assume that ℓ is
constant for each construction.

Combine(PK, {psi}pki∈PK , [m], π)→ σ: On input a set of public keys PK = {pki} and set of shares
{psi}pki∈PK outputs a combined signature σ for PK.

Vf(apk, σ,m)→ b: Verifies if σ is a valid signature on m for apk.

Security Properties. Below we define correctness, unforgeability and privacy.

Definition 4 (MS-Correctness). A MS scheme Π is correct if for all λ, m, n, for all pp ←
Pg(1λ), (ski, pki) ← Kg(pp) for i ∈ [n], and for all (apk, π) ← KAg{pki}i∈[n], psi ← MulSign(ski,
{pki}i∈[n], apk,m) for i ∈ [n],

VfKAg({pki}i∈[n], apk, π) = 1 ∧ Vf(apk,Combine({pki}i∈[n], π, {psi}i∈[n]),m) = 1

Unforgeability. The unforgeability of multi-signatures with verifiable key aggregation [LÖ24] is
defined in a similar game structure to the unforgeability of multi-signatures with deterministic key
aggregation where the game simulates an honest signer. The adversary is allowed to interact with a
signing oracle that takes a signer group PK, aggregated public key apk, proof of aggregation π, and
a message m. The oracle checks if the honest signer is a member of the signer group, and the proof of
aggregation holds. If both hold, the oracle runs signing protocol MulSign with the adversary. At the
end of the game, the adversary needs to return a non-trivial/fresh forgery, which is checked by the
predicate fresh.

Unforgeability of multi-signatures with verifiable key aggregation is defined in three levels where
each level applies a different freshness check on the adversary’s forgery. The weakest level, UNF-1, only
ensures that it is hard to forge signatures on messages that were not signed. A stronger level (UNF-2)
ensures that signatures are bound to the signer group. Finally, the strongest (UNF-3) provides guar-
antees for both the signer group and the aggregated key. We present the formal definition considering
signing rounds explicitly. In Appendix C.4 we recall the original (non-interactive) definition from
[LÖ24].

Definition 5 (MS Unforgeability). A MS scheme Π is UNF-X for X ∈ {1, 2, 3} if for all PPT
adversaries A in the experiment from Figure 1 it holds that: Pr

[
ExpMS-UNF-X

Π,A (λ) = 1
]
≤ negl(λ).

Privacy. We recap the privacy definitions from [LÖ24], which considers two models: the all-but-one-
public-key (AbOPK) model that assumes there is a fresh public key that is unknown to the outsiders
in each signing group, and the known-public-key (KPK) model that allows revealing all public keys
in the signer group to the outsiders. The definitions below cover both models by expressing some
additional restrictions for the AbOPK model.

Membership/Set Privacy. Set privacy ensures that an aggregated key does not reveal the underlying
signer group to outsiders who do not know the key aggregation proof π. This is captured by giving a
challenge aggregated key over one of two adversarially chosen signer sets to the adversary. Membership
privacy is a weaker version of set privacy that only concerns on hiding an individual signer behind an
aggregated public key. Similar to set privacy, this notion is defined by an indistinguishability game
for a challenge aggregated public key. However, to ensure that other differences of the signer sets do
not give adversaries trivial wins, the challenge sets can only differ by a single individual public key,
which means they must have equal size and identical members except one.

Both privacy notions require the indistinguishability of aggregated public keys and corresponding
signature. However, as discussed in Section 6, our (and possibly any) SIS lattice-based construction,
leaks the size of the signer set with each signature. As a result, neither set privacy nor full privacy (as
defined in the next paragraph) can be achieved by such constructions. That said, as our construction
exceeds the privacy guarantees of membership privacy, we introduce a new variant: weak set pri-
vacy (wSetPriv), which lies in between the previous two notions. wSetPriv is similar to set privacy
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ExpMS-UNF-X
Π,A

pp← Pg(1λ); (pk∗, sk∗)← Kg(pp);S1, . . . , Sℓ, Q← ∅

(σ,m, apk, π, PK)← AOMulSign1,...,ℓ
(pp, pk∗)

return Vf(apk, σ,m) ∧ VfKAg(PK, apk, π) ∧ pk∗ ∈ PK ∧ fresh(m,PK, apk, Q)

OMulSign1(sidk, PKk, apkk, πk,mk)

if sidk ∈ S1 ∨ pk∗ ̸∈ PKk ∨ VfKAg(PKk, apkk, πk) ̸= 1 : return ⊥

S1← S1 ∪ {(sidk,mk, PKk, apkk)}; (st
(k,1), ps(k,1))← MulSign1(sk

∗, PKk, apkk, πk,mk)

return ps(k,1)

OMulSignj(sidk, in
(k,j−1))//j ∈ {2, ..., ℓ}

if sidk ∈ Sj ∨ sidk ̸∈ S1, ..., Sj−1 : return ⊥

( st(k,j) , ps(k,j))←MulSignj(st
(k,j−1), in(k,j−1))

Get (sidk,mk, PKk, apkk) ∈ S1, set Q← Q ∪ {(mk, PKk, apkk)};

Sj ← Sj ∪ {sidk}; return ps(k,j)

UNF-X UNF-1 UNF-2 UNF-3
fresh(m,PK, apk, Q) = 1 if (m, ·, ·) ̸∈ Q (m,PK, ·) ̸∈ Q (m,PK, apk) ̸∈ Q

Fig. 1. Unforgeability experiment for multiple signing rounds. Code in the dashed box is only used for
j ∈ {2, ..., ℓ− 1}. Code in the gray box is only used for j = ℓ.

ExpX-Y
Π,A(λ)

b← {0, 1}, pp← Pg(1λ), Q← ∅, n← A(pp), abort if n ̸> 0

(SK,PK) := ({ski}i∈[n], {pki}i∈[n])← (Kg(pp))i∈[n]

(S0, S1)← A(SK \{sk1} , PK \{pk1} ) abort if 1 ̸∈ Sj for j ∈ {0, 1}

abort if |S0| ̸= |S1| abort if |Sj \S1−j | ≠ 1 for j ∈ {0, 1}

(apkb, πb)← KAg(PKSb)

b∗←AOChl(·)(apkb), return 1 if b = b∗

OChl(m)

Σ←{MulSign(ski,PKSb ,apkb,m)}ski∈SKSb
; return σ ← Combine(PKSb , πb, Σ)

Fig. 2. This is the game for our Set and Membership Privacy definitions (X ∈ {MemPriv,wSetPriv, SetPriv})
for models Y ∈ {AbOPK,KPK}. Additional parts for X = wSetPriv and X = MemPriv are shown in boxed and
dashed boxes, respectively. Grayed parts correspond to additions for Y = AbOPK.

but with the additional restriction that the adversary must pick sets of equal size. However, unlike
membership privacy, no further restrictions are placed on the set members. In practice, this means
that an adversary who interacts with the scheme can tell apart privacy-preserving groups of different
size but nothing else.

Definition 6 (Set/Membership Privacy). A MS scheme Π has property X ∈ {MemPriv,wSetPriv,SetPriv}
in model Y ∈ {AbOPK,KPK}, if for all PPT adversaries A in ExpX-Y

Π,A from Figure 2 : |Pr
[
ExpX

Π,A(λ) = 1
]
−

1/2| ≤ negl(λ).

Full Privacy. The strongest privacy notion that [LÖ24] defined is full privacy. This notion ensures that
an aggregated public key does not even reveal to the outsiders if it is an aggregated key or an individual
public key. Similar to the previous privacy properties, this is modeled as an indistinguishability game
between an individual public key and an aggregated public key over an adversarially chosen signer
group. One further requirement to define this property is setting an individual signing algorithm Sign.
This algorithm should be outputting valid signatures corresponding to the individual public keys so
that the game can simulate signatures for the challenge public key.
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ExpFullPriv-KPK
Π,A (λ)

b← {0, 1}, pp← Pg(1λ), Q← ∅, n← A(pp), abort if n ̸> 0

(SK,PK)← ({ski}i∈[n], {pki}i∈[n])← (Kg(pp))i∈[n]

S∗ ← A(SK \{sk1} , PK \{pk1} ) abort if 1 ̸∈ S∗

if b = 0 then

(apk∗, π∗)← KAg(PKS∗), pk∗ := apk∗

if b = 1 : (sk, pk)← Kg(pp), pk∗ := pk

b∗ ← AOChl(·)(pk∗), return 1 if b = b∗

OChl(m)

if b = 1 : return σ ← Sign(sk,m)

Σ←{MulSign(ski,PKS∗,apk∗,m)}ski∈SKS∗

return σ ← Combine(PKS∗ , π∗, Σ)

Fig. 3. Our FullPriv game capturing that aggregate signatures and keys are indistinguishable from standard
ones. Grayed parts correspond to additions for AbOPK model.

Definition 7 (Full Privacy). A MS scheme Π is fully private for a signing algorithm Sign in
the KPK model if for all PPT adversaries A in ExpFullPriv-KPK

Π,A defined in Figure 3 it holds that∣∣∣Pr[ExpFullPriv-KPK
Π,A (λ) = 1]− 1/2

∣∣∣ ≤ negl(λ).

4 Lifting Privacy from AbOPK to KPK Generically

In this section, we present a generic technique that converts any AbOPK-secure scheme, where privacy
relies on the secrecy of at least one public key, into a KPK-secure scheme. As all existing multi-
signatures, apart from [LÖ24], only achieve AbOPK privacy due to their deterministic key aggregation,
this gives a direct transformation to lift their weak privacy into the stronger KPK setting. Our
construction yields strong privacy guarantees, and also preserves the unforgeability of the underlying
scheme. The only drawback of our generic lift is that it requires signers to use the key aggregation
proof π already in the signing protocol, instead of needing it solely in the final aggregation.

We start by describing our generic construction, and then prove that it preserves UNF-1 security
and boosts privacy from the AbOPK to KPK setting.

4.1 Generic Construction ΠKPK

The main idea behind our construction is to sample a fresh dummy key pair in every generation of a
new aggregate key, and keeping the full dummy key (i.e., also public key) “secret” within the group
of signers. The underlying scheme gets then boosted to better privacy, by additionally including a
signature under the fresh dummy key. The full description of our lifted construction ΠKPK is shown
in Figure 4. We recall the intuition outlined in the technical overview below.

Verifiable Key Aggregation. The privacy model AbOPK assumes that there is an unknown public key
in the signer group, which we mimic in our construction: When ΠKPK.KAg generates an aggregated
public key for a signer group PK, it samples an additional fresh dummy key pair (dsk, dpk), and
includes the dummy public key dpk into the ΠAbOPK derivation of apk.

