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Abstract  1 

Biochar, like most other adsorbents, is a carbonaceous material, which is formed from 2 

the combustion of plant materials, in low-zero oxygen conditions and results in a 3 

material, which has the capacity to sorb chemicals onto its surfaces. Currently, 4 

research is being carried out to investigate the relevance of biochar in improving the 5 

soil ecosystem, digestate quality and most recently the anaerobic digestion process. 6 

Anaerobic digestion (AD) of organic substrates provides both a sustainable source of 7 

energy and a digestate with the potential to enhance plant growth and soil health. In 8 

order to ensure that these benefits are realised, the anaerobic digestion system must be 9 

optimised for process stability and high nutrient retention capacity in the digestate 10 

produced. Substrate-induced inhibition is a major issue, which can disrupt the stable 11 

functioning of the AD system reducing microbial breakdown of the organic waste and 12 

formation of methane, which in turn reduces energy output. Likewise, the spreading of 13 

digestate on land can often result in nutrient loss, surface runoff and leaching. This 14 

review will examine substrate inhibition and their impact on anaerobic digestion, 15 

nutrient leaching and their environmental implications, the properties and 16 

functionality of biochar material in counteracting these challenges. 17 
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1. Introduction  25 

The number of anaerobic digestion (AD) systems has increased rapidly because of 26 

various factors including financial incentives for renewable energy facilities, 27 

governmental policies on climate change, landfill and an increasing energy need 28 

(Zglobisz et al., 2010; Klavon et al., 2013). Currently, in Europe and Asia, there are 29 

over 30 million large and small-scale anaerobic digesters for both commercial and 30 

domestic applications (Chen et al., 2010; De Baere, 2010; Donoso-Bravo et al., 2011; 31 

Ferrer et al., 2011). AD is the stepwise breakdown of an organic substrate by a 32 

consortium of mutually dependent groups of microorganisms (Fig 1).  If the correct 33 

conditions are maintained, the AD process will be stable with high energy recovery 34 

(Dechrugsa et al., 2013). However, the technology still faces two major challenges: (i) 35 

operational instability and (ii) the quality of the digestate produced (Holm-Nielsen et 36 

al., 2009; Appels et al., 2011).  37 

Organic substrate selection plays an important role in the stability of an AD 38 

system as some feedstocks can have inhibitory effects on AD processes. Substrate-39 

induced inhibition (SII) in AD can occur when the constituent fraction(s) or metabolic 40 

intermediate product(s) from organic substrates inhibit microbial activity. These forms 41 

of inhibition have been reported for organic substrates containing high amounts of 42 

protein, lipids, limonene, furans, metals, pesticides, antibiotics and other organic 43 

compounds (El-Gohary et al., 1986; Palmqvist & Hahn-Hagerdal, 2000; Lallai et al., 44 

2002; Wilkins et al., 2007; Alvarez et al., 2010; Sousa et al., 2013; Yangin-Gomec & 45 

Ozturk, 2013). SII is either through the direct addition of inhibitory compounds, such 46 

as limonene, or indirectly through the production of inhibitory intermediates, such as 47 

ammonium and hydrogen sulphide from protein (Table 1). Microbial adaptation to 48 

potential inhibitors and co-digestion with two or more substrates are commonly used 49 
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to reduce inhibition (El-Mashad & Zhang, 2010; Zhang & Jahng, 2012). During 50 

microbial adaptation, the inhibitor can be transformed into metabolites with a similar 51 

or lower level of toxicity while the application of co-digestion reduces the 52 

concentration of the inhibitor by increasing the ratio of the co-substrate (Athanasoulia 53 

et al., 2014). In most cases, AD operators prefer co-digestion of two or more 54 

substrates in order to reduce possible inhibition that might result from the treatment of 55 

individual feed-stocks ( Cheng & Zhong, 2014). However, an alternative approach to 56 

reducing inhibition in AD is to remove or reduce the mobility/bioavailability of the 57 

inhibitors without affecting with the AD process. 58 

 59 

Another major concern with AD is how to retain the nutritive value of the 60 

digestate before and after application to land (Mihoubi, 2004; Mangwandi et al., 61 

2013). In most cases, digestate has a high moisture content and in an attempt to reduce 62 

this, phase separating equipment is utilised. According to Vaneeckhaute et al. (2013), 63 

43% of the total nitrogen (N) and 25% of the total phosphorus (P) will be lost if the 64 

liquid fraction of pig slurry digestate is separated. Further nutrient and metal losses 65 

can occur during and after the spreading of the digestate on farmland via transfer to 66 

the surrounding watercourses or to the atmosphere. The volatilization of ammonium, 67 

leading to ammonia emission, and the leaching of heavy metal as diffuse pollution, are 68 

examples of losses that have a negative impact on the environment and crops 69 

(Svoboda et al., 2013; Page et al., 2014). Nutrient recovery from digestate has been 70 

considered as an option to reduce the nutrient loss from the digestate. However, this 71 

approach might reduce the economic value of the digestate (Verstraete et al., 2009; 72 

Batstone et al.,2015).  73 
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A better approach may be to focus on increasing the nutrient retention capacity of 74 

the digestate material. There is a growing interest in the use of biochar in AD to both 75 

increase the recovery rate of the process during SII and decrease the nutrient loss 76 

before and after land application (Mumme et al., 2014; Dicke et al., 2015; Cai et al., 77 

2016; Lü et al., 2016; Sunyoto et al., 2016). This will potentially increase the 78 

operation of mono-substrate AD, which is often used by single substrate onsite AD 79 

operators, increase nutrient availability during digestate application to land and reduce 80 

the environmental implications of diffuse pollution and nutrient leaching. This review 81 

examines substrate-induced inhibition and its impact on anaerobic digestion, nutrient 82 

leaching and its environmental implications, and the properties and functionality of 83 

biochar material in counteracting these challenges. 84 

 85 

2. The Challenges with anaerobic digestion of organic susbtrate 86 

AD is the breakdown of complex organic material under anoxic conditions by a 87 

consortia of microorganisms via a multistep process (Fig 1) (Chen et al., 2008). The 88 

microorganisms that drive AD are divided into two groups: (i) acid producers 89 

(acidogens and acetogens) and (ii) methane producers (methanogens). These two 90 

groups of microorganisms differ physiologically and have different growth rates and 91 

sensitivities to operational conditions (Ruiz & Flotats, 2014). The inability to maintain 92 

a population balance between these two groups of microorganisms often results in AD 93 

process failure. If conditions such as temperature, hydrogen partial pressure, pH and 94 

organic loading rate are favourable for both microbial populations, the AD process 95 

should be stable (Rudolfs & Amberg, 1952).  96 

In addition to the controls exerted by the operating conditions, the stability of 97 

the AD system can also be disrupted if metabolic intermediates of a substrate are 98 
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inhibitory to microbial activity (Palmqvist & Hahn-Hagerdal, 2000; Wilkins et al., 99 

