Birkbeck

UNIVERSITY OF LONDON

BIROn - Birkbeck Institutional Research Online

Chen, Hubie (2017) Proof complexity modulo the Polynomial Hierarchy:
understanding alternation as a source of hardness. ACM Transactions on
Computation Theory 9 (3), ISSN 1942-3454.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/21942/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/21942/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

arXiv:1410.5369v3 [cs.CC] 18 Feb 2016

Proof Complexity Modulo the Polynomial Hierarchy:
Understanding Alternation as a Source of Hardness

Hubie Chen
Universidad del Pais Vasco, E-20018 San Sebastian, Spain
and IKERBASQUE, Basque Foundation for Science, E-48011 Bi/l&ain

Abstract

We present and study a framework in which one can presenhatien-based lower
bounds on proof length in proof systems for quantified Baoligamulas. A key notion in
this framework is that oproof system ensemblehich is (essentially) a sequence of proof
systems where, for each, proof checking can be performdaipalynomial hierarchy. We
introduce a proof system ensemble calleldxing QU-reswhich is based on the established
proof systemQU-resolution Our main results include an exponential separation ofréee t
like and general versions of relaxing QU-res, and an expialdawer bound for relaxing
QU-res; these are analogs of classical results in propasitproof complexity.

1 Introduction

Background. Traditionally, the area opropositional proof complexitgtudies proof length in proposi-
tional proof systems for certifying the unsatisfiabilityintances of th&AT problemwhich instances are
guantifier-free propositional formulas [16,5, 26]. Thisdiof study is supported by multiple motivations;
let us highlight a few. First, while satisfiable formulas daneasily certified by a satisfying assignment,
it is also natural to desire efficiently verifiable proofs forsatisfiable formulas (for instance, to check that
a SAT algorithm judged unsatisfiability correctly); undargling whether and when proof systems have
succinct proofs is a prime concern of this area. Relat&N algorithmgor deciding the SAT problem can
be typically shown to implicitly generate proofs in a progé®m, and thus insight into proof length in the
resulting proof system can be used to gain insight into timaing-time behavior of SAT algorithms (see
for example the discussions in [4, 1]). In addition, the dgioesof whether or not there are proof systems
admitting polynomially bounded proofis (when formalized) equivalent to the question of whethenat
NP is equal to coNPR [16], and one can thus suggest that sg@yoof length in propositional proof systems
sheds light on the relationship between these two complelasses.

Over recent years, researchers have devoted increasimgi@tt to methods for solving tH@BF prob-
lem a generalization of the SAT problem and a canonical PSPA@Eplete problem; an instance of this
problem is a propositional formula where each variabletigeeiexistentially or universally quantifiedQBF
is short forquantified Boolean formula It is often suggested that the move to studying this more g
problem is based on advances in the efficacy of SAT algoritfe®es for examplée [27]). As reinforces this
suggestion, let us point out that one can find QBF solutiohrtiggies which use SAT algorithms as black-
box, primitive components, and hence which arguably ceecef and treat the SAT problem as feasibly
solvable. For instance, sKizzo, a QBF solver dating baclo@b2would convert the QBF being processed
to a SAT instance and then call a SAT solver, whenever thisaffasdable[8]. As another example, a

http://arxiv.org/abs/1410.5369v3

different QBF solver which extensively calls a SAT solveridg a backtrack-style search was developed
and studied [25].

The rise in the study of the QBF problem has resulted in thetifieation of a number of core algorith-
mic techniques and corresponding proof systems that airaptue these (see for examplel[13,[18,17, 23,
3,[21,[9) 10] and the references therein). We refer to thesaf gystems aQBF proof systemshey can
be used as a basis for certifying a decision for a QBF insta@te can motivate the study of QBF proof
systems in much the same way that the study of propositiomalf gystems has been motivated; hence,
these QBF proof systems would seem to suggest a new chaper $tudy of proof complexity, and a new
domain for the existing lines of inquiry thereof.

However, one is immediately confronted with a dilemma upwspécting the very basic question of
whether or not a typical QBF proof system requires long (egmbially sized) proofs—again, a primary
type of question in traditional proof complexity. As an exae) let us discus®-resolution[13], a QBF
proof system which is heavily studied and used, in both hemd practice (see for example [2, 19] 18,
22,123,[3] 9] and the references therein). When applied to i8sfEnces (viewed as instances of QBF
where all variables are existentially quantified), Q-rafoh behaves identically to resolution (a heavily
studied propositional proof system), and hence the knovpomential lower bounds on resolution proof
length [20[7] transfer immediately to Q-resolution. Thiservation leaves one with a lingering sentiment—
which is often expressed by members of the community—thexetis something left to be said. After all,
Q-resolution is defined on QBF instances, which are subalignimore general than SAT instances; the
observation does not yield any information about how Q{rgmm handles this extra generality, that is,
how it copes with alternation of quantifiers. Indeed, thera sharp disconnect between observing a lower
bound for a QBF proof system via a set of SAT instances, anthér@ioned treatment of the SAT problem,
by QBF algorithms, as a feasibly solvable primitive. Thesesiderations naturally lead to the question of
whether or not one can formulate and prove a lower bound wdrigles from alternation.

Contributions. In this article, we present and study a framework in whick passible to present such
alternation-based lower bounds on proof length in QBF psysfems.

We define goroof system ensemble be an infinite collection of proof systems, where in eaatopr
system, whether or not a given stringconstitutes a proof of a given formuth can be checked in the
polynomial hierarchy (Definition 3l1). A proof system enggéens considered to haymlynomially bounded
proofs (for a language) if it contains a proof system which has paotgially bounded proofs in the usual
sense (Definitioh 3]3). As a result, it is straightforwardlédine proof system ensembles that have succinct
proofs for any set of QBFs with bounded alternation, such set af SAT instances (and the proof system
ensembles studied herein all have this property); thisrim torces proof length lower bounds, by nature,
to arise from a proof system’s inability to cope with quaatifalternatioﬂ In terms of complexity classes,
the question of whether or not there exists a polynomiallyrated proof system ensemble for the QBF
problem (or any other PSPACE-complete problem) is equitdtethe question of whether or not PSPACE
is contained in PH, the polynomial hierarchy (Proposifiod)3 Indeed, the relationship that traditional
proof complexity bears to the NP equals coNP question isogoak to the relationship between the present
framework and the PSPACE equals PH question. (Let us pointhat no direct implication is known
between these two open questions, and so, in a certain genoggess in one framework may proceed
orthogonally to progress in the other!)

! Note that there is, a priori, a difference between allowingpp systems oracle access to the SAT problem—which would be
natural for modelling QBF solvers that treat the SAT probkesifeasibly solvable—and allowing oracle access to ariitewvels
of the PH. We focus on the latter for various reasons: thefdemmth lower bounds will arise from alternation; we begethat
this results in a more robust model; and, this focus causeprthof length lower bounds, which are here of primary irger® be
stronger.

One of our main motivations in pursuing this work was to gairitfer insight into Q-resolution; here,
we focus on a slight extensio@U-resolution[18], where from existing clauses one can derive new clauses
in two ways: by a rule for eliminating literals on universaljuantified variables and by resolving two
clauses on any variable (in Q-resolution, one can only vesoh existentially quantified variables). Q-
resolution, QU-resolution, and their relatives are tylyodefined only for clausal QBFs—QBFs that consist
of a quantifier prefix followed by a conjunction of clauses. $t®w how to parameterize and lift QU-
resolution to obtain a proof system ensemble which we reddixing QU-reswhich is in fact defined on
arbitrary QBFs (indeed, it is defined on what we agliantified Boolean circui}s and not just those in
clausal form; relaxing QU-res is the main proof system ererthat we study. Let us overview how we
define it.

e We define araxiomof a QBF to be a clause which is, in a certain precise sensajezhby the QBF
(see Section 411).

e We then show that, given a QB® and a partial assignmemntto some of its variables, one can
define a QBFP[a] derived naturally from®, where the variables on whichis defined have been
instantiated (in a certain precise sense; see Sdction Bh.QBF ®[a] has the key property that if
it is false, then the clause correspondinguts an axiom of the QB (see Proposition 4.3 for a
precise statement). We view the notion of inferring clausa®s the falsity of QBFs whose variables
are partially instantiated as highly natural; indeed, m¢hse of SAT, performing such inferences is a
basis of modern backtracking SAT solvers that perfotause learning

e Recall that each proof system in our proof system ensembjeus® as an oracle, a level of the PH; in
particular, the QBF problem restricted to a constant nurobafternations may be used as an oracle.
In order to infer clauses from a QB¥ using the method just described, we need a way of detecting
falsity of QBFs having the forn®[a]. But in general, this is difficult; such a QB®[a] may have
a high number of alternations, and thus might not be immeljiatecidable using an oracle of the
described form. To the end of permitting the falsity detattof QBFs®[a] using such oracles, we
define the notion of aelaxationof a QBF. A relaxation of a QBR is obtained from® by changing
the order of the quantifier/variable pairs in the quantifiefig; roughly speaking, such a p&w may
be moved to the left i) is the universal quantifietvj, and may be moved to the right@ is the
existential quantifierd). (See Sectioh 4.2 for the precise definition.) A key propeftthis notion is
that if a relaxation of a QBR is false, then the QBP is false (Proposition 414).