The dummy key pair is created by explicitly fixing the random coins of the ΠAbOPK.Kg algorithm
with the hash value Hdm(seed, PK) for a fresh seed. This extra step in the dummy key pair generation
will help us to ensure the unforgeability of ΠKPK. The secret value seed is kept internal to the group,
by making it part of the aggregation proof πKPK. Further, ΠKPK.KAg also samples a fresh PRF key k
and extends the proof of ΠAbOPK as πKPK ← (seed, k, πAbOPK). The PRF key will be used to simulate
the partial signatures of dsk. Verification of an aggregated key apk first re-computes dpk using seed,
and then runs the key verification of ΠAbOPK using πAbOPK on the extended signer set, including dpk.

Signature Generation. The remaining challenge is to create valid signatures for the aggregated public
key, which contains the contributions under the dummy public key dpk. All signers of apk already know
seed, so they can locally compute dsk and run the signing protocol for dsk on their own. However, to
ensure the correctness of the signing protocol, all signers must compute the identical dummy signature
shares. We achieve this by letting all signers derive the dummy signature in a deterministic manner.
To do so, ΠKPK signers use the PRF key k to derive the random coins of the signing algorithms for
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dsk. To ensure the freshness of these values, the signers run an extra round to sample nonces noncei
for each signer i in the signing session. Subsequently, they set the random tape of the dummy signer
ρ1, . . . , ρℓ ← Fk(nonce1∥ . . . ∥nonce|PK|).

It might be tempting to simply hardcode the dummy signer’s random coins into the construction.
However, this would not allow for a generic boost, as we need to internally “simulate” a proper AbOPK
setting, where all signers – including the dummy one – run a normal signing protocol.

4.2 Unforgeability of ΠKPK

We show that ΠKPK satisfies the same unforgeability guarantees as ΠAbOPK. In particular if ΠAbOPK

is UNF-X secure, ΠKPK is also UNF-X secure.
Let us first sketch the UNF-1 security of ΠKPK. Intuitively, as dsk is always treated as a normal

secret key input towards the ΠAbOPK algorithms, any ΠKPK forgery for the signer set PK and πKPK ←
(seed, k, πAbOPK) can be converted into a ΠAbOPK forgery for PK ∪ {dpk} and πAbOPK. Further, in
the unforgeability game, the adversary is in full control over all secret keys except the challenge key
anyway, and thus “leaking” the secret key dsk to the group of signers as part of πKPK does not give
the adversary an advantage in ΠKPK.

UNF-2, 3 Security of ΠKPK. The unforgeability of ΠKPK for X ∈ {2, 3} requires further argumentation.
This is achieved by the specific way we generate the dsk in ΠKPK.KAg. We first show that the naive
way of sampling the dummy key pair by running ΠAbOPK.Kg without relying on Hdm cannot satisfy
UNF-2, 3 security.

If ΠKPK.KAg sets the dummy key pair as (dsk, dpk) ← ΠAbOPK.Kg(pp), then there is no way of
differentiating dpk from the real public keys in the key aggregation and signing protocol. This can be
exploited in the stronger unforgeability games that also guarantee the immutability of the designated
signer set.

Assume that the adversary A, playing against the ΠKPK scheme, computes a key pair (sk1, pk1)←
Kg(pp), setting a dummy key pair (dsk, dpk)← Kg(pp) and a PRF key k. Subsequently, A computes
(apk, πAbOPK) ← ΠAbOPK.KAg(PK ∪ {dpk}) and sets πKPK ← (dsk, k, πAbOPK), PK ← {pk∗, pk1}. It
runs the signing protocol honestly with the ΠKPK challenger on an arbitrary message m, and for
PK, πKPK, obtaining a signature σ. Now, the adversary A can swap the meaning of pk1 and dpk and
claim a fresh forgery for the signer set PK ′ ← {pk∗, dpk} and π′

KPK ← (sk1, k, πAbOPK). This is a
non-trivial forgery against ΠKPK in the UNF-2, 3 games, which require (at least) the tuple (m,PK) to
be fresh. However, any reduction against the UNF-2, 3 security of ΠAbOPK must make a signing query
for the full signer set {pk∗, pk1, dpk}, and cannot use A’s “forgery”.

Our lifted scheme ΠKPK prevents such attacks. This is achieved by committing to the set of real
signers for a dummy key pair by setting the random coins to Hdm(seed, PK). When Hdm is modeled
as a random oracle, we can ensure that finding ΠAbOPK signer set collisions by exploiting dpk is
unlikely. Note that our construction only fixes the random coins of the ΠAbOPK.Kg algorithm, but it
does not make any assumptions on the output distribution of ΠAbOPK.Kg. This allows our lift to cover
the multi-signature schemes that have non-uniform distribution of key pairs such as lattice-based
multi-signature schemes.

Theorem 1. If ΠAbOPK is a UNF-X secure MS scheme and Hdm is a random oracle, then ΠKPK in
Figure 4 is UNF-X secure.

Proof. Assume that A is an efficient UNF-X adversary against ΠKPK. We then build an efficient
adversary B that breaks the UNF-X security of ΠAbOPK as follows. B gets the public parameters pp
and the challenge public key pk∗ from ExpMS-UNF-X

ΠAbOPK
and forwards them to A. For the simulation of

the signing queries in the ΠKPK game, B behaves as follows, depending on the signing round:

Queries to OHdm(seed, PK): B chooses t ←$ {0, 1}l and computes (dsk, dpk) ← ΠAbOPK.Kg(pp; t).
If {dpk} ∪ PK ∈ Sdm then the event SetColl occurs and B aborts. Otherwise, B sets Sdm ←
Sdm ∪ {{dpk} ∪ PK} and returns t.

1st round Π1.OMulSign1(sidk, PKk, apkk, πk,1,mk): A0 verifies that the input is well-formed, in par-
ticular that apkk is a valid aggregated key for PKk ∪ {dpk} and πAbOPK, taken from πKPK ←
(seed, k, πAbOPK) and (dskk, dpkk) ← ΠAbOPK.Kg(pp,Hdm(seed, PKk)). If all checks pass, it runs
ΠKPK.MulSign1 honestly, which simply outputs a nonce and is independent of the secret key. It
stores (PKk, apkk, πk,KPK,mk, dskk, dpkk) for the later rounds.
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ΠKPK.KAg(PK)

seed←$ {0, 1}λ, k←$ K
(·, dpk)← ΠAbOPK.Kg(pp;Hdm(seed, PK))

(apk, πAbOPK)←ΠAbOPK.KAg(PK ∪ {dpk})
return (apk, πKPK ← (seed, k, πAbOPK))

ΠKPK.VfKAg(PK, apk, πKPK)

Parse πKPK as (seed, k, πAbOPK)

(·, dpk)←ΠAbOPK.Kg(pp;Hdm(seed, PK))

PK′ ← PK ∪ {dpk}
return ΠAbOPK.VfKAg(PK′, apk, πAbOPK)

ΠKPK.MulSign1(ski, PK, apk,m, [πKPK])

noncei ←$ {0, 1}λ, return (st(1) ← (ski, PK, apk,m, πKPK), ps
(1) ← noncei)

ΠKPK.MulSign2(st
(1), in

(1)
KPK)

Parse st(1) as (ski, PK, apk,m, πKPK), in
(1)
KPK as {noncej}j∈|PK|

Parse πKPK as (seed, k, πAbOPK)

(dsk, dpk)← ΠAbOPK.Kg(pp;Hdm(seed, PK)), ρ1, ..., ρℓ ← Fk(nonce1∥ . . . ∥nonce|PK|)

(st
(1)
rl , ps

(1)
rl )← ΠAbOPK.MulSign1(ski, PK ∪ {dpk}, apk,m, πAbOPK)

(st
(1)
dm, ps

(1)
dm)← ΠAbOPK.MulSign1(dsk, PK ∪ {dpk}, apk,m, πAbOPK; ρ1)

return (st(2) ← (st
(1)
rl , st

(1)
dm, ps

(1)
dm, (ρ2, . . . , ρℓ)), ps

(2) ← ps
(1)
rl )

ΠKPK.MulSignj(st
(j−1), in

(j−1)
KPK )

Parse st(j−1) as (st
(j−2)
rl , st

(j−2)
dm , ps

(j−2)
dm , (ρj , . . . , ρℓ))

in
(j−2)
AbOPK ← in

(j−1)
KPK ∪ {ps(j−2)

dm }

(st
(j−1)
rl , ps

(j−1)
rl )← ΠAbOPK.MulSignj−1(st

(j−2)
rl , in

(j−2)
AbOPK)

(st
(j−1)
dm , ps

(j−1)
dm )← ΠAbOPK.MulSignj−1(st

(j−2)
dm , in

(j−2)
AbOPK; ρj−1)

return (st(j) ← (st
(j−1)
rl , st

(j−1)
dm , ps

(j−1)
dm , (ρj , . . . , ρℓ)), ps

(j) ← ps
(j−1)
rl )

ΠKPK.MulSignℓ+1(st
(ℓ), in

(ℓ)
KPK)

Parse st(ℓ) as (st
(ℓ−1)
rl , st

(ℓ−1)
dm , ps

(ℓ−1)
dm , ρℓ)

in
(ℓ−1)
AbOPK ← in

(ℓ)
KPK ∪ {ps

(ℓ−1)
dm }

ps
(ℓ)
rl ← ΠAbOPK.MulSignℓ(st

(ℓ−1)
rl , in

(ℓ−1)
AbOPK)

ps
(ℓ)
dm ← ΠAbOPK.MulSignℓ(st

(ℓ−1)
dm , in

(ℓ−1)
AbOPK; ρℓ)

return ps(ℓ+1) ← (ps
(ℓ)
rl , ps

(ℓ)
dm)

ΠKPK.Combine(PK, {ps(ℓ+1)
i }pki∈PK , [m], πKPK)

Parse πKPK as (seed, ·, πAbOPK), ps
(ℓ+1)
i as (ps

(ℓ)
rl,i, ps

(ℓ)
dm) for pki ∈ PK

// Wlog, ps(ℓ)dm values are equal, we don’t separately index them.