2007; Sousa et al., 2013; Yangin-Gomec & Ozturk, 2013). This form of instability is 100 

substrate-induced and is called substrate-induced inhibition (SII). According to Ruiz 101 

and Flotats (2014), a chemical or metabolite can be termed inhibitory when it causes a 102 

shift in microbial population or inhibits microbial activity. There is a wide variety of 103 

biodegradable organic materials that have been classified as inhibitory to microbial 104 

growth, particularly at higher concentrations (Fig 2 and Table 1). SII can be classified 105 

into two categories, direct and indirect sources of inhibition. Direct inhibitors are 106 

those that are supplied directly from substrates in the feedstock whilst indirect 107 

inhibitors are metabolic intermediates produced during the AD process (Fig 2). The 108 

following sections (2.1 and 2.2) describe the types of direct and indirect inhibitors 109 

commonly associated with AD and the mechanisms by which inhibition occurs. 110 

 111 

2.1. Direct inhibition 112 

As mentioned earlier, direct inhibition in AD results from a constituent of the organic 113 

substrate; this implies that the compound is readily available to the microbial cells, 114 

thus increasing the risk of AD process failure. The indirect inhibitors are not released 115 

until after hydrolysis-acidogenesis and thus they do not pose an immediate threat to 116 

the AD process. An example of direct inhibitors include limonene from citrus peel, 117 

furans hydrolysate from the chemical pre-treatment of lignocellulose materials, azo-118 

dye from textile production, antibiotics and pesticides. Limonene occurs naturally in 119 

citrus peel and reports show that the compound can inhibit the AD process at 120 

concentrations of 65-88 g l
-1 

(Mizuki et al., 1990). Even after the extraction of 121 

limonene prior to AD, studies have shown that inhibition of the AD process occurred, 122 

particularly when the organic loading rate (OLR) was increased from 3.67-5.10 gVS
 
l
-123 
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1
 d

-1
 (Martin et al., 2010; Wikandari et al., 2015). In addition, the co-digestion of 124 

orange peel and sewage sludge (70:30) resulted in a methane yield of 0.165 l gVS
-125 

1
added and the accumulation of volatile fatty acids when the OLR was above 1.6 gVS l

-1
 126 

d
-1 

(Serrano et al., 2014). Likewise, furans (furfural, hydroxymethylfurfural (5-HMF)) 127 

are produced during the dehydration of pentose- and hexose-sugars locked within the 128 

lignin structure (Barakat et al., 2012). These are metabolites from the hydrolysis of 129 

lignin but because they are not produced because of the microbial interaction, they are 130 

considered to be directly inhibitory. There are indications that the furans are not 131 

inhibitory and can be utilised for methane production at a concentration of less than 25 132 

mM (Rivard & Grohmann, 1991; Belay et al., 1997). According to Barakat et al. 133 

(2012), the 5-HMF is more inhibitory than the furfural compound because, after 134 

incubation of  1 g l
-1

 of the  compounds with 2 g l
-1

 of xylose separately, methane 135 

values of 533 and 583 ml/g were recorded, respectively. Similarly, Monlau et al. 136 

(2013) observed that the AD process was severely inhibited at  5-HMF concentration, 137 

which was above 6 g l
-1

. Other direct inhibitors are antibiotics and pesticides, which 138 

are present in industrial and pharmaceutical wastewater (Lin, 1990; Ji et al., 2013). 139 

Antibiotics such as amoxicillin (0.16 g l
-1

), trihydrate (0.06 g l
-1

), oxytetracycline 140 

(0.12 g l
-1

) and thiamphenicol (0.08 g l
-1

) have been used to treat pigs and reports 141 

show partial inhibition to AD (Lallai et al., 2002). Ji et al. (2013) showed acute 142 

toxicity of four antibiotics in the order amoxicillin (0.39 g l
-1

), lincomycin (0.43 g l
-1

), 143 

kanamycin (0.51 g l
-1

) and ciprofloxacin (0.56 g l
-1

). A noticeable trend common to all 144 

direct inhibitors is the similarities in the mechanisms of inhibition. These compounds 145 

inhibit the growth of microbial cells as follows: (i) diffusing through the cell 146 

membrane; (ii) increasing the surface area of the cell membrane, and (iii) causing 147 
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leakage of the contents of the microbial cell (Sikkema et al., 1995; Griffin et al., 1999; 148 

Fisher & Phillips, 2008). 149 

 150 

2.2. Indirect inhibition 151 

Indirect inhibition is displayed when metabolic intermediates are produced at high 152 

concentrations during the AD thereby inhibiting microbial activity. They have been 153 

reported to suppress microbial activity and reduce methane production. An examples 154 

of indirect SII, their effects and counteracting measures. Metabolic intermediate 155 

products are generally produced during the AD process and they depend on the 156 

constituent of the substrate (Figure 1). Metabolic products such as acetic acid, 157 

hydrogen and carbon dioxide are essential to the AD process and are used to produce 158 

methane (Madsen et al., 2011). However, intermediates such as long chain fatty acid, 159 

ammonia (NH3) and ammonium (NH4
+
) are examples of indirect inhibitors. 160 

Researchers have shown that free ammonia is more toxic than ammonium nitrogen 161 

because of its ability to penetrate the cell membrane (Gallert & Winter, 1997; Sung & 162 

Liu, 2003). According to Zeshan et al. (2012), an increase in the C/N ratio of the 163 

feedstock can minimise the possible effect of high protein feedstock because the 164 

addition of carbon will reduce the concentration of nitrogen rich material and also 165 

provide alternative metabolic routes thereby reducing the production of NH4
+
. They 166 

recorded a 30% reduction in the NH3 content of the digestate and 50-73% surplus 167 

energy when the C/N ratio of the feedstock was increased to 32. Yangin-Gomec and 168 

Ozturk (2013) achieved a 1.2 fold increase in the methane yield when maize silage 169 

was co-digested with chicken and cattle manure to suppress ammonia toxicity. As 170 

mentioned earlier, protein is essential for microbial growth but at a high concentration, 171 

it will increase the possibility of ammonia toxicity. Ammonia is beneficial to the 172 
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growth of anaerobic bacteria as long as it does not exceed a certain concentration that 173 

can be toxic to methangenic activity (Angelidaki and Ahring, 1994). Similarly, a 174 

substrate high in lipid produces a higher concentration of long-chain fatty acids 175 

(LCFAs) and glycerol during hydrolysis. LCFAs (e.g. oleate, stearate and palmitate) 176 

can be converted into hydrogen and acetate through the β-oxidation pathway (Alves 177 

et al., 2009).  According to Sousa et al. (2013), methanogens can be inhibited by 178 