With this notion of relaxation in hand, we define, for edch> 2, the setH (®,II;) to contain
the axioms that arise from QBHs«] havingII;-relaxations (relaxations with Hy, prefix) that are
false. That is, in this set we collect the axioms obtainalylelétecting falsity of QBF®|[a] via the
consideration oll.-relaxations. (Hence, the detection is sound in that itusags correct, but it is
not complete). Note that it holds that

H(®,11,) € H(®,T5) € H(®,I,) < --- .

e This gives us a sequence of versions of QU-resolution: foh &awe obtain a version by defining
a proof to be a sequence of clauses derived from the axi@ids 11;) and the two aforementioned
rules of QU-resolution. This sequence is the proof systesemblerelaxing QU-res Let us re-
mark that each of these versions is sound and complete, ircisprsense (see Definitibn 3.1 and
Propositior 4.17).

A couple of remarks are in order. First, note that the empays® is an axiom i (®, I1;) whenever
® is a false QBF whose quantifier prefixlis,. Consequently, relaxing QU-res is polynomially bounded on
any set of false QBFs having bounded alternation (this isudsed in Section 4.2). Let us also note that
although here we explicitly lift QU-resolution to a proofstgm ensemble, the approach that we take here
can be applied to analogously lift any proof system whichaisdal on deriving clauses from a set of axiom
clauses.

Apart from the formulation of the framework, our main resudre as follows. We prove an exponential
separation between the tree-like and general versionslafing QU-res (Sectiohl6), by exhibiting a set
of formulas which have polynomial size QU-resolution psdfut which require exponential size proofs
in tree-like relaxing QU-res; this gives an alternatiorsdx analog of the known separation between tree-
like and general resolution [12, 6]. Tree-like QU-resalntproofs can be viewed as the traces of a natural
backtrack-style QBF decision procedure (this is evideamfrthe viewpoint in Sectioh 4.3, and is also
developed explicitly in[[14, Section 4.3]), and so this safian formally differentiates the power of such
backtracking and general QU-resolution. The lower bounthisf separation is based on a prover-delayer
game for tree-like QU-resolution proofs (Sectldn 5), whieim be viewed as a generalization of a known
prover-delayer game for tree-like resolution|[24]; notattrecently and independently of our wofk [15],
a game similar to ours was presented for tree-like Q-reisolyiLl]. We also prove an exponential lower
bound for relaxing QU-res (Section 7).

All in all, the ideas and techniques developed in this wordwdupon and interface concepts from
two-player game interaction, proof complexity, and quadi propositional logic. We believe that further
progress could benefit from creative input from each of tteeas, and certainly look forward to future
research on the presented framework.

Note that some proofs have been deferred to the appendix.

2 Preliminaries

For each integek, we use|k] to denote the set that is equal{tt, . .., £} whenk > 1, and that is equal to
the empty setzf whenk < 1. We useN to denote the natural numbe®, 1,2, . ..}.

We usedom(f) to indicate the domain of a function. A functighis arestriction of a functiong if
dom(f) < dom(g) and, for eaclu € dom(f), it holds thaty(a) = f(a); when this holds, we also say that
is anextensiorof f. Whenf is a function, we us¢[a — b] to denote the function on domadom(f) v {a}
that maps: to b, and otherwise behaves like We write f | S to denote the restriction of a functighto
the setS. We say that two functiong andg agreeif for each element € dom(f) n dom(g), it holds that
f(a) = gla).

When A and B are sets, we used — B] to denote the set of functions frorto B.

Clauses.In this article, we employ the following terminology to diss clauses. Ateral is a propo-
sitional variablev or the negatiorv thereof. Two literals areomplementaryf one is a variabley and the
other is7; each is said to be thmomplemenof the other. Aclauseis a disjunction of literals that contains,
for each variable, at most one literal on the variable. A s4ais sometimes viewed as the set of the literals
that it contains; two clauses are considered equal if theyegual as sets. A clauseamptyif it does not
contain any literals. The variables of a clause are simmyHriables that underlie the clause’s literals, and
the set of variables of a clauses denoted byars(«). Whena is a clause, we usessign(«) to denote the
unique propositional assignmefitwith dom(f) = vars(«) such thatx evaluates to false undgt. In the
other direction, wherf is a propositional assignment, we udeuse(f) to denote the unique clausewith
vars(a) = dom(f) that evaluates to false undgr We will freely and tacitly interchange between a clause

a and its corresponding assignmemnsign («). A clausey is aresolventof two propositional clauses and
3 on variablev if there exists a literall. € o such that its complement is in 5, v = (a\{L}) u (B\{M}),
andv is the variable underlyindg. and M.

Quantified Boolean circuits and formulas. We assume basic familiarity with quantified propositional
logic. A QBC (short forquantified Boolean circuitconsists of a quantifier prefii? = Q101 ... Qnup,
where eacl®); is a quantifier in{V, 3} and eachy; is a propositional variable; and, a Boolean cireuluilt
from the constant§ and1, propositional variables amorg, ..., v,}, and the gates ANDA), OR (v),
and NOT (). We refer to the computational problem of deciding whetirarot a QBC is false as th@eBC
problem For brevity, we sometimes refer to existentially quantifi@riables as-variables, and universally
quantified variables ag-variables. While it is typical to notate a QBC by simply signg the prefix15
immediately followed by the circui®, we will typically separate these two parts by a colon for sh&e
of readability, using for examplé3 : ¢. We assume that each quantifier prefix does not contain expeat
variables. Whem® = P : ¢ is a QBC, by goartial assignment ob, we refer to a propositional assignment
f S — {0,1} defined on a subsét of the variables appearing A. A QBFisa QBCJ3 : ¢ whereg is a
Boolean formula. Aclausal QBFis a QBF15 : ¢ whereg is the conjunction of clauses.

Quantifier prefixes. Let: > 1. A quantifier prefixl3 = Qv1...Quu, isIL; if Q1...Q,, viewed as a
string over the alphabét/, 3}, is contained in the language denoted by the regular expregsi*v*3* .. .,
which containsi starred quantifiers, beginning witti* and alternating:; is defined similarly, but with
respect to the regular expressiify*3*v*

The following notation is relative to a quantifier preﬁxz Q1v1 ... Qruy; When we use it, the prefix
will be clear from context. We write; < v; if i < jorif j <7and@; = Q11 = --- = Q;. We extend
this binary relation (and others) to sets in the followingunal way: whenlU andV" are sets of variables,
we writeU < V if for eachu € U and eachy € V, it holds thatu < v. We also write, for example, that
U < v for a single variable whenU < {v}. We writev; = v; if v; < v; andv; < v;. Itis straightforward
to verify that= is an equivalence relation; we refer to each equivalengs dbé= as aquantifier block We
write v; < v; if v; < v; andv; # v;. WhensS is a set of variables, we usest(S) to denote the variable
of S appearing last in the quantifier prefix, that is, the variahlewherem = max{i | v; € S}. Typically,
when we use the functidast(S), it is in conjunction with the just-defined binary relatiopasd hence what
is most relevant will be the relative location of the quaatifdlock oflast(S).

Strategies.Let® = P ¢ be a QBC; letX denote thél-variables ofd, and letY” denote thé/-variables
of ®. Whenz € X, defineY_, to be the set of variablelg) € Y | y < z}; dually, wheny € Y, defineX_,
to be the set of variablesr € X | z < y}.

An 3-strategyis a sequence of mappings= (o,).cx Where eaclr, is a mapping fromfY_, — {0, 1}]
to {0,1}. Whent : Y — {0,1} is an assignment to the universally quantified variablesysego, 7) to
denote the assignmeffitdefined byf(y) = 7(y) for eachy € Y and f(z) = o,(7 | Y-,) for eachz € X.
We say that(c,).cx is awinning 3-strategyif for every assignment : Y — {0,1}, it holds that the
assignmento, 7) satisfiesp. A modelof @ is defined to be a winning-strategy ofd.

Dually, we define &-strategyto be a sequence of mappings= (7,),cy Where each, is a mapping
from [X, — {0,1}] to {0,1}. Wheno : X — {0,1} is an assignment to the existentially quantified
variables, we usér, o) to denote the assignmejfitdefined byf(z) = o(z) for eachz € X and f(y) =
Ty(0 | X-y) for eachy € Y. We say thato,) ey is awinning V-strategyif for every assignment : X —
{0,1}, it holds that the assignme(t, o) falsifies¢.

The following are well-known facts that we will treat as lmasi

Proposition 2.1 Let® be a QBC.
e There exists a winning-strategy for® (that is, a model of) if and only if® is true.

5

e There exists a winning-strategy for® if and only if @ is false.

