A Stitch in Time: Supporting Android Developers in Writing
Secure Code

Duc Cuong Nguyen
CISPA, Saarland University
duc.nguyen@cispa.saarland

Dominik Wermke

Leibniz University Hannover
wermke@sec.uni-hannover.de

Yasemin Acar
Leibniz University Hannover
acar@sec.uni-hannover.de

Michael Backes Charles Weir Sascha Fahl
CISPA, Saarland University Security Lancaster, Lancaster Leibniz University Hannover
backes@cispa.saarland University fahl@sec.uni-hannover.de

c.weirl@lancaster.ac.uk

ABSTRACT

Despite security advice in the official documentation and an exten-
sive body of security research about vulnerabilities and exploits,
many developers still fail to write secure Android applications.
Frequently, Android developers fail to adhere to security best prac-
tices, leaving applications vulnerable to a multitude of attacks. We
point out the advantage of a low-time-cost tool both to teach better
secure coding and to improve app security. Using the FixDroid™
IDE plug-in, we show that professional and hobby app developers
can work with and learn from an in-environment tool without it
impacting their normal work; and by performing studies with both
students and professional developers, we identify key Ul require-
ments and demonstrate that code delivered with such a tool by
developers previously inexperienced in security contains signif-
icantly less security problems. Perfecting and adding such tools
to the Android development environment is an essential step in
getting both security and privacy for the next generation of apps.

KEYWORDS

Usable Security; Support Developers; Android Security; Crypto-
graphic API

1 INTRODUCTION

The introduction of Android to the mobile operating system market
led to the development of new paradigms and open standards on
mobile systems. Today, Google’s operating system is among the
most used mobile operating systems with the largest installed base
of any operating system. A major contributor to this success is the
Google Play market with its free and paid apps for any and all cir-
cumstances, from ordering food to playing card games. The market
currently allows Android users to install over 2.9 million apps from
third-party developers and, when installed, run the apps on their
mobile system. The benefits of a large Android app environment

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’17, October 30-November 3, 2017, Dallas, TX, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-4946-8/17/10...$15.00
https://doi.org/10.1145/3133956.3133977

thus come with a number of security and privacy related risks for
a user, especially due to errors by app developers. Therefore, it is
especially important to secure third-party apps, by encouraging
and enabling third-party developers to write secure code!.

Many available mobile apps have poorly implemented privacy
and security mechanisms, possibly resulting from developers who
are inexperienced, distracted, or overwhelmed [2]. Risk-factors lead-
ing to insecure code include general inexperience of developers, a
sole focus on code functionality while ignoring security implica-
tions, and careless adopting of code parts from unverified online
information sources [2]. Even worse, some developers just copy
and paste code they find when searching for a solution to their
security related issues [22]. Even in the absence of these security-
neglecting actions by developers, benign failure to write privacy
preserving or secure code can lead to applications that leave user
data vulnerable to leaks and attacks. Developers have been found
to risk users’ privacy and security by requesting more permissions
than actually needed [30, 31], by not using TLS [12, 13], by failing
to use cryptographic APIs correctly [9], by using dangerous options
for Inter-Component Communication [6], and by failing to store
sensitive information in private areas [11].

Although the Android environment provides users with a num-
ber of tools and policies to counter security problems and manage
privacy risks, the issues above prove that these are not sufficient to
prevent insecure Android apps. We propose that supporting App
developers in a developer-friendly and compelling manner in mak-
ing choices will result in improved security and privacy for the app
users. Teaching a developer about secure coding practices will not
only help the developer, but will also result in increased security
and privacy for every user that runs apps by that developer.

To support Android developers in writing secure code, we de-
veloped the FixDroid tool. As plugin for the officially supported
Integrated Development Environment (IDE) of Android, Android
Studio, FixDroid highlights security and privacy related code prob-
lems, provides an explanation to developers, and suggests ‘quick
fix’ options. Similar to a spellchecker in a modern word-processor,
FixDroid highlights code snippets that impact the security or pri-
vacy of the app. FixDroid builds upon the concept of Android Lint,
a tool included in the official Android Software Development Kit
(SDK), but avoids certain limitations and improves the support for
developers.

I Throughout this paper we use ‘security’ to refer to both security and privacy in apps.

https://doi.org/10.1145/3133956.3133977

To evaluate the usability and acceptance of a FixDroid prototype,
we performed a pilot study with 9 developers. With knowledge from
this pilot study, we improved FixDroid and performed a remote
user study with Android developers and students (n=39) to evaluate
the security benefits of FixDroid.