LCFAs at concentrations between of 0.3 and 1 mM. Like LCFAs, the mechanisms of 179 

suppression of microbial activity during indirect inhibition are similar (i) diffusing 180 

through the cell membrane; (ii) inhibiting methane producing enzymes, and (iii) 181 

causing proton imbalance and potassium deficiency (Rinzema et al., 1994; Gallert & 182 

Winter, 1997; Chen et al., 2008; Rajagopal et al., 2013; Zonta et al., 2013). 183 

 184 

2.3. Acclimation of microbial cells to inhibition  185 

The mechanisms of direct and indirect inhibition are not similar; a general model 186 

illustrating the various mechanisms of attack (cell membrane disorder, interference 187 

with fermentative pathway and intracellular swelling/leakage) of the microbial cell is 188 

represented in Figure 2. SII cannot be avoided during the operation of AD systems, 189 

but to some extent the ability of microorganisms to adapt to unfavourable conditions 190 

can alleviate the effects of SII. Acclimation is the adaptation of microbial populations 191 

to changes in conditions and can be achieved in different ways:  (i) synthesis of 192 

specific enzymes which were absent prior to exposure to the inhibiting condition; (ii) 193 

emergence of new metabolic capabilities/pathway, and (iii) modification of the 194 

surface layer of the microbial cell membrane (Liebert et al., 1991; Ruiz & Flotats, 195 

2014). An example of modification of the surface layer of a cell membrane was 196 

observed during the exposure of microbial cells to a high dose of limonene; this 197 
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resulted in increases in the concentration of unsaturated fatty acids in the cell 198 

membrane (Ruiz & Flotats, 2014). Another example has been reported where 199 

methanogens were exposed to 2 g l
-1

 of ammonia and, following a subsequent increase 200 

in the concentration of ammonia to 11 g l
-1

, no inhibition was recorded (Koster & 201 

Lettinga, 1988; Borja et al., 1996a). This implies that the microbial cells were able 202 

adapt to the unfavourable conditions and further suggests that AD operators should 203 

only inoculate their plant with inoculum from an active AD system using a similar 204 

substrate. Quintero et al. (2012) showed that the hydrolysis of lignocellulose was more 205 

efficient when the feedstock was inoculated with microflora from cattle rumens rather 206 

than pig manure. Likewise, Van Velsen (1979) showed that the microbial community 207 

in the  pig manure inoculum acclimated to 2.4 g l
-1

 of NH4
+
 while the digested sewage 208 

sludge acclimation rate was limited to 1.8 g l
-1

 of NH4
+

. 209 

 210 

3. Nutrient loss and environmental pollution 211 

In order to keep up with the increasing demand for food production, soil fertility is 212 

maintained by adding fertilizers (Qin et al., 2015). The spreading of anaerobic 213 

digestate and compost material on farmland has increased and has become a method 214 

of complimenting or replacing synthetic fertilizer usage. In addition, this is driven by 215 

changes in agricultural practices and policies that focus on reducing climate change 216 

and improving soil quality (Qin et al., 2015; Stoate, 2009; Riding et al., 2015). 217 

Anaerobic digestate is rich in minerals, biomass, nitrogen, phosphorus and carbon 218 

which are essential for maintaining the soil ecosystem and sustaining increased plant 219 

growth (Montemurro et al., 2010; Tambone et al., 2010). In a study carried out by 220 

Alburquerque et al. (2012), the effect of digestate on horticulture crop production 221 

showed that the application of digestate provided a short term source of phosphorus 222 
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and nitrogen and the microbial biomass and enzyme activities were relatively higher 223 

than the non-amended soil. Despite the benefits of utilizing digestate, the risk of 224 

atmospheric and water pollution following the application of digestate to land are high 225 

(Tiwary et al., 2015). This problem is particular to digestate because of the fast release 226 

of nutrients, which is often beyond the utilization rate of the plants and soil 227 

microorganisms, thus making leaching and nutrient loss unavoidable. Unlike the 228 

digestate, the nutrient content of the inorganic fertilizer is slowly released into the 229 

environment, thus reducing the possibility of leaching in relation to organic fertilizers 230 

(Basso & Ritchie, 2005; Kim et al., 2014). Digestates with high concentrations of 231 

inorganic N are of particular concern due to the high potential for volatilization of 232 

NH3 (Fernandes et al., 2012). Reports have shown that N losses are also significant 233 

during the processing of digestate with up to 85% of the NH4
+
 content emitted as NH3 234 

gas (ApSimon et al., 1987; Rehl and Müller, 2011). NH3 is recognised as a major 235 

contributor to nitrous oxide (N2O) production, a biological process carried out by 236 

ammonia-oxidizing bacteria (Law et al., 2013). The N2O is formed as an intermediate 237 

product between nitrification and de-nitrification. The microorganisms first convert 238 

NH3 into hydroxylamine (NH2OH), then into nitrite (NO2
-
) and finally into N2O. N2O 239 

is an important atmospheric gas but at high concentrations it contributes to the 240 

formation of acid rain and thinning of the ozone layer (Badr & Probert, 1993). Tiwary 241 

et al. (2015) reported that the emission of NH3 may be reduced by 85% if the digestate 242 

is introduced into the subsoil but the emission of N2O is inevitable and it was found to 243 

be 2% higher than the other assays because of the contribution of the subsurface 244 

denitrifying microorganisms. Another route for nutrient loss from digestate applied to 245 

soil is diffuse pollution. Nutrient leaching from the digestate can result in the transfer 246 

of N and P to water bodies causing eutrophication (Anthonisen et al., 1976; Soaresa et 247 
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al., 2011). Eutrophication itself is a process whereby an ecosystem is transformed 248 

through nutrient enrichment from an external source (Conley et al., 2009). Following 249 

the increase in nutrients, the growth of certain organisms such as algae, photosynthetic 250 

and heterotrophic bacteria increases, thus raising demand for resources which were 251 

present during the influx of the external enrichment resources (O'Sullivan, 1995). 252 

Accelerated eutrophication of aquatic ecosystems owing to nitrogen and phosphorus 253 

enrichment has been reported to have a negative impact on the aquatic life. Firstly, 254 

light penetration into the littoral zone is limited thus inhibiting the growth of plant and 255 

predators that depend on light for survival; dissolved inorganic carbon is depleted and 256 

the alkalinity of the water increases (Lansing et al., 2008). Secondly, after depletion of 257 

the nutrients, the algal boom dies and microbial decomposition of the algal biomass 258 

depletes the dissolved oxygen, thus creating an anoxic or dead zone (Nagamani & 259 