3 Proof system ensembles

In this section, we formalize the notion pfoof system ensemld@d present some basic associated notions.
For eachm > 1, fix S(m) to be the QBC problem restricted to QBCs having.,a prefix, which is a
¥1,-complete problem; fom = 0, fix S(m) to be a polynomial-time decidable problem.
Let O be a language; when discussing an algorithritnat makes oracle calls, we ugé’ to denote the
instantiation ofA where oracle calls are answered accordin@to

Definition 3.1 A proof system ensemblel,) for a languageL consists of an algorithral which may
make oracle calls and receives inputs of the f@gém(x, 7)) wherek € N andx andr are strings; and, a
computable functiom : N — N such that:

e For eachk e N, there exists a polynomial;, such that (for each paitz, 7)) the algorithmAS((%)
halts on an inputk, (x, 7)) within time py(|(x, 7)|).

e For eachk € N, when L is set to{(z,n) | (k, (z, 7)) is accepted byl>("(*))} it holds that the
languag€{x | 37 such thatxz, 7) € Ly} is equal toL.

Let us provide an intuitive explanation of Definitibn 183.1. rremach fixed value ok, the algorithmA
provides a proof system for the languagigon inputs of the formk, (z, 7)), the algorithm is provided
oracle access t8(r(k)), and needs to accept or reject within polynomial time|(in, 7)|). Acceptance
indicates thatr is judged to be a proof that € L. The second condition in the definition states that each
such proof system is sound and complete, that is, for eaath fixan arbitrary string is in L iff there exists
a stringr such that k, (z, 7)) is accepted byl.

We use the following terminology to present lower bounds mopsize in proof system ensembles.

Definition 3.2 Let Z be a set of functions frori¥ to N. A proof system ensembled, r) requires proofs of
sizeZ on a sequencéd;, @o, ...} of instances if for each, there exists € Z where (for alln > 1 and all

stringsm) it holds that(k, (®,, 7)) € Ly implies|n| = z(n). Here,|x| denotes the size of. We also apply
this terminology to other measures defined on proofs.

We say that a functiorf mapping strings to strings is @olynomial-length functiorif there exists a
polynomialg such that, for each string, it holds that| f (z)| < ¢(|z]).

Definition 3.3 A proof system ensembleA,) is polynomially boundedn a languagd. if there exists
k € N and there exists a polynomial-length functigrimapping strings to strings) such that the following
holds: ifz € L, then it holds thatz, f(x)) € L, whereL is defined as in Definition 3.1.

Proposition 3.4 There exists a polynomially bounded proof system ensembéeldnguagel if and only
if L is in the polynomial hierarchy.

We next define notions of simulation between proof systems.

Definition 3.5 Let (A, r) and(A’, ") be proof system ensembles for a languéage

We say that A’, r’) simulates(A, r) if there exists a functiorf : N — N and a sequence of polynomial
length functiong gy,) kery from strings to strings such that, for eacle N and each{x, 7) € Ly, it holds that
(x,gx(m)) € L}(k). Here,L;, andL; are defined as in Definitidn 3.1, foA, r) and(A4’, '), respectively.

6

We say that A’, ') effectively simulate&A, r) if, in addition, the functionf is computable and there is
an algorithm that, for each € N, computegy (z) from z within time p(|z|), wherepy, is a polynomial.

Under a mild assumption on proof system ensembles, namedlyitiuitively) they increase in strength
as the parametér increases, it can be proved that, wheh r) and (A4’,r’) are proof system ensembles
such that(A4’, ") simulates(A, r) and such thatA, r) is polynomially bounded, it holds th&t’, +’) is
polynomially bounded. We will formalize and discuss thighie full version of the article.

Let us remark that variations on Definitidnsl3.1 3.5 artairy possible. For example, one could
require that the bounding polynomidls;) in Definition[3.1 be computable, as a functiorkofPerhaps more
interestingly, observe that no assumption is placed on heset polynomialép;.) behave in aggregate; one
could, for instance, require that their degrees are all dedrabove by a constant, obtaining a definition
reminiscent of that of fixed-parameter tractability. A damicomment can be offered for the polynomials
associated to the functiorig;.) from Definition[3.5.

4 Relaxing QU-resolution

4.1 QU-resolution

Let® = P : ¢ be a QBC. We define aaxiom set ofb to be a sefd of clauses on variables @ such that,
for eachC € H, C is anaxiomof & in the following sense: each model Bf: ¢ is a model ofP : C. Let
us give examples. First, if the QBE is false, then the empty clause is an axiombofSecond, ifC is any
clause which is entailed by, thenC' is an axiom of®. A case of this is whei is an assignment to all
variables ofd that falsifiesp; then,clause(a) is entailed byp and is an axiom of.

Relative to a QBGD = P : ¢, we say that a claus€' is obtainable from a second claugeby Y-
elimination if there exists a literall € D such thatC = D\{L} and the variable; underlying L is a
V-variable and hasars(C) < y.

With these notions, we define QU-resolution for quantifie@Ban circuits in the following way.

Definition 4.1 A QU-resolution proofof a QBC® = P ¢ from an axiom sef{ (of @) is a finite sequence

of clauses where each clause is eithefinis obtainable from a previous clause Welimination, or is
obtainable from two previous clauses as a resolvent; indbetlvo cases, we assume that the clause is
annotated with the previous clause(s) from which it is detfiythis is to provide a clean correspondence
between proofs and certain graphs to be defined, see SecBpriThesizeof such a proof is defined as the
number of clauses. Such a proof is said to b&lsity proof if it ends with the empty clause.

Note that in the case thdtis a clausal QBF, wheH is the set of clauses appearinglinDefinition[4.1
essentially coincides with usual definitions of QU-redolutin the literature (see for example [22]). The
only difference is that here, applyingelimination eliminates just one universally quantifiedigble of
a clause, whereas many authors speak-afduction which (when applied to a clause) eliminates each
universally quantified variable that come after all exigtly quantified variables. One can simulate an
instance of/-reduction by applying/-elimination repeatedly.

It is a folklore and readily verified fact that when one hasausil QBFP = P ¢ with clause sefd,
andC appears in a QU-resolution proof @ffrom H, then any model o> is a model ofP : C. From this
fact and the definition of axiom set, we immediately obtaim fitilowing proposition.

Proposition 4.2 Let C' be a clause appearing in a QU-resolution proof of a QBG= P ¢ from axiom
setH. Each model o : ¢ is a model ofP : C'. Consequently, i€ is the empty clause, then the QEGs
false.

4.2 Relaxing

In order to define a proof system ensemble based on QU-resojuinofs, we now describe how to obtain
a sequence of axiom sets for a given QBC. We start by exhgb#tiway to infer that a partial assignment is
an axiom of a QBC.

Let a be a partial assignment of a QBE = P o. Defineﬁ[a] to be the quantifier prefix which is
equal toP but where the variables ilom(a) and their corresponding quantifiers are removed, and where
each quantifier of a variable with v < last(a) is changed (if necessary) to an existential quantifier. As
examples, whet® = Vy; 3213z VyoVys3zs, if a is an assignment withom(a) = {x1,ys}, it holds that
ﬁ[a] = Jyy Iz Vyo3xs; if a is an assignment withom(a) = {x1, z2}, it holds thatﬁ[a] = JyVyoVy3Ixs.
Define¢|a] to be the circuit obtained from by replacing each variablee dom(a) with the constan(v).
Define®[a] to be Pla] : ¢[a].

Proposition 4.3 Assume that is a partial assignﬁment of a QBG@ :qﬁ : ¢ such that®[a] is false. Then
clause(a) is an axiom ofb, that is, each model a? : ¢ is a model ofP : clause(a).

We believe that Propositidn 4.3 provides a natural way tovdexxioms from a QBC. Consider the case
where® is a SAT instance, that ig; is purely existential. In this case,dfis a partial assignment such that
®[a] is false, thertlause(a) is an axiom ofp. Indeed, in this cas@|[a] is simply the QBC instance obtained
by instantiating variables according & and then removing the instantiated variables from the tifiem
prefix. Note that, in the context of backtrack search for SAR typical that, when some variables have
been set according to a partial assignmera solver attempts to detect falsity ®fa] by heuristics such as
unit propagations and generalizations thereof.

In the case of general QBCs, it is natural to ask, when one hzatal assignment and then in-
stantiates its variables ig to obtain¢[a], under what conditionslause(a) can be inferred as an axiom.
Propositio 4.8 provides an answer to this question; letsaa intuitively why the quantifier prefix is
adjusted toﬁ[a]. Consider the case where the first quantifier blockPos existential and: is a partial
assignment to variables from this first block; thlé[u] is simply]3 but with the variables o removed, and
so this case of the proposition generalizes the purelyentisi case just discussed. In the case where
arbitrary,ﬁ[a] can be viewed as the prefix where the lowest number of quansttigeve been changed from
universal to existential such that the first quantifier blackxistential, and all variables affall into this
first block.

