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Abstract 
Imaging single molecules has emerged as a powerful characterization tool in the biological sciences. The 
detection of these under various noise conditions requires the use of algorithms that are dependent on the 
end-user inputting several parameters, the choice of which can be challenging and subjective. In this work, 
we propose DeepSinse, an easily-trainable and useable deep neural network that can detect single 
molecules with little human input and across a wide range of signal-to-noise ratios. We validate the neural 
network on the detection of single bursts in simulated and experimental data and compare its performance 
with the best-in-class, domain-specific algorithms.  
 
Main 
The detection of single molecules is a fundamental step in the computational pipeline dedicated to 
processing single molecule microscopy data. Counting1,2, distancing3,4, localising5–9 and tracking10–12 single 
molecules require different imaging conditions and instrumentation resulting in fluorescent bursts 
characterised by low-to-high signal-to-noise ratios. This poses a challenge to the detection of single 
molecules using a universal algorithm. Segmentation of these molecules has, thus far, relied on user-
chosen kernel functions, such as lowered Gaussians, Difference-of-Gaussians (DoG) or multi-order 
wavelets, and subjective, non-universal related parameters13. All these inputs are not intuitive to the 
amateur user, would require careful tuning before changing the imaging conditions or modality and may fail 
to appropriately segment single molecules under various signal-to-noise ratios yielding unreliable 
performance.  
 
Deep neural networks were recently used in calculating the background under noisy imaging conditions18, 
localizing single emitters at high spatial densities14,15 and accurately counting molecular stoichiometries by 
step-wise photobleaching19. In this work, we developed and used DeepSinse, a simple, multi-layer 
Convolutional Neural Network (CNN) architecture to enable fast detection of single molecules using as few 
parameters as possible. Our neural network is composed of a CNN, a dense layer and a SoftMax 
(classification) layer. The neural network (figure 1a) was first trained to classify simulated ground-truth 
datasets of noise and Gaussian bursts in pre-labelled Regions Of Interest (ROIs), then validated on 
different, unseen, datasets of pre-labelled ROIs. We then tested it on ground-truth generated ROIs (figure 
1b). The neural network is finally deployed by feeding an image into a peak-finding algorithm based on 
identifying regional maxima. The peak-finding algorithm outputs hundreds of noise- and burst- containing 
ROIs which are then fed into the trained network for classification, thus, resulting in an annotated image 
(figure 1c).  
 
To construct the training dataset, 100 particles (bursts) were randomly scattered across images which are 
200 by 200 pixels in size. The standard deviation of each burst was sampled using a random number 
generator confined between 1 and 2 pixels to simulate small and large particles. Each burst was convoluted 
with a 2D Gaussian Kernel. The produced images in counts !! was modified as follows: 
 

!" = !! ∗ $% + '( + )* 
 
Where !" is the image signal in electrons, $% is the quantum efficiency, '( is the dark current and )* is the 
read out noise. The quantum efficiency was set at 95%, dark current was set at 0.0002 electrons/second 
and read out noise was set to 1 electron. These values are typical of commercially available Electron-
Multiplying Charge Coupled Detectors (EMCCDs). To simulate noise, !" was modified as follows: 
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Where 0 is the camera gain (corrected for conversion factor) and * is the camera bias offset. The gain was 
set to 58.8 and offset to 400. This noise model was chosen to best replicate the electron-multiplication 
feature in emCCDs16. Burst-containing, and pure-noise, images were simulated with the formers’ peak burst 
intensities varying from 50 to 100 counts corresponding to signal-to-noise ratios from 24.85 to 45.81 and 
100 images were simulated with pure noise. Pre-annotated ROIs were picked from each of these images, 
intensity scaled between 0 and 1 to ensure the user avoids subjective segmentation parameters such as 
the intensity threshold, shuffled and fed into the neural network for training. To optimize performance, the 
neural network was trained using different ROI radii (figure 2a) and number of ROIs (figure 2b). The 
lowest FNR (61.45%) and FPR (0.3%) were achieved at a ROI radius of 5 pixels and 10,000 training ROIs. 
 