(dsk, dpk)← ΠAbOPK.Kg(pp;Hdm(seed, PK)), PK′ ← PK ∪ {dpk}

return ΠAbOPK.Combine(PK′, {ps(ℓ)dm} ∪ {ps
(ℓ)
rl,i}pki∈PK , [m], πAbOPK)

Fig. 4. Lift from FullPriv-AbOPK to FullPriv-KPK. F is a PRF with the key space K and the output space
which is big enough to assign for ρ1, ..., ρℓ. The hash function Hdm is defined over Hdm : {0, 1}∗ → {0, 1}l
where l is the length of the random tape that ΠAbOPK.Kg needs. Π1.Pg, Π1.Kg, and Π1.Vf are identical to Π0.
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2nd round Π1.OMulSign2(sidk, in
(k,1)
KPK ): If sidk ∈ S2 or sidk ̸∈ S1, then B returns ⊥ to A1. Otherwise,

B parses πk,KPK as (·, kk, πk,AbOPK) and in
(k,1)
KPK as {noncej}j∈PKk

. It computes ρk,1, . . . , ρk,ℓ ←
Fkk(nonce1∥ . . . ∥nonce|PK|) and sets PK ′

k ← PKk ∪ {dpkk}.
B then queries its own round-1 signing oracle and obtains the partial signature psk,1rl ← ΠAbOPK.
OMulSign1(sidk, PK ′

k, apkk, πk,0,mk). Observe that if πk,KPK is a valid ΠKPK proof for apkk and
PKk, then πk,AbOPK is a valid ΠAbOPK proof for apkk and PK ′

k. B computes psk,1dm using dskk and
ρk,1 and stores it to be used in the future oracle calls. Finally, B returns psk,1rl to A.

jth round Π1.OMulSignj(sidk, in
(k,j−1)
KPK ), 2 < j: B first checks if sidk ∈ Sj or sidk ̸∈ S1, ..., Sj−1, and

returns ⊥ to A if they hold. Otherwise, B looks up psk,j−2
dm that it computed in the oracle call of

the previous round and sets in
(k,j−2)
AbOPK ← in

(k,j−1)
KPK ∪ {psj−2,1

dm }. Then B makes a query to its own
signing oracle, obtaining psk,j−1

rl ← ΠAbOPK.OMulSignj−1(sidk, in
(k,j−2)
0 ). B also computes psk,j−1

dm

using ρk,j−1. If j < ℓ + 1, then B returns psk,j−1
rl to A. If j = ℓ + 1, then B returns (psk,ℓrl , ps

k,ℓ
dm)

to A.

When A outputs its ΠKPK forgery (σ,m, apk, πKPK, PKKPK), B parses the key aggregation proof πKPK

as (seed, k, πAbOPK) and computes the ΠAbOPK forgery as (σ,m, apk, πAbOPK, PKAbOPK) for (·, dpk)←
ΠAbOPK.Kg(pp,Hdm(seed, PKKPK)) and PKAbOPK ← PKKPK ∪ {dpk}. B’s simulation of A’s view is
perfect as long as B does not abort. Further, we argue that B aborts only with a negligible probability.
The event SetColl can only occur when a freshly computed dpk already exists in one of the previously
bookkept sets in Sdm. More formally, for a freshly computed dpk, there must be a PK ′′ ∈ Sdm

such that dpk ∈ PK ′′. As t is sampled uniformly in OHdm , dpk that OHdm computes is a fresh run
of ΠAbOPK.Kg. Thus, we will rely on the probability that ΠAbOPK.Kg creates colluding public keys
to bound the probability that SetColl occurs. Let µ be the maximum probability that a certain
pk is output by ΠAbOPK.Kg, in essence µ = maxpk(Pr

[
(·, pk′)← ΠAbOPK.Kg(pp) : pk = pk′

]
). µ is

a negligible probability as ΠAbOPK is an unforgeable multi-signature scheme. Let further qH be the
number of OHdm queries that A makes and nmax be the size of the largest PK that A queries OHdm with.
Then, for each PK ′′ ∈ Sdm, freshly computed dpk can be a member of PK ′′ only with probability
(nmax+1)·µ. As there are at most qH values in Sdm, we conclude that Pr[SetColl] ≤ q2H ·(nmax+1)·µ.

Now we argue that if A wins UNF-X against ΠKPK without B aborting, then B wins ExpMS-UNF-X
ΠAbOPK

.
We evaluate the winning condition for each X ∈ {1, 2, 3}. Let QKPK and QAbOPK be the bookkeeping
sets of the UNF-X game for ΠKPK and ΠAbOPK, respectively.

UNF-1: As B makes queries for the exact same messages as A makes, if (m, ·, ·) ̸∈ QKPK, then
(m, ·, ·) ̸∈ QAbOPK.

UNF-2: Assume that (m,PKKPK, ·) ̸∈ QKPK, but (m,PKAbOPK, ·) ∈ QAbOPK. This means that there
is a dpk′ ∈ PKAbOPK which is created in a OHdm query such that PKAbOPK \{dpk′} ≠ PKKPK. This
implies that the event SetColl occurred with PKAbOPK ∈ Sdm for some OHdm query.

UNF-3 Assume that (m,PKKPK, apk) ̸∈ QKPK, but (m,PKAbOPK, apk) ∈ QAbOPK. As in the case of
UNF-2, this case only occurs if the event SetColl occurs.

Thus, Pr
[
ExpMS-UNF-X

ΠKPK,A (λ) = 1
]
≤ Pr

[
ExpMS-UNF-X

ΠAbOPK,B (λ) = 1
]
+ q2H ·(nmax + 1) · µ.

4.3 Privacy Lift of ΠKPK

We now show that our generic construction delivers its promise, by proving that ΠKPK is X-KPK-secure
based on the X-AbOPK security of ΠAbOPK. In a nutshell, we leverage the fact that π of the challenge
key(s) is unknown to the adversary, and thus, it neither knows the underlying dummy (secret) key,
nor the PRF key k. This allows us to replace Fk with a truly random function, and simulate the added
signatures for dpk through the unknown public key of the X-AbOPK game.

Theorem 2. If ΠAbOPK is X-AbOPK secure and F is a secure PRF, then ΠKPK is X-KPK secure.

Proof. We write down the full proof for X = FullPriv. For the other properties, the proof can be
adapted easily by following the same game-hops for πb instead of π∗ as we do for X = FullPriv.

We present a small sequence of indistinguishable games and give a reduction to the FullPriv-AbOPK
property of ΠAbOPK for the final game. Intuitively, the first two games make the changes to answer
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the FullPriv-KPK challenge signing queries with the FullPriv-AbOPK’s challenge signing oracle in our
final reduction. Subsequently, the third game makes the necessary change to simulate the dummy
public key of FullPriv-KPK with the unknown public key of the FullPriv-AbOPK game in our reduc-
tion. For clarity, the FullPriv-KPK adversary against ΠKPK is called AKPK. Game0 is identical to the
FullPriv-KPK game played for ΠKPK. Furthermore, let Wi be the event that AKPK wins Gamei, so
Pr

[
ExpFullPriv-KPK

ΠKPK,AKPK
(λ) = 1

]
= Pr[W0]. Throughout out the proof, let the challenge key aggregation

proof of FullPriv-KPK game be π∗
KPK ← (seed∗, k∗, π∗

AbOPK).

Game1: We replace Fk∗ with a truly random function f(·). This change is indistinguishable by the
pseudorandomness of F , i.e., Pr[W1] ≤ Pr[W0] + µPRF(λ) where µPRF(λ) is the advantage of the
pseudorandomness adversary against F .

Game2: This game is identical to Game1, but has an additional abort condition. Let nonce1,i, . . . , nonceqChl,i

be the nonces that the challenge oracle computes as the signer i’s first round ΠKPK partial signatures
where qChl is the number of challenge oracle queries that AKPK makes. Game2 aborts if there exists
a collision among these nonce values for a signer i ∈ S∗. Otherwise, it runs Game1 identically. Game2
aborts with probability ≤ q2Chl/2

λ for each signer, i.e., Pr[W2] ≤ Pr[W1] + n · q2Chl/2
λ.

Game3: This game samples seed∗ at the beginning of the game, and it aborts if AKPK makes any Hdm

query with seed∗. As seed∗ is sampled uniformly, for qH being the number of Hdm queries made by
AKPK, Pr[W3] ≤ Pr[W2] + qH/2λ.

Now we build a FullPriv-AbOPK adversary AAbOPK against ΠAbOPK using the Game3-winning ΠKPK

adversary AKPK. AAbOPK receives pp from the AbOPK challenger ExpFullPriv-AbOPK
ΠAbOPK

(λ), forwards it
to AKPK, and receives the number of signers n from AKPK. AAbOPK sets the number of signers for
FullPriv-AbOPK game as n+1. AAbOPK receives n pairs of secret and public keys, and forwards them
to AKPK. What remains to be shown is how AAbOPK responds to the challenge queries from AKPK.
This is done by first incrementing the signer indexes in AKPK query, and then forwarding the adjusted
query to ExpFullPriv-AbOPK

ΠAbOPK
. This simulates the signers of the KPK game using the known public keys

the AbOPK game. For the challenge sets, additional to incrementing the signer indexes, AAbOPK also
adds the index 1 to the challenge signer sets to build valid responses for the AbOPK game. Finally,
AAbOPK gets the guess of AKPK, bKPK and forwards that to ExpFullPriv-AbOPK

ΠAbOPK
(λ).

It is straightforward to see that AAbOPK wins when AKPK wins. We also argue that AAbOPK’s
simulation of AKPK’s view for Game3 is perfect. For all queries except the challenge public key and
challenge signatures, the forwarded values from ExpFullPriv-AbOPK

ΠAbOPK
provide the same behavior as Game3.

For the challenge public key, the behavior of the unknown public key from the FullPriv-AbOPK game
simulates the behavior of dpk∗. For the challenge oracle queries, while Game3 runs a truly random
f(·) to set the random coins of the dummy signer, ExpFullPriv-AbOPK

ΠAbOPK
uses random coins directly while

running its unknown public key’s signing protocols. These two behaviors are distinguishable when
f(·) is evaluated with the same input as f(·) would output the same value twice. However, Game3 –
following from Game2 – ensures that f(·) is not run on the same input twice with its abort condition.
Thus, we conclude that

Pr
[
ExpFullPriv-KPK

ΠKPK,AKPK
(λ) = 1

]
≤Pr

[
ExpFullPriv-AbOPK

ΠAbOPK,AAbOPK
(λ) = 1

]
+ µPRF(λ) +

n·q2Chl+qH
2λ

5 PP-MuSig2: A Privacy-Preserving Version of MuSig2

MuSig2 is a two-round multi-signature scheme that produces standard Schnorr signatures while en-
suring concurrent security and key aggregation [NRS21] and has just been standardized for use in
the Bitcoin network [Cho24]. Unlike the first two-round multi-signature with key aggregation scheme
from [MPSW18] (which has been proven to be insecure [NKDM03, DEF+19]), MuSig2 uses multiple
nonces to compute a signature share and a linear combination of them to output the final signature.
This modification is crucial to prove the scheme secure. Our goal is to present a variant that retains
all of its advantages while enabling its use for privacy-preserving group signing. Towards that end,
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for simplicity, we consider the most efficient variant that uses two nonces (ν = 2) and is secure in the
random oracle (ROM) and algebraic group model (AGM). Our modifications also apply to the other
variants defined in [NRS21]. We start by describing our privacy-preserving protocol PP-MuSig2, and
then we prove that it satisfies the strongest unforgeability and privacy notions for multi-signatures,
UNF-3 and FullPriv-KPK.