Propositio 4.8 can be proved in the following way. Fix a maede: (0,).cx of P: ¢; here, X denotes
the 3-variables inP. Suppose (for a contradiction) thatis an assignment to thévariables ofP : ¢ such
that the assignment = (o, 7) falsifiesclause(a), or equivalently,f extends the assignmeat Then, we
define a winningl-strategyo’ for ®[a] as follows. Definer/, to be the function obtained from, after fixing
eachv-variabley € dom(a) U {v | v < last(a)} to 7(y); and, for eaclv-variabley with y < last(a) (that
is, for eachv-variable inP that is changed to afvariable inP[a]), defineo;, to ber(y).

Prima facie, Propositioh 4.3 may appear to be of limiteditytileven if one has oracle access to a
level of the polynomial hierarchy, it may be that many pdwissignments, give rise to a quantifier prefix
ﬁ[a] which has too many alternations to be resolved by the ordwelerder to expand the class of axioms
derivable by this proposition (relative to such an orachg,introduce now the notion of elaxationof a
QBC.

A relaxationof a quantifier preﬁxl3 = Qv ... Qnu, IS a quantifier prefix which has the forf¥ =
Qr(1)Vr(1) - - - @r(n)Vr(n) Wherer : [n] — [n] is a permutation and where, for eagtvariabley and for
each3-variablez, it holds thaty < z impliesy <’ z; here,< and<’ denote the binary relations &t and
P, respectively. As an example, consider the quantifier préfiee Jx13xoVyVy 32 3; relaxations thereof
includeVyVy'3z13zo3x3, Iz1Vy 3zoVyIzs, andVy'IzoVyIzg Izs. A relaxation of a QBCP : ¢ is a QBC
of the form P’ : ¢ where P’ is a relaxation of?; such a QBC is said to beld;-relaxationif P’ is IT;.

The following is straightforward to verify.

Proposition 4.4 If a relaxation of a QBQP is false, then the QB@ is false.

Note that for any quantifier prefix, a relaxation may be olgdiby simply placing the universal quanti-
fiers and their variables first, followed by the existentiahqtifiers and their variables. Hence, in this sense,
each QBC has a canonicHl-relaxation, and in the sequel, we focus the discussion larations that are
11, -relaxations for values of greater than or equal t

Let ® be a QBC; fork > 2, we defineH (®,I1;) to be the set that contains a clauséf there exists a
I, -relaxation of®[assign(C)] that is false. The following fact follows immediately fronmdpositions 4.8
and4.4.

Proposition 4.5 When® is a QBC andk > 2, it holds thatH (¥, I,) is an axiom set ob.

Note that wherd = P : ¢ is a clausal QBF(is a clause i, anda = assign(C), it holds thatg[a]
is unsatisfiable; consequently, for any quantifier préfbon the variables of[a], it holds thatP’ : ¢[a] is
false, and thu¢’ € H(®,IIy). Hence, the setl (P, II,) contains each clause of

Definition 4.6 Relaxing QU-ress defined as the paif4,r) wherer is defined byr(k) = k& + 3 and

A is an algorithm defined to accept an ingét (¢, 7)) if ® is a QBC andr is a QU-resolution falsity
proof of ® from axioms inH (®, I, 2). In particular, the algorithnd examines each clauseinin order;

when a claus&’ is not derived from previous ones by resolution orWglimination, membership of’

in H(®,II;,2) is checked by thé&, 3 oracle. (Such an oracle can nondeterministically gueHs a-

relaxation and then check this relaxation for falsity.)

Proposition 4.7 Relaxing QU-ress a proof system ensemble for the language of false QBCs.

Note that for any sef of false QBCs having bounded alternation, it holds ttedéxing QU-resis
polynomially bounded oF. Why? Letk be a value such that each QBC.nis I, . For each QBC
® € F, we have that the empty clause isi\(®,II;2), since® itself is a falsell,o-relaxation of®.
Hence, for each such QB®@, the algorithmA of relaxing QU-res accept&:, (¢, &¥)), where heres
denotes the proof consisting just of the empty clause.

Let us now introduce some notions which will be used in oudgtof tree-like relaxing QU-regdefined
below). Letf andg be partial assignments of a QBE We say that is asemicompletiorf f if g is an
extension off such that for each universally quantified variaplevith dom(f) < y andy ¢ dom(f), it
holds thatdom(g) < y andy ¢ dom(g). A setH of partial assignments @b is semicompletion-closei,
wheneverf € H andg is a semicompletion of, it holds thatg € H.

Lemma 4.8 For each QBC® and for eachm > 2, the set of assignmenf$(®, I1,,,) is semicompletion-
closed.

4.3 A graph-based view

Whenr = C4,...,C, is a QU-resolution proof of a QB@ : ¢ from axiomsH, defineG(m) to be
the directed acyclic graph where there is a vertex for eaatisel occurrencé’;, which vertex has label
assign(C;); and, where (for all pairs of claus€g, C;) there is a directed edge from the vertexgfto the
vertex ofC; if C; is derived fromC;.

Proposition 4.9 Let 7 be a QU-resolution proof of a QB® : ¢ from axiomsH. The directed acyclic
graphG () has the following properties:

() If anode with labek has no out-edges, thetause(a) is an element off.

(B) If a node with labela has1 out-edge to a node with label, thena’ is an extension of. with
dom(a’) = dom(a) U {y} wherey is a universally quantified variable wittom(a) < y.

(7) If a node with labek has2 out-edges to nodes with labels andas, then there exists a variable
such thata; andas are defined om anda; (v) # as(v); (dom(a;) U dom(az))\{v} = dom(a); a
anda, are equal on the variables where they are both definedpaamtja, are equal on the variables
where they are both defined.

Moreover, a labelled graph with these three propertiesralyunduces a QU-resolution proof: for each
node, leta be its label, and associate ta:ituse(a). []

Definition 4.10 We say that a QU-resolution proaf is tree-like if the graphG(r) is a tree. We define
tree-like relaxing QU-reso be the proof system ensemijlé’, r) described as follows. L&tA,) denote
relaxing QU-res. Then, the algorithAl accepts an input, (x, 7)) if A accepts it and is tree-like.

5 A prover-delayer game fortree-like relaxing QU-res

In this section, we present a game that can be used to exbvdr Ibounds on the size of tree-like QU-
resolution proofs; this game can be viewed as a generalizafia game for studying tree-like resolution,
which game was presented by Pudlak and ImpagliezZo [24].

We first give an intuitive description of the game. Note, hearethat this description is meant only to
be suggestive. For a precise description, we urge the réadensult the formal definition, which follows
(Definition[5.1); in this formal definition, the game is fortated in a positional fashion: a state of the game
is formalized as a partial assignment.

Relative to a QB®@ and a seH of axioms, the game is played between two play@rsyerandDelayer,
which maintain a partial assignment. Prover’s goal is tahempartial assignment i, while Delayer tries
to slow down Prover, scoring points in the process. Prowtssby announcing the empty assignment, and
Delayer responds with a semicompletion thereof. After,ttie play proceeds in a sequence of rounds. In
each round, Prover may perform one of three actions to themuassignmenf: select a restriction of;
assign a value to @-variabley ¢ dom(f) havingdom(f) < y; or, select a variable ¢ dom(f). In the first
two cases, Delayer responds with a semicompletion of thétieg assignment. In the third case, Delayer
may give a choice to the Prover. When a choice is given, thegPsets the value af, and Delayer may
elect to claim a point which is then associated withWhen no choice is given, Delayer sets the value.of
After v is set, Delayer responds (as in the first two cases) with aceenpiletion of the resulting assignment.
Delayer is said to have gpoint strategy if, he has a strategy where, by the time thawd? achieves her
goal, there arg variables on which the final assignment is defined such thiyeehas claimed points on

10

these variables.
In what follows, we assumg > 1.

Definition 5.1 Let ® be a QBC. Relative to a séf of axioms, ap-point delayer strateggonsists of a set
F of partial assignments @b and a functions : F — N called thescore functiorsuch that the following
properties hold:

¢ (semicompletion-of-emptylhere exists a semicompletigne F' of the empty assignment such that
s(g) = 0.

e (all-points)If f e F' n H, thens(f) = p.

e (monotonicity)lf g € F, then each restriction gfhas a semicompletiofi € F' such thats(f) < s(g).

e (V-branching)lf f € F andy ¢ dom(f) is a universally quantified variable wittbm(f) < y, then,
for eachb € {0, 1}, the assignment[y — b] has a semicompletioge F with s(g) = s(f).

e (double-branching)f f € F andv ¢ dom(f), there exists a valug € {0, 1} such thatf[v — b]
has a semicompletion € F where (1)s(g) < s(f) + 1 and (2) ifs(g) = s(f) + 1, the assignment
f[v — —b] has a semicompletiogl € F with s(¢') < s(f) + 1.

Theorem 5.2 Assume that there existeaoint delayer strategy for a QBE with respect to a semicompletion-
closed axiom sel/, and thatr is a tree-like QU-resolution proof ending with the emptyusle, from axioms
H. Then, the tre€ () has at least” leaves.