Ramasamy, 1999). In addition, the proliferation of pathogens such as Ribeiroia 260 

ondatrae, which infects birds, snails and amphibian lava causing limb deformation has 261 

also been reported in the literature (Johnson et al., 2007). Apart from nutrients, 262 

digestate may also contain metals, particularly heavy metals (Ni, Zn, Cu, Pb, Cr, Cd, 263 

and Hg) in varying concentrations (Demirel et al., 2013). Digested sewage sludge is 264 

an example of feedstock with high heavy metal concentrations; this places a limitation 265 

on its land application (Wang et al., 2005). In Guangzhou, China, the concentrations 266 

of heavy metals in wet sludge samples were 4567±143, 81.2±2.8, 148±6, 121±4, 267 

785±32 and 5.99±0.18 mg·kg
−1

 DM for Cu, Pb, Ni, Cr, Zn and Cd, respectively (Liu 268 

& Sun, 2013). Comparing these values with the PAS 110 upper limit standards, which 269 

were set at 200, 200, 50, 100, 400 and 1.5 mg·kg
−1 

DM, only the concentrations of Pb 270 

and Zn were below the standard thresholds. German sewage sludge recorded 202, 5, 271 

131, 349, 53 and 1446 mg kg
−1

 DM for Pb, Cd, Cr, Cu, Ni, Zn and only copper and 272 
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nickel were below the standard thresholds (Benckiser & Simarmata, 1994). Amongst 273 

the prevalent heavy metals in sewage sludge, Cr, Ni, Cd and Pb have been considered 274 

as the most toxic elements in the environment (Lei et al., 2010).  When applied to 275 

farmland, high levels of these metals in soil can lead to phytotoxicity, which 276 

ultimately ends up in the human diet through crop uptake (Islam et al., 2014). The 277 

ingestion of heavy metals is associated with health risks and reports show that 278 

countries like Bangladesh have high levels of Pb and As in their cereals and pulses 279 

(Islam et al., 2014). However, in developed countries, such as the UK, PAS 110 sets a 280 

threshold standard for heavy metal concentration in digestate and for operators who 281 

cannot meet this standard the digestate resource cannot be spread on farmland.  282 

 283 

4. Optimizing the AD process: the use of adsorbent  284 

As mentioned earlier, inhibition in AD has been counteracted with numerous 285 

approaches ranging from the acclimation of bacterial cells, adopting thermophilic 286 

operating conditions and reducing the concentration of the inhibitors either by dilution 287 

or co-digestion with other substrates (Table 1). These approaches do not remove the 288 

inhibitor from the process, which can result in accumulation of the inhibitor and the 289 

eventual destabilization of the AD system. It is beneficial to look for methods that 290 

remove, reduce the mobility or bioavailability the inhibitor within the digestion 291 

process (Chen et al., 2008). An example of a technique that can be used to remove 292 

potential inhibitors is the steam distillation of citrus peel to remove limonene prior to 293 

AD (Martin et al., 2010). Air stripping and chemical precipitation have also been used 294 

to remove NH3 and toxic heavy metals, respectively (Chen et al., 2008). There is the 295 

possibility that carbonaceous sorbents could also be used to remove contaminants or 296 

toxic compounds. This approach is currently employed by industries involved in food, 297 
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beverage and textile production and by water companies (Borja et al., 1996b; Palatsi 298 

et al., 2012). The use of adsorbents such as bentonite, activated carbon and zeolites in 299 

AD has been investigated and the removal of inhibitors has been observed (Angelidaki 300 

& Ahring, 1992; Milan et al., 2003; Bertin et al., 2004; Mumme et al., 2014). 301 

Adsorbents are chemically inert materials with adhesive properties that cause the 302 

accumulation of atoms, ions or molecules on their surface. This is a surface based 303 

interaction between a solid and a fluid; the rate of sorption depends on the adsorbent 304 

(the material used as the adsorbing phase) and the adsorbate (the material being 305 

adsorbed). There are different types of adsorbent with a variety of applications; some 306 

are synthetic whilst others are made from agricultural residues or modified plant and 307 

animal material (Angelidaki & Ahring, 1992; Milan et al., 2003; Bertin et al., 2004; 308 

Mumme et al., 2014). Biochar is an example of adsorbent made from agricultural 309 

residues and because it relatively cheaper to adsorbents like activated carbon, zeolite, 310 

and its application is gradually increasing. The subsequent subheading will be 311 

focusing on different adsorption mechanisms of the biochar material.  312 

 313 

4.1. Mechanisms of biochar adsorption 314 

Adsorption is a dynamic process where the adsorbate associates with the surface of 315 

the adsorbent until an equilibrium state is achieved. The process of adsorption can be 316 

achieved by (i) adsorbate settling on the surface of the adsorbent (physical 317 

adsorption), (ii) adsorbate forming layers on the surface of the adsorbent (surface 318 

precipitation and complexation), (iii) condensation of the adsorbate into the pores of 319 

the adsorbent (pore filling), hydrogen bonding, electrostatic attraction, ion exchange 320 

and hydrophobic effect (Pignatello, 2011). This process occurs in stages: the clean 321 

zone (no adsorption), the mass transfer zone (adsorption in progress) and the 322 
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exhausted zone (equilibrium), (De Ridder, 2012). Furthermore, the saturated and clean 323 

zones will increase and decrease respectively but the mass transfer zone will remain 324 

unchanged unless the concentration of the adsorbate is increased. When the material is 325 

passed through the adsorbent, it associates with the first section of the adsorbent 326 

before moving to another section. This trend continues until the adsorbent is nearly 327 

saturated; the near saturation point is called the breakthrough point (Moreno-Castilla, 328 

2004).  329 

Figure 3 shows the mechanisms of adsorption of organic and metal adsorbates. 330 

For metals adsorption largely occurs through electrostatic attraction, ion-exchange and 331 

precipitation onto the surface of the adsorbent. For organic molecules, important 332 

mechanisms are hydrophobic interactions and hydrogen bonding (Figure 3). Another 333 

mode of adsorption that is common for organic compounds is the van de Waals force 334 

of attraction. This form of adsorption is induced by the surface chemistry of the 335 

biochar. Brennan et al. (2001) showed evidence of different functional groups such as 336 

nitro, chloro, hydroxyl, amine, carbonyl, and carboxylic on the surface of biochar. 337 

This form of sorption can be described as the electron donor-acceptor mechanism 338 

(Mattson et al., 1969). The uneven distribution of electrons between the adsorbent 339 

functional group and the organic compound creates an electron donor-acceptor 340 

relationship. However, for complex organic compounds with substituent groups 341 

(nitro- and chloro-) the electron density of the interaction between the compound and 342 

the adsorbent is greatly reduced and this increases the electrostatic interaction between 343 

them (Cozzi et al., 1993). This is because the substituent group in the compound is a 344 

stronger electron acceptor (Dubinin, 1960; Liu et al., 2010).  345 

 346 

4.2. Controls on biochar adsorption processes 347 
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The factors that influence the performance of adsorbent during adsorption have been 348 

extensively reported in literature. These parameters include the contact time, operating 349 

temperature, adsorbent and adsorbate dosage, particle size and pore distribution, 350 

surface chemistry and pH (Li et al., 2014; Hadi et al., 2015; Yargicoglu et al., 2015).  351 

