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aDepartment of Statistics and Operations Research, University of Vienna, Austria
bESSEC Business School of Paris, France

cDMEIO, Universidad de La Laguna, Tenerife, Spain

Abstract

We analyze the polytope associated with a combinatorial problem that combines

the Steiner tree problem and the uncapacitated facility location problem. The

problem, called connected facility location problem, is motivated by a real-world

application in the design of a telecommunication network, and concerns with

deciding the facilities to open, the assignment of customers to open facilities,

and the connection of the open facilities through a Steiner tree. Several solution

approaches are proposed in the literature, and the contribution of our work is a

polyhedral analysis for the problem. We compute the dimension of the polytope,

present valid inequalities, and analyze conditions for these inequalities to be

facet defining. Some inequalities are taken from the Steiner tree polytope and

the uncapacitated facility location polytope. Other inequalities are new.
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1. Introduction

This article concerns with the connected facility location problem (ConFL)

arising in the design of a telecommunication network. It is defined as follows.

Let I be the set of locations where a facility can be opened. Let J be the set of

customers. Each customer must be assigned to an open facility. Let K be the

set of intermediate nodes, i.e., locations that can be used for connecting open
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facilities. All facility nodes can also be used for connection, regardless whether

they are opened or not. In telecom terminology, J represents terminals and

S = I ∪K represents Steiner nodes. The ConFL problem consists of selecting

a subset of I where facilities are opened, connecting these facilities through a

tree structure that may use other Steiner nodes, and assigning the customers

to open facilities. There are costs associated with opening facilities, connecting

Steiner nodes, and assigning customers to facilities. The aim of ConFL is to

find a minimum-cost solution.

Figure 1(a) shows an instance of the problem and Figure 1(b) gives a feasible

solution. In the figure, I = {i1, . . . , i4}, J = {j1, . . . , j5} and K = {k1, k2}.

Open facilities in the feasible solution are indicated in black. Note that in the

solution, facility i3 is not opened, but it is used for the connection.
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(b) Solution.

Figure 1: An instance of the ConFL problem in (a), and a feasible solution in (b).

The ConFL problem has been extensively addressed in the literature (see

e.g., [3, 4, 6, 7, 8, 9]), but all works concern solution approaches and computer

implementations. To our knowledge, this paper is the first investigation of the

ConFL polytope and it contributes to the literature with new inequalities.

Section 2 describes the notation that is used in this work. Section 3 computes

the dimension of the ConFL polytope. Section 4 adapts valid inequalities from

the literature, and Section 5 introduces new inequalities. In all cases, conditions

for the inequalities to define facets are investigated.

Some results in this work were adapted to the asymmetric ConFL problem
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and presented in the “International Symposium on Combinatorial Optimiza-

tion” (Lisbon, 6-7 March 2014) [10].

2. Notation

Let G = (V,ES , AJ ) be a mixed graph where V = S ∪ J , the edge set

ES represents possible connections between Steiner nodes, and the arc set AJ

represents possible assignments of customers to facilities. In the context of

telecommunication, the edges represent the optical fiber cables in the core net-

work, and the arcs represent the copper cables connecting the customers to the

core network through servers. The graph (S,ES) is called core graph, and it is

assumed in this work to be complete, i.e., ES = {{s1, s2} : s1 ∈ S, s2 ∈ S}. The

graph (I ∪ J,AJ) is called assignment graph, and it is assumed to be complete

bipartite, i.e., AJ = {(i, j) : i ∈ I, j ∈ J}. We also assume |I| ≥ 3 and |J | ≥ 3.

Finally, let c : ES ∪ AJ → R
+
0 and f : I → R

+
0 be given cost functions.

The ConFL problem can be modeled by using the following binary variables:

xe =







1 if edge e is part of the solution

0 otherwise

for e ∈ ES ;

ys =







1 if node s is part of the solution

0 otherwise

for s ∈ S;

zi =







1 if facility i is opened

0 otherwise

for i ∈ I;

aij =







1 if facility i serves customer j in the solution

0 otherwise

for i ∈ I, j ∈ J.

For convenience of notation, we write (H : L) := {{s1, s2} ∈ ES : s1 ∈ H, s2 ∈

L} for H,L ⊂ S. For brevity, we write E(H) instead of (H : H) and δ(H)

instead of (H : S \H). We also write x(F ) :=
∑

e∈F xe and y(H) :=
∑

s∈H ys

for F ⊆ ES and H ⊆ S.
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Using this notation, a formulation for the ConFL problem is:

min
∑

e∈ES

cexe +
∑

i∈I

fizi +
∑

(i,j)∈AJ

cijaij (1)

∑

i∈I

aij = 1 ∀j ∈ J (2)

aij ≤ zi ∀i ∈ I, ∀j ∈ J (3)

zi ≤ yi ∀i ∈ I (4)

x(E(S)) = y(S)− 1 (5)

x(E(H)) ≤ y(H)− ys ∀H ⊂ S, ∀s ∈ H : |H | ≥ 2 (6)

(x, y, z, a) ∈ {0, 1}|ES|+|S|+|I|+|AJ | (7)

Constraints (2) force that every customer is assigned to a facility. Constraints

(3) ensure that a customer may be assigned to a facility when this facility is open.

Constraints (4) guarantee that a Steiner node with an open facility must be in

the solution. Constraints (6) are generalized subtour elimination constraints

and, together with (5), ensure that the solution is a tree in the core network

(see e.g. [13]). We will denote inequalities (6) as yGSECs and use (yGSEC) as

abbreviation for formulation (1)–(7).

We now analyze the polyhedral structure of the convex hull of the solutions

in (2)-(7). Let P be this polytope.

3. Dimension

The dimension of P can be derived by using a lifting theorem based on the

dimensions of other known polytopes. Let S be the polytope of the spanning

tree problem, U be the polytope of the uncapacitated facility location problem,

and Px,z,a
y (S′) = conv{(x, y, z, a) ∈ P : ys = 1, ∀s ∈ S′} be an intermediate

polytope for S′ ⊆ S. The projection of Px,z,a
y (S) on the x-space is S, and on

the (z, a)-space is U . Since Px,z,a
y (S) = S × {ys = 1, ∀s ∈ S} × U , all facets of

S and U are also facets of Px,z,a
y (S).

Starting from the dimension of Px,z,a
y (S), we compute the dimension of the

intermediate polytope, which leads to the dimension of P = Px,z,a
y (∅).
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Theorem 1. dim(Px,z,a
y (S)) = |ES | − 1 + |AJ |+ |I| − |J |.

Proof. The dimension of S is |ES |− 1 (see [2]) and the dimension of U is |AJ |+

|I| − |J | (see [1]).

Theorem 2. For each S′ ⊆ S, dim(Px,z,a
y (S′)) = |ES |+ |S| − 1 + |AJ |+ |I| −

|J | − |S′|.

Proof. Clearly dim(Px,z,a
y (S′)) ≤ |ES | + |S| − 1 + |AJ | + |I| − |J | − |S′| since

Px,z,a
y (S′) ⊆ R

|ES |+|S|+|AJ |+|I| and the |J | equalities (2), equality (5) and |S′|

equalities ys = 1 are linearly independent. For the other direction, i.e., to prove

that dim(Px,z,a
y (S′)) ≥ |ES | + |S| − 1 + |AJ | + |I| − |J | − |S′|, we claim that

there are |ES |+ |S|+ |AJ |+ |I| − |J | − |S′| affinely independent solutions for a

given S′. This is proven next by induction on the cardinality of S \ S′.

When |S′| = |S| the claim follows from Theorem 1. Suppose now that the

claim holds for a set S′ with |S′| = ρ and consider the set S′′ = S′ \{s} for some

s ∈ S′. By the induction hypothesis, there exist |ES |+ |S|+ |AJ |+ |I| − |J | − ρ

affinely independent solutions, all with ys = 1. To prove the claim, we need a

solution with ys = 0. This solution exits by the assumption that the instance

has at least two facilities and each facility is connected to all customers.

Corollary 1. dim(P) = |ES |+ |S| − 1 + |AJ |+ |I| − |J |.

Theorem 2 for S′ = {s} proves the following result.

Corollary 2. Inequalities ys ≤ 1 are facet-inducing for P for all s ∈ S.