In order to prove Theorem 5.2, we introduce the following hemn

Lemma 5.3 Assume that there existgapoint delayer strategy for a QBE with respect to a semicompletion-
closed axiom sell, and thatr is a tree-like QU-resolution proof from axiont. Letu be a node of3(r)
with labela. If « has a semicompletiofi € F with s(f) < p, thenu has a childv’ with labela’ such thata’
has a semicompletiogl € F' with s(¢') < s(f) + 1; moreover, whe’ € F hass(¢') = s(f) + 1, the node

u has a second child” whose label” has a semicompletiog’ with s(¢”) < s(f) + 1.

Proof. Sinces(f) < p, by the(all-points) condition, we have thaf ¢ H. SinceH is assumed to be
semicompletion-closed, we have that¢ H, and hence that the nodes not a leaf of the tre& ().

If the nodeu is of type () from Propositio 4.9, then let be the label of the child’ of u; o’ has the
formaly — b]. By the (7-branching) condition, the assignmeffty — o’ (y)] has a semicompletioff with
s(f") < s(f). We have thayf’ is a semicompletion of’, giving the lemma.

If the nodeu is of type(v) from Propositiori 4.9, let: denote the variable described in the proposition
statement. We consider two cases. Firsty i€ dom(f), then pick the child ofu with label «’ having
a'(r) = f(x). By (monotonicity) the restrictionf | dom(a’) has a semicompletion’ € F such that
s(¢’') < s(f), giving the lemma. When: ¢ dom(f), we argue as follows. By thé&louble-branching)
condition, there exists a vales {0, 1} such thatf[x — b] has a semicompletioff satisfying the properties
(1) and (2) given in Definition 5]1; in particular, we hasgf’) < s(f) + 1. Letv’ be the child ofu whose
label o’ hasa/(z) = b. The assignment’ restrictsa[z — b] which restrictsf[z — b], so f extendsa’.
By the (monotonicity)condition, the restrictiorf’ | dom(a’) has a semicompletiogl with s(¢") < s(f7).

If s(¢") < s(f), the lemma is proved. Otherwise, we have th@t) = s(f) + 1, and by property (2) of
(double-branching)the assignmenf[z — —b| has a semicompletiofi” with s(f”) < s(f) + 1. Letv”
be the child ofu whose labek” hasa”(z) = —b. We have that” restrictsa[x — —b] which restricts
flz — —b]; by (monotonicity) the restrictionf” | dom(a”) has a semicompletiop” € F such that
s(g”) < s(f"), giving the lemma[]

11

Proof. (Theorem 5.2) We refer to a semicompletion of the label obdensimply as a semicompletion
of the node. We prove by induction @an= 0, ..., p that, for any node» with semicompletionf having
s(f) = p — i, the nodev has2 leaf descendents. This suffices by the propé&gmicompletion-of-empty)
of Definition[5.].

The claim is obvious foi = 0, so suppose that itis true fox p; we will prove it true fori+ 1. We have,
by assumption, a semicompletigrof v with s(f) = p— (i +1) = p—i— 1. Repeatedly invoke Lemna’.3
to obtain a path fromr to a leaf where each vertex has a semicompletion associatied . wNotice that, in
walking along this path starting fromand looking at the semicompletions, whenever the scoreases,
it increases by at mogt Since any semicompletion of a leaf must have sgove higher (by the reasoning
at the beginning of the proof of Lemrha b.3), there must be steseendent of v having semicompletion
with scorep — 7 — 1 such that the the child, of u provided by Lemm&a5l3 has semicompletion with score
p — i. By that lemma, the other child, of u has semicompletion with score less than or equal+toi. By
repeatedly invoking Lemnia 5.3 to obtain a path fregto a leaf, one finds a descendentof u, having a
semicompletion with scorg — i. By induction, there are at lea®t leaves below:;, and at leas®’ leaves
belowwv, (and hence below,). Therefore, there are at le&ét ! leaves below:, and hence below. []

6 Separation of the tree-like and general versions afelaxing QU-res

The family of sentences to be studied in this section is defasfollows. For eache {0} U [n], defineX;

to be the variable sdtc; ; . | 7,k € {0,1}}, and for eachi € [n], defineX analogously to be the variable set
a:;j,k | j,k € {0,1}}. DefineP, to be the prefid X3 X Vy13X 13X Vyo3 X, ... 3X] Vy,3X,,. Note that,

for a set of variables(, we use the notatiof.X to represent the existential quantification of the varigiie

X, in any order (our discussion will always be independentnyf@articular order chosen). FOE [n], we

refer to the variables iX U {y;} U X; as theleveli variables

e DefineB = {ﬁwo’jJf ‘ i, ke {O, 1}} U {x,w',o V Tl |] € {0, 1}}

e Foreach ¢ [’I’L] and eacrj € {0, 1} dEﬁHEHZ'J = {—'xao’k\/—\Z’Q’LI\/$Z;17j,0\/$i717j,1 | k?,l € {0, 1}}
Observe that the clauser; , . v —; ; ;v @i—1,j,0 vV Zi-1,5,1 IS logically equivalent tgz} . Axj ;) —
(Ti150 V Ti-1,1)-

e Foreach € [n], defineT; = {—ziorvyiva, . | ke {0, 1}}u{—zi1 v —yival, .| ke{0,1}}.

Defineg,, to be the conjunction of the clauses contained in the julihele sets. Defin®,, asp, : On-
This definition of this family of sentences was inspired iadlgt by the separating formulas aof [12, 6].

Let us explain intuitively what the clauses mandate and \kbysentence$,, are false. By the clauses
in B, all of the variableszg ; , must be set t0. By the clauses in the set$, ;, either both variables’ ,
or both variables| ; , must be set t0. Once this occurs, the universal player can set the variattieo or
1 to force either both variables; (;, or both variables: ; ;, to 0 (respectively), via the clausesm. This
reasonmg can then be repeated; for instance, at the nef &ther both variables, , or both variables
:132 1, Must be set t0, and then after universal player assignipgappropriately, either both variables g j,
or both variableg: ; ; are forced td). In the end, the existential player must violate one of the ¢tlauses
in B concerning leveh.

Proposition 6.1 The sentencegb,, },~1 have QU-resolution proofs of size linearsn

Letn > 1; we will use the following terminology to discugs,.

12

We say that- is anormal realizationof leveli € [n] if it is an assignment defined on the levefariables
such that, when is set tor(y;), the following hold:

o 0=r(xipo) =71(x}40) =r(Tip1) =r(x],)
o 7(2i—p0) = 7(2}) # r(@i—p1) = 7(2 1)

We say that is afunny realizationof leveli € [n] if it is an assignment defined on the levelariables
such that, when is set tor(y;), the following hold:

o 7(Tipo) = 1(2}40) # T(@ip1) = (i)
e 0= T(x;,ﬂb,o) = T(mg,ﬁm)
o r(z5-p0) # r(Ti-p1)

We state two key and straightforwardly verified propertiesealizations in the following proposition.

Proposition 6.2 No assignment defined on the levelariables is both a normal realization and a funny
realization. Also, each normal realization and each funeglization (of levef) satisfies all clauses if;.

We define the set of assignmenfiy to be the set containing aflormal assignmentand all funny
assignmentswhich we now turn to define. Lef be a partial assignment d@f,,. Let/ > 0 denote the
maximum level such thatf is defined on ad-variable in level.

We say thatf is anormal assignmerif the following hold:

o fis defined on the variables { ; » | j, k € {0,1}} and equal t® on them.

e For eachi e [¢ — 1], the restriction off to the leveli variables is a normal realization of leviel

e If / > 1, either the restriction of to the levell variables is a normal realization of levglor, f is half-
definedon level?, by which is meant thaf is not defined on any variables {a ;. | j,k € {0,1}},
but is defined on all variables i ; , | j,k € {0, 1}} and hay}; yc(o 1y 27 = 1-

For each normal assignmefitwe defines,,(f) = /.
We say thatf is afunny assignmerit there existsn € [¢] such that the following hold:

e fis defined on the variables { ; » | j, k € {0,1}} and equal t® on them.

e For each € [m — 1], the restriction off to the leveli variables is a normal realization of leviel

e The restriction off to the levelmn variables is a funny realization of levei.

e For eachi with m < i < ¢ and for eachy € {0, 1}, if f is defined on one of the four variables in
{xi,%k,x;%k | k € {0,1}}, then it is defined on all of them anflz; ;0) = f(2; ;o) # f(zij1) =
f(%j@)-

It is straightforward to verify that an assignment cannobbth normal and funny, and also that, if an

assignment is funny, there exists a unigue= [¢] witnessing this. For each funny assignmgntve define
sn(f) = m. We also identify the following properties of funny assigemts which will be used.

