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Abstract The contextual-based convolutional neural network (CNN) with deep 10 

architecture and pixel-based multilayer perceptron (MLP) with shallow structure are 11 

well-recognized neural network algorithms, representing the state-of-the-art deep 12 

learning method and the classical non-parametric machine learning approach, 13 

respectively. The two algorithms, which have very different behaviours, were 14 

integrated in a concise and effective way using a rule-based decision fusion approach 15 

for the classification of very fine spatial resolution (VFSR) remotely sensed imagery. 16 

The decision fusion rules, designed primarily based on the classification confidence 17 

of the CNN, reflect the generally complementary patterns of the individual 18 

classifiers. In consequence, the proposed ensemble classifier MLP-CNN harvests the 19 

complementary results acquired from the CNN based on deep spatial feature 20 

representation and from the MLP based on spectral discrimination. Meanwhile, 21 

limitations of the CNN due to the adoption of convolutional filters such as the 22 

uncertainty in object boundary partition and loss of useful fine spatial resolution 23 

detail were compensated. The effectiveness of the ensemble MLP-CNN classifier 24 

was tested in both urban and rural areas using aerial photography together with an 25 

additional satellite sensor dataset.  The MLP-CNN classifier achieved promising 26 

performance, consistently outperforming the pixel-based MLP, spectral and textural-27 

based MLP, and the contextual-based CNN in terms of classification accuracy. This 28 

research paves the way to effectively address the complicated problem of VFSR 29 

image classification. 30 
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1. Introduction 33 

With the rapid development of modern remote sensing technologies, a large quantity of 34 

very fine spatial resolution (VFSR) images is now commercially available. These 35 

VFSR images, typically acquired at sub-metre spatial resolution, have opened up many 36 

opportunities for new applications (Zhong et al., 2014), for example, urban land use 37 

retrieval (Mathieu et al., 2007; Shi et al., 2015), precision agriculture (Ozdarici-Ok et 38 

al., 2015; Zhang and Kovacs, 2012), and tree crown delineation (Ardila et al., 2011; 39 

Yin et al., 2015). However, despite the presence of a rich spatial data content (Huang 40 

et al., 2014), the information conveyed by the imagery is conditional upon the quality 41 

of the processing (Längkvist et al., 2016). With fewer spectral channels in comparison 42 

with coarse or medium spatial resolution remotely sensed data, it can be challenging to 43 

differentiate subtle differences amongst similar land cover types (Powers et al., 2015). 44 

Meanwhile, objects of the same class may exhibit strong spectral heterogeneity due to 45 

differences in age, level of maintenance and composition as well as illumination 46 

conditions (Demarchi et al., 2014), which might be further complicated by the 47 

scattering of peripheral ground objects (Chen et al., 2014). As a consequence, such high 48 

intra-class variability and low inter-class disparity make automatic classification of 49 

VFSR images a challenging task. 50 

Ever since the advent of VFSR imagery, tremendous efforts have been made to develop 51 

robust and accurate, automatic image classification methods. Among these, machine 52 

learning is currently considered as the most promising and evolving approach (Zhang 53 

et al., 2015). Popular pixel-based machine learning algorithms, such as Multilayer 54 

Perceptron (MLP), Support Vector Machine (SVM) and Random Forest (RF), have 55 

drawn considerable attention in the remote sensing community (Attarchi and Gloaguen, 56 

2014; Yang et al., 2012; Zhang et al., 2015). The MLP, as a typical non-parametric 57 

neural network classifier, is designed to learn the nonlinear spectral feature space at the 58 

pixel level irrespective of its statistical properties (Atkinson and Tatnall, 1997; Foody 59 

and Arora, 1997; Mas and Flores, 2008). The MLP has been used widely in remote 60 

sensing applications, including VFSR-based land cover classification (e.g. Del Frate et 61 

al., (2007), Pacifici et al. (2009)). The MLP algorithm is mathematically complicated 62 

yet can be simple in model architecture (e.g., a shallow classifier with one or two feature 63 

representation levels). At the same time, a pixel-based MLP classifier does not consider, 64 

or make use of, the spatial patterns implicit in images, especially for VFSR imagery 65 
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with unprecedented spatial detail. In essence, the MLP (and related algorithms, e.g. 66 

SVM, RF, etc.) is a pixel-based classifier with shallow structure (one or two layers) 67 

(Chen et al., 2016), where the membership association of a pixel for each class is 68 

predicted.  69 

Recent advances in neuroscience have shown that deep feature representations can be 70 

learned hierarchically from simple concepts such as oriented edges to higher-level 71 

complex patterns such as textures, segments, parts and objects (Arel et al., 2010). This 72 

discovery motivated the breakthrough of the so-called “deep learning” methods that 73 

represent the state-of-the-art in a variety of domains, including target detection (Chen 74 

et al., 2016; Tang et al., 2015), image recognition (Farabet et al., 2013; Krizhevsky et 75 

al., 2012) and robotics (Bezak et al., 2014; Lenz et al., 2015; Yu et al., 2013), amongst 76 

others. The convolutional neural network (CNN), a well-established deep learning 77 

approach, has produced excellent results in the field of computer vision and pattern 78 

recognition (Schmidhuber, 2015), such as for visual recognition (Farabet et al., 2013; 79 

Krizhevsky et al., 2012), image retrieval (X. Yang et al., 2015) and scene annotation 80 

(Othman et al., 2016).  81 

In the remote sensing domain, CNNs have been studied actively and shown to produce 82 

state-of-the-art results over the past few years, focusing primarily on object detection 83 

(Dong et al., 2015) or scene classification (Hu et al., 2015a; Zhang et al., 2016). Recent 84 

studies further explored the feasibility of CNNs for the task of remotely sensed image 85 

classification. For example, Yue et al., (2016) utilized spatial pyramid pooling to learn 86 

multi-scale spatial features from hyperspectral data, Chen et al. (2016) introduced a 3D 87 

CNN to jointly extract spectral–spatial features, thus, making full use of the continuous 88 

hyperspectral and spatial spaces. In terms of the classification of multi- and 89 

hyperspectral imagery, a deep CNN model was formulated through a greedy layer-wise 90 

unsupervised pre-training strategy (Romero et al., 2016), whereas an image pyramid 91 

was built up through upscaling the original image to capture the contextual information 92 

at multiple scales (Zhao and Du, 2016). For VFSR image classification, CNN models 93 

with varying contextual input size were constructed to learn multi-scale features while 94 

preserving the original fine resolution information (Längkvist et al., 2016). All of the 95 

above-mentioned work applied CNNs with contextual patches as their inputs, and 96 

demonstrated the robustness and effectiveness in spatial feature representations with 97 

excellent classification performance. However, the benefits and shortcomings of the 98 
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CNN as a classifier itself have not been studied thoroughly. In particular, the CNN, as 99 

a contextual classifier with deep structures (Szegedy et al., 2015), explores the complex 100 

spatial patterns hidden in the image that are not seen by representation in its shallow 101 

counterparts, whereas it may overlook certain information in spectral space observed 102 

by pixel-based classifiers. Moreover, uncertainties may appear in object boundaries due 103 

to the usage of convolutional filters of the CNN. These issues deserve further 104 

investigation. 105 

Any single set of features (e.g., spectral only) or a specific classifier (e.g., pixel-based 106 

only) is unlikely to achieve the highest classification accuracies for VFSR imagery 107 

because the result is conditional upon both spectral and spatial information. In this 108 

context, two categories of spectral and spatial information were fused for classification 109 

or handled with a classifier ensemble. Information fusion can be realized by stacking 110 

the spatial and spectral information as feature bands. However, this does not allow the 111 

specification of the relative influence of the extracted features (Wang et al., 2016). 112 

Others proposed integrative algorithms considering the spatial and spectral features at 113 

the same time. For example, Fauvel et al., (2012) proposed a composite kernel-based 114 

SVM with spectral and spatial kernels applied simultaneously. However, the spatial 115 

kernel summarizes only basic information (e.g. median) of the spatial neighbourhood 116 

(Wang et al., 2016).  117 

In terms of classifier ensemble technology, two strategies, namely “multiple classifier 118 

systems” (Benediktsson, 2009) and “decision fusion” (Fauvel et al., 2006) are 119 

employed. Multiple classifier systems are based on the manipulation of training sample 120 

sets, including boosting (Freund et al., 2003) and bagging (Breiman, 1996). This 121 

ensemble approach, however, usually requires a relatively large sample size and the 122 

computational complexity tends to be high. An alternative classifier ensemble is 123 

derived from decision fusion of the outputs of different classification algorithms 124 

according to a certain combination of approaches (Du et al., 2012; Löw et al., 2015). 125 