4. Inequalities from the Uncapacitated Facility Location and Span-

ning Tree polytopes

The proof of Theorem 2 shows that every removal of a node from S increases

the dimension of Px,z,a
y (S) by one. Therefore the facets of Px,z,a

y (S) can be lifted

to P with the following result.
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Lemma 1 ([12]). Let 1, 2, . . . , u ∈ S. Let

∑

e∈ES

αexe +
∑

i∈I

δizi +
∑

(i,j)∈AJ

ζijaij ≥ η

be any facet-inducing inequality for Px,z,a
y (S). Then the lifted inequality

∑

e∈ES

αexe +

u∑

s=1

βs(1− ys) +
∑

i∈I

δizi +
∑

(i,j)∈AJ

ζijaij ≥ η

is valid and facet-defining for Px,z,a
y (S \ {1, 2, . . . , u}), where

βs :=η −min

{
∑

e∈ES

αexe +
s−1∑

k=1

βk(1− yk) +
∑

i∈I

δizi +
∑

(i,j)∈AJ

ζijaij :

(x, y, z, a) ∈ Px,z,a
y (S \ {1, 2, . . . , s− 1}) and ys = 0

}

for 1 ≤ s ≤ u.

The previous lemma allows us to obtain facets of P from facets of the unca-

pacitated facility location polytope U .

Theorem 3. The following inequalities are facet-inducing for P:

(a) aij ≤ zi, for all i ∈ I and j ∈ J ;

(b) aij ≥ 0, for all i ∈ I and j ∈ J ;

(c) zi ≤ yi, for all i ∈ I.

Proof.

(a) The inequality induces a facet of U , see [1]. Consider an arbitrary sequence

of S to lift the β coefficients. For lifting node i, in any feasible solution,

zi = 0 when yi = 0 due to (4), and also aij = 0 due to (3). A feasible

solution exists since the core network is a complete graph and the customer

network is bipartite. Thus, we get βi = 0 as lifting coefficient. When lifting

node s with s 6= i, one can either choose both zi = aij = 1 or zi = aij = 0

in a feasible solution; in both cases, we get βs = 0.
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(b) Every aij ≥ 0 induces a facet of U , see [1]. In an arbitrary lifting sequence,

for each s ∈ S there is a solution with aij = 0, thus βs = 0.

(c) Every zi ≤ 1 induces a facet of U , see [1]. Consider an arbitrary lifting

sequence. When lifting node i, zi = 0 due to (4) and thus we get βi = −1.

When lifting node s with s 6= i there is a feasible solution with zi = 1,

thus βs = 0. We obtain −zi − (1 − yi) ≥ −1, which can be rewritten as

zi ≤ yi.

In a similar way, we can derive facet-inducing inequalities of P from the

spanning tree polytope S.

Theorem 4. The following inequalities are facet-inducing for P:

(a) xe ≥ 0, for all e ∈ ES ;

(b)

x(E(H)) ≤ y(H)− yu, (8)

for all H ⊂ S : |H | ≥ 2, u ∈ H, |H ∩ I| ≤ |I| − 1;

(c)

x(E(H)) ≤ y(H)− 1, (9)

for all H ⊂ S : |H | ≥ 2, |H ∩ I| = |I|.

Proof.

(a) Every xe ≥ 0 induces a facet of S, see [2]. Using the assumption that the

graph G is complete and |I| ≥ 3, there is a feasible solution of ConFL with

xe = 0, no matter the lifting sequence of S. Then βs = 0 for all s ∈ S.

(b) −x(E(H)) ≥ −|H |+1 is a facet of S for H ⊂ V, |H | ≥ 2, see [2]. Consider

a lifting sequence for s ∈ S, where we first lift the coefficients of nodes

in S \ H and then in H , with node u lifted last. The lifting coefficient

βs = 0 for each s ∈ S \ H because there exists a feasible solution with
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x(E(H)) = |H |−1. For each s ∈ H \{u}, we get βs = −1 because the best

value for x(E(H)) is |H | − 2. When lifting node u, we get βu = 0 because

there exists a feasible solution not using any node in H by connecting the

customers to a facility outside H . Therefore in the lifting minimization

problem x(E(H)) = 0 and
∑

s∈H\{u} βs(1 − ys) = −|H | + 1. Thus the

resulting facet-defining inequality is −x(E(H)) −
∑

s∈H\{u}(1 − ys) ≥

−|H |+ 1, which can be rewritten as x(E(H)) ≤ y(H)− yu.

(c) Similar to the (b), except in the last step, when lifting node u, there exists

no feasible solution not using any node in H . This is because all facilities

are in H . Thus, we get βu = −1 and therefore the resulting facet-defining

inequality is −x(E(H))−
∑

s∈H(1−ys) ≥ −|H |+1, which can be rewritten

as x(E(H)) ≤ y(H)− 1.

Notice that we just proved that all the inequalities from the formulation (2)-(7)

are facet-inducing, except inequalities (6) for |H ∩ I| = |I| which are dominated

by (9).

Finally, the uncapacitated facility location polytope suggests a new family

of facet-defining inequalities. Let us call injective mapping a function h : I → J

such that h(i1) 6= h(i2) when i1 6= i2. Note that injective mappings exist when

|J | ≥ |I|.

Theorem 5. Let h be an injective mapping. Then the inequality

∑

i∈I

(zi + aih(i)) ≥ 2 (10)

is facet-inducing for P.

Proof. The inequality induces a facet of U , see [5]. Consider an arbitrary lifting

sequence. Regardless of the lifted node s, the optimal objective value of the

lifting problem is 2 because there is a solution where all customers are connected

to the same facility. When s is a facility node, there are other facilities to connect

the customers. Thus for any node s ∈ S, βs = 0.
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5. New valid inequalities

We now present new valid inequalities for P and prove that some of them

are facets. All the proofs make use of a methodology called indirect approach

which is based on the following result.

Lemma 2 ([12]). Let (A=, b=) be the equality set of P containing m equations,

and let F = {(x, y, z, a) ∈ P : πxx+ πyy + πzz + πaa = π0} be a proper face of

P. Then the following two statements are equivalent

1. F is a facet of P

2. if F ⊆ G = {(x, y, z, a) ∈ P : αx+βy+γz+δa = λ0} then there exist some

s ∈ R and some t ∈ R
m, such that (α, β, γ, δ) = s(πx, πy, πz, πa) + tA=

and λ0 = sπ0 + tb=.

The equality set of the ConFL polytope P consists of (2) and (5), thus

m = |J | + 1. In the proofs, we construct feasible solutions σ of the face F

under consideration, and evaluate them with the equality defining G in order to

determine the coefficients of this inequality. We denote by L(σ) the evaluation

of αx + βy + γz + δa on σ. These evaluations will make clear the existence of

some s and t as in the lemma, thus proving that F is a facet of P .

5.1. aGSEC Inequalities

The first family of inequalities is motivated by the yGSECs (8), where the

node variable on the right hand side is replaced by a sum of assignment variables.

Theorem 6. Inequalities

x(E(H)) ≤ y(H)−
∑

i∈I∩H

aij (11)

with H ⊂ S : 2 ≤ |H | ≤ |I| − 1, and j ∈ J are valid for P.

Proof. Note that
∑

i∈I∩H aij is at most 1 for any H due to constraints (2).

Thus, the smallest right hand side (rhs) we can get is y(H) − 1. This rhs is

always non-negative, since aij ≤ yi. Thus
∑

i∈I∩H aij ≤
∑

i∈I∩H yi ≤
∑

i∈H yi.
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Moreover, the rhs is always larger than the associated left hand side (lhs) since

any feasible solution is always a tree due to constraints (5) and (6), and in any

(sub-)tree with n nodes there are at most n− 1 edges. Therefore, the inequality

is valid for P .

Note that inequality (11) with |H∩I| = |I| is equivalent to the corresponding

inequality (9) because of equations (2). Furthermore, inequality (11) with H ∩

I = {i} is dominated by the inequality (8) defined for H and i. For the special

case when H = S \ {i} for some i ∈ I, the associated inequality (11) can

be written as aij + x(δ(i)) ≥ yi. Finally, observe that the constraints (11)

suggest an alternative formulation for the ConFL problem, as they can replace

(6) in (1)–(7), leading to a model that we will refer to as (aGSEC) formulation.

Inequalities (11) will also be denoted as aGSECs in the following.

Theorem 7. Inequalities (11) are facet-inducing for P if and only if H ⊂ S :

2 ≤ |H ∩ I| ≤ |I| − 1.

Proof. Let F = {(x, y, z, a) ∈ G : x(E(H)) − y(H)−
∑

i∈I\H aij = −1} be the

proper face induced by (11) for some j ∈ J and H ⊂ K: 2 ≤ |H ∩ I| ≤ |I| − 1.