Proposition 6.3 Each funny assignmerftwith s,,(f) = m can be extended to a funny assignmgniith
sn(f") = m which is defined on all-variables. Moreover, leg be any assignment defined on all variables
(of ®,,) which extends a funny assignmegntefined on alB-variables; theng satisfies all clauses in,,.

Theorem 6.4 For eachn > 1, the pair(F,,, s,,) defined above satisfies the conditiggemicompletion-of-
empty) (monotonicity) (V-branching) and (double-branchingjrom Definition5.1.

13

Proof. We verify each of the conditions.

(semicompletion-of-emptyYhe normal assignmertdefined only on{x ; . | 4, k € {0,1}} is a semi-
completion of the empty assignment withy) = 0.

(monotonicity) Suppose thay € F. LetIW < dom(g). We show thay | W has a semicompletion
f e Fwith s(f) < s(g).

If the last variablev in W (according toP,) has the formrcg’jk ory;, thensetf =g | {z |z < v}.
Otherwise, the last variabtein 1V has the forme; ; .., and we sef to be the restriction of to the variables
in levelsoO, . .. 1.

It is straightforward to verify thayf € F' and thats(f) < s(g). We briefly indicate how to do so, as
follows. Wheng is a normal assignment, thefiwill also be a normal assignment. Wheris a funny
assignment witts(g) = m, then consider two cases. If the last variabl 1V comes before or is equal
to v, the assignmenf will be normal. Otherwise, the assignmeftwill be a funny assignment with
s(f) = m.

(V-branching) This property is straightforward to verify by examiningethtructure of the definitions
of normal assignmenandfunny assignmentWe perform the verification as follows. Lg¢te F and let
y; ¢ dom(f) be a universally quantified variable. We claim that, for each {0,1}, the assignment
fly; — b] is a semicompletion of having the same score s

When f is a normal assignment, we have= ¢. We argue thaf[y; — b] is a normal assignment. The
assignmentg[y; — b] and f are equal on variables in levels strictly before lefzehlso, if f on levellis a
normal realization, theh> ¢ andf[y; — b] on levell is the same normal realization. fifis half-defined on
level ¢, thenf[y; — b] is also half-defined on levél Thus, we have thaf[y; — b] is a normal assignment.
Clearly,s(f[y; — b]) = s(f).

When f is a funny assignment with(f) = m, we havei > m. In looking at the definition of a funny
assignment with a funny realization at leve| the requirements imposed on the variables coming strictly
after levelm concern only the existentially quantified variables. Hefilgg — 0] is also a funny assignment
with s(f[y; — b]) = m.

(double-branching) Suppose thaf € F' and thatv ¢ dom(f). We consider two cases.

When f is a funny assignment with(f) = m, then the variable must occur in levein + 1 or later.

If v is aV-variable, then seb arbitrarily; we then have that = f[v — b] is a funny assignment with
s(g) = s(f) = m. If vis an3-variable, then it is of the forna; ; , or z; ; ,; takeg to be the either of the two
extensions off defined ondom(f) v {; k2 ;, | k € {0,1}} with f(z;50) = f(2];0) # f(2ij1) =
f(x ;1)- We have thay is a funny assignment with(g) = s(f) = m.

When f is a normal assignment witk(f) = ¢, the variablev must come after all variables itom(f).
We may assume that is an 3-variable (otherwise, one may reason as in the case of thitimon (V-
branching)to obtain a semicompletiopwith s(g) = s(f).)

First, suppose that the restriction ffto level £ is a normal realization. It is in level ¢ + 1, then
both f[v — b] and f[v — —b] have semicompletiong andg’ (respectively) which are defined on levels
0 through/ + 1 inclusive and are equal to funny realizations on lefel 1. In this situation, we have
s(g) = s(¢’) = £+ 1. If visinlevel £ + 2 or a later level, then we can obtain semicompletigrend
g of fl[v — b] and f[v — —b] (respectively) as follows. First, extendto obtain an assignment that is
equal to an arbitrary funny realization on leve} 1; then, we may extend the result by reasoning as in the
previous case (wherg is a funny assignment) to obtain the desired semicompketjcend ¢’, which are
funny assignments with(g) = s(¢') = ¢ + 1.

Next, suppose thaf is half-defined on level.

(a) If the variablev has the forme, ; ., then we extend' as follows: sety, arbitrarily if it is not already

14

defined, and then extend the result so that it is either a dogakzation or a funny realization at level
¢. The resulting assignmentis a semicompletion of [v — g(v)] wheres(g) = s(f).

(b) If the variablev has the formr)_ o then take the assignment from the previous item (a); fan eac
value ofb € {0, 1}, this assignment can be extended to be defined on the varigblg; , so that itis
equal tob onxjy ;s andy’; o« 1y Tp41 5 = 1. The resulting extensions are semicompletions of
f[v — b] and f[v — —b] with scorel + 1.

(c) Otherwise, the variable has the formz,, ;/;» or occurs at level + 2 or later. We first take the
extensionh of f that is described in item (a); is defined on all variables in levél If h is equal to a
funny realization at leved, then pickb arbitrarily; it is straightforwardly verified that there ésfunny
assignmeny that is a semicompletion df[v — b]; this assignmeng hass(g) = ¢ = s(f). If his
equal to a normal realization at levélthen one can straightforwardly verified that bathy — b]
andh[v — —b] have semicompletiong and ¢’ (respectively) which are funny assignments having

s(g) =s(g) =(+1.

O

Lemma 6.5 Letd,n € N be such tha < d < 2n. Each assignment € F,, n H(®,,d) hass(f) >
n — [d/2].

Proof. Suppose thaf € F,, n H(®,,d). It cannot be thaff is a funny assignment, as for any funny
assignmentf, the QBF®,,[f] is true as a consequence of Proposition 6.3. Thissa normal assignment.
Suppose, for a contradiction, thdtf) < n—[d/2]. In this casef is not defined on any of thevariables in
the last{d/2] levels, that isf is not defined on any of thévariables in levels. — ([d/2] + 1),...,n—1,n.
As a consequence, the prefix ®f,[f] is notII;. Now, consider the relaxatiot’ = P ¢ of D, f]
witnessing thatf € H(®,,,d). Since P’ is Iy, it must hold that, inP’, there exists a leveh e {n —
([d/2] +1),...,n — 1,n} such that the variablg; comes before the variables .

We prove thatd’ is true (this suffices, as it contradicfs e H(®,,d)). We describe ad-winning
strategy for®’, as follows. After each level is set, the resulting assigmni®in F,,. When it is time to set
an3-variable in leveli, first check if it holds thai = m and no previous level is set to a funny realization.
If these two conditions hold, then levek m is set to a funny realization. Otherwise, the variables\adlle
i are set as follows.

o If a previous level is set to a funny realization, then thealges inX/ v X; are set so that the resulting
assignment remains funny (this can in fact be done withakifg at the value of;).

¢ Otherwise, proceed as follows. The variablestihare set so that the sum of their values is equal to
1. The variables inX; are set so that, at levélone obtains either a normal or funny realization.

This 3-strategy is winning, as no matter how the universal play&ys, the end assignment will be a funny
assignment (defined on all variables), which satisfies allsg#s (Propositidn 8.3)]

By Theorem 6.4 and Lemnia 6.5, in conjunction with Theofem d&nh@ Lemmd_4)8, we obtain the
following result.

Theorem 6.6 Tree-like relaxing QU-res requires proofs of si2€2™) on the sentencep,, },,>1.

15

7 Lower bound for relaxing QU-res

We define a family of QBCs, to be studied in this section, akfid. Letn > 1. Defineﬁn to be the
quantifier prefixdz; Yy, ... 3z, Yy,. Defineg, ; to be true if and only ifj + >3 | (z; + v;) # n (mod 3).
Define®,, to be the sentencﬁn : ¢n,0; these are the sentences that will be used to prove the lavugrdh
It is straightforward to verify thap,, can be represented as a circuit of size polynomial,iand we assume
that¢,, is so represented. We will also make use of the QBCs definekl,jy= B,: Onj-

Proposition 7.1 For eachn > 1, the sentencé,, is false.

It is straightforward to verify that a winning-strategy is to set the variabig to the value—z;.

To obtain the lower bound, we show that for any prepthe graph(7) must have exponentially many
sinks. We begin by showing that any assignment to an inidghgent of thed-variables can be mapped
naturally to a sink.

Lemma 7.2 Let 7 be a relaxing QU-res proof ob,, from an axiom set, and suppoge> 1. Let f :
{r1,...,Zn_pt/21} — {0, 1} be an assignment. There exists a sink/¢f) whose label agrees witf.

We next show that each sink must be defined on a variable tbatstowards the enaf the quantifier
prefix, made precise as follows.