This decision fusion-based ensemble approach is preferable where the individual 126 

classifiers demonstrate complementary behaviour. For instance, different non-127 

parametric classifiers are sometimes accurate in different locations in a classification 128 

map, thus, producing complementary results from the ensemble (Clinton et al., 2015; 129 

Löw et al., 2015). However, all the aforementioned fusion strategies are conducted 130 
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using pixel-based classifiers with shallow structures, whose complementary behaviours 131 

are insufficient to address the challenges of VFSR image classification. 132 

  In this paper, a hybrid classification system was proposed that combines the CNN (a 133 

contextual-based classifier with deep architectures) and MLP (a pixel-based classifier 134 

with shallow structures) using a rule-based decision fusion strategy. The hypothesis is 135 

that both MLP and CNN classifiers can provide different views or feature 136 

representations with strong complementarity. Thus, the classifier ensemble has the 137 

potential to enhance the final classification performance. The decision fusion rules were 138 

built up at the post-classification stage, primarily based on the confidence distribution 139 

of the contextual-based CNN classifier, such that the classified pixels with low 140 

confidence can be rectified by the MLP at the pixel level. The effectiveness of the 141 

proposed method was tested on images of both an urban scene and a rural area.  A 142 

benchmark comparison was provided by the standard pixel-based MLP, spectral-143 

texture based MLP as well as contextual-based CNN classifiers. 144 

2. Methodology 145 

2.1 Brief review of multilayer perceptrons (MLP) 146 

A multilayer perceptron (MLP) is a network that maps sets of input data onto a set of 147 

outputs in a feedforward manner (Atkinson and Tatnall, 1997). The typical structure is 148 

that the MLP is composed of interconnected nodes in multiple layers (input, hidden and 149 

output layers), with each layer fully connected to the preceding layer as well as the 150 

succeeding layer (Del Frate et al., 2007). The outputs of each node are weighted units 151 

followed by a nonlinear activation function to distinguish the data that are not linearly 152 

separable (Pacifici et al., 2009). Formally, the output activation 
)1( la  at layer l+1 is 153 

derived by the input activation
)(la : 154 

 )( )()()()1( llll bawa    (1) 155 

Where l corresponds to a specific layer, 
)(lw  and 

)(lb  denote the weight and bias at layer 156 

l, and  represents the nonlinear activation operation (e.g. sigmoid, hyperbolic tangent, 157 

rectified linear units) function. For an m layer multilayer perceptron, the first input layer 158 

is xa )1(
 while the last output layer is:  159 


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The weights  and bias  in equation (2) are learned by supervised training using a 161 

backpropagation algorithm to approximate an unknown input-output relation (Del Frate 162 

et al., 2007). The objective function is to minimize the difference between the predicted 163 

outputs and the desired outputs: 164 
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2.2 Brief review of Convolutional Neural Networks (CNN) 166 

A Convolutional Neural Network (CNN), is a variant of the multilayer feed forward 167 

neural networks, and is designed specifically to process large scale images or sensory 168 

data in the form of multiple arrays by considering local and global stationary properties 169 

(LeCun et al., 2015). Similar to the MLP, the CNN is a network stacked into a number 170 

of layers, where the output of the previous layer is connected sequentially to the input 171 

of the next one by a set of learnable weights and biases (Romero et al., 2016). The major 172 

difference is that each layer is represented as input and output feature maps by capturing 173 

different perspectives on features through the operation of convolution. 174 

The CNN basically consists of three major operations: convolution, nonlinearity and 175 

pooling/subsampling (Schmidhuber, 2015). The convolutional and pooling layers are 176 

stacked together alternatively in the CNN framework, until obtaining the high-level 177 

features on which a fully connected classification is performed (LeCun et al., 2015). In 178 

addition, several feature maps may exist in each convolutional layer and the weights of 179 

convolutional nodes in the same map are shared. This setting enables the network to 180 

learn different features while keeping the number of parameters tractable. 181 

Mathematically, the output feature map 
)(

,

l

jiy  at convolutional layer l is calculated as: 182 
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Where the 
)(

,

l

mnw  denotes the convolutional filter with size k×k at layer l, and the 184 

)1(

,





l

mjnix  represents the spatial position of the corresponding feature map at the 185 

preceding layer l-1. The algorithm passes the convolutional filter throughout the input 186 

w b
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feature map using the dot product  between them with an addition of a bias unit 
)(lb  187 

(Arel et al., 2010). Moreover, a nonlinear activation function 
)(l  at layer l is taken 188 

outside the dot product to strengthen the nonlinearity (Strigl et al., 2010).  189 

The pooling/subsampling layer can generalize the convolved features through down-190 

sampling and thereby reduce the computational complexity during the training process 191 

(Zhao and Du, 2016). Given a pooling/subsampling layer q, the feature output 
qF  can 192 

be derived from the preceding layer )1( qf  through 193 
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(5) 195 

Where  is the size of the local spatial region, and pnmji /)1(,1  , here the 196 

m refers to the size of input feature map, while n corresponds to the size of filter   197 

(Längkvist et al., 2016). The  simply summarizes the input features within local 198 

spatial region using the maximum value (Figure 1: Pooling). By doing this, the learnt 199 

features become robust and abstract with certain sparseness and translation invariance.  200 

Once the higher level features are extracted, the output feature maps are flattened into 201 

a one-dimensional vector, followed by a fully connected output layer (Figure 1: fully 202 

connect). This operation is exactly a simple logistic regression, which is equivalent to 203 

the standard MLP discussed in section 2.1, but without any hidden layer. 204 

 205 

Figure 1 A schematic illustration of the three core layers within the CNN architecture, including the 206 

convolutional layer (convolution), pooling layer (pooling) and fully connected layer (fully connect). 207 

2.3 Hybrid MLP-CNN Classification Approach 208 

)(

pp

max
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Suppose the predictive outputs of the MLP and CNN at each pixel are n-dimensional 209 

vectors ),...,,( 21 ncccC  , where n represents the number of classes and each dimension 210 

],1[ ni  corresponds to the probability of a specific class (i-th class) with certain 211 

membership association. Ideally, the probability of the classification prediction would 212 

be 1 for the target class and 0 for the others. However, due to the uncertainty in the 213 

process of remotely sensed image classification, the probability value c is denoted as214 

)},...,2,1(|{)( nxcxf x  , where ]1,0[xc  and 
n

xc
1

1 . The classification model 215 

simply takes the maximum membership association as the predicted output label 216 

(denoted as class(C)): 217 

 )}),...,2,1(|)(max({arg)( nxcxfCclass x   (6) 218 

The confidence conf  of such membership association is defined here as: 219 

 )()( CMeanCMaxconf   (7) 220 

In equation (7), Max(C) represents the maximum value of vector C, while Mean(C) 221 

denotes the average of all the values of C. The conf, quantified by the difference 222 

between Max(C) and Mean(C), measures the confidence or reliability of the class 223 

membership allocation (i.e. classification confidence map). Since the CNN takes 224 

contextual image patches as its inputs instead of image pixels, it has the following 225 

properties: 226 

(1). If the input image patch is located at the central homogeneous region, its class 227 

purity is relatively high with large difference between the membership association of 228 

the predicted class and those of the other classes, and the conf tends to be large (White 229 

regions in Figure 2(c)). 230 

(2). If the image patch contains other land cover classes as contextual information, the 231 

resulting distinction between the membership association of prediction and those of the 232 

others is relatively low, and the conf tends to be small (Dark regions in Figure 2(c)). 233 

However, the MLP (spectral feature only) is based on per-pixel spectral information, 234 

thereby ruling out the difference of membership association between central and 235 

boundary regions of the classified objects (Figure 1(b)). According to the 236 
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aforementioned properties, the fusion decision rules are constructed primarily based on 237 

CNN confidence. To be more specific, the fusion output gives credit to the CNN when 238 

its confidence is larger than a predefined threshold (α1), while the MLP is trusted given 239 

that the CNN confidence is lower than another threshold (α2); once the confidence of 240 

the CNN lies in-between the two thresholds ( ),( 21 αα ), the fusion output chooses the 241 

CNN or MLP classification result with a larger confidence. Therefore, for a given image 242 

pixel at location ),( vh , a rule-based decision fusion approach to determining the class 243 

label ( ),( vhclass ) of the corresponding pixel is formulated as follows:  244 
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Where the 
mlpclass  and cnnclass  represent the classification results of the MLP and CNN 246 

respectively; the 
mlpconf  and cnnconf  denote the classification confidence of the MLP 247 

and CNN accordingly. 248 

Estimation of the two thresholds (α1,α2) is conducted using grid search with cross-249 

validation (Min and Lee, 2005; Zhang et al., 2015) based on the CNN classification 250 

confidence map (as illustrated by Figure 2(c)). Specifically, the α1 was searched from 251 