5.1 PP-MuSig2 Construction

The first step is to translate the syntax of original (deterministic) MuSig2 into that of a verifiable
key-aggregated one. We do this implicitly by applying the MSdKA to MSvKA transformation from
[LÖ24]. Since we are only adjusting the syntax, unforgeability is preserved trivially. Moreover, the
use of key-prefixing in MuSig2 immediately ensures that we have the strongest level of UNF-3 security
in the MSvKA framework. We present both MuSig2 and our privacy-preserving scheme PP-MuSig2 in
Figure 5. The corollary below follows from the unforgeability proof of the original MuSig2 by Nick
et al. [NRS21] and the transformation of [LÖ24]. We refer the reader to the original papers for the
corresponding proofs and discussions on the underlying assumptions/models.

Corollary 1. The MS scheme MuSig2 in Figure 5 is UNF-3-secure under the algebraic one-more
discrete-logarithm assumption in the ROM and AGM.

The main task is to add privacy. We roughly follow the idea from our generic lift, and introduce a
dummy key pair (dsk, dpk) that is used as “randomizer” in the aggregate keys and signatures. However,
we perform several MuSig2-specific optimizations compared to the approach in Section 4. As a result of
our fine-tuning, unlike the generic lift presented in Section 4, the resulting scheme PP-MuSig2 enjoys
two-round signing protocol without the burden of an additional round. Furthermore, the signing
protocol does not require signers to store the key aggregation proofs, which is only necessary to
combine the partial signatures.

Verifiable Key Aggregation. The key aggregation algorithm of PP-MuSig2 extends the original MuSig2
aggregated key with a dummy secret key dsk ← Hdm(π, PK), as our generic lift. As the MuSig2
scheme already uniformly samples its secret keys, PP-MuSig2 does not have to set the random coins
for MuSig2.Kg, and instead derives dsk directly using the random oracle Hdm. Note that dsk does not
impact the hash exponents of the real public keys, so the signers can compute their partial signatures
without needing dsk or π. Finally, the aggregated keys can be verified by re-computing dsk using the
key aggregation proof π and performing the canonical check over apk.

Signature Generation. In contrast to the generic lift from Sec. 4, PP-MuSig2 does not require signers to
simulate the signing protocol for the dummy secret key dsk. In fact, the signing protocol of PP-MuSig2
is identical to MuSig2 except for the final signature combination. The signature combination performs
the identical steps to MuSig2, and adds operations to re-compute apk via the contribution of dsk, and
adapt the final signature to include the contribution of dsk with the additional term dsk · c while
computing s.

All in all, deployments of PP-MuSig2 do not require any changes to the signing protocol of MuSig2,
and all algorithms that need the signer’s secret key are exactly the same – enabling a smooth path to
upgrade any MuSig2 deployment into its privacy-preserving variant. This holds with one minor caveat
though: we assume that MuSig2 gets apk as input, which is not made explicit in the deterministic
variant, where the aggregated key can be re-computed from the individual public keys from scratch.
However, we believe that giving apk as a direct input is a more sensible choice anyway, and still does
not require any changes into the operations that depend on the secret key.

5.2 Unforgeability of PP-MuSig2

In the following, we present a proof overview for the unforgeability of PP-MuSig2, which preserves
the UNF-3 security of the underlying MuSig2 construction. Recall, that the latter can be trivially
conjectured from [NRS21]. We refer the reader to Appendix B for the full proof.

Theorem 3. If MuSig2 is UNF-3 secure, then PP-MuSig2 is UNF-3 secure for Hsig, Hagg, Hb, and
Hdm as random oracles.
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Pg(1λ)

return (G, g, p)← GGen(1λ)

Kg(pp)

sk←$ Zp; pk← gsk

return (sk, pk)

Vf(apk, σ,m)

Parse σ as (R, s)

return R · apkHsig(R,apk,m) = gs

KAg(PK)

π ←$ {0, 1}λ; dsk← Hdm(π, PK)

π ←⊥

apk← gdsk·
∏

pk∈PK

pkHagg(pk,PK)

return (apk, π)

MulSign1(ski, PK, apk,m)

ri,1, ri,2 ←$ Zp

Ri,1 ← gri,1 ;Ri,2 ← gri,2

st(1) ← (ski, ri,1, ri,2, PK, apk,m)

ps(1) ← (Ri,1, Ri,2)

return (st(1), ps(1))

VfKAg(PK, apk, π)

dsk← Hdm(π, PK)

return (apk = gdsk·
∏

pk∈PK

pkHagg(pk,PK))

MulSign2(st
(1), in(1))

Parse st(1) as (ski, ri,1, ri,2, PK, apk,m)

Parse in(1) as {(Rj,1, Rj,2)}pkj∈PK

R1 ←
∏

pki∈PK

Ri,1;R2 ←
∏

pki∈PK

Ri,2

b← Hb(R1, R2, apk,m);R← R1 ·Rb
2

c← Hsig(R, apk,m)

si ← c · Hagg(pki, PK) · ski + ri,1 + ri,2 · b

return ps(ℓ) ← (si, Ri,1, Ri,2)

Combine(PK, {ps(ℓ)i }pki∈PK , [m], π)

Parse ps
(ℓ)
i as (si, Ri,1, Ri,2)

dsk← Hdm(π, PK); apk← gdsk·
∏

pki∈PK

pk
Hagg(pki,PK)
i

R1 ←
∏

pki∈PK

Ri,1; R2 ←
∏

pki∈PK

Ri,2; R← R1 ·RHb(R1,R2,apk,m)
2

c← Hsig(R, apk,m); s← dsk · c+
∑

pki∈PK

si; return (R, s)

Fig. 5. Description of MuSig2 and our multi-signature scheme PP-MuSig2 for hash functions
Hsig,Hagg,Hb,Hdm : {0, 1}∗ → Zp. Codes in gray boxes only occur for PP-MuSig2. The code in black box only
occurs for MuSig2.

Proof Overview. Given an efficient UNF-3 adversary A for PP-MuSig2, we build an efficient UNF-3
adversary B for the original MuSig2 scheme. Our proof strategy is as follows. B simulates the challenge
public key pk∗ as it is to A and also echoes Hagg queries between the MuSig2 challenger and A. By
doing so, B ensures that the deterministic part of the PP-MuSig2 keys are identical to the MuSig2
keys. Eventually, A returns a non-trivial forgery of the form, R∗ · (apk∗)c∗ = gs

∗
for the randomized

aggregated key apk∗ ← apk′ · gdsk∗ and apk′ being the deterministic part of the aggregated key. Then,
B can compute a forgery for the underlying apk′ as (R∗, s∗ − dsk∗ · c∗).

While the above blueprint will be enough to derive the final forgery, we need to overcome a few
challenges in the simulation of A’s view. Note that A’s queries to the random oracles (OHsig

PP-MuSig2

and OHb
PP-MuSig2), as well as its signing queries depend on the randomized aggregated keys. Thus, we

cannot simulate these queries by simply forwarding them to the MuSig2 challenger. As we must cancel
the dummy key dsk from the final forgery, we must also cancel the dummy key contribution of the
aggregated keys from these queries. Performing such cancellation in the OHsig

PP-MuSig2 and OHb
PP-MuSig2

oracles is not immediately possible as we do not know the opening apk′ and dsk values for the input
apk. However, by performing careful bookkeeping of the queries to OHdm

PP-MuSig2, we can ensure that we
know the opening of an input apk if it belongs to a signer set with pk∗.

The final obstacle for simulating these queries is how dummy keys are cancelled out in the
random oracles OHsig

PP-MuSig2 and OHb
PP-MuSig2. If we cancel dummy keys naively, e.g., by forwarding a

OHsig
PP-MuSig2(R, apk ← apk′ · gdsk,m) query to MuSig2’s challenger as OHsig

MuSig2(R, apk′,m), then we end
up in a distinguishable simulation as queries with two distinct aggregated keys for the same signer
set would become the same query for the MuSig2 challenger’s oracles. Thus, we must find a way to
simulate such queries by still ensuring that B can build a final forgery. This is done by manipulat-
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ing the message values while forwarding them to MuSig2’s challenger. In particular let tobin(apk)

be the unique binary representation of apk. For OHsig
PP-MuSig2, O

Hb
PP-MuSig2, and signing queries of A, we

make B forward the queries with the message m to the MuSig2 challenger by setting the message to
tobin(apk)∥m. This prefixing serves as a domain separation for the queries with distinct aggregated
keys for the same signer set so that B is able to simulate A’s view indistinguishably. In the end,
adversary B builds a MuSig2 forgery on the message tobin(apk)∥m by using A’s PP-MuSig2 forgery
on the m for the (deterministic) aggregated key apk′.

5.3 Privacy Analysis of PP-MuSig2

We show that PP-MuSig2 satisfies FullPriv-KPK, guaranteeing that PP-MuSig2 produces signatures
and aggregated keys that are indistinguishable from standard Schnorr signatures and keys. Thus, we
first recall stand-alone Schnorr signatures and then prove their indistinguishability.

Schnorr Signature. Key generation outputs sk ←$ Zp and pk ← gsk. Standard signing SchnorrSign
works as follows: For r ←$ Zp, R← gr, and c← H1(R, pk,m), output σ ← (R, s) where s = r+ c · sk
mod p. Verification is done by checking gs

?
= R · pkc.

Intuitively, including gdsk in apk for a freshly chosen dsk (or rather fresh π) serves as a random
mask in the aggregated key, and produces random looking group elements as apk – just as in standard
Schnorr signatures. Similarly, the values R and s that are derived in Combine include hash values
that are computed over inputs that contain the re-derived dsk (via π). For each apk, dsk is a fresh,
high-entropy value unknown to the outsiders and masks both the R and s values – while still yielding
values that can be verified with the standard SchnorrSign verification algorithm and apk.

Theorem 4. PP-MuSig2 is FullPriv-KPK if Hdm and Hb are random oracles and for Sign = SchnorrSign.

Our proof presents a sequences of indistinguishable games to show that PP-MuSig2 is FullPriv-
KPK-secure. Let Wi be the event that A wins Gamei and Game0 is identical to ExpFullPriv-KPK

PP-MuSig2,A(λ). In a
nutshell, games from Game1 to Game3 aim to change the behavior of FullPriv-KPK game when the chal-
lenge bit b = 0 such that apk∗ = gask

∗
and OChl(m) queries are answered as σ ← SchnorrSign(ask∗,m)

for some ask∗. Games Game4 and Game5 aim to show that this ask∗ value is indistinguishable from
an honestly sampled secret key. This concludes our proof as Game5 behaves identically when b = 0
and b = 1.