Lemma 7.3 Letw be a relaxing QU-res proof ob,, from axiom set (®,I1;), wheret > 2 andn > [t/2].
Each sink of(7) has a labek that is defined on one of the following variables:

Tn—([t/2]-1)s Yn—([t/2]-1)1 - - - » Tn—15Yn—1, Tn; Yn-

Proof. Suppose that there exists a sink@fr) with label a that is not defined on one of the specified
variables. We show that arly;-relaxation of®,,[a] is true, to obtain a contradiction. It suffices to prove
that, forany assignmentf : {z1,y1,.. ., Zp_p/2]s Yn—ji/2)} — {0,1}, anyIl;-relaxation of®,[f] is true.
The sentencé,,[f] is truth-equivalent to a sentence of the fodm) ;. This latter sentence has an even
number of variables which number is greater than or equaland is nofil;. Now consider al;-relaxation
Pt ¢pipa1,j Of @191 We claim that this relaxatiol® : ¢y,) ; is true. SinceP is all,-relaxation of the

prefix of @5 ;, there exists a variable, such thaty, appears to its left in®. We describe a winning
J-strategy that witnesses the truth of the relaxation. Fashsider the case that= 1. In this case, the
variablesz; andx, can be set so thay + 21 + zo = —j (mod 3), and each other variable can be set
to be not equal t@;_,. Then, no matter how the universal variables are set, thed$wath of the variables
excludingy, will be y1 + 1 + 20 + (y2 + @3) + -+ + (Yn1 + xp) = Y1 + 1 + 22 + (n — 2) =
n+1—7j (mod 3). Then, no matter how,, is set, the final suns$' of the variables will haveS # n — j
(mod 3). In the case that # 1, the variabler, is set arbitrarily, and the variables; andx;, are set
so thatzy + yx—1 + yx + 2k + 241 = 1 — j (mod 3). Each other variable; is set to be not equal to
yi—1. No matter how the universal variables are set, the sum aifdhe variables excluding,, will be
1+ Yk-1+yr +xp +xp1 + (n—3)=n+1—j (mod 3), which is sufficient as in the previous case.
]

Whenf is a partial assignment df,,, we refer to the elements ¢b | v < last(f)}\dom(f) asholes

Lemma 7.4 Letr be a relaxing QU-res proof ob,, from an axiom set of the foril (®,,,I1;). Each sink
of G(m) has a labelf having at most one hole.

16

Proof. Suppose thaf has2 or more holes. There exist extensiofss f1, and f2 defined onV = {v | v <
last(f)} such thaty] ,, fi(v) =4 (mod 3) for eachi = 0,1, 2. Itis straightforward to verify that one of
the QBCs®,,[fo], Pu[f1], Pn[f2] is true, implying the truth ofb,,[/] and contradicting thatlause(f) is
an axiom inH (®,,, I1;). []

Theorem 7.5 Suppose that > 2 and thatn > [¢/2]. Letw be a QU resolution proof ob,, from the axiom
setH (®,,11;). The graphG(r) has at lease”~[*/21-1 sinks.

Proof. By Lemmé& 7.2, for each assignmefit {1, ..., x,_[;/21} — {0, 1}, there exists a sink; of G(r)
whose label agrees witf. For each labe§ of each sink, any variable ifwy, . .., z,_f)} on whichg is
not defined must be a hole gf by Lemmd 7.B.

Fix a mapping taking each such assignmgt such a sink;. Since the label of each sink has at most
1 hole (by Lemmd_7]4), each sink is mapped to by at most two mssgts. Hence the number of sinks
must be at least the number of assignments of the fotnfw:, ..., z, 2} — {0, 1} divided by two.[]

From the previous theorem, we immediately obtain the fathguw

Theorem 7.6 Relaxing QU-res requires proofs of si2¢2™) on the sentencefb,, },,>1.

8 Discussion

Beyond the proof systems discussed already in the papeaheanoatural way to certify the falsity of a
QBF is by explicitly representing a winning-strategy. Sometimes, the QBF literature refers to methods
for extracting strategies from falsity proofs or by outfiffia solver; this notion is often callextrategy
extraction

We can formalize a proof system ensemble based on explmisentation of/-strategies, as follows.
We use the notation in Sectibh 2. Letbe a QBC, and lefl be an axiom set ob. Let us define aircuit V-
strategyto be a sequence of circuité’,),y Where eacl, has| X, | input gates, which are labelled with
the elements oK _,. Such a sequendg’,),cy naturally induces &-strategy(r,),cy for . We say that
(Cy)yey Is awinning circuitV-strategy with respect té/ if for every assignment : X — {0, 1}, it holds
that({r, o) falsifies a clause /. This naturally yields a proof system ensemple r), wherer(k) = k + 4
and A acceptgk, (@, 7)) when the following condition holdst is a winning circuitv-strategy for® with
respect ta (®, I1 1 5), that is, if for each assignmeant: X — {0, 1}, there exists a claugé € H (P, II;2)
such that(r, o) falsifiesC. The latter formulation of the condition can be checked withess to &I, _,
oracle (equivalently, & 4 oracle). We call this proof system ensemigtaxing stratex

From a result appearing in previous work [19, Section 3tigan be shown that winning circuit-
strategies can be efficiently computed from QU-resolutitofs. This implies the following.

Proposition 8.1 (derivable from[19, Section 3.1]) Relaxing stratex effeadlyy simulates relaxing QU-res.

The QBC family studied in the previous section had very sampinning V-strategies which can clearly
be represented by polynomial-size circuits. We can thuslade from Theorerh 716 that relaxing QU-res
does not simulate relaxing stratex. The separation betieerike relaxing QU-res and (general) relaxing
QU-res (Proposition 611 and Theorém]6.6) implies that likeerelaxing QU-res does not simulate relaxing
QU-res, while itis clear that relaxing QU-res simulateglige relaxing QU-res. The technical results under
discussion can thus be summarized via a small hierarchyoof gystem ensembles: tree-like relaxing QU-
res is simulable by relaxing QU-res, but not the other wayiatp and, relaxing QU-res is simulable by
relaxing stratex, but not the other way around.

17

References

[1] Albert Atserias, Johannes Klaus Fichte, and Marc Thurl€lause-learning algorithms with many

restarts and bounded-width resolutiagh Artif. Intell. Res. (JAIR)40:353-373, 2011.

[2] Valeriy Balabanov and Jie-Hong R. Jiang. Resolutionofsaand skolem functions in QBF evalua-

tion and applications. IComputer Aided Verification - 23rd International Conferen€AvV 2011,
Snowbird, UT, USA, July 14-20, 2011. Proceedjmmyes 149-164, 2011.

[3] Valeriy Balabanov, Magdalena Widl, and Jie-Hong R. gia@BF resolution systems and their proof

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

complexities. InTheory and Applications of Satisfiability Testing - SAT 20147th International
Conference, Held as Part of the Vienna Summer of Logic, V3U4,20ienna, Austria, July 14-17,
2014. Proceedinggages 154-169, 2014.

Paul Beame, Henry A. Kautz, and Ashish Sabharwal. Towamiderstanding and harnessing the
potential of clause learningl. Artif. Intell. Res. (JAIR)22:319-351, 2004.

Paul Beame and Toniann Pitassi. Propositional proofmderity: Past, present and futurBulletin of
the EATCS65:66—-89, 1998.

Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigdersdtear optimal separation of tree-like and
general resolutionCombinatorica 24(4):585-603, 2004.

Eli Ben-Sasson and Avi Wigderson. Short proofs are narragesolution made simpleJ. ACM
48(2):149-169, 2001.

Marco Benedetti. skizzo: A suite to evaluate and cer@BFs. InAutomated Deduction - CADE-20,
20th International Conference on Automated Deductionljnial Estonia, July 22-27, 2005, Proceed-
ings, pages 369-376, 2005.

Olaf Beyersdorff, Leroy Chew, and Mikolas Janota. Orfigation of QBF resolution-based calculi. In
Mathematical Foundations of Computer Science 2014 - 3Q#rnational Symposium, MFCS 2014,
Budapest, Hungary, August 25-29, 2014. Proceedings, Pgoabes 81-93, 2014.

Olaf Beyersdorff, Leroy Chew, and Mikolas Janota. dfrmomplexity of resolution-based QBF calculi.
In 32nd International Symposium on Theoretical Aspects ofiliwen Science, STACS 2015, March
4-7, 2015, Garching, Germanpages 76—89, 2015.

Olaf Beyersdorff, Leroy Chew, and Karteek Sreenivalsai A game characterisation of tree-like g-
resolution sizeElectronic Colloquium on Computational Complexity (ECCZ)14.

Maria Luisa Bonet, Juan Luis Esteban, Nicola Galesi, &8n Johannsen. On the relative complexity
of resolution refinements and cutting planes proof syst&isM J. Comput.30(5):1462-1484, 2000.

Hans Kleine Biining, Marek Karpinski, and Andreasddt Resolution for quantified Boolean formu-
las. Information and Computatiqril7(1):12—-18, 1995.

Hubie Chen. Beyond g-resolution and prenex form: A psystem for quantified constraint satisfac-
tion. CoRR abs/1403.0222, 2014.

18

[15] Hubie Chen. Proof complexity modulo the polynomial rarehy: Understanding alternation as a
source of hardnes€oRR abs/1410.5369, 2014.