Note that we have rewritten the inequality using equation (2) for j.

The feasible solutions σ ∈ F used in the proof are described by tuples

Lq = (Sq ∩H,Sq \H, Iq, Eq, Aq) where

• Sq ⊆ S: core nodes involved in the solution (y-variables with value one);

• Iq ⊆ I: open facilities in the solution (z-variables with value one);

• Eq ⊂ ES : core edges in the solution (x-variables with value one);

• Aq ⊂ AJ : assignment arcs in the solution (a-variables with value one).

For each i1, i2 ∈ I; s1, s2 ∈ S; and J ′ := J \ {j}, the proof is based on a

set of solutions depicted in Figure 2. In these figures, nodes in I, S and J are

represented by circles, diamonds and squares, respectively. Open facilities are

indicated in bold. Intermediate nodes and sometimes also closed facilities (i.e.,
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nodes from S) are drawn as diamonds. In addition, the proof also uses other

solutions constructed by small modifications of the solutions listed below.

• L1 =
(
{i1}, {i2}, {i1}, {{i1, i2}}, (i1 : J)

)

• L2 =
(
{i1}, {i2}, {i1, i2}, {{i1, i2}}, (i1 : J)

)

• L3 =
(
{i1}, ∅, {i1}, ∅, (i1 : J)

)

• L4 =
(
{i1, s1}, ∅, {i1}, {{i1, s1}}, (i1 : J)

)

• L4′ =
(
{i1, s1}, {s2}, {i1}, {{i1, s1}, {s1, s2}}, (i1 : J)

)

• L5 =
(
{i1}, {s1, s2}, {i1}, {{i1, s1}, {s1, s2}}, (i1 : J)

)

• L6 =
(
{i1}, {s1, s2}, {i1}, {{i1, s2}, {s1, s2}}, (i1 : J)

)

• L7 =
(
{i1, i2}, ∅, {i1}, {{i1, i2}}, (i1 : J)

)

• L8 =
(
{i1, i2, s1}, ∅, {i1}, {{i1, s1}, {s1, i2}}, (i1 : J)

)

• L9 =
(
{i1, i2}, ∅, {i1, i2}, {{i1, i2}}, (i1 : J ′) ∪ {(i2, j)}

)

• L10 =
(
∅, {i1}, {i1}, ∅, (i1 : J)

)

• L11 =
(
{i2}, {i1}, {i1, i2}, {{i1, i2}}, (i1 : J ′) ∪ {(i2, j)}

)

Consider F ⊆ G and recall that α relates to x, β relates to y, γ relates to z,

and δ relates to a. Then:

T7a γi = 0, ∀i ∈ I:

To show that γi = 0 for i ∈ I \ H , we compare the solutions L1 and

L2 (see Fig. 2(a) and 2(b)). Take any i2 ∈ I \ H . The only difference

between the two solutions is that in L1 facility i2 is closed, and in L2 it

is open. Since L(L1) = L(L2) then γi2 = 0.

To show that γi = 0 for i ∈ I ∩ H , we consider solutions L1′ and L2′ ,

which are the same as L1 and L2, except that i2 ∈ I∩H . Note that these

solutions can only be constructed under the assumption that |I ∩H | ≥ 2.

Also note that if in the following steps, an open facility i ∈ I occurs, we

will not mention γi explicitly again since the coefficient is zero.
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Figure 2: Feasible solutions for the proof of Theorem 7

T7b αss′ = −βs′ , ∀s ∈ H , ∀s′ ∈ S \H :

To show that αss′ = −βs′ , ∀s ∈ H, s′ ∈ S \ H , we compare the two

solutions L4 and L4′ (see Fig. 2(d) and 2(e)). L4 consists of an open
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facility i1 ∈ H , to which all customers are assigned to. Moreover, a core

node s1 ∈ H is connected to i1. L4′ is nearly the same as L4, except

that there is an additional core node s2 ∈ S \H , which is connected to

s1. The result is obtained by considering L(L4) = L(L4′), which gives

αs1s2 + βs2 = 0 for s1 ∈ H, s2 ∈ S \ H . Thus αss′ = −βs′ for all

s ∈ H, s′ ∈ S \H .

T7c αss′ = −βs′ , ∀s, s′ ∈ S \H :

Let L(L5′) be L5 without the node {s2} and edge {s1, s2}. The result

follows from L(L5′) = L(L5), which gives αs1s2+βs2 = 0 for s1, s2 ∈ S\H .

T7d βs = −ᾱ, ∀s ∈ S \H :

L(L5) = L(L6), gives αi1s1 = αi1s2 for i1 ∈ H, s1, s2 ∈ S \H . Using the

results from step (T7b), we see that all βs, s ∈ S \H must have the same

coefficient, denote it by −ᾱ. Note that steps (T7c)-(T7d) are only needed

for |S \H | ≥ 2; otherwise, the result already follows from step (T7b).

T7e αss′ = α̂, ∀s, s′ ∈ H and βs = −α̂, ∀s ∈ H :

First, suppose H ⊂ I. L(L3) = L(L7) gives αi1i2 + βi2 = 0 for i1, i2 ∈

H ∩ I. We can switch i1 and i2 in L3, L7 and get αi1i2 + βi1 = 0. Thus

αss′ = −βs = −βs′ for s, s
′ ∈ H ∩ I. Denote this value by α̂.

Now, for |H \ I| = 1, L(L3) = L(L4) implies αi1k1
+ βk1

= 0 for k1 ∈

H∩K, i1 ∈ H∩I. Note that these coefficients are not yet related to α̂. To

determine the relation, consider L(L4) = L(L8). We get αk1i2 + βi2 = 0

for k1 ∈ H ∩K, i2 ∈ H ∩ I. Since βi2 = −α̂ we get αk1i2 = α̂ (and also

βk1
= −α̂). Thus αss′ = −βs = −βs′ for s ∈ H ∩ I, s′ ∈ H .

Finally, for |H\I| ≥ 2 there are also coefficients αss′ for s, s
′ ∈ H∩K. Let

L8′ be L8 with k2 ∈ H ∩K instead of i2 ∈ H ∩ I. Then L(L4) = L(L8′)

gives αk1k2
+βk2

= 0, from which αss′ = α̂ for s, s′ ∈ H ∩K follows since

βs′ = −α̂.

T7f δij = δ̄j , ∀i ∈ H ∩ I:
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Let L7′ be L7 with i2 opened. From L(L7′) = L(L9), it follows that

δi1j = δi2j for all i1, i2 ∈ H ∩ I. Denote this value by δ̄j .

T7g δij′ = δ̄j′ , ∀i ∈ H ∩ I, ∀j′ ∈ J , j′ 6= j:

Let L9′ be L9 where customer j′, instead of customer j, is connected to

i2. From L(L7′) = L(L9′) it follows that δi1j′ = δi2j′ for all i1, i2 ∈ H∩I,

j′ ∈ J , j′ 6= j. Denote this value by δ̄j′ for j
′ ∈ J , j′ 6= j.

T7h δij = δ̄j − α̂+ ᾱ, ∀i ∈ I \H :

From L(L10) = L(L11) we have δi2j = βi1 +αi1i2 +δi1j for i2 ∈ I \H, i1 ∈

H ∩ I. Using results from steps (T7b), (T7d), (T7e) and (T7f), we get

δij = δ̄j − α̂+ ᾱ, for i ∈ I \H .

T7i δij′ = δ̄j′ , ∀i ∈ I \H , ∀j′ ∈ J , j′ 6= j:

Let L11′ be L11 where also customer j′ is connected to i2 instead of i1.

Then L(L11) = L(L11′) gives δi2j′ = δi1j′ for i2 ∈ I \H, i1 ∈ H∩I. Using

the result from step (T7g), we get δij′ = δ̄j′ for i ∈ I \H .

T7j Define ρ := ᾱ− α̂

Note that we can now write all coefficients in terms of ᾱ, ρ and δ̄j′ for j
′ ∈ J .

The equation defining G looks as follows:

(T7a)
︷ ︸︸ ︷

0z(I)−

(T7e),(T7j)
︷ ︸︸ ︷

(ᾱ− ρ)y(H)−

(T7d)
︷ ︸︸ ︷

ᾱy(S \H)+

(T7e),(T7j)
︷ ︸︸ ︷

(ᾱ− ρ)x(E(H)) +

(T7c),(T7d)
︷ ︸︸ ︷

ᾱx(E(S \H)) +

(T7b),(T7d)
︷ ︸︸ ︷

ᾱx(δ(H)) +

(T7f)
︷ ︸︸ ︷

δ̄j
∑

i∈H∩I

aij +

(T7h),(T7j)
︷ ︸︸ ︷

(δ̄j + ρ)
∑

i∈I\H

aij +

(T7g),(T7i)
︷ ︸︸ ︷
∑

j′∈J\{j}

δ̄j′
∑

i∈I

aij′ = λ0.