Proof. Game1: This game is identical to the original FullPriv-KPK game except how we compute the
challenge aggregated key apk∗. We first compute an aggregated secret key ask∗ ← dsk∗ +

∑
i∈S∗(ski ·

Hagg(pki, PKS∗)) where dsk∗ ← Hdm(π∗, PKS∗). This is just an internal change and does not impact
A’s view, so Pr[W1] = Pr[W0].

Game2: This game introduces an abort condition to OChl. Let R1, R2 be the aggregated random com-
mitments while OChl is running the Combine algorithm. If there is a previous Hb query with R1, R2,
then Game2 aborts. Let qHb

and qChl be the number of Hb and OChl queries that A makes. In an honest
run of the signing protocol, both R1 and R2 are uniformly random, so Pr[W2] ≤ Pr[W1]+qChl ·qHb

/p.

Game3: This game changes the behavior of OChl to use SchnorrSign instead of multi-signature signing
protocol even when the challenge bit b = 0. In particular OChl(m) runs σ ← SchnorrSign(ask∗,m)
when the challenge bit b = 0. A Schnorr signature σ can be parsed as (s,R). First, we argue that
random commitment R ← gr is sampled uniformly random in both cases. PP-MuSig2 sets r ←∑

i∈[n](ri,1 + ri,2 · b′) for b′ ← Hb(Ri,1, Ri,2, apk
∗,m) and random ri,1, ri,2 values. By Game2, there is

no Hb query made by A for R1 and R2, so b′ is uniformly random to A. It easily follows that sampling
r randomly or computing it by using the random ri,1, ri,2 values are identical. Now we show that the
s value is consistent with this r value,

s = dsk∗· c+
∑

pki∈PKS∗

si = dsk∗· c+
∑

pki∈PKS∗

(ri,1 + ri,2 · b′ + ski · c · Hagg(pki, PKS∗))

= dsk∗ · c+
∑

pki∈PKS∗

(ri,1 + ri,2 · b′) + c ·
∑

pki∈PKS∗

(ski · Hagg(pki, PKS∗))

= (r + c · ask∗)
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where R := gr and c := Hsig(R, apk∗,m). We conclude that Pr[W3] = Pr[W2].

Game4: In this game, we sample the challenge key aggregation proof π∗ at the beginning of the game
and abort if A makes a Hdm query with π∗. The game samples π∗ uniformly. Furthermore, the only π∗

related output of the game is Hdm(π∗, PKS∗) which is sampled independently by the random oracle.
Thus, for qHdm

being the number of Hdm queries made by A, Pr[W4] ≤ Pr[W3] + qHdm
/2λ.

Game5: Finally, in this game, we sample (ask∗, apk∗) as a fresh key pair, so (ask∗, apk∗)← Kg(pp). By
Game4, the A does not make any Hdm query for π∗, so dsk∗ ← Hdm(π∗, PKS∗) is uniformly random
to A. It follows that the change in Game5 does not impact A’s view and Pr[W5] = Pr[W4].

In Game5, the challenge public key pk∗ is generated as a fresh individual key and OChl queries
are always answered with SchnorrSign, so Game5 reveals no information about the challenge bit b and
Pr[W5] = 1/2. As a result, we conclude that

∣∣∣Pr[ExpFullPriv-KPK
PP-MuSig2,A(λ) = 1

]
− 1/2

∣∣∣ ≤ qChl·qHb

p +
qHdm

2λ

6 PP-DualMS: A Privacy-Preserving Version of DualMS

We introduce a variant of DualMS [Che23], which we present in Figure 6 together with the mod-
ifications to the original scheme. Compared to previous lattice-based multi-signatures schemes like
DOTT [DOTT21] and MuSig-L [BTT22], DualMS provides both a simpler security proof and better
parameters.

The deterministic key aggregation technique used in DualMS prevents it from meeting any of the
necessary privacy requirements for privacy-preserving group signing. We address this issue by replac-
ing the deterministic key aggregation in DualMS with one that is both probabilistic and verifiable.
Unfortunately, adding a dummy key doesn’t seem to suffice in the lattice case. Simply adding a con-
tribution of the dummy key at the combine step skews the distribution with the dummy key and
allows for statistical attacks to recover it. An additional rejection sampling step could be performed
at the aggregation step in order to prevent this. It would imply that the multi-signature might fail at
the aggregation step, which doesn’t fit the syntax of multi-signatures.

To avoid this, we can execute MulSign with π as an additional input and add the dummy secret
key π = dsk along with the challenge c in the response step. Consequently, this requires that every
member of the group knows π. Then the signer needs larger standard-deviation parameter to ensure
the rejection sampling step succeeds, which is a key component of lattice-based constructions.

The verification of the aggregated key in the VfKAg algorithm is simple with the knowledge π. In
order to generate a share of any message, each signer needs the knowledge of π, as MulSign requires
the corresponding hash share generated in the key aggregation algorithm KAg.

DualMS uses three hash functions Hagg,Hsig : {0, 1}∗ → C, Hcom : {0, 1}∗ → Rk×l′

q . The scheme
is secure based on the hardness of the MLWE and MSIS assumptions in the ROM. We highlight the
differences between our new scheme PP-DualMS and the original DualMS in Figure 6. The MS-UNF
unforgeability notion verified by DualMS is recalled in the Appendix (Definition 14). We defer the
presentation of constants and parameters used in the scheme to Appendix D.

Repetitions and Correctness. By Lemma 3, each signer in the second round of MulSign passes the
rejection sampling step with probability 1/M . As a result, every signer passes the rejection sampling
step together with probability 1/Mn, where Mn = Mn. To see the correctness part, let us recall that
the commitment of the i-th signer in the MulSign algorithm for the message m is

wi = Āyi + B̄ri = Ā(zi − aicsi − cãsdsk) + B̄ri

= Az′i + z′′i − aicti − cãtdsk +Br′i + r′′i

Then, for the multi-signature, we have

w̃=

n∑
i=1

wi = (A

n∑
i=1

z′i) + (

n∑
i=1

z′′i +

n∑
i=1

r′′i) + (

n∑
i=1

Br′i)− c(

n∑
i=1

aiti +

n∑
i=1

ãtdsk)

= Az̃+ ẽ+Br̃− ct̃
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Pg(1λ)

A←$ Rk×l
q ; Ā← [A | I];

return Ā

Kg(pp)

sk = s←$ Sl+k
η ; pk = t← Ās

return (sk, pk)

KAg(PK)

Parse PK as (t1, . . . , tn)

(dsk, dpk)← Kg(pp)

ai ← Hagg(PK, ti, dsk )

ã← Hagg(PK, dsk)

t̃← n · ã · dpk +

n∑
i=1

aiti;

π ← dsk

return (t̃, π )

VfKAg(PK, apk, π)

Parse PK as (t1, . . . , tn);

dpk← Āπ

ai ← Hagg(PK, ti, π )

ã← Hagg(PK, π)

return apk = nã · dpk +

n∑
i=1

aiti

Combine(PK, {ps(ℓ)i }pki∈PK , [m], π)

Parse ps
(ℓ)
i as (ci, z1, r1)

if ci ̸= c1 return ⊥
Parse zi as [z′i, z

′′
i ]

Parse ri as [r′i, r
′′
i ]

z̃←
n∑

i=1

z′i ∈ Rl; r̃←
n∑

i=1

r′i ∈ Rl′

ẽ←
n∑

i=1

(z′′i + r′′i ) ∈ Rk

return (c1, z̃, r̃, ẽ)

MulSign1(ski, PK, apk, π,m)

a1 ← Hagg(PK, t1, π)

B← Hcom(apk,m) ∈ Rk×l′
q

B̄← [B | I] ∈ Rk×(l′+k)
q

y1 ←$ Dl+k
s ; r1 ←$ Dl′+k

s′

w1 ← Āy1 + B̄r1 ∈ Rk
q

st(1) ← (y1, r1,w1); ps
(1) ← w1

return (st(1), ps(1))

MulSign2(st
(1), in(1), π)

Parse st(1) as (y1, r1,w1)

Parse in(1) as {wj}j∈PK

Parse π as sdsk;

w̃←
n∑

i=1

wi

c← Hsig(apk,m, w̃)

z1 ← y1 + a1cs1 + cãsdsk

s1 ← (c, z1, r1) with probability:

min(1,
Dl+k

s .(z1)

M ·Dl+k

a1cs1+ cãsdsk ,s
(z1)

)

return ps(ℓ) ← s1

Vf(apk, σ,m)

Parse σ as (c, z̃, r̃, ẽ)

B← Hcom(apk,m) ∈ Rk×l′
q

w̃← Az̃+Br̃+ ẽ− ct̃

return c = Hsig(apk,m, w̃)

∧ ∥z̃∥ ≤ Bn, ∥r̃∥ ≤ B′
n, ∥ẽ∥ ≤ B′′

n

Fig. 6. Description of DualMS and our multi-signature scheme PP-DualMS for hash functions Hsig,Hagg,Hcom.
Codes in gray boxes only occur for PP-DualMS.

Hence, the verifier correctly recovers the aggregated commitment w̃, and so the condition c =
Hsig(apk,m, w̃) holds true. It remains to show that, with overwhelming probability, ∥z̃∥ ≤ Bn, ∥r̃∥ ≤
B′

n, ∥ẽ∥ ≤ B′′
n. First note that, by Lemma 3, each zi is statistically close to the discrete Gaus-

sian distribution Dl+k
s . Then by the independence of discrete Gaussian distributions, each z′i follows

the distribution Dl
s. As a result, by Lemma 1, z̃ =

∑n
i=1 z

′
i follows the distribution Dl

sz̃ , where
sz̃ =

√∑n
i=1 s

2 = s
√
n. Hence, by Lemma 2, we have ∥z̃∥ ≤ Bn =

√
n
√
Nl sγ√

2π
, except with very

low probability. Similarly, r̃, ẽ is statistically close to the distribution Dl′

sr̃ , D
k
sẽ , respectively, where

sr̃ = s′
√
n, sẽ =

√
n(s2 + s′2). This gives the norm bound B′

n, B
′′
n for r̃, ẽ, respectively.
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6.1 Unforgeability of PP-DualMS

Theorem 5. If DualMS is UF-CMA, then PP-DualMS is UNF-3 with Hagg,Hsig and Hcom are modeled
as random oracles.

