2 results sorted by ID
Possible spell-corrected query: automorphism blind signature
Fair Multiple-bank E-cash in the Standard Model
Jiangxiao Zhang, Yanwu Gao, Chunhui Feng, Hua Guo, Zhoujun Li
Cryptographic protocols
Multiple-bank e-cash (electronic cash) model allows users and merchants to open their accounts at different banks which are monitored by the Center Bank. Some multiple-bank e-cash systems were proposed in recent years. However, prior implementations of multiple-bank e-cash all require the random oracle model idealization in their security analysis. We know some schemes are secure in the random oracle model, but are trivially insecure under any instantiation of the oracle.
In this paper,...
Automorphic Signatures in Bilinear Groups and an Application to Round-Optimal Blind Signatures
Georg Fuchsbauer
Public-key cryptography
We introduce the notion of automorphic signatures, which satisfy the following properties: the verification keys lie in the message space, messages and signatures consist of elements of a bilinear group, and verification is done by evaluating a set of pairing-product equations.
These signatures make a perfect counterpart to the powerful proof system by Groth and Sahai (Eurocrypt 2008). We provide practical instantiations of automorphic signatures under appropriate assumptions and use them...
Multiple-bank e-cash (electronic cash) model allows users and merchants to open their accounts at different banks which are monitored by the Center Bank. Some multiple-bank e-cash systems were proposed in recent years. However, prior implementations of multiple-bank e-cash all require the random oracle model idealization in their security analysis. We know some schemes are secure in the random oracle model, but are trivially insecure under any instantiation of the oracle. In this paper,...
We introduce the notion of automorphic signatures, which satisfy the following properties: the verification keys lie in the message space, messages and signatures consist of elements of a bilinear group, and verification is done by evaluating a set of pairing-product equations. These signatures make a perfect counterpart to the powerful proof system by Groth and Sahai (Eurocrypt 2008). We provide practical instantiations of automorphic signatures under appropriate assumptions and use them...