 352 

4.2.1. Structure and pore size 353 

Adsorbent materials contain pores of various sizes, which have been categorised into 354 

micropores mesopores and macropores. Based on the size of the various pores, the 355 

sorption rate of the adsorbate is expected to increase in this order: macropores > 356 

mesopores > micropores, although this also depends on the size of the adsorbate 357 

(Zabaniotou et al., 2008). Biochar material has been reported to have an abundance of 358 

micropores, which have a high capacity for adsorbate and water uptake (Zabaniotou et 359 

al., 2008). As mentioned earlier, the size of the adsorbate also has some effect on the 360 

rate of sorption (Duku et al., 2011). For example, if the size of the adsorbate is 361 

relatively large or there are fewer sites for diffusion, this might be affected by steric 362 

hinderance (Liu et al., 2010). Further, large adsorbate size can cause exclusion or 363 

blockage of smaller sorption sites (Duku et al., 2011). Studies have shown that smaller 364 

particle sizes reduce the mass transfer limitation and increase the van der Waal or 365 

electrostatic force for penetration of the adsorbate inside the adsorbent (Daifullah & 366 

Girgis, 1998).  367 

 368 

4.2.2. Surface chemistry and pH 369 

The functional groups on the surface of the biochar will influence the adsorption rate. 370 

For instance, biochars derived from sewage sludge and poultry manure have higher 371 

amounts of nitrogen and sulphur functional groups than woody biomass materials 372 
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(Koutcheiko et al., 2007). Brennan et al. (2001) reported the presence of different 373 

functional groups on the surface and pores of biochar, including hydroxyl, amine and 374 

carboxylic groups. The surface chemistry of a carbonaceous sorbent can change, 375 

particularly when it is immersed in water; these changes are attributed to the chemical 376 

characteristics of the adsorbent (functional groups or ionic compound present in 377 

water) and the pH of the solution (Moreno-Castilla, 2004). As illustrated in Figure 4, 378 

at higher pHs, phenolic and carboxylic groups release protons and obtain a negative 379 

charge, while at low pH basic functional group, such as amine, take up a proton and 380 

obtain a positive charge (Schwarzenbach et al., 2005). This implies that the adsorption 381 

behaviour of asorbent is a function of the pH of the medium. Changes in the pH can 382 

have significant impacts on the ability of a material to adsorb certain compounds. For 383 

example, soluble mercury species can be easily adsorbed at higher pHs, whereas 384 

lowering the pH increases the solubility of mercuric ions (Eligwe et al., 1999). 385 

Changes in pH may also result in reductions in the electrostatic force between the 386 

adsorbate ions and the adsorbent (Rao et al., 2009).  387 

 388 

 389 

 390 

4.2.3. Hydrophobicity  391 

The presence and number of O- and N-containing functional groups determine the 392 

hydrophobic nature of biochars. Biochars with less O- and N-containing functional 393 

groups are typically less hydrophobic (Moreno-Castilla, 2004). Hydrophobic 394 

interactions are believed to contribute to the sorption of insoluble adsorbates (Moreno-395 

Castilla, 2004). In aqueous solutions, the adsorbate with the least solubility has the 396 

tendency to be adsorbed and retained in the pore of the adsorbent. According to Li et 397 
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al. (2003), removal of adsorbates, such as 2-propanol, is higher with β-zeolite than 398 

dealuminated β-zeolite because the latter is less hydrophobic. Equally, Li et al. 399 

(2002) showed that hydrophobic activated carbon is more effective in the removal of 400 

relatively polar methyl tertiary-butyl ether (MTBE) and relatively nonpolar 401 

trichloroethene (TCE). The hydrophilic adsorbents are less effective because of the 402 

sorption of water, which in turn reduces the available sites for the adsorbate-adsorbent 403 

interaction (Li et al., 2002).  404 

 405 

4.3. Mechanisms of desorption or regeneration   406 

Adsorbents are useful for separation applications, especially in the purification of 407 

wastewater and gaseous compounds. However, the progressive accumulation of 408 

adsorbate on the surface of the adsorbent will reduce its sorption capacity until the 409 

breakthrough point and finally equilibrium (Salvador et al., 2015). However, the 410 

regeneration of the adsorbent gives it an economical advantage over other separation 411 

methods and numerous regeneration methods have been developed (Lu et al., 2011; 412 

Martin & Ng, 1987; Salvador et al., 2015). Regeneration pathways involve the 413 

removal of the adsorbate from the adsorbent. These have been demonstrated using 414 

chemical reagents, water, hot gases, ozone, superficial fluid, electric current and 415 

microorganisms (Salvador et al., 2015).  416 

In AD the application of water in regeneration is not efficient because water is not 417 

a good solvent of organic material and in the process of regeneration the water is 418 

polluted with the contaminant. Chemical regeneration employs the use of reagents 419 

such as NaOH to remove contaminants, or to change the pH of the adsorbent so that 420 

non-reactive chemicals like aniline and dye can be desorbed (Leng & Pinto, 1996). 421 

However, chemical agents are expensive and the chances of environmental pollution 422 
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are often high. Supercritical fluid regeneration employs a combination of pressurised 423 

CO2 and water at 125-250 bar to desorb benzene, naphthalene and phenol from 424 

activated carbon (Chihara et al., 1997; Tan & Liou, 1989). However, this approach is 425 

energy intensive. Another approach called ozone (O3) regeneration employs the O3 in 426 

direct oxidation of the contaminant. The hydroxyl and oxygen radicals are very 427 

reactive and able to oxidize the contaminant. There are indications of moderate 428 

efficiency of 80-90% when O3 is used because some of the oxidative product might 429 

block the pore sites (Valdés et al., 2002). Unlike the other regeneration methods 430 

mentioned earlier, the biological approach is the most economical and 431 

environmentally friendly because it employs the activities of microorganisms in the 432 

regeneration of the adsorbent. For instance, the biological activated carbon added to 433 

activate sludge in wastewater treatment improves the simultaneous sorption and 434 

biological degradation of the contaminant under aerated conditions (Xiaojian et al., 435 

1991). Another approach to the microbial regeneration of an adsorbent is the 436 

inoculation of an exhausted adsorbent with microorganisms. This approach has been 437 

reported to be less effective because of the eventual blockage of the pore entrance by 438 

colonies of microorganisms. (Hutchinson & Robinson, 1990; Toh et al., 2013). 439 

Perhaps the application of water solvent as a backwash can be used to supplement the 440 

microbial regeneration of exhausted adsorbent. Considering that the level of 441 

contamination from SII is relatively lower and less recalcitrant when compared to 442 

wastewater industries, biological regeneration could be easily achieved but this needs 443 

to be optimized with solvent backwash.   444 

 445 

5. The role of biochar in anaerobic digestion 446 

5.1. Biochar 447 
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Biochar is a soil additive produced from the thermal degradation of organic material 448 

in the presence of little or no amount of oxygen, a process known as pyrolysis 449 