By evaluating any feasible solution (e.g., L3) we get λ0 = L(L3) = ρ − ᾱ +
∑

j′∈J δ̄j′ . Rewriting the equation defining G, we get

−ρ
(

x(E(H)) − y(H)−
∑

i∈I\H

aij

)

− ᾱ

(5)
︷ ︸︸ ︷
(

− x(E(S)) + y(S)
)

+
∑

j′∈J

δ̄j′

(2)
︷ ︸︸ ︷
∑

i∈I

aij′

= ρ− ᾱ+
∑

j′∈J

δ̄j′ .
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Thus the equation defining G is a linear combination of the equation defining F

and the equality set of P . Therefore, inequalities (11) are facet-inducing when

2 ≤ |H ∩ I| ≤ |I| − 1.

To see that 2 ≤ |H ∩ I| ≤ |I| − 1 is also a necessary condition, consider the

following cases:

1. |H ∩ I| = 0: Inequalities (11) reduce to x(E(H)) ≤ y(H) and are domi-

nated by inequalities (8).

2. |H∩I| = 1: Inequalities (11) reduce to x(E(H)) ≤ y(H)−aij, with i being

the unique facility in H . Thus they are also dominated by inequalities (8)

since aij ≤ yi.

3. |H ∩ I| = |I|: Inequalities (11) are inequalities (9) (which are also facet-

inducing).

5.2. Partition Inequalities

The following two families of inequalities are based on a partition of the

set of facilities I into two sets Î and I \ Î. The second family also involves a

partition of the set K of intermediate nodes. Moreover, both families also use

an injective mapping h and assume that |K| ≥ 1.

The first family will be referred to as 2+u partition inequalities, since, aside

from the partition of the facility set, a node u ∈ K also plays an important role

in the definition of the inequalities.

Theorem 8. Let us consider u ∈ K, Î ⊂ I and an injective mapping h. The

inequality
∑

i∈Î

zi +
∑

i∈I\Î

(aih(i) + yi) + x(Î : K) ≥ 1 + yu (12)

is valid for P.

Proof. If two (or more) facilities are opened, the inequality is clearly valid, since

the right hand side is at most two and every facility is represented by either a

15



y or a z variable on the lhs. Thus, we only need to concentrate on feasible

solutions with one open facility. Three cases are possible:

(a) yu = 0: In a feasible solution, at least one facility must be opened and

thus the lhs is at least one.

(b) yu = 1: For this case, we make a further case distinction, depending on

whether the open facility i is in Î or I \ Î:

• i ∈ Î: Since both nodes i and u are in the solution, there must be a

connection between i and u. In this connection, there must either be

an edge from some node in Î to a node in K and thus x(Î : K) ≥ 1,

or an edge from i to a node i′ ∈ I \ Î and thus yi′ = 1. Thus the lhs

of the inequality is at least two.

• i ∈ I \ Î: As there is only one open facility, all customers must be

connected to i, thus aih(i) must be one, and the lhs is at least two.

Theorem 9. Inequalities (12) are facet-inducing for P if and only if |I \ Î| ≥ 2

and Î 6= ∅.

Proof. Let

F = {(x, y, z, a) ∈ G :
∑

i∈Î

zi +
∑

i∈I\Î

(aih(i) + yi) + x(Î : K)− yu = 1}

be the proper face induced by (12) for some u ∈ K and Î ⊂ I : |I \ Î| ≥ 2, Î 6= ∅.

The feasible solutions σ ∈ F used in the proof are described by tuples Mq =

(Sq ∩ Î , Sq ∩ (I \ Î), Sq ∩K, Iq, Eq, Aq) where

• Sq ⊆ S: core nodes involved in the solution (y-variables with value one);

• Iq ⊆ I: open facilities in the solution (z-variables with value one);

• Eq ⊂ ES : core edges in the solution (x-variables with value one);

• Aq ⊂ AJ : assignment arcs in the solution (a-variables with value one).
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Let K ′ := K \ {u}, J ′ := J \ {j1}, J ′′ := J \ {j2}. The following solutions,

where i1, i4 ∈ Î; i2, i3 ∈ I \ Î; k1 ∈ K ′, h(i2) := j2, h(i3) := j3, will be used. To

help a reader, the solutions are depicted in Figure 3. Facilities from Î and I \ Î

are shown as circles and triangles, respectively. Open facilities are indicated in

bold. Intermediate nodes and sometimes also closed facilities (i.e., nodes from

S) are drawn as diamonds. Customers are shown as squares. In addition, some

more solutions, which can be constructed by small modifications of the solutions

listed below, will also be used.

• M1 = ({i1}, {i2}, {u}, {i1, i2}, {{i1, i2}, {i2, u}}, (i1 : J))

• M2 = ({i1}, {i2}, {u}, {i1, i2}, {{i1, i2}, {i2, u}}, (i1 : J ′) ∪ {(i2, j1)})

• M3 = (∅, {i2, i3}, {u}, {i2, i3}, {{i2, u}, {i2, i3}}, (i2 : J ′′) ∪ {(i3, j2)})

• M4 = (∅, {i2, i3}, {u}, {i2, i3}, {{i3, u}, {i2, i3}}, (i2 : J
′′) ∪ {(i3, j2)})

• M5 = (∅, {i2, i3}, {u}, {i2, i3}, {{i2, u}, {i3, u}}, (i2 : J ′′) ∪ {(i3, j2)})

• M6 = ({i1}, ∅, ∅, {i1}, ∅, (i1 : J))

• M7 = ({i1}, ∅, {u}, {i1}, {{i1, u}}, (i1 : J))

• M8 = ({i1}, {i2, i3}, {u}, {i2, i3}, {{i2, i1}, {i2, i3}, {i2, u}}, (i2 : J ′′)∪{(i3, j2)})

• M9 = ({i1}, {i2, i3}, {u}, {i2, i3}, {{i2, i1}, {i1, i3}, {i2, u}}, (i2 : J ′′)∪{(i3, j2)})

• M10 = ({i1, i4}, ∅, ∅, {i1}, {{i1, i4}}, (i1 : J))

• M11 = (∅, {i2}, {u}, {i2}, {{i2, u}}, (i2 : J))

• M12 = ({i1}, {i2}, {u}, {i1, i2}, {{i2, i1}, {i2, u}}, (i2 : J ′′) ∪ {(i1, j2)})

• M13 = ({i1}, ∅, {u, k1}, {i1}, {{i1, u}, {u, k1}}, (i1 : J))

• M14 = ({i1}, ∅, {u, k1}, {i1}, {{i1, k1}, {u, k1}}, (i1 : J))

• M15 = (∅, {i2}, {u, k1}, {i2}, {{i2, k1}, {u, k1}}, (i2 : J))
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(h) M8
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u J ′′

j2

(i) M9

i1

i4

J

(j) M10

i2

u

J

(k) M11

i1
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u J ′′
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u

k1 J

(m) M13

i1

u

k1 J

(n) M14

i2

u

k1 J

(o) M15

Figure 3: Feasible solutions for the proof of Theorem 9

Assume F ⊆ G and recall that α relates to x, β relates to y, γ relates to z,

and δ relates to a. Then:

T9a γi = 0, ∀i ∈ I \ Î:

Let M1′ be M1, where facility i2 is not opened. The result follows from
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L(M1) = L(M1′).

T9b δij = δ̄j , ∀j ∈ J , ∀i ∈ I \ Î : h(i) 6= j and ∀i ∈ Î:

L(M1) = L(M2) gives δi1j1 = δi2j1 , for i1 ∈ Î, i2 ∈ I \ Î and any customer

j1 6= h(i2). Since this step can be repeated for any facility in I, it follows

that all coefficients δij associated with a customer j, except for the facility

i ∈ I \ Î with h(i) = j, have the same value. Denote this value by δ̄j .

T9c αii′ = ᾱ, ∀i, i′ ∈ I \ Î and αiu = ᾱ, ∀i ∈ I \ Î:

Obtained from L(M3) = L(M4) = L(M5), which gives αi2i3 = αi2u =

αi3u. Denote the value of the coefficients by ᾱ.