Proof. We build an adversary B for the UF-CMA game using an adversary A for the UNF-3 game.
Adversary B receives a public key pk∗ = As∗ from its challenger and forwards it to A. Notice

that B has the ability to detect all the aggregated keys created by A and their associated secret.
Indeed without loss of generality, each time A wants to generate one, it needs to query oracle Hagg
with inputs (L, π) where L is a list of public keys and π is the corresponding secret. In particular, it
can also identify potential challenge aggregated keys, as if pk∗ ∈ L, the corresponding group could be
used as the one for which the final forgery will be done. Assume for now that B knows the group L∗ and
randomness π∗ corresponding to the aggregated key apk∗ for which A will output the forgery. When
adversary A computes the coefficients (ai) for the aggregated key apk∗ by querying Hagg(L

∗, pki, π
∗),

for pki ∈ L∗, adversary B queries it’s challenger oracle H̃agg(L
∗, pki) and forwards the answer. This

makes it so that DualMS.KeyAgg(L∗) = apk∗ − na∗Aπ∗, in order to make the forgery valid. For each
new group uniquely identified by (L, π) such that L ̸= L∗ or π ̸= π∗, adversary B generates a new
key pkL,π and internally sets a corresponding group SL,π = L ∪ {pkL,π}. For each query to Hagg
involving (L, π), adversary B replaces L by SL,π removes π and returns the answer by its challenger’s
random oracle H̃agg. This allows to randomize key aggregation queries transparently and make it so
that DualMS.KeyAgg(SL,π) = KeyAgg(L, π)− nãAπ.

The main issue for B is to handle signature queries that involve the same group but with a different
aggregated public key, since the original key aggregation in DualMS is deterministic. Adversary B
handles this by keeping track of the corresponding aggregated key apkL,r for every pair (L, π). For
every MulSign1 query using apkL,r ̸= apk∗, B runs its own MulSign1 oracle for the corresponding
group SL,π with the same message. When A resumes this signing session by calling MulSign2, it
gives the commitments (wi)i∈[2,k] of all parties but pk∗, where k is the size of L and pk∗ is assumed
to be user 1 in the group. Since B added user pkL,r to the session in its challenger’s view, the
challenger is expecting an additional share to resume. B simply sets wk+1 = 0 and calls MulSign2
with (wi)i∈[2,k+1]. This results in an aggregated commitment w =

∑k+1
i=1 wi =

∑k
i=1 wi, as if the

last user was not participating. To handle the queries with apk∗, B does not add a fresh key to the
group and simply translates any query with apk∗ as queries with the corresponding group L∗ to its
challenger.

However, the final share (c, z, r) returned to B by the MulSign2 oracle (if it does not abort)
will contain a vector z verifying z = y + c · as∗ distributed as a sample from Dl+k

s due to the
rejection sampling. Adversary A is expecting some vector with the same distribution but verifying
the equation z = y+ c · (as∗ + ãπ), where ã = Hagg(L, π). To solve this problem, adversary B simply
computes z′ = z+c·ãπ and performs rejection sampling on z′. Adversary B now just forwards (c, z′, r)
to A with probability RejSamp(s,M ′, z′) as the share for pk∗, with M ′ is a rejection parameter of
DualMS fixing the probability that it outputs a signature. As aggregated commitments will match,
the aggregated signature will be valid. Lemma 4 ensures that if B outputs an answer, the distribution
of z′ will be at statistical distance at most ϵrej from Dl+k

s . However, the probability to not output is
increased compared to the original DualMS. By lemma 4, the challenger outputs a share to B with
probability 1/M ′. With the additional rejection sampling, adversary B outputs a share to A with
probability 1/M ′2. By setting the rejection parameter M = M ′2 for PP-DualMS, we ensure that the
reduction follows the right distribution.

WhenA outputs a forgery (c, z, r), adversary B forwards (c, z−na∗π∗, r) with probability RejSamp(s,
M, z−na∗π∗) to its challenger. This time it performs rejection sampling towards the challenger. With
probability 1/M , adversary B outputs a signature with the right distribution. Given that we set the
reduction so that DualMS.KeyAgg(L∗) = apk∗−na∗Aπ∗, if (c, z, r) is a valid forgery for apk∗, then A
wins the game, provided that it respects the conditions of MS-UNF game. By lemma 4, the rejection
sampling step incurs a loss of a factor 1/M . To see why the forgery outputted by B respects the
conditions of UNF, observe that the forgery is invalid if and only if another signing query for the same
message m∗ and the same group L∗ was performed by B. In terms of behavior of A, this translates
into A already making a query with apk∗, L∗,m∗, which is forbidden by the UNF-3 conditions.

Until now, we assumed that B was able to identify the right apk∗ chosen by A for the forgery. To
do so, the reduction can simply make a guess on every query Hagg(L, π) where pk∗ ∈ L. It succeeds
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ExpwSetPriv-KPK
PP-DualMS,A(λ) Game0

b←$ {0, 1}; pp← Pg(1λ);Q := ∅, n← A(pp); abort if n ̸> 0

(SK,PK) := ({ski}i∈[n], {pki}i∈[n])← (Kg(pp))i∈[n]

(S0, S1)← A(SK,PK)

abort if |S0| ≠ |S1|

(apkb, πb)← KAg(PKSb); b
∗ ← AOChl(·)(apkb); return 1 if b = b∗

OChl(m)

Σ←{MulSign(ski,PKSb ,apkb,m, πb)}ski∈SKSb
; return σ ← Combine(PKSb , πb, Σ, πb)

Fig. 7. Game0 of wSetPriv-KPK proof of PP-DualMS.

with probability at least 1/qagg, where qagg is the number of queries that A makes to the random
oracle Hagg. Finally, if we denote qsig the number of signature queries made by A, this gives

ExpUNF-3
PP-DualMS,A(λ) ≤ 1√

Mqagg
ExpMS-UNF

DualMS,B(λ) + qsigϵerr

6.2 Privacy Analysis of PP-DualMS

First, note that the PP-DualMS doesn’t satisfy the notion of the full privacy (FullPriv) or the set
privacy (SetPriv). This is because, with non-negligible probability, one can correctly guess the group
size only from the aggregated signatures. To see this, let n be the group size to generate an aggregated
signature σ = (c, z̃, r̃, ẽ) on some message m. Recall, the component z̃ follows the distribution Dl

sz̃ ,
where sz̃ = s

√
n, which depends on n. Similarly, the distribution of the component r̃, ẽ also depends

on n. As a result, the aggregated signatures leak informations on n.
However, PP-DualMS does not reveal the underlying signer group to the outsiders who do not

know the key aggregation proof π. As a result, we can still aim for privacy where leaking group size is
acceptable. We now show that PP-DualMS satisfies weak set privacy (wSetPriv). Then it also satisfies
membership privacy (MemPriv). To prove wSetPriv, we follow a game-based approach. We end up in
a game where the adversary only gets a random aggregated key, which is independent of b, and the
aggregated signatures thereof. Since the game is independent of the value b, the winning probability
here can’t be better than a random guess.

Theorem 6. The PP-DualMS is wSetPriv-KPK if Hsig is modeled as a RO.

Proof. Our main proof strategy is changing wSetPriv-KPK game’s behaviour by replacing the real apkb
with a random apk∗, i.e., independent of b. We recall Game0 in Figure 7 and present Game1 in Figure 8.
To answer the multi-signature queries made by A to OChl, challenger C uses the simulator with apk∗.
It first samples the local shares (zi, ri) and then computes the matching aggregated commitment w
to make the signature valid. Note that, since the distribution of the final signature depends only on
the number of signers, thanks to the equal group size for both b = 0 and b = 1, the adversary will not
be able to distinguish both cases. As a result, challenger OChl answers the signing queries regardless
of the bit b. For the hash query of Hsig made by A, challenger C checks if the query already made. If
so, it returns the previous value of the query. Otherwise, it samples a fresh c← C and return it. We
argue that A can distinguish between Game0 and Game1 with only negligible probability.

– In Game1, challenger C replaces apkb by a random apk∗. Since dpk is hidden from A’s knowledge,
this is only replacing

dpk := tdpk = (apkb −
n∑

i=1

aiti)/nã

by a random one, which is t∗ = (apk∗ −
∑n

i=1 aiti)/nã. This modification is indistinguishable
under the MLWE assumption.4

4 Since A knows both the secret keys and the corresponding public keys (si, ti) of the users in the wSetPriv
model, this does not make the underlying assumption stronger. Indeed, one can simply sample any s from
the distribution Sl+k

η to set t = Ās.
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ExpwSetPriv-KPK
PP-DualMS,A(λ) Game1

b←$ {0, 1}; pp← Pg(1λ);Q := ∅, n← A(pp); abort if n ̸> 0

(SK,PK) := ({ski}i∈[n], {pki}i∈[n])← (Kg(pp))i∈[n]

(S0, S1)← A(SK,PK); abort if |S0| ̸= |S1|

apk∗ := t̃←$ Rk
q ; b

∗ ← AOChl(·)(apk∗); return 1 if b = b∗

OChl(m)

zi ←$ Dl+k
s ; ri ←$ Dl′+k

s′ ; c←$ C;Parse zi as [z′i, z
′′
i ] and ri as [r′i, r

′′
i ]

z̃←
n∑

i=1

z′i; r̃←
n∑

i=1

r′i; ẽ←
n∑

i=1

z′′i + r′′i

With prob. 1/Mn : set Hsig(apk
∗,m,Az̃+Br̃+ ẽ− ct̃) = c

return σ = (c, z̃, r̃, ẽ)

Fig. 8. Game1 of wSetPriv-KPK proof of PP-DualMS.

– Note that since the reduction simulates the signing queries and sets the aggregated commitment
w after the challenge, adversary A might be able to distinguish the modified game if (apk∗,m,w)
was already queried to the oracle Hsig by A for some message m for which a signing query was
issued. This collision on the aggregated commitment happens with probability at most qH/2

λ,
where qH is the total number of random oracle queries made by adversary A .

– Finally, for replying the MulSign queries, C samples each zi ←$ Dl+k
s , without the knowledge

of the secret (si, sdsk). As a consequence of the Rejection sampling (Lemma 4), the statistical
distance between the actual and the simulated distribution of each zi is at most ϵrej , where
ϵrej = 2e−t2/2/M . Hence, by the triangle inequality of the statistical distance, we have the actual
and the simulated distribution of all zi is at most nϵrej for each signature query.

Since apk∗ is independent of b, if we denote qsig the number of signature queries made by the adver-
sary A, we have |ExpwSetPriv-KPK

PP-DualMS,A(λ)− 1/2| ≤ AdvMLWE
q,k,l,η + qH/2

λ + qsignϵrej .