0.1 to 0.5 to detect those regions with low confidence as predicted by the CNN, while 252 

the α2 was chosen from 0.5 to 0.9 to discover the high confidence regions. By initially 253 

fixing α1 as 0.1, α2 was tuned with step size of 0.05 (i.e. α2=0.5, 0.55, 0.6, ..., 0.9) to 254 

cross-validate the classification accuracy influenced by the selected thresholds; α1 was 255 

then increased to further tune α2 in a similar way until the optimal α1 and α2 were found 256 

with the best classification accuracy. 257 

 258 
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Figure 2 (a) A subset of the original imagery with RGB spectral bands, (b) the classification confidence 259 

of the MLP and (c) the classification confidence of the CNN. The dark pixels represent low confidence, 260 

while white pixels signify high confidence. 261 

3. Experiment 262 

3.1 Study area and data source 263 

For this study, the city of Southampton, UK and its surrounding environment, which 264 

lies on the south coast of England, was chosen as a case study area (Figure 3). The 265 

urban and suburban areas in Southampton are strongly heterogeneous with a mixture of 266 

anthropogenic urban surface (e.g. roof materials, asphalt, concrete) and semi-natural 267 

environment (e.g. vegetation, bare soil), thereby representing a good test for 268 

classification algorithms.  269 

A scene of aerial imagery of Southampton was captured on 22 July 2012 using a Vexcel 270 

UltraCam Xp digital aerial camera with 50 cm spatial resolution and four multispectral 271 

bands (Red, Green, Blue and Near Infrared). Two study sites S1 (3087×2750 pixels) 272 

and S2 (2022×1672 pixels) were selected to investigate the effectiveness of the 273 

proposed algorithm. S1 is located in the city centre of Southampton, which consists of 274 

eight dominant land cover classes, including Clay roof, Concrete roof, Metal roof, 275 

Asphalt, Grassland, Trees, Bare soil and Shadow, with detailed descriptions listed in 276 

Table 1. S2, on the other hand, is situated in a suburban and rural area of Southampton 277 

comprised of large patches of forest, grassland and bare soil speckled with small 278 

buildings and roads. There are six land cover categories in this study site, namely, 279 

Buildings, Road-or-track, Grassland, Trees, Bare soil and Shadow (Table 1).  280 

 281 

Figure 3 Southampton, UK Location of study area and aerial imagery with two study sites S1 and S2. 282 
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Sample points were collected using a stratified random scheme from ground data 283 

provided by local surveyors at Southampton, and split into 50% training samples and 284 

50% testing samples for each class (Table 1). Field land cover survey was conducted 285 

throughout the study area on July 2012 to further check the validity and precision of 286 

the selected samples. In addition, a highly detailed vector map from Ordnance Survey, 287 

namely the MasterMap Topographic Layer (Regnauld and Mackaness, 2006), was fully 288 

consulted and cross-referenced to gain a comprehensive appreciation of the land cover 289 

and land use within the study area. 290 

Table 1 Detailed description of land covers at two study sites with training and testing sample size per 291 

class. 292 

Study 

Sites 
Class Train Test Description 

S1 

Clay roof 144 144 Predominantly residential buildings in red clay tiles 

Concrete roof 132 132 Predominantly residential buildings in grey clay tiles 

Metal roof 134 134 Predominantly industrial buildings in white metal panels 

Asphalt 136 136 Urban road or cark parks covered by asphalt 

Grassland 126 126 Areas of grass covering the urban park or lawn 

Trees 137 137 Patches of tree species 

Bare soil 118 118 Open areas covered by bare soil 

Shadow 123 123 Areas of shadow cast from buildings and trees 

S2 

Building 82 82 Predominantly small buildings at rural areas 

Road-or-track 85 85 Asphalt road or small path 

Grassland 86 86 Large areas of wild grass or lawn 

Trees 98 98 Large patches of deciduous trees 

Bare soil 84 84 Open areas covered by bare soil 

Shadow 86 86 Areas of shadow cast from buildings and trees 

 293 

To further test the applicability of the proposed method, another scene of Worldview-294 

2 satellite sensor imagery was acquired on 24 July 2013 in the same region of 295 

Southampton with urban (S1’) and rural (S2’) study sites close to the Northwest of S1 296 

and S2. The Worldview-2 image was geometrically and atmospherically corrected, and 297 

pan-sharpened at 50 cm spatial resolution to be consistent with the aerial imagery. 298 

Figure 4 demonstrates the WorldView-2 satellite sensor image together with two 299 

subsets S1’ and S2’.  300 
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 301 

Figure 4 Additional WorldView-2 satellite sensor image covering the same region of Southampton 302 

with the S1’ and S2’ study sites to the northwest of S1 and S2, respectively. 303 

3.2 Model input variables and parameters 304 

Model inputs: the standard pixel-based MLP (hereafter, MLP) and CNN take only the 305 

four spectral bands as their input variables, whereas the pixel-based texture MLP based 306 

on the standard Grey Level Co-occurrence Matrix (hereafter, GLCM-MLP) 307 

simultaneously makes use of both the four spectral bands and the texture features 308 

derived from GLCM textural features including the Mean, Variance, Homogeneity, 309 

Contrast, Dis-similarity, Entropy, Second moment and Correlation (Haralick et al., 310 

1973; Rodriguez-Galiano et al., 2012; Xia et al., 2010; Zhang et al., 2003). Three 311 

window sizes for each spectral band, including 3×3 (1.5×1.5 m), 5×5 (2.5×2.5 m), and 312 

7×7 (3.5×3.5 m), were optimally chosen to perform multi-scale texture feature 313 

representation, thus generating 96 GLCM texture features in total. It should be noted 314 

that both the MLP and the CNN as well as the GLCM-MLP were trained to predict all 315 

pixels within the images. Although the CNN was designed to predict a single label from 316 

a small image patch, the sliding window was densely overlapping to cover the entire 317 

image at the inference phase. 318 

Both the MLP (also including GLCM-MLP) and CNN models require a series of 319 

predefined parameters to optimize the learning accuracy and generalization capability. 320 

Following the recommendations of Mas and Flores, (2008), the MLPs with one, two 321 

and three hidden layers were tested, using a varying number of {4, 8, 12, 16, 20, and 322 

24} nodes in each layer. The learning rate was chosen optimally as 0.2 and the 323 

momentum factor was set as 0.7. In addition, the number of iterations was set as 1000 324 

to fully converge to a stable state. Through cross-validation with different numbers of 325 
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nodes and hidden layers, the best predicting MLP was found using two hidden layers 326 

with 8 nodes in each layer. Similar parameters were also set for the GLCM-MLP, 327 

except that two hidden layers with 20 nodes in each layer were found to be the optimal 328 

solution in this case. 329 

For the CNN, a range of parameters including the number of layers, the input image 330 

patch size, the number and size of convolutional filter, as well as other predefined 331 

parameters, such as the learning rate and number of epochs (iterations), need to be tuned 332 

(Romero et al., 2016). Following the discussion by Längkvist et al., (2016), the input 333 

image size was chosen from {8×8, 10×10, 12×12, 14×14, 16×16, 18×18, 20×20, 22×22 334 

and 24×24} to evaluate the influence of context area on classification performance. In 335 

general, a small-sized contextual area results in overfitting of the model, whereas a 336 

large one often leads to under-segmentation. In consideration of the image object size 337 

and contextual relationship coupled with a small amount of trial and error, the optimal 338 

input image patch size was set to 16×16 in this research. Besides, as discussed by Chen 339 

et al., (2014) and Längkvist et al., (2016), the depth plays a key role in classification 340 

accuracy because the quality of learnt feature is highly influenced by the level of 341 

abstraction and representation. As suggested by Chen et al. (2016), the number of CNN 342 

layers was chosen as four to balance the network complexity and robustness. Other 343 

parameters were set based on standard practice in the field of computer vision. For 344 

example, the filter size was set to 5×5 for the first convolution layer and 3×3 for the 345 

rest with stride of 1, and the number of the filters was set to 24 to extract multiple 346 

convolutional features at each level. The fully connected layer was tuned as 12 nodes 347 

followed by a softmax classification. The learning rate was set to 0.01 and the number 348 

of epochs (iterations) was chosen as 600 to fully learn the features through 349 

backpropagation. The detailed architecture of the CNN and its parameter configurations 350 

is illustrated in Figure 5. 351 
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 352 