T9d αiu = −βu, ∀i ∈ Î:

Obtained from L(M6) = L(M7).

T9e αii′ = ᾱ, ∀i ∈ I \ Î, ∀i′ ∈ Î and βi′ = −ᾱ, ∀i′ ∈ Î:

L(M8) = L(M9) gives αi1i2 = αi2i3 , for i2, i3 ∈ I \ Î, i1 ∈ Î, thus

αii′ = ᾱ, using the result from step (T9c). The result βi′ = −ᾱ follows

from L(M8) = L(M3).

T9f αii′ = ᾱ, ∀i, i′ ∈ Î:

Obtained from L(M6) = L(M10), which gives αi1i2 = −βi2 , ∀i1, i2 ∈ Î,

and the result follows from the result in step (T9e).

T9g δih(i) = ᾱ+ β̄ + δ̄h(i), ∀i ∈ I \ Î and βi = β̄, ∀i ∈ I \ Î:

From L(M11) = L(M3), we get δi2h(i2) = αi2i3 + βi3 + δi3h(i2) for i2, i3 ∈

I \ Î. Using results from steps (T9b) and (T9c), we get δi2h(i2) = ᾱ +

βi3 + δ̄h(i2). Since this must hold for any i3 ∈ I \ Î , it follows that βi has

the same value for all i ∈ I \ Î. Denote this value by β̄.

T9h Define ρ := ᾱ+ β̄.

T9i γi = ρ, ∀i ∈ Î:
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L(M12) = L(M8) gives γi1 = αi2i3 +βi3 , for i1 ∈ Ī , i2, i3 ∈ I \ Î, using the

result from step (T9b). The result γi = ρ, ∀i ∈ Î, is then obtained using

results from steps (T9c) and (T9g) and the definition from step (T9h).

T9j αiu = ᾱ+ ρ, ∀i ∈ Î and βu = −(ᾱ+ ρ):

L(M7) = L(M1) gives αi1u = αi2u + βi2 +αi2i1 for i1 ∈ Î, i2 ∈ I \ Î. The

result αiu = ᾱ+ ρ, ∀i ∈ Î, follows from the results of steps (T9c), (T9e)

and (T9g) and the definition from step (T9h). The result βu = −(ᾱ+ ρ)

is then obtained using the result from step (T9d).

T9k αik = ᾱ+ ρ, ∀i ∈ Î, ∀k ∈ K ′:

Obtained from L(M13) = L(M14) using the result from step (T9j).

T9l αik = ᾱ, ∀k ∈ K ′, ∀i ∈ I \ Î, αuk = ᾱ, ∀k ∈ K ′ and βk = −ᾱ, ∀k ∈ K ′:

Let M11′ be M11 with the additional edge {u, k1} and M11′′ be M11 with

the additional edge {i2, k1}. The result αik = αuk = ᾱ is obtained by

L(M11′) = L(M11′′) = L(M15), using the result from step (T9c). The

result βk = −ᾱ is then obtained by L(M11′) = L(M11).

T9m αkk′ = ᾱ, ∀k, k′ ∈ K ′:

Let M15′ be M15 with the additional edge {k1, k2}. We get αk1k2
= −βk2

for k1, k2 ∈ K ′ and the result follows from the result in step (T9l).

Note that we can now write all coefficients in terms of ᾱ, ρ and δ̄j for j ∈ J .

The equation defining G looks as follows:

(T9i)
︷ ︸︸ ︷

ρ
∑

i∈Î

zi+

(T9a)
︷ ︸︸ ︷

0
∑

i∈I\Î

zi−

(T9e)
︷ ︸︸ ︷

ᾱ
∑

i∈Î

yi+

(T9g),(T9h)
︷ ︸︸ ︷

(ρ− ᾱ)
∑

i∈I\Î

yi +

(T9c),(T9e),(T9f)
︷ ︸︸ ︷

ᾱx(E(I)) +

(T9j),(T9k)
︷ ︸︸ ︷

(ρ+ ᾱ)x(Î : K)+

(T9c),(T9l)
︷ ︸︸ ︷

ᾱx(I \ Î : K)+

(T9j)
︷ ︸︸ ︷

(−ρ− ᾱ)yu −

(T9l)
︷ ︸︸ ︷

ᾱ
∑

k∈K′

yk +

(T9l),(T9m)
︷ ︸︸ ︷

ᾱx(E(K)) +

∑

i∈I\Î

(T9g),(T9h)
︷ ︸︸ ︷

(ρ+ δ̄h(i))aih(i) +
∑

j∈J

(T9b)
︷ ︸︸ ︷

δ̄j
∑

i∈I:h(i) 6=j

aij = λ0.
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By evaluating any feasible solution (e.g., M6) we get

λ0 = ρ− ᾱ+
∑

j∈J

δ̄j .

Rewriting the equation defining G, we get:

ρ
(∑

i∈Î

zi +
∑

i∈I\Î

(aih(i) + yi) + x(Î : K)− yu

)

−ᾱ

(5)
︷ ︸︸ ︷
(

− y(S) + x(E(S))
)

+
∑

j∈J

δ̄j

(2)
︷ ︸︸ ︷
∑

i∈I

aij = ρ− ᾱ+
∑

j∈J

δ̄j .

Thus the equation defining G is a linear combination of the equation defining F

and the equality set of P . Therefore, inequalities (12) are facet-inducing, when

|I \ Î| ≥ 2, Î 6= ∅.

To see that |I \ Î| ≥ 2 and Î 6= ∅ is also a necessary condition, consider the

following cases:

1. Î = ∅: Inequalities (12) reduce to

∑

i∈I

(aih(i) + yi) ≥ 1 + yu

and are dominated by inequalities (10).

2. |I \ Î| = 0: Inequalities (12) reduce to

∑

i∈I

zi + x(I : K) ≥ 1 + yu,

which are dominated by

∑

i∈I

aij + x(I : K) ≥ 1 + yu

for some j ∈ J . The latter inequalities are a combination of an equation (2)

and an inequality

x(I : K) ≥ yu.

Rewrite this remaining inequality as

x(I : K) ≥ −y(S \ {u}) + x(E(S)) + 1
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using equation (5). After further rewriting, we get

y(K ′) + y(I)− 1 ≥ x(E(K)) + x(E(I)),

where K ′ = K \ {u}. This inequality is easily seen to be a combination

of (6) and (9).

3. |I \ Î| = 1: Let I \ Î = {i}. Inequalities (12) reduce to

∑

i′∈I′

zi′ + yi + aih(i) + x(I ′ : K) ≥ 1 + yu

for I ′ = I \ {i}. The inequalities are dominated by inequalities

∑

i′∈I

ai′h(i) + yi + x(I ′ : K) ≥ 1 + yu,

which are a combination of an equation (2) and an inequality

yi + x(I ′ : K) ≥ yu.

Using equation (5), the latter inequality can be rewritten as

y(K ′) + yi + y(I)− 1 ≥ x(E(K ∪ {i})) + x(E(I))

where K ′ = K \ {u}. Again, this inequality is easily seen to be a combi-

nation of (6) and (9).

For the other new family of facet-inducing inequalities, consider also the

partition of the set of intermediate nodes K into three disjoint subsets K =

K1 ∪K2 ∪K3, with |K1| ≥ 1. Before we present the inequalities themselves, we

give two lemmas, which we will need for the validity proof of the inequalities.

Lemma 3. Let us consider K ′ ⊆ K. The inequality

x(K ∪ I : K ′) ≥ y(K ′). (13)

is valid for P.

22



Proof. The inequalities are special case of constraints (9) for H = S \K ′. This

can be verified as follows: Inequality (9) for H = S \K ′ is x(E(S \K ′)) ≤ y(S \

K ′)− 1. The result is obtained by rewriting this inequality using equation (5).

Lemma 4. Let us consider Î ⊆ I, u ∈ I \ Î and an injective mapping h. The

inequality
∑

i∈Î

zi +
∑

i∈I\Î

(aih(i) + yi) ≥ 1 + yu (14)

is valid for P.

Proof. For the case when z(Î) ≥ 1, the inequality is obviously valid, so assume

that z(Î) = 0. For some i ∈ I \ Î we have yi = 1, thus the inequality is valid

if yu = 0 . So, the only non-trivial case occurs when yu = 1, and yi = 0 for

all other nodes i ∈ I \ Î , i 6= u. Since u ∈ I \ Î is the only open facility, every

customer has to be assigned to u. Thus auh(u) = 1 and therefore the left-hand

side of the inequality is also equal to two, which concludes the proof. Note that

the proof also works for Î = ∅.