7 Conclusion

In this work, we advanced the state-of-the-art of privacy-preserving multi- signatures. Besides pre-
senting a generic transformation to lift privacy of deterministic schemes secure in the AbOPK model
to the KPK model, we also presented two Schnorr-based constructions. The first one seemingly inte-
grates to existing deployments such as those in the Bitcoin network while the second one paves the
way for post-quantum secure privacy-preserving multi-signatures. Notably, none of our constructions
incur in any overhead compared to their plain (non privacy-preserving) counterparts.

Future Work. We consider the study of code and isogeny-based signature schemes to build privacy-
preserving multi-signatures as an interesting line of work. In particular, considering the existing
canonical identification schemes with signature adaptation from the literature (e.g., [Ste94, SSH11],
and CSI-Fish [ESS21]).

Another open problem is to consider alternative methods for creating key aggregation proofs.
Current privacy models assume that the key aggregation is performed non-interactively by a single
party, requiring a secure channel between this party and all signers to share the key aggregation proof
confidentially. Addition of a DKG or a pre-processing phase to ensure the privacy without relying on
such a secure channel may be an interesting future work.
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Appendix

A Algebraic One-More Discrete Logarithm (AOMDL) Assumption

Definition 8 (AOMDL Problem [NRS21]). Let GGen be a group generation algorithm, and let
ExpAOMDL

GGen,A be the experiment defined below.

ExpAOMDL
Π,A

(G, p, g)← GGen(λ)

c := 0; q := 0

#»y ← ACH,DLogg (G, p, g)
#»x := (x1, . . . , xc)

return ( #»y = #»x ∧ q < c)

OCH()

c := c+ 1

xc ←$ Zp;X := gxc

return X

ODLogg(X, (α, (βi)1≤i≤c))

//X = gα
c∏

i=1

Xβi
i for Xi = gxi

q := q + 1

return α+

c∑
i=1

βixi

The Algebraic One-More Discrete Logarithm (AOMDL) problem is hard for GGen if for any PPTadversary
A, AdvAOMDL

G,A := Pr
[
ExpAOMDL

GGen,A = 1
]
= negl(λ).

B Proof of Theorem 3

Proof. Our goal is to build an efficient UNF-3 adversary B for MuSig2 making use of an efficient UNF-3
adversary A for PP-MuSig2. We proceed as follows. B initializes the empty tables Tdm, Tb, Tsig, and
Tapk. Then B gets public parameters and the challenge public key (pp, pk∗) from ExpMS-UNF-3

MuSig2 and
forwards them to A. B simulates A’s queries as follows. We only describe how B answers fresh random
oracle queries for simplicity.
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Queries to OHagg
PP-MuSig2(pki, PK): Query t← OHagg

MuSig2(pki, PK) and return t to A.

Queries to OHdm
PP-MuSig2(π, PK): Choose dsk← Zp and compute the deterministic part of the aggre-

gated key apk′ ←
∏

pki
pkai

i and the aggregated key apk ← gdsk · apk′ for ai ← Hagg(pki, PK) by
simulating OHagg

PP-MuSig2 queries. Check if the following conditions occur:

– If Tapk[apk] ̸=⊥, then the event KeyColl occurs so abort.
– If pk∗ ∈ PK, then check additionally if there exists any non-empty Tsig[·, apk, ·] or Tb[·, ·, apk, ·]

record, and abort if there exists such a record. This abort event is called BadAgg.

If the abort conditions do not occur, set Tapk[apk] ← (π, PK, apk′), set Tdm[π, PK] ← dsk and
return T [π, PK] to A.

Queries to OHsig
PP-MuSig2(R, apk,m): If Tapk[apk] =⊥ or Tapk[apk] = (·, PK, ·) for pk∗ ̸∈ PK, then

choose Tsig[R, apk,m]← Zp and return Tsig[R, apk,m]. Otherwise, lookup Tapk[apk] = (π, PK, apk′).
Make a Tsig[R, apk,m]← OHsig

MuSig2(R, apk′, tobin(apk)∥m) query and return Tsig[R, apk,m] to A.

Queries to OHb
PP-MuSig2(R1, R2, apk,m): If Tapk[apk] =⊥ or Tapk[apk] = (·, PK, ·) for pk∗ ̸∈ PK,

choose Tb[R1, R2, apk,m] ← Zp, and return Tb[R1, R2, apk,m]. Otherwise, lookup Tapk[apk] =
(π, PK, apk′). Make a Tb[R1, R2, apk,m]← OHb

MuSig2(R1, R2, apk
′, tobin(apk)∥m) query and return

Tb[R1, R2, apk,m] to A.
1st round Signing Queries (OMulSign1

PP-MuSig2(sidi, PKi, apki, πi,mi)): If sidi ∈ S1 or pk∗ ̸∈ PKi, or
VfKAg(PKi, apki, πi) ̸= 1, then return ⊥ to A. Otherwise, lookup Tapk[apki] ← (π, PK, apk′).
Make a ps(i,1) ← OMulSign1

MuSig2 (sidi, PK, apk′, ⊥, tobin(apki)∥mi) query and return ps(i,1) to A.

2nd round Signing Query (OMulSign2(sidi, in
(i,1))): If sidi ∈ S2 or sidi ̸∈ S1, then return ⊥ to A.

Otherwise, make a ps(i,2) ← OMulSign2
MuSig2 (sidi, in

(i,1)) query and return ps(i,2) to A.

We first argue that B’s simulation of A’s view is perfect unless B aborts. For the random oracle
queries, observe that B returns a uniformly random value from Zp unless it aborts for each fresh
query. For a first round signing query, B forwards the request to ExpMS-UNF-3

MuSig2 for the PK it looks up
from the table Tagg instead of apki and the message tobin(apki)∥mi instead of mi. First, if KeyColl
event does not occur and VfKAg call for the oracle holds, then PKi is identical to PK that B looks
up from Tagg. Second, if the events KeyColl and BadAgg do not occur, the random oracle queries
for Hsig and Hb programmed in a way to ensure that B returns consistent signature shares.

Next we argue that B aborts with a negligible probability. Observe that Tdm[π, PK] is sampled
randomly. Thus, for each OHdm query, the event KeyColl can occur with probability less than (qHdm

+
qS)/p for qHdm

and qS being the number of OHdm and the first round signing queries that A makes. We
conclude that Pr[KeyColl] ≤ (qHdm

+ qS)
2/p. Similarly, as the uniform Tdm[π, PK] provides uniform

aggregated keys, the event BadAgg occurs with probabiltity less than (qHdm
+ qS)/p for each OHsig

and OHb query. Thus, for qHsig and qHb
being the number of queries to these oracles, we conclude

that Pr[BaddAgg] ≤ (qHsig + qHb
)(qHdm

+ qS)/p.

Now we argue that if A wins ExpMS-UNF-3
PP-MuSig2 game against B and B does not abort, then B can win

ExpMS-UNF-3
MuSig2 . Let (σ∗ ← (R∗, s∗),m∗, apk∗, π∗, PK∗) beA’s forgery. B looks up dsk∗ ← Tdm[π∗, PK∗],

(·, ·, apk′) ← Tapk[apk
∗], and c∗ ← Tsig[R

∗, apk∗,m∗]. Finally, B returns the following forgery to
ExpMS-UNF-3

MuSig2 :

(σ ← (R∗, s∗ − dsk∗ · c∗), tobin(apk∗)∥m∗, apk′,⊥, PK∗)

It is straightforward to observe that the forgery is a valid signature, and we argue that it is a non-trivial
UNF-3 forgery. We investigate two cases to show that the forgery which is built by B is non-trivial.

Case 1: (m∗, ·, ·) /∈ QPP-MuSig2. In this case, regardless of what we prefix the messages with, we know
that (tobin(apk∗)∥m∗, ·, ·) ̸∈ QMuSig2.

Case 2: (m∗, PK, apk) ∈ QPP-MuSig2, for (PK, apk) ̸= (PK∗, apk∗). The signing query of B to ExpMS-UNF-3
MuSig2

for (m∗, PK, apk) is on the message tobin(apk)∥m∗. The message tobin(apk)∥m∗ is equal to
tobin(apk∗) ∥m∗ only when the event KeyColl occurs, so if A wins without B aborting, then
(tobin(apk∗)∥m∗, PK∗, apk) ̸∈ QMuSig2.
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Thus we conclude that,

Pr
[
ExpMS-UNF-3

PP-MuSig2,A(λ) = 1
]
≤ Pr

[
ExpMS-UNF-3

MuSig2,B (λ) = 1
]

+ Pr[KeyColl] + Pr[BadAgg]

therefore, Pr
[
ExpMS-UNF-3

PP-MuSig2,A(λ) = 1
]
≤ Pr

[
ExpMS-UNF-3

MuSig2,B (λ) = 1
]

+
(qHdm

+ qS)(qHsig
+ qHb

+ qHdm
+ qS)

p

C Additional Cryptographic Background and Definitions

C.1 Key-Homomorphic Signatures

We recall that for key-homomorphic scheme one requires that secret and public key elements belong
to groups (H,+) and (E, ·), where group operations, inversions, membership testing, and sampling
from the uniform distribution can all be performed efficiently.

Definition 9 (Secret Key to Public Key Homomorphism [DS19]). A signature scheme Σ
provides a secret key to public key homomorphism, if there exists an efficiently computable map µ :
H→ E such that for all sk, sk′ ∈ H it holds that µ(sk+ sk′) = µ(sk) ·µ(sk′), and for all (sk, pk)← Kg,
it holds that pk = µ(sk).

Definition 10 (Key-Homomorphic Signatures [DS19]). A signature scheme is called key-
homomorphic, if it provides a secret key to public key homomorphism and an additional PPT al-
gorithm Adapt, defined as:

Adapt(pk,m, σ,∆): Takes a public key pk, a message m, a signature σ, and a function ∆ as input,
and outputs a public key pk′ and a signature σ′, such that for all ∆ ∈ H and all (pk, sk) ← Kg(1κ),
all messages m ∈ M, and all σ with Verify(pk,m, σ) = 1 and (pk′, σ′)← Adapt(pk,m, σ,∆), it holds
that

Pr[Verify(pk′,m, σ′) = 1] = 1 ∧ pk′ = µ(∆) · pk.

Importantly, adapted signatures and related key pair should look like freshly computed ones. This
is captured by the adaptability notion shown below.

Definition 11 (Adaptability of Signatures [DS19]). A key-homomorphic signature scheme pro-
vides adaptability of signatures, if for every κ ∈ N and every message m ∈M, it holds that

[(sk, pk),Adapt(pk,m,Sign(sk,m), ∆)],

where (sk, pk)← Kg(1κ), ∆←$ H, and

[(sk, µ(sk)), (µ(sk) · µ(∆),Sign(sk+∆,m))],

where sk←$ H, ∆←$ H, are identically distributed.