(Shafizadeh, 1982). During pyrolysis the volatilization of the organic matter increases, 450 

the pore sizes enlarge and the structure of the biomass is rearranged Lua et al. (2004). 451 

Factors such as biomass retention time, the properties of the biomass and the 452 

operational parameters can influence the final structure of the biochar (Lua & Guo, 453 

2000). Novakov (1984) describes biochar (or black carbon) as “combustion produced 454 

black particulate carbon having graphitic microstructure”. Biochar is a carbonaceous, 455 

porous and carbon stable material but it is distinctly different because it is produced at 456 

a lower temperature (< 700 ⁰C) without any form of activation (Schulz & Glaser, 457 

2012). This makes the surface area of the biochar less efficient than that of the  458 

activated carbon but in terms of production cost, biochar is cheaper (Lehmann & 459 

Joseph, 2012). Biochar material is attracting attention as a means of improving plant 460 

growth and cleaning contaminated water and land (Tan et al., 2015). Apart from the 461 

direct benefits of plant growth and the cleaning-up of polluted ecosystems, biochar 462 

can serve as carbon storage, thus contributing to the mitigation of climate change 463 

(Montanarella & Lugato, 2013). Biochar material is stable and like other carbon 464 

capture technologies it can ensure long-term storage of carbon and reduced CO2 465 

emission (Woolf et al., 2010). The use of biochar as an adsorbent in AD has not been 466 

fully investigated as yet, but there is potential for it to have a positive impact both on 467 

the operational stability of the AD process and the quality of the digestate produced 468 

(Mumme et al., 2014). The continuous addition of biochar during AD can be 469 

suggested to reduce SII and increase process stability in three ways: (i) through the 470 

sorption of inhibitors, (ii) by increasing the buffering capacity of the system, and (iii) 471 

through immobilization of bacterial cells. In addition, the application of biochar can 472 
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be extended to the improvement of digestate quality. The addition of biochar to 473 

digestate can contribute to nutrient retention, increase the carbon to nitrogen ratio and 474 

reduce nutrient leaching after land application of the digestate mixture (Figure 6). 475 

 476 

5.2. Adsorption of inhibitors 477 

Inhibitors, such as LCFA, ammonia, limonene, heavy metals and phenols, are either 478 

degraded or transformed into other metabolites and these metabolites can be as 479 

inhibitory as their precursors (Duetz et al., 2003). There is the opportunity for 480 

microbial acclimation to inhibitory compounds, but for most commercial operators 481 

there are cost implications of waiting for the whole consortia of cells to acclimate. The 482 

application of an adsorbent such as biochar creates an alternative route for removing 483 

and reducing the effect of SII during AD. This is because there are indications that 484 

biochar can sorb heavy metals and other organic compounds like pesticides, furfural 485 

and limonene (Kılıç et al., 2013; Taha et al., 2014; Hale et al., 2015). According to 486 

Komnitsas et al. (2015), 10 g l
-1

 biochar produced after pyrolysis at 550 
o
C was able to 487 

remove 0.015 g l
-1

 of Cu and Pb with almost 100% removal efficiency. Likewise, 488 

biochar has been shown to sorb organic compounds. For instance, in the amendment 489 

of polycyclic aromatic hydrocarbons in sewage sludge, when compared to the 490 

expensive activated carbon material, biochar does not have a greater effect with regard 491 

to sorption (Oleszczuk et al., 2012). Taghizadeh-Toosi et al. (2012) showed that 492 

biochar can adsorb NH4
+
 and remain stable in ambient air but on exposure to the soil 493 

the NH4
+

 is made bioavailable for plant uptake. Lü et al. (2016) equally reported that 494 

the application of biochar alleviate NH4
+
 inhibition during anaerobic digestion of 6 g l

-495 

1
of glucose solution at an NH4

+
concentration of 7 g l

-1
. In addition, a recent report by 496 

Chen et al. (2015) showed that biochar can also be deployed to contaminated fields 497 
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because of its affinity for polycyclic aromatic hydrocarbons. The sorption capacity of 498 

biochar with different organic and inorganic materials has been extensively reported 499 

in the literature but with regard to most inhibitory compounds during AD it has not 500 

been well documented (Mohan et al., 2014). This may be attributed to the uncertainty 501 

surrounding the addition of biochar to AD systems. Adsorbents like biochar are not 502 

selective during sorption; hence, there is the possibility that some of the nutrients or 503 

useful metabolites will be adsorbed during the AD process (Mumme et al., 2014). This 504 

may not pose a major issue as a proportion of the material trapped within the pores of 505 

the adsorbent can be metabolised by the microorganisms attached to the adsorbent 506 

surface. In order to avoid nutrient or metabolite fouling of the biochar pores, the 507 

organic substrate can be pre-treated with the biochar before AD. However, this 508 

approach might limit the benefits of applying biochar with regard to the removal of 509 

only direct forms of SII. 510 

 511 

5.3. Increasing buffering capacity 512 

Alkalinity is a measure of the reactor’s liquid capacity to neutralise acids, i.e. absorb 513 

hydrogen ions without a significant pH change. Alkalinity is produced in AD through 514 

the degradation of some feedstocks and alkalinity is lost through the production and 515 

accumulation of VFAs. The accumulation of acid is an expected occurrence during 516 

AD, but in the event of high organic overloading and microbial inhibition, the 517 

accumulation of VFA can reduce the buffering capacity of the system (Chen et al., 518 

2008; Rétfalvi et al., 2011). Nonetheless, the buffering capacity of an AD process can 519 

be increased or maintained by adding some alkali compounds or by controlling the 520 