Figure 5. The architecture of the CNN and its configurations. 353 

3.3 Decision Fusion Parameter Setting and analysis  354 

A rule-based decision fusion approach was implemented based on the classification 355 

confidence maps of the CNN (e.g. Figure 2(b)) and MLP (e.g. Figure 2(c)). The 356 

parameters of decision fusion, including two thresholds α1 and α2, were determined by 357 

grid search with cross-validation using 10% of the randomly chosen samples. In this 358 

study, the optimal thresholds α1=0.4 and α2=0.6 were found that reported the greatest 359 

classification accuracy. 360 

For the sake of visual interpretation, the confidence distribution of the CNN and MLP 361 

influenced by the chosen thresholds is shown in Figure 6. Clearly, the CNN and MLP 362 

demonstrated individually consistent, but mutually converse distribution patterns in the 363 

two study sites: along with the increase in the CNN’s confidence, the MLP inversely 364 

exhibited a decreasing trend. Specifically, for low CNN confidence (<0.4), the MLP 365 

confidence was around 0.75, significantly higher than that of the CNN, thus outputting 366 

the results of MLP in the final decision; once the CNN confidence ranged from 0.4 to 367 

0.6, no significant difference was shown between the two classifiers, thereby, optimally 368 

choosing the classification results based on the competitive “winner-takes-all” 369 

approach; while for large CNN confidence (>0.6), the MLP was, in contrast, much less 370 

reliable (<0.45), thus, taking the classification results of the CNN only in this situation.  371 
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 372 

Figure 6 Classification confidence distributions of the CNN and MLP at two study sites (S1 and S2) 373 

under different fusion thresholds. 374 

3.4  Classification results and analysis 375 

3.4.1 Classification results and visual assessment 376 

By integrating the classification results of the MLP and CNN using the above-377 

mentioned fusion parameters, the final classification of the proposed MLP-CNN was 378 

obtained at both study sites, S1 (city centre with complex urban scene) and S2 (rural 379 

areas with natural phenomena). To provide a better visualization, Figure 7 (three 380 

subsets of S1) and Figure 8 (three subsets of S2) highlights the correct or incorrect 381 

classification results of different classifiers marked in yellow or red circles, respectively.  382 

From Figure 7, it can be seen that the MLP classification results consist of undesirable 383 

noise (marked in red circle), such as a severe salt-and-pepper effect in Figure 7(a) and 384 

7(b), and linear noisy textures in Figure 8(c). Besides, Trees and Grassland are seriously 385 

confused with each other as illustrated by Figure 7(c) and Figure 8(a) and 8(b). 386 

However, as shown by Figure 7(b), the MLP has certain advantages over CNN in 387 

identifying the Clay roof class with spectrally distinctive features (marked in yellow 388 

circle). With the addition of the GLCM textures, the GLCM-MLP achieved certain 389 

improvements in both spectral and spatial pattern differentiation. For example, Trees 390 

and Grassland are better distinguished to some extent compared with the pixel-based 391 

MLP results, as illustrated in Figure 7(c) and Figure 8(b). Besides, the clear linear noisy 392 

textures in Figure 8(c) are much reduced, and primarily turned into small speckles due 393 

to the introduction of texture features. Yet, the GLCM-MLP falsely identifies some 394 

edges or boundaries as Clay Roof, as shown in Figure 7(c) and Figure 8(a) and 8(b) 395 
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(marked in red circle). Additionally, some geometrical distortions of building roof tops, 396 

e.g. the Metal Roof and Concrete Roof in Figure 7(b), are shown in the GLCM-MLP 397 

classification results caused by the GLCM texture filters. 398 

In contrast to the pixel-based MLP and the GLCM-MLP, the classification results of 399 

the CNN in both study sites exhibit smoothed visual effects with the least speckle noise 400 

as shown by Figure 7 and 8. Additionally, the classes of green vegetation including 401 

Grassland and Trees are accurately distinguished as demonstrated by the yellow circles 402 

in Figure 7(c) and Figure 8(a) and 8(b) in spite of their spectral similarity. Moreover, 403 

the CNN is able to discriminate the Concrete roof from Asphalt with a moderate 404 

accuracy, as highlighted by the yellow circle in Figure 7(a). Nevertheless, the CNN 405 

delivers some uncertainties in partitioning object boundaries. For example, the regular 406 

shapes of some buildings (e.g. the geometries of some Clay roof and Concrete roof 407 

areas) are distorted with false boundary partitions, as marked by the red circle in Figure 408 

7(b). In addition, small or linear features are either merged into a large object or 409 

discarded by over-smoothness. For instance, some Clay roof buildings (small objects) 410 

are falsely connected together, while Asphalt is sometimes misclassified as Clay roof 411 

(Figure 7(c)) and the small paths covered by Bare soil are discarded (Figure 8(b)).  412 

With respect to the results of the MLP-CNN, all of the aforementioned 413 

misclassifications produced by MLP or CNN are resolved with a higher resulting 414 

accuracy. Thus, the incorrect classifications (marked by red circles) which appeared in 415 

Figure 7 and 8 are revised accordingly, with no red circles appearing in the 416 

classification results of MLP-CNN. The MLP-CNN modifies the classification errors 417 

of the CNN for Asphalt, as illustrated by the red circles in Figure 7(c) and Figure 8(b), 418 

thanks to the correct classification results of the MLP. Moreover, the linear-shaped Bare 419 

Soil area missed by the CNN in Figure 8(a) is brought back correctly without losing 420 

useful information. In addition, the original shapes of the Clay roof and Concrete roof 421 

areas shown in Figure 7(b) are accurately restored. Most importantly, some mutual 422 

misclassifications between the MLP and CNN are successfully rectified. For example, 423 

the MLP-CNN correctly differentiates some Asphalt (with spectrally distinctive but 424 

spatially confusing characteristics) and Concrete roof (distinctive in texture and 425 

geometry but vague in spectrum) areas that are mutually misclassified by the MLP and 426 

CNN respectively (see the regions marked by red circles in Figure 7(a)). 427 
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 428 

Figure 7 Three typical image subsets (a, b and c) in study site S1 with their classification results. 429 

Columns from left to right represent the original images (R G B bands), the MLP classification, the 430 

GLCM-MLP classification, the CNN classification and the MLP-CNN classification correspondingly. 431 

The red and yellow circles denote incorrect and correct classification, respectively.  432 

 433 

Figure 8 Three typical image subsets (a, b and c) in study site S2 with their classification results. 434 

Columns from left to right represent the original images (R G B bands), the MLP classification, the 435 
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GLCM-MLP classification, the CNN classification and the MLP-CNN classification correspondingly. 436 

The red and yellow circles denote incorrect and correct classification, respectively.  437 

3.4.2 Classification accuracy assessment 438 

The classification performance of the proposed MLP-CNN approach was further 439 

investigated through benchmark comparison with the MLP, GLCM-MLP and the CNN. 440 

Table 2 lists the classification accuracy assessment, including the overall accuracy 441 

(OA), Kappa coefficient (κ), and the class-wise mapping accuracy. From the table, it 442 

can be seen that the decision fusion approach (MLP-CNN) consistently reports the best 443 

classification OA with up to 90.93% for S1 and 89.64% for S2, higher than that of the 444 

CNN (85.39% and 86.56%, respectively) and GLCM-MLP (83.12% and 82.63%, 445 

respectively) as well as MLP (81.62% and 80.73%, respectively) (Table 2). Moreover, 446 

a Kappa z-test for pair-wise comparison also shows that a significant increase in 447 

classification accuracy has been achieved by the proposed MLP-CNN classifier over 448 

the MLP, GLCM-MLP and CNN in S1, with z-value=3.68, 3.12 and 2.25, respectively. 449 

For S2, the MLP-CNN also revealed a significant increase over the MLP with z-450 

value=3.71 as well as GLCM-MLP with z-value=3.18, but no significant difference in 451 

comparison with the CNN (z = 1.59, smaller than 1.96 at 95% confidence level) 452 

(Congalton, 1991), despite the obvious improvement shown in Table 2.  453 

The increase in classification accuracy was also checked by class-wise accuracy 454 

assessment (Table 3). As illustrated by the table, MLP-CNN outperforms CNN for all 455 

classes at both study sites in terms of classification accuracy. The largest increase is up 456 

to 9.77% for the class of Concrete roof in S1 and 7.16% for the class of Road-or-track 457 

in S2. Similar patterns were found such that the MLP-CNN was constantly superior to 458 

GLCM-MLP at the class-wise level, where the greatest increase in accuracy was shown 459 

up to 11.56% for the class of Concrete Roof in S1 and 11.74% for the class of Grassland 460 

in S2. When compared with the MLP, most classes in the two sites except for Asphalt 461 

and Shadow in S1 are classified with higher accuracy by the MLP-CNN. Here, 462 

Grassland exhibits the highest increase in classification accuracy, up to 33.51% and 463 