Inequalities (14) are not facet inducing since they are dominated by inequal-

ities z(Î) + y((I \ Î) \ {u}) + auh(u) ≥ 1, u ∈ I \ Î. These inequalities are in

turn dominated by inequalities z(I \ {u}) + auh(u) ≥ 1, u ∈ I \ Î. Finally, in

the latter inequalities, we can replace the z-variables with the a-variables going

to customer h(u) and end up with
∑

i∈I aih(u) ≥ 1, which is implied by the

equation (2) from the formulation of P , associated with h(u).

We are now ready to introduce the second family of facet-inducing inequal-

ities, which we will refer to as 2+3 partition inequalities. The name indicates

that the sets I and K are partitioned into two and three subsets, respectively.

The variables associated with the core network, which occur in inequalities (15)

are illustrated in Figure 4.

Theorem 10. Let us consider Î ⊂ I, the partition K = K1 ∪K2 ∪K3, K1 6= ∅
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K1

+x(K1 : K1)

−y(K1)

K2

+x(K2 : K2)

−y(K2)

K3

Î
+|K1|z(Î)

I \ Î
+|K1|y(I \ Î)

+x(K1 : K3)

+x(K2 : K3)+x(K1 : K2)

+x(I \ Î : K2)

+x(Î : K1)

+x(Î : K2)

Figure 4: Illustration of the support graph of variables of the core network involved in in-

equalities (15), where x(K : K1 ∪K2) =
∑

2

i=1
(x(Ki : Ki) + x(Ki : K3)).

and an injective mapping h. The inequality

|K1|
∑

i∈Î

zi + |K1|
∑

i∈I\Î

(aih(i) + yi) + x(Î : K1 ∪K2) + x(I \ Î : K2)+

+ x(K : K1 ∪K2) ≥ |K1|+
∑

k∈K1

yk +
∑

k∈K2

yk (15)

is valid for P.

Proof. The proof is based on a connectivity argument: When some of the nodes

occurring on the rhs (i.e, nodes from K1 or K2) are in a solution, they must be

connected to the rest of this solution. Thus also edges (which occur on the lhs

of the inequality) must be selected.

We make a case distinction depending on the value of y(I \ Î).

• y(I \ Î) = 0 (i.e., no node from I \ Î is in the solution):

At least one facility in Î, say i1, must be opened, thus the term |K1|z(Î)

on the lhs is at least |K1|, which takes care of the |K1| on the rhs. It only
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remains to show that x(Î : K1 ∪K2) + x(K : K1 ∪K2) ≥ y(K1) + y(K2)

(note that opening more than one facility only increases the lhs and thus

it is enough to focus on the case, where z(Î) = 1). We can reformulate

the lhs of the latter inequality as x(Î ∪K : K1∪K2) = x(I ∪K : K1∪K2)

(since y(I \ Î) = 0), and so by Lemma 3, for K ′ = K1 ∪K2, the desired

result follows.

• y(I \ Î) ≥ 1: By Lemma 4, we have that z(Î) +
∑

i∈I\Î(aih(i) + yi) ≥ 2,

and therefore it only remains to show that x(Î : K1 ∪ K2) + x(I \ Î :

K2) + x(K : K1 ∪K2) ≥ y(K2). The latter inequality obviously holds by

Lemma 3, for K ′ = K2.

Observe that for K1 = ∅, inequalities (15) only make sense for K2 6= ∅. In

this case, (15) reduce to the facet-inducing inequalities (9) forH = S\K2 (shown

in the form given in Lemma 3). The following theorem provides necessary and

sufficient conditions for these inequalities to be facet-inducing.

Theorem 11. Inequalities (15) are facet-inducing for P if and only if |I\ Î| ≥ 2

and Î 6= ∅.

Proof. Let

F = {(x, y, z, a) ∈ G :
∑

i∈Î

zi+
∑

i∈I\Î

(aih(i)+yi)+
1

|K1|
x(Î : K1∪K2)+

1

|K1|
x(I\Î : K2)+

+
1

|K1|
x(K1 ∪K2 ∪K3 : K1 ∪K2)−

1

|K1|

∑

k∈K1

yk −
1

|K1|

∑

k∈K2

yk = 1}

be the proper face induced by (15) for some partition K = K1 ∪ K2 ∪ K3 :

|K1| ≥ 1 and Î ⊂ I : |I \ Î| ≥ 2, Î 6= ∅. Note that we divided the inequality by

|K1|.

The feasible solutions σ ∈ F used in the proof are described by tuples

Nq = (Sq ∩ Î , Sq ∩ (I \ Î), Sq ∩K1, Sq ∩K2, Sq ∩K3, Iq, Eq, Aq) where

• Sq ⊆ S: core nodes involved in the solution (y-variables with value one);

25



• Iq ⊆ I: open facilities in the solution (z-variables with value one);

• Eq ⊂ ES : core edges in the solution (x-variables with value one);

• Aq ⊂ AJ : assignment arcs in the solution (a-variables with value one).

Let K ′
1 = K1\{k1}, J

′ := J \{j1}, J
′′ := J \{j2}. The following solutions, where

i1, i4 ∈ Î; i2, i3 ∈ I \ Î; k1 ∈ K1, k2 ∈ K2, k3 ∈ K3, h(i2) := j2, h(i3) := j3,

will be used. To help a reader, the solutions are depicted in Figure 5. Nodes

from K1, K2 and K3 are shown as diamonds, pentagons and stars, respectively.

Circles represent facilities and squares represent customers. Open facilities are

indicated in bold. In addition, other solutions, which can be constructed by

small modifications of the solutions listed below, will be used.

• N1 = ({i1}, {i2},K1, ∅, ∅, {i1, i2}, {{i1, i2}} ∪ (i2 : K1), (i1 : J))

• N2 = ({i1}, {i2},K1, ∅, ∅, {i1, i2}, {{i1, i2}}∪(i2 : K1), (i1 : J ′)∪{(i2, j1)})

• N3 = (∅, {i2, i3},K1, ∅, ∅, {i2, i3}, {{i2, i3}}∪(i2 : K1), (i2 : J ′′)∪{(i3, j2)})

Note that K1 = {k1} ∪K ′
1 as depicted in Figure (5(c)).

• N4 = (∅, {i2, i3},K1, ∅, ∅, {i2, i3}, {{i3, k1}, {i2, i3}} ∪ (i2 : K ′
1), (i2 : J ′′) ∪

{(i3, j2)})

• N5 = (∅, {i2, i3},K1, ∅, ∅, {i2, i3}, {{i2, k1}, {i3, k1}} ∪ (i2 : K ′
1), (i2 : J ′′) ∪

{(i3, j2)})

• N6 = ({i1}, ∅, ∅, ∅, ∅, {i1}, ∅, (i1 : J))

• N7 = ({i1}, ∅, {k1}, ∅, ∅, {i1}, {(i1, k1)}, (i1 : J))

• N8 = ({i1}, {i2, i3},K1, ∅, ∅, {i2, i3}, {{i2, i1}, {i2, i3}} ∪ (i2 : K1), (i2 :

J ′′) ∪ {(i3, j2)})

• N9 = ({i1}, {i2, i3},K1, ∅, ∅, {i2, i3}, {{i2, i1}, {i1, i3}} ∪ (i2 : K1), (i2 :

J ′′) ∪ {(i3, j2)})

• N10 = ({i1, i4}, ∅, ∅, ∅, {i1}, {{i1, i4}}, (i1 : J))
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• N11 = (∅, {i2},K1, ∅, ∅, {i2}, (i2 : K1), (i2 : J))

• N12 = ({i1}, {i2},K1, ∅, ∅, {i1, i2}, {{i2, i1}}∪(i2 : K1), (i2 : J ′′)∪{(i1, j2)})

• N13 = ({i1}, ∅, {k1}, {k2}, ∅, {i1}, {{i1, k2}, {k1, k2}}, (i1 : J))

• N14 = ({i1}, ∅, {k1}, {k2}, ∅, {i1}, {{i1, k1}, {i1, k2}}, (i1 : J))

• N15 = ({i1}, ∅, {k1}, {k2}, ∅, {i1}, {{i1, k1}, {k1, k2}}, (i1 : J))

• N16 = ({i1}, ∅, ∅, ∅, {k3}, {i1}, {{i1, k3}}, (i1 : J))

• N17 = (∅, {i2, i3},K1, ∅, {k3}, {i2, i3}, {{i2, i3}, {i2, k3}} ∪ (i2 : K1), (i2 :

J ′′) ∪ {(i3, j2)})

• N18 = (∅, {i2, i3},K1, ∅, {k3}, {i2, i3}, {{i2, k3}, {i3, k3}} ∪ (i2 : K1), (i2 :

J ′′) ∪ {(i3, j2)})

We now suppose F ⊆ G and determine the following properties of coefficients

of G. Recall that α relates to x, β relates to y, γ relates to z, and δ relates to

a. Note that some of the steps are almost similar to the previous proof.