To study the performance of DeepSinse at varying SNRs, we first simulated 100 burst-containing images 
with peak burst intensities varying from 1 to 100 counts corresponding to signal-to-noise ratios from 2.17 to 
45.81. At the lowest simulated SNR of 2.17 (where the particles are visually undiscernible), the FNR is 
91.1% and FPR is 0%. At the highest simulated SNR of 45.81, the FNR is 0% and FPR is 0.1% (figure 2c 
and e). We then tested the performance of DeepSinse with experimentally-obtained images of fluorescent 
beads (see supplementary information). At the lowest acquired mean SNR of 2.88, the measured FNR is 
76.5% and FPR is 0.01%, whilst at the highest acquired mean SNR of 4.5, the measured FNR is 13.76% 
and FPR is 1.25% (figure 2d and f). We compare these metrics with the best in-class, domain-specific 
algorithm used for the detection of single molecules which is based on image wavelet segmentation13. 
Wavelet analysis achieves a FNR of 75% and FPR of 2% at an SNR of 2.6. These figures are worse than 
those measured with DeepSinse, namely, a FNR of 15.5% (5x improvement) and FPR of 0.5% (4x 
improvement) and show the prominence of DeepSinse in detecting single molecules under extreme noise 
conditions and low SNRs reaching 2.17. 
 
To ensure applicability on a real biological sample acquired at the single molecule level, we used an 
exemplary dataset of a U2OS cell expressing the GFP-tagged nucleoporin component (Nup96) of the 
nuclear pore complex labelled with Alexa647-tagged-Anti-GFP nanobody and imaged using dSTORM17 
(see Data availability). Molecules detected in single molecule localization microscopy are subjected to 
strict filtering to ensure the localization precision is minimized (see Supplementary information). We 
assessed the performance of DeepSinse and wavelet filtering by comparing the number of detected 
particles pre filtering (figure 3a) and the fraction of rejected particles post filtering (figure 3b) in 1000 
frames. DeepSinse outperformed wavelet filtering, detecting 31331 particles (8810 of which were filtered 
corresponding to 28%) compared to 45131 for wavelet filtering with a peak intensity threshold applied 
(32747 of which were filtered corresponding to 73%) and 837129 without a peak intensity threshold applied 
(32747 of which were filtered corresponding to 99%). We, subsequently, used DeepSinse to classify all 
ROIs extracted from 90,000 of the dataset and processed them in a similar fashion to that reported in17 to 
produce a super-resolved image where the ring-like structure of the nucleoporin assembly organized into 
an oligomer of 8-mer configuration was clearly resolvable as per the original account (figure 3c). 
 
There are two important factors characterizing the performance of DeepSinse: accuracy and speed. In the 
above, we provided an extensive comparison of the accuracy achieved by DeepSinse in detecting single 
molecules, even at extremely low SNRs across simulated and experimental data. Since the performance of 
DeepSinse is dependent on the simulated data resembling the experimental data, we expect the 
performance to be further improved if the training data is extracted from experimentally obtained images. 
For this reason, we have included a ROI-picker which the end user can utilize in selecting ROIs from 
experimental data to train the neural network (see Data availability). In terms of speed, DeepSinse can be 
trained using 10,000 ROIs on a mid-class Graphical Processing Unit (GPU) NVIDIA GeForce GTX 1650 for 
12 seconds or an Intel Core i7-9750H CPU running at 2.60GHz for 11 seconds. DeepSinse can be 
deployed using 1,000 frames which are 200 by 200 pixels in size in 40 seconds using the named GPU or 1 
minute and 20 seconds on the named CPU. By comparison, Wavelet filtering with, and without, the 
application of a peak intensity threshold takes 9 minutes, and 10 seconds, respectively. 
 