OLR (Ward et al., 2008). A biochar material can be alkaline depending on the 521 

biomass source (Gul et al., 2015). Yuan et al. (2011) showed that the alkalinity of a 522 
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biochar increases with an increase in the pyrolysis operating temperature. The 523 

application of biochar for the purpose of increasing the buffering capacity is not well 524 

known, but this could be recognised as one of the benefits of adding biochar to the AD 525 

process. For instance, most operators usually add lime to the AD system to combat 526 

acidification. However, the continuous addition of alkaline biochar could increase the 527 

buffering capacity of the system (Cao et al., 2012; Zhang et al., 2014). A study by Luo 528 

et al. (2015), which compared biochar and non-biochar incubation using glucose as a 529 

substrate, showed that the biochar containing incubation increased the methane yield 530 

by 86.6% and reduced acidification. Likewise, Sunyoto et al. (2016) reported that the 531 

application of biochar not only support microbial metabolism and growth but buffered 532 

pH during bio-hydrogen production.  533 

 534 

5.4. Immobilization of microbial cell 535 

Immobilization refers to the colonization of microbial cells on the surface of a solid 536 

material. The conventional methods for the immobilization of microbial cells are the 537 

use of entrapments such as gels, and physical adsorption to a solid surface, but this 538 

approach is limiting because of poor mass transfer (Hori et al., 2015). The discovery 539 

of naturally occurring immobilized cells called biofilms has received more attention 540 

because it allows the colonization of microbial cells on polymerised surfaces (Cheng 541 

et al., 2010). The immobilization of microbial communities in AD is important, 542 

particularly for the methanogens because it facilitates electron transfer between 543 

interspecies (Lü et al., 2014). One of the benefits of cell immobilization is to reduce 544 

biomass washout, an occurrence that is common with wastewater treatment. 545 

Anaerobic digesters such as fixed and fluidised beds have been designed with support 546 

media to increase and retain the growth of microbial cells (Fernandez et al., 2007). 547 
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Another advantage of using an immobilized cell is the acclimation rate of the 548 

microbial cell during SII (Chen et al., 2008; Montalvo et al., 2012). Sawayama et al. 549 

(2004) compared dispersed and immobilised cells, and observed that the biomass and 550 

methane production rate of the immobilised cells were higher even at an ammonium 551 

concentration of less than 6 gl
-1

. Furthermore, immobilization of microbial cells has 552 

also been reported to reduce the distance between syntrophic bacteria and 553 

methanogens (Zhao et al., 2015). It has been reported that a distance of less than 1 µm 554 

is essential for the oxidation of volatile fatty acids and hydrogen production (Stams, 555 

1994; Schink, 1997). Cell immobilization is often achieved when a bacterial cell is 556 

able to attach or grow on a support material. Support materials such as zeolite, clay, 557 

activated carbon and other plastic materials have been used to support microbial 558 

attachment and growth (Borja et al., 1993; Sawayama et al., 2004; Chauhan & Ogram, 559 

2005; Bertin et al., 2010). The macropores aid the attachment of bacterial cells (Laine 560 

et al., 1991). Although, the application of biochar for cell immobilization is not as 561 

extensive as most other adsorbents, there is an indication that the macropores enhance 562 

the attachment of bacterial cells (Watanabe & Tanaka, 1999). Luo et al. (2015) 563 

observed the colonization of Methanosarina on biochar material during the AD of 564 

glucose solution and when compared to the non-biochar study, methane production 565 

was higher by 86.6%. There are several reports that shows that the addition of biochar 566 

increases microbial metabolism and growth, because the material provides favourable 567 

support (Cai et al., 2016; Lü et al., 2016; Sunyoto et al., 2016). 568 

 569 

5.5.  Nutrient retention  570 

The management of digestate is attracting attention currently because it contains 571 

useful amounts of micronutrients, ammonium, phosphate, metal and organic material, 572 
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hence making it a good soil conditioner (Sapp et al., 2015). Using a circular economic 573 

approach where food waste is returned to land as a resource reduces the dependency 574 

on inorganic fertilizer, improves the soil ecosystem and provides an alternative source 575 

of phosphorous, which is currently limited (Hendrix, 2012; Zeshan & Visvanathan, 576 

2014). Depending on the characteristics of the organic substrate and the stability of the 577 

AD process, the nutrient content of the digestate will vary. However, as mentioned 578 

earlier, a major problem with spreading digestate on land is leaching as this causes 579 

diffuse pollution to watercourses or the emission of residual CH4 and NH3 gas into the 580 

environment (Menardo et al., 2011). In order to reduce diffuse pollution resulting 581 

from digestate application to land, the C/N ratio of the digestate must be adjusted and 582 

the season of application must be considered (Zeshan & Visvanathan, 2014).  583 

However, these approaches are not solely effective because of the slow rate of 584 

microbial processes in soil thus extending the chances for nutrient loss from applied 585 

digestate via leaching or changes in the soil conditions (Alburquerque et al., 2012).  586 

The addition of biochar during or after AD can potentially improve nutrient retention 587 

and reduce leaching of digestate nutrient.  588 

Studies examining the interactions between biochar and digestate have shown 589 

that the addition of biochar to digestate before land application increases the retention 590 

period of the nutrients for plant and bacterial uptake (Marchetti & Castelli, 2013; 591 

Eykelbosh et al., 2014). Biochar material was found to allow the sorption of organic 592 

matter and inorganic nutrients (Lehmann & Joseph, 2012). The surface of biochar is 593 

complex with pores containing metallic and organic compounds; this property is 594 

essential in the sorption behaviour of biochar. Research has shown that biochar can 595 

adsorb organic substrates, phosphate, nitrate, nitrite, ammonium, metals and carbon 596 

dioxide (Bagreev et al., 2001). According to Koukouzas et al. (2007) some biochar 597 
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material may contain metal oxides (MgO, CrO, CaO and Fe2O3) on its surface or 598 

pores and this induces the adsorption of NH4
+

, thus reducing leaching and diffuse 599 

pollution (DeLuca et al., 2006). Le Leuch and Bandosz (2007) showed that the 600 

sorption of ammonium by biochar immobilizes the ammonium concentration in soil 601 

thus reducing the volatilization of ammonium to ammonia under alkaline conditions 602 

and during temperature changes within the soil. DeLuca et al. (2006), observed that 603 

ammonification reduction was higher in soil containing biochar and this would only 604 

have been possible due to the slow release of the ammonium compound. The 605 

advantage of this behaviour to the soil is that it immobilizes organic nitrogen within 606 

the pores and reduces nutrient loss during leaching thus making nutrients readily 607 

available over a longer term. An additional environmental benefit of nutrient sorption 608 

by biochar is the potential to mitigate the microbial production of N2O following 609 

digestate application. Dicke et al. (2015) studied the effect of biochar material and 610 

digestate on N2O fluxes under field conditions and showed that the addition of biochar 611 

reduced N2O emissions, although the emission of N2O was mostly influenced by 612 

temperature and precipitation. It could be argued that the higher specific surface area 613 

of the activated carbon is better than the biochar material thus making it a more 614 

reliable resource for microbial cell immobilization and the sorption of contaminants 615 

(Wang & Han, 2012). However, because biochar is cheaper to make there is no need 616 

to recover the material after the AD process and this will increase the value of the 617 

digestate. 618 

 619 

6. Conclusions. 620 

The application of biochar has the potential to improve AD process by counteracting 621 

SII, improve digestate quality through nutrient retention, contributing to the buffering 622 
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capacity of the system and create a surface area for the colonization of microbial cell. 623 