T11a γi = 0, ∀i ∈ I \ Î:

Let N1′ be N1, where facility i2 is not opened. The result follows from

L(N1) = L(N1′). Note that if in the following steps, an open facility

i ∈ I\Î occurs, we will not mention γi explicitly again, since the coefficient

is zero.

T11b δij = δ̄j , ∀j ∈ J , ∀i ∈ I \ Î : h(i) 6= j and ∀i ∈ Î:

L(N1) = L(N2) gives δi1j1 = δi2j1 , for i1 ∈ Î, i2 ∈ I \ Î and any customer

i1 6= h(i2). Since this step can be repeated for any facility in I, it follows,

that all coefficients δij associated with a customer j, except for the facility

i ∈ I \ Î with h(i) = j, have the same value, denote it by δ̄j .

T11c αii′ = ᾱ, ∀i, i′ ∈ I \ Î and αik = ᾱ, ∀i ∈ I \ Î , ∀k ∈ K1:

Obtained from L(N3) = L(N4) = L(N5), which gives αi2i3 = αi2k1
=

αi3k1
for i2, i3 ∈ I \ Î , k1 ∈ K1. Denote the value of the coefficients by ᾱ.
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k2 J

(n) N14

i1

k1

k2 J

(o) N15

i1
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(p) N16
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K1

k3

J ′′

j2

(q) N17

i2
i3

K1

k3

J ′′

j2

(r) N18

Figure 5: Feasible solutions for the proofs of Theorem 11
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T11d αik = α̂,∀i ∈ Î , ∀k ∈ K1 , αkk′ = α̂, ∀k, k′ ∈ K1, and βk = −α̂, ∀k ∈ K1:

From L(N6) = L(N7), we get αi1k1
= −βk1

, for i1 ∈ Î , k1 ∈ K1, which

means all coefficients for a particular k1 ∈ K1 are the same. Thus, if

|K1| = 1, we are already done. For |K1| ≥ 2, we also have edges αkk′ :

Let N7′ be N7 with the additional edge {k1, k′1} for k′1 ∈ K ′
1. From

L(N7′) = L(N7), we get αk1k
′

1
= −βk′

1
, for k1, k

′
1 ∈ K1. It follows, that

the coefficients αik, ∀i ∈ Î , ∀k ∈ K1 and αkk′ , ∀k, k′ ∈ K1 are all the

same, denote their value by α̂. The result βk = −α̂, ∀k ∈ K1 follows

immediately.

T11e αii′ = ᾱ, ∀i ∈ I \ Î, ∀i′ ∈ Î and βi′ = −ᾱ, ∀i′ ∈ Î:

L(N8) = L(N9) gives αi1i2 = αi2i3 , for ∀i2, i3 ∈ I \ Î, i1 ∈ Î, thus

αii′ = ᾱ, using the result from step (T11c). The result βi′ = −ᾱ follows

from L(N8) = L(N3).

T11f αii′ = ᾱ, ∀i, i′ ∈ Î:

Obtained from L(N6) = L(N10), which gives αi1i2 = −βi2 , ∀i1, i2 ∈ Î

and the result follows from the result in step (T11e).

T11g δih(i) = ᾱ+ β̄ + δ̄h(i), ∀i ∈ I \ Î and βi = β̄, ∀i ∈ I \ Î:

From L(N11) = L(N3), we get δi2h(i2) = αi2i3 + βi3 + δi3h(i2) for i2, i3 ∈

I \ Î. Using results from steps (T11b) and (T11c), we get δi2h(i2) =

ᾱ+ βi3 + δ̄h(i2). Since this must hold for any i3 ∈ I \ Î, it follows that βi

has the same value for all i ∈ I \ Î, denote it by β̄.

T11h Define ρ := ᾱ+ β̄.

T11i γi = ρ, ∀i ∈ Î:

L(N12) = L(N8) gives γi1 = αi2i3 + βi3 , for i1 ∈ Ī , i2, i3 ∈ I \ Î, using the

result from step (T11b). The result γi = ρ, ∀i ∈ Î is then obtained using

results from steps (T11c) and (T11g) and the definition from step (T11h)

T11j α̂ = ᾱ+ ρ
|K1|

:
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L(N7) = L(N1) gives αi1k1
+βk1

=
∑

k∈K1
αi2k +

∑

k∈K1
βu +βi2 +αi2i1

for i1 ∈ Î, i2 ∈ I\Î. Using the results from steps (T11c), (T11d), (T11e), (T11g),

(T11h), we get 0 = |K1|ᾱ−|K1|α̂+ρ and the result follows from rewriting

this equation.

T11k αkk′ = ᾱ + ρ
|K1|

, ∀k ∈ K2, ∀k
′ ∈ K1,αik = ᾱ + ρ

|K1|
, ∀k ∈ K2, ∀i ∈ Î,

βk = −(ᾱ+ ρ
|K1|

), ∀k ∈ K2:

The first two results are obtained from L(N13) = L(N14) = L(N15), which

gives αk1k2
= αi1k1

= αi1k2
for i1 ∈ Î , k1 ∈ K1, k2 ∈ K2 and using the

results from steps (T11d), (T11j). To get the result βk = −
(

ᾱ + ρ
|K1|

)

,

let N14′ be N14 without the edge {i1, k2} and node k2. L(N14) = L(N14′)

which gives αi1k2
= −βk2

for i1 ∈ Î , k2 ∈ K2 and the result follows.

T11l αik = ᾱ+ ρ
|K1|

, ∀k ∈ K2, ∀i ∈ I \ Î:

LetN11′ be N11 with the additional node k2 and edge {i2, k2} for k2 ∈ K2.

L(N11) = L(N11′) gives αi2k2
= −βk2

for i2 ∈ I \ Î , k2 ∈ K2 and the

results follows by using the results from step (T11k).

T11m αkk′ = ᾱ+ ρ
|K1|

, ∀k, k′ ∈ K2:

LetN14′ beN14 with the additional node k′2 and edge {k2, k′2} for k
′
2 ∈ K2.

L(N14) = L(N14′) gives αk2k
′

2
= −βk′

2
for k2, k

′
2 ∈ K2 and the results

follows by using the results from step (T11k).

T11n αkk′ = ᾱ+ ρ
|K1|

, ∀k ∈ K1, ∀k′ ∈ K3:

LetN16′ beN16 with the additional node k1 and edge {k3, k1} for k1 ∈ K1.

L(N16′) = L(N16) gives αk1k3
= −βk1

for k3 ∈ K3, k1 ∈ K1 and the result

follows from using the results from steps (T11d), (T11j).

T11o αik = ᾱ, ∀k ∈ K3, ∀i ∈ I and βk = −ᾱ, ∀k ∈ K3:

L(N17) = L(N18) gives αi2i3 = αi2k3
for i2, i3 ∈ I \ Î , k3 ∈ K3. The first

result, for the case i ∈ I \ Î, follows by using the results from step (T11c).

Let L(N17′) be L(N17) without the edge {i2, k3} and node k3. L(N17) =

L(N17′) gives αi2k3
= −βk3

for i2 ∈ I\ Î , k3 ∈ K3 and the result βk = −ᾱ,
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∀k ∈ K3 follows. The first result, for the case i ∈ Î, then follows from

L(N6) = L(N16), which gives αi1k3
= −βk3

for i1 ∈ Î , k3 ∈ K3.

T11p αkk′ = ᾱ+ ρ
|K1|

, ∀k ∈ K2, ∀k′ ∈ K3:

Let N16′′ be N16 with the additional node k2 and edge {k3, k2} for k2 ∈

K2. L(N16′′) = L(N16) gives αk3k2
= −βk2

for k2 ∈ K2, k3 ∈ K3 and the

result follows by using the result from step (T11k).

T11q αkk′ = ᾱ, ∀k, k′ ∈ K3: being a mammal (N) is necessary but not sufficient

to being human (S), Let N16′′′ be N16 with the additional node k′3 and

edge {k3, k
′
3} for k′3 ∈ K3. L(N16′′′ ) = L(N16) gives αk3k

′

3
= −βk3

for

k3, k
′
3 ∈ K3 and the result follows by using the result from step (T11o).