A stronger notion known as perfect adaption (see Definition 17 from [DS19]) states that adapted
signatures should also be indistinguishable from freshly computed ones even when the initial signature
used in Adapt is known.

Some key-homomorphic schemes also support another property: signatures for the same message
m can be publicly combined to compute a signature for m under the combined original public keys.
We recall the formal definition next.

Definition 12 (Publicly Key-Homomorphic Signature [DS19]). A signature scheme is called
publicly key-homomorphic, if it provides a secret key to public key homomorphism and an additional
PPT algorithm Combine, defined as:

Combine((pki)
n
i=1,m, (σi)

n
i=1): This algorithm takes as input public keys (pki)i∈[n], a message m, and

signatures (σi)i∈[n], and outputs a public key pk′ and a signature σ′, such that for all n > 1, for
all ((ski, pki) ← Kg(1κ))ni=1, all messages m ∈ M, and all (σi ← Sign(ski,m))ni=1 and (pk′, σ′) ←
Combine((pk′i)

n
i=1,m, (σi)

n
i=1) it holds that
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Pg(1κ) : Run pp← Σ.Pg(1κ) and return pp.
Kg(pp) : Run (sk, pk)← Σ.Kg(pp) and return (sk, pk).
Sign(pp, pk,m, sk) : Let i ∈ [n]. Every participating Si with pki ∈ PK proceeds
as follows:

– Compute σi ← Σ.Sign(ski,m) and broadcast σi.
– Receive all signatures σj for j ̸= i.
– Compute (pk, σ)← Combine(PK,m, (σℓ)ℓ∈[n]) and output σ.

Verify(pp,PK,m, σ) : Return 1 iff Σ.Verify
(∏

pk∈PK pk,m, σ
)
= 1.

Fig. 9. Black-Box construction of multi-signatures [DS19].

Prover: sk Verifier: pk
(R, st)← P1(sk)

R−−→
c←−− c← ChSet

s← P2(sk, R, c, st)
s−−→ d = V(pk, R, c, s)

Sign(sk,m): Verify(pk,m, σ):
(R, st)← P1(sk) Parse σ as (R, s)
c← H(R, pk,m) c← H(R, pk,m)
s← P2(sk, R, c, st) return V(pk, R, c, s)
return σ = (R, s)

Fig. 10. Canonical identification scheme (left side) and signature scheme (right side).

pk′ =
∏n

i=1 pki and Pr[Verify(pk′,m, σ′) = 1] = 1.

In [DS19], it was shown that Schnorr signatures are adaptable according to Definition 11 when
considering the Adapt algorithm as follows:

Adapt(pk,m, σ,∆): Let ∆ ∈ Zp, pk = gsk and c← H1(R,m). Return (pk′, σ′), where
pk′ ← gsk · g∆ and σ′ ← (s′, R) with s′ ← s+ c ·∆ mod p.

C.2 Black-Box Construction of Multi-signatures From Key-Homomorphic Signatures

Derler and Slamanig showed that multi-signatures can be built in a black-box way from publicly key-
homomorphic signatures [DS19] (Theorem 3). Their formalization follows the model by Ristenpart
and Yilek [RY07] for key-registration but other models with extractable secret keys are also suitable.
We recall their black-box construction in Figure 9, referring the reader to [DS19] for further details.

C.3 Signatures from identification schemes.

A canonical identification scheme, formalized by Abdalla et al. [AABN02], is a three-move public-key
authentication protocol as depicted in Fig.C.3. In the following, we recall the formal definitions from
[KMP16].

Definition 13 (Canonical Identification Scheme). A canonical identification scheme ID is de-
fined as a tuple of algorithms ID := (IGen,P,ChSet,V).

Pg(1λ)→ pp: On input security parameter 1λ, it outputs public parameters pp, which are implicitly
passed to other algorithms.

IGen()→ (pk, sk): On input the security parameter ppar, outputs public and secret keys (pk, sk). We
assume that pk defines ChSet, the set of challenges.

P(sk)→ (R, s): The prover algorithm P = (P1,P2) is split into two algorithms. P1 takes as input the
secret key sk and returns a commitment R and a state st; P2 takes as input the secret key sk, a
commitment R, a challenge c, and a state st and returns a response s.

V(pk)→ 0/1: The verifier algorithm V takes the public key pk and the conversation transcript (R, c, s)
as input and outputs 1 iff the transcript is valid.

We require that for all (pk, sk) ∈ IGen(pp), all (R, st) ∈ P1(st), all c ∈ ChSet and all s ∈ P2(sk,R, c,St),
we have V(pk,R, c, s) = 1.

We say that Σ := (Pg,Kg,Sign,Verify) is a signature from an identification scheme ID = (IGen,P,ChSet,V)
when Σ employs a hash function H : {0, 1} → ChSet and is defined in terms of ID as shown in Fig.C.3
(Pg and Kg remain unchanged). As shown, we consider the strong Fiat-Shamir transform.
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ExpMS-UNF
Π,A

pp← Pg(1λ); (pk∗, sk∗)← Kg(pp);Q← ∅;S ← ∅; ctr ← 0

(σ,m∗, L∗)← AOMulSign

(pp, pk∗)

return Vf(KeyAgg(L∗), σ,m∗) ∧ (L∗,m∗) ̸∈ Q ∧ pk∗ ∈ L∗

OMulSign1(L,m)

if pk∗ ̸∈ L return ⊥
ctr ← ctr + 1;S ← S ∪ {ctr};Q := Q ∪ {(m,L)}
(msg1, stctr)← MulSign1(sk

∗, L,m)

return msg1

OMulSign2(id, {msg2, . . . ,msgn})

if id ̸∈ S return ⊥
ps1 ← MulSign2(stid, {msg2, . . . })
S ← S \ {id}
return ps1

Fig. 11. Unforgeability for MS schemes with deterministic key aggregation.

C.4 Multi-signature Unforgeability

Definition 14 (MS Unforgeability). A multi-signature scheme Π is MS-UNF if for all PPT ad-
versaries A in the experiment from Figure 11 it holds that:

Pr
[
ExpMS-UNF

Π,A (λ) = 1
]
≤ negl(λ).

D Parameters for DualMS

We give constants and parameters used for both DualMS and PP-DualMS in Table 1 and refer the
readers to [Che23, Table 1] for more details.

Table 1. Parameter descriptions for PP-DualMS. Differences with DualMS are marked in blue. We refer the
reader to [Che23, Table 1] for a full description of each parameter.

Parameters Description
n Number of parties in the multi-signature
C Challenge set where C = {c ∈ R : ∥c∥∞ = 1, ∥c∥1 = κ}
Sη Key set where Sη = {s ∈ Rq : ∥s∥∞ ≤ η}
T 2κ2η

√
Nm

T ′ 2κ2η′√Nm′

s Deviation parameter for y1, which is
√
2παT

s′ Deviation parameter for r1, which is
√
2παT ′

t Parameter for defining M , which is ω(
√

log(mN)) and o(log(mN)

M Expected number of repetitions per signer, which is exp(t/α+ 1/(2α2))2

γ Tail bound parameter for the discrete Gaussian distribution
Bn Accepted norm of z̃, which is

√
n
√
Nl sγ√

2π

B′
n Accepted norm of r̃, which is

√
n
√
Nl′ sγ√

2π

B′′
n Accepted norm of ẽ, which is

√
n(s2 + s′2)

√
Nk γ√

2π

E Privacy-Preserving Guillou-Quisquater Multi-signature

In [GQ88], Guillou and Quisquater presented a identification protocol based on RSA that can be
turned into a signature scheme (henceforth referred to as GQ) applying the Fiat-Shamir transform.
Unlike Schnorr-based signatures, GQ requires a trusted setup to generate the system parameter
N = pq for p and q primes. Alternatively, some distributed protocols to compute RSA moduli exist in
the literature with different trade-offs (see, for instance, [DMRT21]). In Figure E, we present privacy-
preserving variant of the GQ multi-signature from [CJKT06, BN07]. Security of the modified scheme
can be proven similarly to that of our PP-MuSig2 but based on the generalized forking lemma from
[BN06].
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Pg(1λ)

Sample two λ/2-bit primes,
p, q with p ̸= q, set N = pq and
select an odd prime e < φ(N)

return pp← (N, e)

Kg(pp)

sk←$ Z∗
N ; pk← ske mod N ; return (sk, pk)

KAg(PK)

π ←$ {0, 1}λ; dsk← Hdm(π, PK)

dpk← dske mod N ; π ←⊥

apk← dpk ·
∏

pki∈PK

pk
Hagg(pki,PK)
i

return (apk, π)

VfKAg(PK, apk, π)

dsk← Hdm(π, PK); dpk← dske mod N

return apk = dpk ·
∏

pki∈PK

pk
Hagg(pki,PK)
i

Combine(PK, {ps(ℓ)i }pki∈PK , [m], π)

Parse ps
(ℓ)
i as (s′i, c)

dsk← Hdm(π, PK); dpk← dske mod N

apk← dpk ·
∏

pki∈PK

pk
Hagg(pki,PK)
i

c← Hsig(R, apk,m)

s← dskc ·
∏
i∈[n]

s′i mod N ; return (c, s)

MulSign1(ski, PK, apk,m)

ri ←$ Z∗
N ;Ri ← rei mod N

ti ← Hcom(Ri)

st(1) ← (ski, ri, PK, apk,m)

ps(1) ← (ti)

return (st(1), ps(1))

MulSign2(st
(1), in(1))

Parse st(1) as (ski, ri, PK, apk,m)

Parse in(1) as {tj}pkj∈PK

Ri ← rei mod N

st(2) ← (ski, ri, tj , PK, apk,m)

ps(1) ← (Ri)

return (st(2), ps(2))

MulSign3(st
(2), in(2))

Parse st(2) as (ski, ri, tj , PK, apk,m)

Parse in(2) as {Rj}pkj∈PK

if ∃ tj ̸= Hcom(Rj) return ⊥

R←
∏
i∈[n]

Ri mod N

c← Hsig(R, apk,m)

si ← xc · rj mod N

st(3) ← (ski, si, PK, apk,m)

ps(3) ← (si)

return (st(3), ps(3))

Vf(apk, σ,m)

Parse σ as (c, s); return R ∈ Z∗
N ∧R = ye · apk−H(R,apk,m) ∧ c = Hsig(R, apk,m)

Fig. 12. Description of GQ and our multi-signature scheme PP-GQ for hash functions Hsig,Hagg : {0, 1}∗ → Ze

and Hdm,Hcom : {0, 1}∗ → Z∗
N . Codes in gray boxes only occur for PP-GQ. The code in black box only occurs

for GQ.
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