18.83% for S1 and S2, respectively. For the classes of Asphalt and Shadow, the 464 

accuracy of the MLP is slightly larger than that of the MLP-CNN, but without a 465 

statistically significant difference. Thus, they can be regarded as similar to each other. 466 
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With respect to the three benchmark classifiers themselves (i.e. MLP, GLCM-MLP and 467 

CNN), it can be seen from Table 2 that their classification accuracies are ordered as: 468 

MLP <GLCM-MLP < CNN. While the accuracy of CNN is remarkably higher (3%-469 

5%) than that of the MLP and GLCM-MLP, the GLCM-MLP is just slightly higher 470 

(<2%) than the MLP. The Kappa z-tests (Table 3) further demonstrate that the CNN is 471 

statistically significantly more accurate than MLP and GLCM-MLP in both urban and 472 

rural areas, whereas a significant increase in accuracy of the GLCM-MLP over the MLP 473 

appears only in the rural area rather than the urban area. 474 

Table 2 Classification accuracy comparison amongst MLP, GLCM-MLP, CNN and the proposed MLP-475 

CNN approach for study sites S1 and S2 using the per-class mapping accuracy, overall accuracy (OA) 476 

and Kappa coefficient (κ). The bold font highlights the greatest classification accuracy per row. 477 

Study 

Sites 
Class MLP 

GLCM-MLP 

(Benchmark) 
CNN MLP-CNN 

S1 

Clay roof 92.26% 91.43% 90.11% 95.03% 

Concrete roof 67.06% 62.44% 64.23% 74.00% 

Metal roof 91.13% 90.36% 94.19% 94.63% 

Asphalt 92.72% 88.67% 85.98% 91.26% 

Grassland 60.51% 82.58% 90.73% 94.02% 

Trees 63.88% 78.46% 82.28% 88.83% 

Bare soil 79.63% 83.05% 86.16% 92.49% 

Shadow 92.33% 91.06% 91.14% 91.52% 

Overall Accuracy (OA) 81.62% 83.12% 85.39% 90.93% 

Kappa Coefficient (κ) 0.78 0.81 0.84 0.89 

S2 

Building 82.83% 80.79% 83.08% 88.48% 

Road or track 83.02% 80.14% 82.42% 89.58% 

Grassland 71.11% 78.20% 88.34% 89.94% 

Trees 79.31% 84.55% 90.70% 92.86% 

Bare soil 74.07% 76.32% 81.36% 86.86% 

Shadow 89.41% 88.25% 88.37% 90.17% 

Overall Accuracy (OA) 80.73% 82.63% 86.56% 89.64% 

Kappa Coefficient (κ) 0.78 0.79 0.84 0.87 

 478 

Table 3 Kappa z-test (p-value) comparing the performance of the three classifiers for two study sites S1 479 

and S2. Significantly different accuracies with confidence of 95% (z-value > 1.96 with p-value < 0.05) 480 

are indicated by *. 481 
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Study sites Classifiers 

 Kappa Z-test (p-value) 

MLP 
GLCM-MLP 

(Benchmark) 
CNN 

MLP-

CNN 

S1 

MLP —    

GLCM-MLP 1.56 (0.1188) —   

CNN 2.64* (0.0083) 2.44* (0.0147) —  

MLP-CNN 3.68* (0.0002) 3.12* (0.0018) 2.25* (0.0244) — 

S2 

MLP —    

GLCM-MLP 2.05* (0.0404) —   

CNN 2.51* (0.0121) 2.36* (0.0183) —  

MLP-CNN 3.71* (0.0002) 3.18* (0.0015) 1.59 (0.1118) — 

 482 

The proposed MLP-CNN method and the other three benchmarks (MLP, GLCM-MLP 483 

and the CNN) were also validated using an additional WorldView-2 satellite sensor 484 

dataset at the S1’ and S2’ study sites. The OA and κ of both study sites are in accordance 485 

with the results of aerial photo classification, where the decision fusion approach (MLP-486 

CNN) acquires the largest OA of 90.56% at S1’ and 89.77% at S2’, consistently higher 487 

than the CNN (86.15% and 86.39%), the GLCM-MLP (83.26% and 82.52%) and the 488 

MLP (81.42% and 80.32%) (Table 4). Such coherency of classification results further 489 

demonstrates the wide applicability of the proposed method with different datasets. 490 

Table 4 Classification accuracy comparison amongst MLP, GLCM-MLP (Benchmark), CNN and the 491 

proposed MLP-CNN approach for study sites S1’ and S2’ from the WorldView-2 satellite sensor image 492 

using overall accuracy (OA) and Kappa coefficient (κ). The bold font highlights the greatest 493 

classification accuracy per row. 494 

WorldView-2 Classification MLP 
GLCM-MLP 

(Benchmark) 
CNN 

MLP-

CNN 

S1’ 
OA 81.42% 83.26% 86.15% 90.56% 

κ  0.77 0.80 0.82 0.89 

S2’ 
OA 80.32% 82.52% 86.39% 89.77% 

κ 0.77 0.79 0.83 0.87 

 495 

4. Discussion 496 
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In this research, a rule-based decision fusion approach (MLP-CNN) was proposed to 497 

integrate classifiers of the pixel-based MLP with shallow structures and the contextual-498 

based CNN with deep architectures for the classification of VFSR remotely sensed 499 

imagery. The MLP-CNN takes advantage of the merits of the two classifiers and 500 

overcomes their individual shortcomings as discussed below. 501 

4.1 Characteristics of MLP and GLCM-MLP classification 502 

In principle, the MLP builds the decision boundaries among classes in feature space 503 

based on per-pixel spectral information (Mokhtarzade and Zoej, 2007). Such 504 

classification boundaries are very sensitive to the class with salient spectral properties 505 

that are spectrally distinctive from other classes (Berberoglu et al., 2000). For example, 506 

classes like Clay roof, Asphalt and Shadow in Site 1 are spectrally exclusive to other 507 

classes, leading to high classification accuracies, up to 92.26%, 92.72% and 92.33%, 508 

respectively (Table 2). However, the MLP relies on the pixel-based spectral information 509 

in the classification process without exploiting the abundant spatial information 510 

appearing in the VFSR imagery (e.g. texture, geometry or contextual relationship) 511 

(Wang et al., 2016). These limitations often result in unsatisfactory classification 512 

performance; for example, confusion and misclassification between the Trees and 513 

Grassland classes that are spectrally similar. Even for those correctly identified objects, 514 

severe salt and pepper effects still exist (Dark and Bram, 2007), for example, the linear 515 

texture noise appearing for Bare soil in Figure 8(c). For these reasons, the classification 516 

accuracy of MLP is generally statistically significantly lower than that of the CNN and 517 

the proposed MLP-CNN. However, objects in VFSR imagery are mostly depicted by 518 

pure pixels, especially for human-made features with crisp boundaries, such as 519 

buildings, residential houses and cultivated land. The membership association of a pixel 520 

deduced by MLP is, therefore, not affected by its relative position (e.g. lying on or close 521 

to boundaries), as long as the corresponding spectral space is separable. 522 

The inclusion of GLCM texture features in the GLCM-MLP classifier enables the 523 

model to process spectral and spatial information simultaneously. Those GLCM texture 524 

descriptors are handcrafted features that are designed to capture statistical co-525 

occurrence information (Xia et al., 2010). However, the GLCM textures are essentially 526 

first or second order feature transformations instead of feature learning. Such hand-527 

coded features might be effective for a particular region and/or season, but are often 528 
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challenging to generalize to other domains and datasets. Besides, the addition of 96 529 

GLCM textures results in a dramatically increased number of input variables, which 530 

leads to a relatively high dimensional feature space. The so-called “curse of 531 

dimensionality” (Hughes, 1968) and collinearity make the GLCM-MLP hard to 532 

parameterize and potentially leads to texture overfitting. That is why the GLCM-MLP 533 

cannot substantially increase the classification accuracy compared to the MLP. That is, 534 

the spectral and spatial information cannot be effectively exploited by the GLCM-MLP. 535 

For example, some spectrally different classes but with similar textures such as Clay 536 

Roof, Concrete Roof and Asphalt are confused to some degree. 537 

4.2 Characteristics of CNN classification 538 

Spatial features in remotely sensed data like VFSR imagery are intrinsically local 539 

(especially in lower layers) and spatially invariant (Masi et al., 2016). The MLP, 540 

however, assumes that the location of the data in the input is irrelevant to the model 541 

construction and it is, thus, incapable of learning spatial features of remote sensing data. 542 

In contrast, by using multiple convolution and pooling operations, CNN models the 543 

way that the human visual cortex works and enforces weight sharing with translation 544 

invariance that enables the extraction of high-level spatial features from image patches. 545 