[16] Stephen A. Cook and Robert A. Reckhow. On the lengthsrobfg in the propositional calculus
(preliminary version). IrProceedings of the 6th Annual ACM Symposium on Theory of Gimgp
April 30 - May 2, 1974, Seattle, Washington, UPAges 135-148, 1974.

[17] Uwe Egly, Florian Lonsing, and Magdalena Widl. Longtdince resolution: Proof generation and
strategy extraction in search-based QBF solving.Ldgic for Programming, Artificial Intelligence,
and Reasoning - 19th International Conference, LPAR-18l|eBtbosch, South Africa, December 14-
19, 2013. Proceedingpages 291-308, 2013.

[18] Allen Van Gelder. Contributions to the theory of praeli quantified boolean formula solving. In
Principles and Practice of Constraint Programming - 18tkelmational Conference, CP 2012, €hec
City, QC, Canada, October 8-12, 2012. Proceedjmqgges 647—663, 2012.

[19] Alexandra Goultiaeva, Allen Van Gelder, and Fahiem &@ars. A uniform approach for generating
proofs and strategies for both true and false QBF formuladJTAI 2011, Proceedings of the 22nd
International Joint Conference on Atrtificial IntelligencBarcelona, Catalonia, Spain, July 16-22,
2011, pages 546-553, 2011.

[20] Armin Haken. The intractability of resolutioheor. Comput. S¢i39:297-308, 1985.

[21] Marijn Heule, Martina Seidl, and Armin Biere. A unifiedqof system for QBF preprocessing. In
Automated Reasoning - 7th International Joint Conferehd@AR 2014, Held as Part of the Vienna
Summer of Logic, VSL 2014, Vienna, Austria, July 19-22, 2Bigceedingspages 91-106, 2014.

[22] Mikolas Janota, Radu Grigore, and Joao MarquesaSi®n QBF proofs and preprocessing.Liogic
for Programming, Artificial Intelligence, and Reasoning9ti International Conference, LPAR-19,
Stellenbosch, South Africa, December 14-19, 2013. Prangggages 473—-489, 2013.

[23] Mikolas Janota and Joao Marques-Silva. On propasali@BF expansions and Q-resolution.3AT,
pages 67-82, 2013.

[24] Pavel Pudlak and Russell Impagliazzo. A lower boundDaL algorithms fork-sat (preliminary
version). InProceedings of the Eleventh Annual ACM-SIAM Symposium eor&e Algorithms,
January 9-11, 2000, San Francisco, CA, US#fages 128-136, 2000.

[25] Horst Samulowitz and Fahiem Bacchus. Using SAT in QBRP1iinciples and Practice of Constraint
Programming - CP 2005, 11th International Conference, CBZ®itges, Spain, October 1-5, 2005,
Proceedingspages 578-592, 2005.

[26] N. Segerlind. The complexity of propositional prooBull. Symbolic Logic13:417-626, 2007.

[27] Yinlei Yu and Sharad Malik. Validating the result of aantified boolean formula (QBF) solver:
theory and practice. IRroceedings of the 2005 Conference on Asia South Pacifigbdsitomation,
ASP-DAC 2005, Shanghai, China, January 18-21, 2@@ges 1047-1051, 2005.

19

A Proof of Proposition[3.4

Proof. For the forward direction, IgtA,) be a polynomially bounded proof system ensemblefoket &
and f be as in Definitio 313. FiX’ = r(k). Let¢ be a polynomially such that for each strimgit holds
that|f(x)| < q(]z|). Membership of a given string in L can be decided by nondeterministically guessing
a stringr of length less than or equal td|z|), and then checking ift5(*) accepts; this places in the
polynomial hierarchy.

For the backward direction, suppose thais in the PH. Then, there existskae N and a polynomial
time algorithmB which may make oracle calls (k') such thatB5(*') accepts a stringz, 7) if and only
if x € L. Definer to map eactn € Nto k’. The pair(B, r) is readily verified to be a proof system ensemble
which is polynomially bounded (indeed, with respect to thastant polynomial equal everywherelio]

B Proof of Proposition[4.7

Proof. Suppose first thatk, (¢, 7)) is accepted byAd. Then,r is a QU-resolution falsity proof ofo
from axioms inH (®,11;,,); by Propositior 45 H(®,II;,2) is an axiom set ofd, so it follows from
Propositior 4. that the QB@ is false.

Suppose tha® = P ¢ is a false QBC; lefl” denote its variables. Let' be the set that contains
each assignment : V — {0, 1} that falsifies¢. We have that) has the same satisfying assignments as
¢' = /\jer clause(f). Hence the QBGY' = P : ¢ is also false. It is known that there exists a QU-
resolution proofr of ® ending with the empty clause, from axiom 96t = {clause(f) | f € F}; this
follows from thecompletenessf Q-resolution on clausal QBF. Sindér < H(®,1l;) for eachk, it
holds thatA acceptgk, (®,7)). [

C Proof of Lemmal4.8

Proof. Suppose that € H(®,11,,) and thaty is a semicompletion of. Suppose that € dom(g)\dom(f).
Assume thatlom(f) is non-empty. Iflast(f) is aV-variable, then by definition of semicompletion, either
v < last(f); or, each variable of the quantifier blocklat(f) is in dom(f) andv occurs in the quantifier
block (of 3-variables) immediately following the block dfist(f). If last(f) is an3-variable, then by
definition of semicompletion, it holds that< last(f). In each of these cases and also whem(f) = ¢4,

it holds thatv is in the first quantifier block o®|[f], which block is existentially quantified.

We have thus established that each variabléoim(g)\dom(f) is existentially quantified i®[f]. Let
®' = P : ¢ be a falsdl,,-relaxation of®[f]. Let ®” be the sentence obtained frabnby replacing each
variablev € dom(g)\dom(f) with the constang(v) in ¢', and removing each sueh(and its accompanying
quantifier) fromP’. We have thafl” is all,,-relaxation of® [g], and that the falsity o®’ implies the falsity
of ®".]

D Proof of Proposition[6.1

Proof. We prove, by induction, that far= 0, ..., n, it holds that, for eachi € {0, 1}, the clauser,,_. o v
Zn—c,j,1 IS derivable from®,, by QU-resolution. For = 0, we have that the two clauses of concern are
contained inB. Suppose that € [n] and that the claim is true far — 1. By induction, we have that

20

the two clausedy = z,,_(c—1),0,0 V Tn—(c—1),041 ANAD1 = Tp,_(c_1),1,0 V Tp_(c—1),1,1 are derivable by
QU-resolution. By resolving the clauge, with the two clauses in

{_'l'n—(c—l),O,k VvV Y vV x;/—(c—l)707k; | ke {07 1}} <1, —(c—1)

we derive the clausewy; v x;_(c_1)70,0 v x%—(c—l)p,ﬁ by applyingV-elimination, we derive the clause
Ey = 5'3%7((;71) 00V 5'3%7((;71) 0.1+ Similarly, by resolving the clausP; with the two clauses in
{mn—(c—1)16 v ¥ v x;f(cfl),l,k | ke{0,1}} € T (e

we derive the clausg; v 95;%(071),1,0 v 5'3%7((;71),1,1; by applying V-elimination, we derive the clause
Ey =2, _(c—1)1.0 Y Tp_(c—1),1,1- BY resolvingEy and E, with the clauses iff,,_(._1),0, we derive the
clauser;,,—c0,0 vV Zn—c0,1- Similarly, by resolvingky, and £, with the clauses i, _._1);, we derive the
clauser,_. 1,0 Vv n—.1,1. This concludes the proof of the claim.

The empty clause is obtained by resolving the unit clagses ; . | 7,k € {0,1}} < B with the clause
20,0,0 V To,0,1, Or with the clauserg 10 v x¢,1,1. The resulting proof has linear size, since each step of the

induction requires a constant amount of size.

E Proof of Lemmal7.2

Proof. Fix such an assignmerfit Since the empty assignment, the label of the root, agretbsfwit suffices

to show the following: each non-leaf nodevhose label agrees with, has an edge to a node which agrees
with f. If u has one outgoing edge, then this is clear by the descriptid?rapositiori 4.9. Ifu has two
outgoing edges, let be the variable described in Propositlonl4.9v 6 universally quantified, then both
of its children agree witlf; if v is existentially quantified, then one of the children musiehabela where
a(v) = f(v); this child’s labela then agrees wittf. []

21

	1 Introduction
	2 Preliminaries
	3 Proof system ensembles
	4 Relaxing QU-resolution
	4.1 QU-resolution
	4.2 Relaxing
	4.3 A graph-based view

	5 A prover-delayer game for tree-like relaxing QU-res
	6 Separation of the tree-like and general versions of relaxing QU-res
	7 Lower bound for relaxing QU-res
	8 Discussion
	A Proof of Proposition 3.4
	B Proof of Proposition 4.7
	C Proof of Lemma 4.8
	D Proof of Proposition 6.1
	E Proof of Lemma 7.2