Note that we can now write all coefficients in terms of ᾱ, ρ and δ̄j , for j ∈ J .

The equation defining G looks as follows:

(T11i)
︷ ︸︸ ︷

ρ
∑

i∈Î

zi+

(T11a)
︷ ︸︸ ︷

0
∑

i∈I\Î

zi−

(T11e)
︷ ︸︸ ︷

ᾱ
∑

i∈Î

yi+

(T11g),(T11h)
︷ ︸︸ ︷

(ρ− ᾱ)
∑

i∈I\Î

yi +

(T11c).(T11e),(T11f)
︷ ︸︸ ︷

ᾱx(E(I)) +

(T11d),(T11j)
︷ ︸︸ ︷
(

ᾱ+
ρ

|K1|

)

x(Î : K1)+

(T11k)
︷ ︸︸ ︷
(

ᾱ+
ρ

|K1|

)

x(Î : K2) +

(T11o)
︷ ︸︸ ︷

ᾱx(Î : K3)+

(T11c)
︷ ︸︸ ︷

ᾱx(I \ Î : K1)+

(T11l)
︷ ︸︸ ︷
(

ᾱ+
ρ

|K1|

)

x(I \ Î : K2)

(T11o)
︷ ︸︸ ︷

ᾱx(I \ Î : K3)+

(T11d),(T11j)
︷ ︸︸ ︷
(

− ᾱ−
ρ

|K1|

) ∑

k∈K1

yk +

(T11k)
︷ ︸︸ ︷
(

− ᾱ−
ρ

|K1|

) ∑

k∈K2

yk −

(T11o)
︷ ︸︸ ︷

ᾱ
∑

k∈K3

yk +

(T11d),(T11j)
︷ ︸︸ ︷
(

ᾱ+
ρ

|K1|

)

x(E(K1)) +

(T11k)
︷ ︸︸ ︷
(

ᾱ+
ρ

|K1|

)

x(K1 : K2)+

(T11n)
︷ ︸︸ ︷
(

ᾱ+
ρ

|K1|

)

x(K1 : K3)+

(T11m)
︷ ︸︸ ︷
(

ᾱ+
ρ

|K1|

)

x(E(K2))+

(T11p)
︷ ︸︸ ︷

α̂x(K2 : K3)+

(T11q)
︷ ︸︸ ︷

ᾱx(E(K3)) +

∑

i∈I\Î

(T11g),(T11h)
︷ ︸︸ ︷

(ρ+ δ̄h(i))aih(i) +
∑

j∈J

(T11b)
︷ ︸︸ ︷

δ̄j
∑

i∈I:h(i) 6=j

aij = λ0.
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By evaluating any feasible solution (e.g., N6) we get

λ0 = ρ− ᾱ+
∑

j∈J

δ̄j .

Rewriting the equation defining G, we get:

ρ
(∑

i∈Î

zi +
∑

i∈I\Î

(aih(i) + yi) +
1

|K1|
x(Î : K1 ∪K2) +

1

|K1|
x(I \ Î : K2)+

+
1

|K1|
x(K1 ∪K2 ∪K3 : K1 ∪K2)−

1

|K1|

∑

k∈K1

yk −
1

|K1|

∑

k∈K2

yk

)

−ᾱ

(5)
︷ ︸︸ ︷

(−y(S) + x(E(S))) +
∑

j∈J

δ̄j

(2)
︷ ︸︸ ︷
∑

i∈I

aij = ρ− ᾱ+
∑

j∈J

δ̄j.

Thus the equation defining G is a linear combination of the equation defining F

and the equality set of P . Therefore, inequalities (15) are facet-inducing, when

|I \ Î| ≥ 2, Î 6= ∅,K1 6= ∅.

To see that |I \ Î| ≥ 2, Î 6= ∅ is also a necessary condition, consider the

following cases:

1. Î = ∅: Inequalities (15) reduce to

|K1|
∑

i∈I

(aih(i)+yi)+x(I : K2)+x(K : K1∪K2) ≥ |K1|+
∑

k∈K1

yk+
∑

k∈K2

yk.

By Lemma 3 for K ′ = K2, we get

|K1|
∑

i∈I

(aih(i) + yi) + x(K \K2 : K1) ≥ |K1|+
∑

k∈K1

yk.

Replace the y-variables by the z-variables to obtain the stronger inequal-

ities

|K1|
∑

i∈I

(aih(i) + zi) + x(K \K2 : K1) ≥ |K1|+
∑

k∈K1

yk.

For the given injective mapping h, we now subtract inequalities (10) |K1|

times to obtain

x(K \K2 : K1) ≥
∑

k∈K1

yk − |K1|.

This is obviously an aggregation of the upper bound inequalities yk ≤ 1 of

the relaxation of binary variables yk, k ∈ K1, plus the term x(K\K2 : K1).
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2. |I \ Î| = 0: Inequalities (15) reduce to

|K1|
∑

i∈I

zi + x(I : K1 ∪K2) + x(K : K1 ∪K2) ≥ |K1|+
∑

k∈K1

yk +
∑

k∈K2

yk.

By Lemma 3 for K ′ = K1 ∪K2, we get

|K1|
∑

i∈I

zi ≥ |K1|.

Replace the z-variables by a-variables for some fixed j ∈ J . We get

|K1|
∑

i∈I

aij ≥ |K1|.

This inequality is easily seen to be implied by |K1| times the equation (2)

for customer j.

3. |I \ Î| = 1: Let I \ Î = {i}. Inequalities (15) reduce to

|K1|
∑

i′∈I′

zi′ + |K1|aih(i) + |K1|yi + x(I ′ : K1 ∪K2) + x(i : K2)+

x(K : K1 ∪K2) ≥ |K1|+
∑

k∈K1

yk +
∑

k∈K2

yk

for I ′ = I \{i}. Replace |K1|yi by x(i : K1) to get the stronger inequalities

(since xss′ ≤ ys due to inequalities (6) for H = {s, s′})

|K1|
∑

i′∈I′

zi′+|K1|aih(i)+x(I : K1∪K2)+x(K : K1∪K2) ≥ |K1|+
∑

k∈K1

yk+
∑

k∈K2

yk.

By Lemma 3 for K ′ = K1 ∪K2, we get

|K1|
∑

i′∈I′

zi′ + |K1|aih(i) ≥ |K1|.

Replace the z-variables by a-variables for h(i) ∈ J . We get

|K1|
∑

i′∈I

ai′h(i) ≥ |K1|.

This inequality is easily seen to be implied by |K1| times the equation (2)

for customer h(i).
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Two special cases of inequalities (15) are of particular interest. One case

is given by the 2+2 partition inequalities that are obtained for K2 = ∅ and

K3 = ∅. They are given as:

|K1|
∑

i∈Î

zi+|K1|
∑

i∈I\Î

(aih(i)+yi)+x(Î : K1)+x(K : K1) ≥ |K1|+
∑

k∈K1

yk (16)

The other case is given by the 2+1 partition inequalities that are obtained

for K2 = ∅ and K3 = ∅ (i.e., K1 = K). They are given as:

|K|
∑

i∈Î

zi + |K|
∑

i∈I\Î

(aih(i) + yi) + x(Î : K) + x(E(K)) ≥ |K|+
∑

k∈K

yk (17)

6. Conclusions

This article analyzes the polytope defined by the feasible solutions of the

connected facility location problem. This problem combines the uncapacitated

facility location problem and the Steiner tree problem, and has been motivated

by a telecommunication application. The article computes the dimension of

the polytope and shows several families of valid inequalities. Some of these

inequalities are lifted variants from the uncapacitated facility location polytope.

Other inequalities are taken from the polytope of the Spanning Tree problem.

In addition, the article also presents new inequalities exploiting the interaction

of the two combinatorial structures, like what we call partition inequalities. The

article also study conditions under which these inequalities are facet defining.

The proofs are based on the so-called indirect method. Some of the inequalities

analyzed in this article are used in [11] to describe a branch-and-cut approach

to design telecommunication networks with a tree-star topology.
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by the Austrian Research Fund (FWF) under grants I892-N23 and P26755-
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framework for the exact solution of tree-star problems. Working paper,

2016.

[12] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimiza-

tion, volume 18. Wiley New York, 1988.

[13] J. J. Salazar. A note on the generalized Steiner tree polytope. Discrete

Appl. Math., 100(1):137–144, 2000.

36