It should be mentioned that the pooling operations play an important role in dimension 546 

reduction, thus, avoiding “the curse of dimensionality” present in the GLCM-MLP 547 

classifier. Thanks to these superior characteristics, the CNN classifier outperforms the 548 

MLP and GLCM-MLP classifiers in both the urban scene and rural areas. Especially, 549 

classes like Concrete roof and Road-or-track that are difficult to distinguish from their 550 

backgrounds with only spectral or low-level features (e.g. distance between the 551 

prediction and the target class at spectral space), are identified with relatively high 552 

accuracies. In addition, classes with heavy spectral confusion in both study sites (e.g. 553 

Trees and Grassland), are accurately differentiated due to their obvious spatial pattern 554 

differences; for example, the texture of tree canopies is generally much rougher than 555 

for grassland. As a contextual classifier with deep architectures, the CNN could reveal 556 

the spatial patterns hidden in the image data that cannot be perceived by its shallow 557 

counterparts (e.g. MLP classifier or even the GLCM-MLP classifier). The higher layers 558 

in CNN models provide more semantically meaningful information concentrating on 559 

global semantics rather than local or pixel-level information, making the CNN 560 

classification work well for classes with spectral confusion (Hu et al., 2015a, 2015b; 561 
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Yang et al., 2015). Therefore, the CNN shows an impressive stability and effectiveness 562 

in spatial feature representation, which is crucial for VFSR image classification (Zhao 563 

and Du, 2016).  564 

However, according to the “no free lunch” theorem (Wolpert and Macready, 1997), any 565 

elevated performance in one aspect of a problem will be paid for through others, and 566 

the CNN is no exception. Using contextual image patches as inputs and learning deep 567 

spatial features, the CNN demonstrates power in spatial pattern recognition but also 568 

weakness in spatial partition. Boundary uncertainties (over-smoothness) often appear 569 

in the classified object and small useful features are erased,  somewhat  similar to 570 

morphological or Gabor filter methods (Pingel et al., 2013; Reis and Tasdemir, 2011). 571 

For example, the human-made objects in urban scenes like buildings and asphalt are 572 

often geometrically enlarged with distortion to some degree (See Figure 7(b)). As for 573 

natural objects in rural areas (S2), edges or porosities of a landscape patch are simplified 574 

or ignored, and even worse, linear features like river channels or dams that are of 575 

ecological importance, are erroneously erased. One may argue that the reduction of 576 

image patch size might be able to detect small features by multiple CNNs by varying 577 

the contextual filter size as adopted in Längkvist et al. (2016). However, objects, 578 

whether large or small in size, all have boundaries, thus, retaining the problem of 579 

smoothing edges. In addition, the adoption of convolution and pooling operations 580 

intrinsically reduces the image contextual size but strengthens the spatial feature 581 

representation. Thus, a far too small initial image patch size can limit the network depth 582 

of a CNN model. In fact, the currently used 16×16 window size is close to the minimum 583 

requirements for a deep CNN with four hidden layers in total. Moreover, certain 584 

spectrally distinctive features without obvious spatial patterns are poorly differentiated. 585 

For example, some Asphalt pixels are wrongly identified as Concrete roofs as illustrated 586 

in Figure 7(a). This further demonstrates the necessity of introducing spectral features 587 

for VFSR image classification. 588 

4.3 fusion decision of MLP-CNN classification 589 

Huge uncertainty and inconsistency exists inherently in any remotely sensed data 590 

(including VFSR imagery), and this runs through the training and the testing samples. 591 

In fact, different classification algorithms vary in terms of remote sensing data 592 

processing strategies. Thus there is no ‘one-algorithm-fits-all’ solution (Löw et al., 593 
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2015) to various applications of VFSR image classification, even for the powerful CNN 594 

classifier with deep spatial feature representations. It is therefore especially important 595 

to make use of the complementarities of different classifiers. It should be mentioned 596 

that, the more heterogeneous the classification algorithms’ behaviours, the more that 597 

different places might be accurately classified by each individual classifier, and the 598 

more accurate the ensemble classifier might be (Löw et al., 2015). An ideal ensemble 599 

classifier, thereby, should be established using individual classifiers that are very 600 

differently behaved.  601 

The experimental results show that the pixel-based MLP classifier with shallow 602 

structures and the contextual-based CNN classifier with deep architectures can provide 603 

complementary information, leading to a more accurate classification result than either 604 

classifier alone. In addition to the elimination of heavy noise, the CNN can accurately 605 

identify classes with rich spatial information implicit in VFSR data. Such 606 

characteristics of the CNN emphasize the limitations of the MLP classifier for VFSR 607 

image classification. At the same time, the CNN might lose some useful details, and it 608 

has difficulties in utilizing spectral information and delineating object boundaries and 609 

is, thus, incapable of maintaining geometric fidelity. The MLP classifier, however, 610 

compensates directly with regard to the limitations of the CNN. The aforementioned 611 

complementary properties between the CNN and MLP are well reflected from the 612 

inverse confidence trends of the two classifiers (Figure 2). Specifically, in the case of 613 

the CNN with the highest confidence, the MLP has the least confidence and vice versa, 614 

which further indicates that the proposed MLP-CNN ensemble classifier can take 615 

advantage of the MLP and CNN.   616 

The proposed fusion decision rules were derived primarily on the basis of the CNN’s 617 

confidence distribution, in consideration of the superiority of CNN classification 618 

performance and the regularity of its confidence distribution. Such a decision fusion 619 

strategy captures the patterns of the complementarities between the two individual 620 

classifiers in general, thus, achieving a desirable classification result. At the same time, 621 

the MLP-CNN classifier demonstrates great utility and wide applicability for both 622 

aerial photography and WorldView-2 satellite sensor imagery with consistent and 623 

competitive classification performance. However, in comparison with MLP, the 624 

classification accuracies of Asphalt and Shadow were slightly higher than for the 625 

proposed MLP-CNN. This means that there is still room for improvement of the 626 
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decision fusion rules at the class-wise level for VFSR image classification. It might be 627 

better to incorporate the spectral separability differentiated by MLP to achieve the best 628 

classification performance at class level. Besides, no significant improvement was 629 

acquired for rural areas (S2) by the MLP-CNN compared with the CNN. This is mainly 630 

due to the ineffectiveness of the MLP in classifying natural features that dominate in 631 

the rural environment. This shortcoming might be overcome by the replacement of the 632 

MLP by other non-parametric machine learning classifiers (e.g. SVM, RF, etc.). 633 

Moreover, incorporating other data sources (e.g. digital surface model) might be needed 634 

to increase the accuracy of the MLP-CNN for both the CNN and MLP with very low 635 

confidence simultaneously. These aforementioned issues will be investigated in future 636 

research. 637 

5. Conclusion 638 

Due to its high intra-class variability and low inter-class disparity, VFSR image 639 

classification poses great challenges to any single machine learning algorithm, even for 640 

the powerful deep learning convolutional neural network (CNN). In this paper, two 641 

neural network classifiers with strong heterogeneous behaviours (i.e. pixel-based MLP 642 

with shallow structures and contextual-based CNN with deep architectures), were 643 

integrated in a concise and effective way using a rule-based decision fusion strategy. 644 

The decision fusion rules, designed primarily on the basis of the classification 645 

confidence of the CNN, reflect the general complementary patterns of both the MLP 646 

and CNN. In consequence, the proposed ensemble classifier MLP-CNN harvests the 647 

complementary results acquired from the CNN with deep spatial feature representations 648 

(CNN) and from the MLP based on spectral discrimination. Meanwhile, limitations of 649 

the CNN such as uncertainty in object boundary partition and loss of useful fine 650 

resolution detail were compensated. The effectiveness of the new MLP-CNN algorithm 651 

was tested in both urban and rural areas using aerial and satellite sensor images. The 652 

MLP-CNN algorithm consistently outperformed both of the individual classifiers (MLP 653 

and CNN) as well as the GLCM-MLP that includes the GLCM texture features, with a 654 

statistically significant difference in the majority of cases. This research paves the way 655 

to an effective solution to the complicated problem of automatic VFSR image 656 

classification. 657 

Acknowledgement 658 



26 
 

This research was funded by PhD studentship “Deep Learning in massive area, multi-659 

scale resolution remotely sensed imagery” (NO. EAA7369), sponsored by Ordnance 660 

Survey and Lancaster University.  The authors thank to the staff from the Ordnance 661 