Comparatively, these functions can be achieved by another adsorbent like activated 624 

carbon with higher efficiency. However, the production of biochar is cost effective 625 

hence AD operators can afford to use the material without any need for recovery and 626 

this will further encourage the spreading of biochar and digestate on land. Biochar was 627 

not primarily designed for AD, hence future research in the interaction between 628 

biochar and AD microbes, buffering capacity of biochar during AD and sorption 629 

effect of biochar material on the AD using a continuous-fed digestion process should 630 

be investigated. 631 
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Table 

Table 1: Inhibitors, their functions, effects and exiting counteracting methods 

Inhibitor  Function  Inhibition    Counteracting methods 

Direct inhibitor    

Heavy metals (Cu2+, 

Zn2+, Cr3+, Cd, Ni, 

Pb4+& Hg2+) 

Part of essential enzymes 

and drives anaerobic 

enzymatic reactions  

 

Formation of complexes to 

form unspecific complex 

compounds (Nies, 1999) 

 

The order of inhibition to the acetogens 

(Cu>Zn>Cr>Cd>Ni>Pb) and methanogens 

(Cd>Cu>Cr>Zn>Pb>Ni) (Lin, 1993) 

Production of hydrogen sulphide to precipitate as metal 

sulphide (Gadd & Griffiths, 1977) 

Co-digestion with another substrate (Pahl et al., 2008) 

Retention of metal on the cell wall (Jankowska et al., 2006) 

Lowering permeability of the cell membrane  (Jankowska et 

al., 2006) 

Light metals (Na+, K+, 

Mg2+, Ca2+, and Al3+) 

Required for microbial 

growth   

Enhances bacterial cell 

immobilization (Ca) 

(Thiele et al., 1990; van 

Langerak et al., 

1998)Formation of 

adenosine phosphate 

(ADH) (Na +)(Dimroth & 

Thomer, 1989) 

Restrict production of double cells (Mg2+) 

Neutralize cell membrane potential (K+)(Jarrell et al., 1987) 

Inhibit acetoclastic methanogens (Na+) 

Precipitation of carbonates and phosphates thus destabilizing 

the buffering  system (Ca2+) (van Langerak et al., 1998) 

Competition with adsorption of other metals (Al3+) (Cabirol et 

al., 2003) 

 

 

 

Acclimation of bacterial cell (Chen et al., 2008)   Na+, Mg2+ 

and NH4
+ mitigate potassium toxicity(Chen et al., 2008) 

Chlorophenols and 

Halogenated aliphatic 

Reduction of pathogens Interference with cellular energy transduction 

Disruptions of proton gradient through the cell membrane 

(Chen et al., 2008) 

Methanogens are greatly inhibited (Chen et al., 2014) 

 

 

Removal of contaminant using activated carbon (Liu et al., 

2010) 

Pesticides and 

antibiotic 

- Inhibition of protein and cell Wall Synthesis                                 

Alteration of Cell Membranes                                       

Antimetabolite Activity(Neu, 1984)Inhibits methanogens  

(Alvarez et al., 2010; El-Gohary et al., 1986) 

Removal of contaminant using biochar (Yao et al., 2013) 

Lignocellulose - Inhibition of anaerobic digestion process (Furfural > 5- Acclimation of the bacterial cell (Palmqvist & Hahn-
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hydrolysate HMF>phenol) 

Damage of DNA 

Distortion of the glycolytic pathway (Palmqvist & Hahn-

Hagerdal, 2000). 

Hagerdal, 2000). 

 

Indirect inhibitor    

Volatile fatty acids 

(VFAs) 

Methane production Reduces pH at high concentration Acidity of the system pH adjustment 

Reduce organic loading rate 

Long-chain fatty acids 

(LCFAs) 

- Distorting the electron transport system in the cell membrane 

of the bacterial cell(Hanaki et al., 1981) 

 

Suspension  of bacterial cell 

Contributes to foaming during interaction with filamentous 

microorganisms in an anaerobic condition(Ganidi et al., 2009) 

 

Acclimation of bacterial cell(Rinzema et al., 1994) 

Co-digestion with lipid-free substrate 

Limonene - Increases permeability of cell membrane and causes leakage 

of cell content (Burt, 2004) 

Acclimation of bacterial cell  

Removal of essential oil 

Thermophilic operation 

Co-digestion with crude glycerol (Mizuki et al., 1990; 

Martin et al., 2010; Martín et al., 2013) 

    

Sulfide 

 

𝑺𝑶𝟒
𝟐− + 𝟒𝑯𝟐

= 𝑯𝟐𝑺 + 𝟒𝑯𝟐𝑶
+ 𝟐𝑶𝑯− 

 

𝑺𝑶𝟒
𝟐− + 𝑪𝑯𝟑𝑪𝑶𝑶𝑯

= 𝑯𝟐𝑺 +  𝟐𝑯𝑪𝑶𝟑
−

 

 

co-enzyme production, 

ferredoxin and other 

compounds(Khan & 

Trottier, 1978). 

Compete with acetate users for acetate utilization 

Corrosion of pipes and engine 

Inhibition of methanogens  

Khan and Trottier (1978) 

Acclimation of the bacterial cell 

Removal of sulphide (Song et al., 2001) 

Inorganic nitrogen 

 

𝑵𝑯𝟒
+ + 𝑶𝑯−

⇋ 𝑯𝑪𝑶𝟑
− +  𝑯𝟐𝑶 

 

 

𝑪𝑶𝟐
+ + 𝑯𝟐𝑶 + 𝑶𝑯−

= 𝑯𝑪𝑶𝟑
− + 𝑯𝟐𝑶 

 

Availability of nitrogen as 

nutrient (Liu & Sung, 2002) 

Proton imbalance (NH3-N) 

Inhibit methane producing enzymes (NH4-N) 

 

Methane production will be inhibited 

Accumulation of VFAs 

Bacterial cell immobilization (Sasaki et al., 2011) 

Acclimation of bacterial cell  (Chen et al., 2008) 

pH adjustment  (Angelidaki & Ahring, 1993) 

Addition of trace element (Banks et al., 2012) 

Dilution of feedstock (Kelleher et al., 2002) 

Adjustment of the C/N ratio (Resch et al., 2011) 
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Figure captions 

Figure 1 Schematic representation of the anaerobic digestion process  (Amaya et al., 

2013)  

Figure 2 A model of mechanisms of a chemical attack on the bacterial cell (Ibraheem 

& Ndimba, 2013). 

Figure3 Summary of proposed mechanisms for adsorption on biochars ( Adapted from; 

Tan et al., 2015)  

Figure 4 Macroscopic representation of the features of carbon surface chemistry 

(Radovic et al., 2001) 

Figure 5 The potential benefits of biochar in enhancing anaerobic digestion and 

digestate quality
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