DeepSinse presents a novel paradigm in the detection of single molecules. The versatility, high selectivity, 
dependence on modest resources and speed in training and testing of the proposed neural network, as 
discussed above, are strong warrants for its adoption in all single molecule microscopy data processing 
pipelines. Importantly, our simple network does not depend on the application of any subjective peak 



intensity threshold and is capable of detecting single molecules under extreme noise conditions; therefore, 
pushing detection limits with current instrumentation to new heights. Our proposed network can be 
augmented with other, previously-developed neural networks to migrate to smart and fully-automated 
analysis pipelines for single molecule microscopy data. To facilitate this, we have built an easy-to-use 
Graphical User Interface (GUI) for generating simulated data, training the neural network and accessing the 
performance of the trained network (see Code availability). Furthermore, we made available a number of 
pre-trained networks at different camera gain values which can be integrated in any MATLAB© based code 
(see Code availability). 
    
Data availability 
Except for the exemplary nucleoporin dataset which is publicly available on the BioImage Archive 
(https://www.ebi.ac.uk/biostudies/files/S-BIAD8/Library/GFP/AB/raw/GFP_AB-AF647_190528_8.zip), 
ground-truth generated data and experimentally-obtained data used for testing and validating the neural 
network are available as supplementary data. 
 
Code availability 
Ground truth ROI simulating code, neural network training, validation code, classification code, ROI picker, 
GUI for simulating, training and validating DeepSinse as well as pre-trained networks are all released under 
the MIT License on www.github.com/jdanial/DeepSinse.The dSTORM dataset processing code is released 
under the MIT License on www.github.com/jdanial/StormProcessor. 
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Figures 
 

 
 
Figure 1 Single molecule segmentation pipeline using DeepSinse. (a) Architecture of the neural network 
used in segmenting single molecule bursts from noise. The CNN layer is connected to a dense (i.e. fully-
connected) layer. The dense layer is connected to a SoftMax for normalization which, in turn, is connected 
to a classification layer. Number of trainable parameters is 21,802. (b) The neural network is first GPU-
trained on ground-truth, pre-labelled (i.e. annotated) ROIs divided into two classes; particle (P) or Noise 
(N). The ROIs are fed-forward into the network and a loss function is evaluated every mini-batch of 10 
ROIs. Following training on a complete dataset, the network is validated on unseen data and the 
classification accuracy is calculated based on the correspondence between the generated and network-
output classes. The network is finally tested on the CPU or GPU on unlabelled ROIs and the class for each 
ROI is extracted. (c) The network is, finally, deployed by feeding an image into a peak-finding algorithm 
which identifies regional maxima based on their 8 nearest neighbours’ connectivity. The algorithm locates 
several hundred ROIs containing noise and particles and the ROIs are fed into the neural network which 
eventually segments the particles producing an annotated image.   
  



 
 
Figure 2 Systematic analysis of the performance of the neural network for parameter-tuning and validation 
purposes. Measurement of the FNR and FPR against (a) the radius of ROIs and (b) number of ROIs. (c) 
SNR of simulated ROIs and (d) SNR of experimentally-obtained ROIs. Exemplary (e) simulated and (f) 
experimentally-obtained images of particles at different SNRs. 
 
  



 
 
Figure 3 Comparison of the performance of a wavelet filter with DeepSinse for blinking particles obtained 
from a publicly available exemplary dataset (see Data availability). (a) Number of detected particles and 
(b) fraction of rejected particles obtained using a wavelet filter and peak intensity threshold set to 0 photons 
[Wavelet filter (-)], wavelet filter and peak intensity threshold set to standard deviation of the first wavelet 
level [Wavelet filter (+)] and DeepSinse for 1000 frames of the entire data set. (c) Super-resolved image of 
the exemplary data set produced following detection of particles using DeepSinse and subsequent filtering.     
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