Survey for the supply of aerial imagery and supporting ground data. The authors also 662 

thank to the two anonymous referees for their constructive comments on this 663 

manuscript.  664 

Reference 665 

Ardila, J.P., Tolpekin, V.A., Bijker, W., Stein, A., 2011. Markov-random-field-based 666 

super-resolution mapping for identification of urban trees in VHR images. 667 

ISPRS J. Photogramm. Remote Sens. 66, 762–775. 668 

doi:10.1016/j.isprsjprs.2011.08.002 669 

Arel, I., Rose, D.C., Karnowski, T.P., 2010. Deep machine learning - A new frontier 670 

in artificial intelligence research. IEEE Comput. Intell. Mag. 5, 13–18. 671 

doi:10.1109/MCI.2010.938364 672 

Atkinson, P.M., Tatnall, A.R.L., 1997. Introduction Neural networks in remote 673 

sensing. Int. J. Remote Sens. 18, 699–709. doi:10.1080/014311697218700 674 

Attarchi, S., Gloaguen, R., 2014. Classifying complex mountainous forests with L-675 

Band SAR and landsat data integration: A comparison among different machine 676 

learning methods in the Hyrcanian forest. Remote Sens. 6, 3624–3647. 677 

doi:10.3390/rs6053624 678 

Benediktsson, J.A., 2009. Ensemble classification algorithm for hyperspectral remote 679 

sensing data. IEEE Geosci. Remote Sens. Lett. 6, 762–766. 680 

doi:10.1109/LGRS.2009.2024624 681 

Berberoglu, S., Lloyd, C.D., Atkinson, P.M., Curran, P.J., 2000. The integration of 682 

spectral and textural information using neural networks for land cover mapping 683 

in the Mediterranean. Comput. Geosci. 26, 385–396. doi:10.1016/S0098-684 

3004(99)00119-3 685 

Bezak, P., Bozek, P., Nikitin, Y., 2014. Advanced robotic grasping system using deep 686 

learning. Procedia Eng. 96, 10–20. 687 

doi:http://dx.doi.org/10.1016/j.proeng.2014.12.092 688 



27 
 

Breiman, L., 1996. Bagging Predictors. Mach. Learn. 24, 123–140. 689 

Chen, S., Member, S., Wang, H., Xu, F., Member, S., 2016. Target classification 690 

using the deep Convolutional Networks for SAR images. IEEE Trans. Geosci. 691 

Remote Sens. 54, 4806–4817. 692 

Chen, Y., Jiang, H., Li, C., Jia, X., Member, S., 2016. Deep feature extraction and 693 

classification of hyperspectral images based on Convolutional Neural Networks. 694 

IEE Trans. Geosci. Remote Sens. 54, 6232–6251. 695 

doi:10.1109/TGRS.2016.2584107 696 

Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y., 2014. Deep learning-based 697 

classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote 698 

Sens. 7, 2094–2107. doi:10.1109/JSTARS.2014.2329330 699 

Clinton, N., Yu, L., Gong, P., 2015. Geographic stacking: Decision fusion to increase 700 

global land cover map accuracy. ISPRS J. Photogramm. Remote Sens. 103, 57–701 

65. doi:10.1016/j.isprsjprs.2015.02.010 702 

Congalton, R.G., 1991. A review of assessing the accuracy of classifications of 703 

remotely sensed data. Remote Sens. Environ. 37, 35–46. 704 

Dark, S.J., Bram, D., 2007. The modifiable areal unit problem (MAUP) in physical 705 

geography. Prog. Phys. Geogr. 31, 471–479. doi:10.1177/0309133307083294 706 

Del Frate, F., Pacifici, F., Schiavon, G., Solimini, C., 2007. Use of neural networks 707 

for automatic classification from high-resolution images. IEEE Trans. Geosci. 708 

Remote Sens. 45, 800–809. doi:10.1109/TGRS.2007.892009 709 

Demarchi, L., Canters, F., Cariou, C., Licciardi, G., Chan, J.C.W., 2014. Assessing 710 

the performance of two unsupervised dimensionality reduction techniques on 711 

hyperspectral APEX data for high resolution urban land-cover mapping. ISPRS 712 

J. Photogramm. Remote Sens. 87, 166–179. doi:10.1016/j.isprsjprs.2013.10.012 713 

Dong, Z., Pei, M., He, Y., Liu, T., Dong, Y., Jia, Y., 2015. Vehicle type classification 714 

using unsupervised Convolutional Neural Network. IEEE Trans. Intell. Transp. 715 

Syst. 16, 2247–2256. doi:10.1109/ICPR.2014.39 716 

Du, P., Xia, J., Zhang, W., Tan, K., Liu, Y., Liu, S., 2012. Multiple classifier system 717 



28 
 

for remote sensing image classification: A review. Sensors 12, 4764–4792. 718 

doi:10.3390/s120404764 719 

Farabet, C., Couprie, C., Najman, L., Lecun, Y., 2013. Learning hierarchical features 720 

for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1915–1929. 721 

doi:10.1109/TPAMI.2012.231 722 

Fauvel, M., Chanussot, J., Benediktsson, J.A., 2012. A spatial-spectral kernel-based 723 

approach for the classification of remote-sensing images. Pattern Recognit. 45, 724 

381–392. doi:10.1016/j.patcog.2011.03.035 725 

Fauvel, M., Chanussot, J., Benediktsson, J.A., 2006. Decision fusion for the 726 

classification of urban remote sensing images. IEEE Trans. Geosci. Remote 727 

Sens. 44, 2828–2838. doi:10.1109/TGRS.2006.876708 728 

Foody, G.M., Arora, M.K., 1997. An evaluation of some factors affecting the 729 

accuracy of classification by an artificial neural network. Int. J. Remote Sens. 18, 730 

799–810. doi:10.1080/014311697218764 731 

Freund, Y., Iyer, R., Schapire, R.E., Singer, Y., 2003. An efficient boosting algorithm 732 

for combining preferences. J. Mach. Learn. Res. 4, 933–969. 733 

Haralick, R.M., Shanmugam, K., Dinstein, I., 1973. Textural Features for Image 734 

Classification. IEEE Trans. Syst. Man. Cybern. 3, 610–621. 735 

doi:10.1109/TSMC.1973.4309314 736 

Hu, F., Xia, G.-S., Hu, J., Zhang, L., 2015a. Transferring Deep Convolutional Neural 737 

Networks for the Scene Classification of High-Resolution Remote Sensing 738 

Imagery. Remote Sens. 7, 14680–14707. doi:10.3390/rs71114680 739 

Hu, F., Xia, G.S., Wang, Z., Huang, X., Zhang, L., Sun, H., 2015b. Unsupervised 740 

Feature Learning Via Spectral Clustering of Multidimensional Patches for 741 

Remotely Sensed Scene Classification. IEEE J. Sel. Top. Appl. Earth Obs. 742 

Remote Sens. 8, 2015–2030. doi:10.1109/JSTARS.2015.2444405 743 

Huang, X., Lu, Q., Zhang, L., 2014. A multi-index learning approach for 744 

classification of high-resolution remotely sensed images over urban areas. ISPRS 745 

J. Photogramm. Remote Sens. 90, 36–48. doi:10.1016/j.isprsjprs.2014.01.008 746 



29 
 

Hughes, G.F., 1968. On the Mean Accuracy of Statistical Pattern Recognizers. IEEE 747 

Trans. Inf. Theory 14, 55–63. doi:10.1109/TIT.1968.1054102 748 

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. ImageNet classification with deep 749 

Convolutional Neural Networks, in: NIPS2012: Neural Information Processing 750 

Systems. Lake Tahoe, Nevada, pp. 1–9. 751 

Längkvist, M., Kiselev, A., Alirezaie, M., Loutfi, A., 2016. Classification and 752 

segmentation of satellite orthoimagery using Convolutional Neural Networks. 753 

Remote Sens. 8, 1–21. doi:10.3390/rs8040329 754 

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521, 436–444. 755 

doi:10.1038/nature14539 756 

Lenz, I., Lee, H., Saxena, A., 2015. Deep learning for detecting robotic grasps. Int. J. 757 

Rob. Res. 34, 705–724. doi:10.1177/0278364914549607 758 

Löw, F., Conrad, C., Michel, U., 2015. Decision fusion and non-parametric classifiers 759 

for land use mapping using multi-temporal RapidEye data. ISPRS J. 760 

Photogramm. Remote Sens. 108, 191–204. 761 

doi:http://dx.doi.org/10.1016/j.isprsjprs.2015.07.001 762 

Mas, J.F., Flores, J.J., 2008. The application of artificial neural networks to the 763 

analysis of remotely sensed data. Int. J. Remote Sens. 29, 617–663. 764 

doi:10.1080/01431160701352154 765 

Masi, G., Cozzolino, D., Verdoliva, L., Scarpa, G., Wang, L., Zhou, G., Thenkabail, 766 

P.S., 2016. Pansharpening by Convolutional Neural Networks. Remote Sens. 8, 767 

1–22. doi:10.3390/rs8070594 768 

Mathieu, R., Freeman, C., Aryal, J., 2007. Mapping private gardens in urban areas 769 

using object-oriented techniques and very high-resolution satellite imagery. 770 

Landsc. Urban Plan. 81, 179–192. doi:10.1016/j.landurbplan.2006.11.009 771 

Min, J.H., Lee, Y.-C., 2005. Bankruptcy prediction using support vector machine with 772 

optimal choice of kernel function parameters. Expert Syst. Appl. 28, 603–614. 773 

Mokhtarzade, M., Zoej, M.J.V., 2007. Road detection from high-resolution satellite 774 

images using artificial neural networks. Int. J. Appl. Earth Obs. Geoinf. 9, 32–40. 775 



30 
 

doi:10.1016/j.jag.2006.05.001 776 

Othman, E., Bazi, Y., Alajlan, N., Alhichri, H., Melgani, F., 2016. Using 777 

convolutional features and a sparse autoencoder for land-use scene classification. 778 

Int. J. Remote Sens. 37, 2149–2167. doi:10.1080/01431161.2016.1171928 779 

Ozdarici-Ok, A., Ok, A., Schindler, K., 2015. Mapping of agricultural crops from 780 

single high-resolution multispectral images—Data-driven smoothing vs. Parcel-781 

based smoothing. Remote Sens. 7, 5611–5638. doi:10.3390/rs70505611 782 

Pacifici, F., Chini, M., Emery, W.J., 2009. A neural network approach using multi-783 

scale textural metrics from very high-resolution panchromatic imagery for urban 784 

land-use classification. Remote Sens. Environ. 113, 1276–1292. 785 

doi:10.1016/j.rse.2009.02.014 786 

Pingel, T.J., Clarke, K.C., McBride, W.A., 2013. An improved simple morphological 787 

filter for the terrain classification of airborne LIDAR data. ISPRS J. 788 

Photogramm. Remote Sens. 77, 21–30. doi:10.1016/j.isprsjprs.2012.12.002 789 

Powers, R.P., Hermosilla, T., Coops, N.C., Chen, G., 2015. Remote sensing and 790 

object-based techniques for mapping fine-scale industrial disturbances. Int. J. 791 

Appl. Earth Obs. Geoinf. 34, 51–57. doi:10.1016/j.jag.2014.06.015 792 

Regnauld, N., Mackaness, W. a., 2006. Creating a hydrographic network from its 793 

cartographic representation: a case study using Ordnance Survey MasterMap 794 

data. Int. J. Geogr. Inf. Sci. 20, 611–631. doi:10.1080/13658810600607402 795 

Reis, S., Tasdemir, K., 2011. Identification of hazelnut fields using spectral and gabor 796 

textural features. ISPRS J. Photogramm. Remote Sens. 66, 652–661. 797 

doi:10.1016/j.isprsjprs.2011.04.006 798 

Rodriguez-Galiano, V.F., Chica-Olmo, M., Abarca-Hernandez, F., Atkinson, P.M., 799 

Jeganathan, C., 2012. Random Forest classification of Mediterranean land cover 800 

using multi-seasonal imagery and multi-seasonal texture. Remote Sens. Environ. 801 

121, 93–107. doi:10.1016/j.rse.2011.12.003 802 

Romero, A., Gatta, C., Camps-valls, G., Member, S., 2016. Unsupervised deep feature 803 

extraction for remote sensing image classification. IEEE Trans. Geosci. Remote 804 



31 
 

Sens. 54, 1349–1362. doi:10.1109/TGRS.2015.2478379. 805 

Schmidhuber, J., 2015. Deep Learning in neural networks: An overview. Neural 806 

Networks. doi:10.1016/j.neunet.2014.09.003 807 

Shi, H., Chen, L., Bi, F., Chen, H., Yu, Y., 2015. Accurate urban area detection in 808 

remote sensing images. IEEE Geosci. Remote Sens. Lett. 12, 1948–1952. 809 

Strigl, D., Kofler, K., Podlipnig, S., 2010. Performance and scalability of GPU-based 810 

Convolutional Neural Networks, in: 2010 18th Euromicro Conference on 811 

Parallel, Distributed and Network-Based Processing. pp. 317–324. 812 

doi:10.1109/PDP.2010.43 813 

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., 814 

Vanhoucke, V., Rabinovich, A., 2015. Going deeper with convolutions, in: 815 

Proceedings of the IEEE Computer Society Conference on Computer Vision and 816 

Pattern Recognition. pp. 1–9. doi:10.1109/CVPR.2015.7298594 817 

Tang, J., Deng, C., Huang, G.-B., Zhao, B., 2015. Compressed-domain ship detection 818 

on spaceborne optical image using Deep Neural Network and Extreme Learning 819 

Machine. IEEE Trans. Geosci. Remote Sens. 53, 1174–1185. 820 

doi:10.1109/TGRS.2014.2335751 821 

Wang, L., Shi, C., Diao, C., Ji, W., Yin, D., 2016. A survey of methods incorporating 822 

spatial information in image classification and spectral unmixing. Int. J. Remote 823 

Sens. 37, 3870–3910. doi:10.1080/01431161.2016.1204032 824 

Wolpert, D.H., Macready, W.G., 1997. No free lunch theorems for optimization. 825 

IEEE Trans. Evol. Comput. 1, 67–82. doi:10.1109/4235.585893 826 

Xia, G.S., Delon, J., Gousseau, Y., 2010. Shape-based invariant texture indexing. Int. 827 

J. Comput. Vis. 88, 382–403. doi:10.1007/s11263-009-0312-3 828 

Yang, W., Dai, D., Triggs, B., Xia, G.S., 2012. SAR-based terrain classification using 829 

weakly supervised hierarchical Markov aspect models. IEEE Trans. Image 830 

Process. 21, 4232–4243. doi:10.1109/TIP.2012.2199127 831 

Yang, W., Yin, X., Xia, G.S., 2015. Learning high-level features for satellite image 832 

classification with limited labeled samples. IEEE Trans. Geosci. Remote Sens. 833 



32 
 

53, 4472–4482. doi:10.1109/TGRS.2015.2400449 834 

Yang, X., Qian, X., Mei, T., 2015. Learning salient visual word for scalable mobile 835 

image retrieval. Pattern Recognit. 48, 3093–3101. 836 

doi:10.1016/j.patcog.2014.12.017 837 

Yin, W., Yang, J., Yamamoto, H., Li, C., 2015. Object-based larch tree-crown 838 

delineation using high-resolution satellite imagery. Int. J. Remote Sens. 36, 822–839 

844. doi:10.1080/01431161.2014.999165 840 

Yu, J., Weng, K., Liang, G., Xie, G., 2013. A vision-based robotic grasping system 841 

using deep learning for 3D object recognition and pose estimation, in: 2013 842 

IEEE International Conference on Robotics and Biomimetics (ROBIO). pp. 843 

1175–1180. doi:10.1109/ROBIO.2013.6739623 844 

Yue, J., Mao, S., Li, M., 2016. A deep learning framework for hyperspectral image 845 

classification using spatial pyramid pooling. Remote Sens. Lett. 7, 875–884. 846 

doi:10.1080/2150704X.2016.1193793 847 

Zhang, C., Kovacs, J.M., 2012. The application of small unmanned aerial systems for 848 

precision agriculture: A review. Precis. Agric. 13, 693–712. doi:10.1007/s11119-849 

012-9274-5 850 

Zhang, C., Wang, T., Atkinson, P.M., Pan, X., Li, H., 2015. A novel multi-parameter 851 

support vector machine for image classification. Int. J. Remote Sens. 36, 1890–852 

1906. doi:10.1080/01431161.2015.1029096 853 

Zhang, F., Du, B., Zhang, L., 2016. Scene classification via a gradient boosting 854 

random convolutional network framework. IEEE Trans. Geosci. Remote Sens. 855 

54, 1793–1802. doi:10.1109/TGRS.2015.2488681 856 

Zhang, Q., Wang, J., Gong, P., Shi, P., 2003. Study of urban spatial patterns from 857 

SPOT panchromatic imagery using textural analysis. Int. J. Remote Sens. 24, 858 

4137–4160. doi:10.1080/0143116031000070445 859 

Zhao, W., Du, S., 2016. Learning multiscale and deep representations for classifying 860 

remotely sensed imagery. ISPRS J. Photogramm. Remote Sens. 113, 155–165. 861 

doi:10.1016/j.isprsjprs.2016.01.004 862 



33 
 

Zhong, Y., Zhao, J., Zhang, L., 2014. A hybrid object-oriented conditional random 863 

field classification framework for high spatial resolution remote sensing imagery. 864 

IEEE Trans. Geosci. Remote Sens. 52, 7023–7037. 865 

doi:10.1109/TGRS.2014.2306692 866 

 867 