The study proved the effectiveness of this approach by reducing
the number of security errors in resulting code. It also validated the
approach of using remote IDE telemetrics as a means for evaluating
developer behaviour and showed the importance of having very
clear visible indicators for security errors.

The main contributions of this work are:

e Proving the effectiveness of an interactive IDE-based security
review tool in improving the security and privacy aspects of
code written by third party developers,

o Identifying new Ul requirements for such a tool based on
feedback from developers,

o Delivering evaluations of the effectiveness of such a tool
with both experienced professional developers and less ex-
perienced student developers, and

o Validating the use of telemetry in an IDE to determine pro-
grammer behavior.

The remainder of the paper is organized as follows. Section 2 dis-
cusses related work; Section 3 gives an overview of Android app
development and the Android Lint tool; Section 4 describes the
functionality and design of FixDroid; Section 5 describes the initial
pilot study and its conclusions; Section 6 describes the design and
implementation of the evaluation studies we carried out; and Sec-
tion 7 describes the findings from the main study. Finally, Section 8
discusses limitations; Section 9 discusses possible future work; and
Section 10 provides a conclusion.

2 RELATED WORK

We found related work in two key areas: investigations of security
issues in Android development, and studies of tools that support
developers in writing code.

2.1 Security Issues in Android Development

Several research teams have used analysis tools to investigate An-
droid app security. With CryptoLint, a lightweight static analysis
tool, Egele et al. [9] showed that 88% of Android applications us-
ing cryptographic APIs include at least one mistake. Balebako et
al. [3] found that developers can make these mistakes due to lack of
security knowledge;Georgiev et al. [15] also identified bad API im-
plementations as a cause. Fahl et al. [12] implemented MalloDroid, a
static code analysis tool that detects potential vulnerabilities against
SSL Man-In-The-Middle (MITM) attacks in Android and iOS appli-
cations, and found that many developers accept insecure practices
(such as SSL certificate validation that accepts all certificates) to
achieve functional code.

Poeplau et al. [29] investigated dynamic code loading in Android
applications, using a static code analysis tool. Their results revealed
that many applications load additional code in insecure ways.

The integration of web content into mobile apps also exposes
Android applications to multiple types of attacks [26, 27]. Wang et
al. [40] studied the cross origin risks inherent in mobile applications
and found that lack of origin-based protection enables many types

of cross-origin attacks. Luo et al. [24] also demonstrated different at-
tacks on benign Android and iOS applications that misuse webview
customization.

Felt et al. [30] investigated app permissions, and identified sev-
eral reasons why developers tend to request more permissions than
their apps actually need, including insufficient API documentation,
confusing permission names, copy and paste code snippets, and
testing artifacts. In another investigation concerning ‘permission
re-delegation’, Felt et al. [31] concluded that not all developers are
security experts and they are not motivated enough to prevent
permission re-delegation because the consequences do not affect
their applications directly.

Acar et al. [2] examined the impact of the information sources
used by Android developers on their security related decisions, and
found that developers often use informal sources such as Stack-
Overflow, resulting in functional code but often also vulnerabilities
in their apps.

2.2 Tools that Support Developers

Kim et al. [22] ethnographically studied copy and paste (C&P) pro-
gramming practices in object oriented programming languages by
observing programmers using an instrumented Eclipse IDE, and
proposed a set of tools to reduce software maintenance problems
incurred by C&P and support the intents of common C&P situa-
tions.

Several research teams have developed tools that support secure
coding, typically focusing on finding application vulnerabilities
after the program has been written. This results in these tools find-
ing vulnerabilities at the end of the development cycle [23, 35].
Furthermore, though valuable, these tools all have one thing in
common: developers need to have certain levels of security exper-
tise to use them. Chin et al. [8] proposed platform-level, API-level,
and design-level solutions to help developers and platform design-
ers build secure applications and systems. They also developed
ComDroid [7] to detect and warn developers of exploitable inter-
application communication errors. However, ComDroid works only
on compiled code and can thus not help developers while they are
writing source code. Jovanovic at el. developed Pixy to help devel-
opers avoid cross-site scripting vulnerabilities in PHP scripts [20].
Pixy uses flow-sensitive, inter-procedural and context-sensitive
data flow analysis to discover vulnerable points in a web applica-
tion, but provides no IDE-based feedback to developers. Recently,
Tabassum at el. conducted a study comparing the effect of secure
programming tool support (ESIDE) versus teaching assistants [25].
The results showed that ESIDE provided more insights to students
about the security flaws. Tyler et al. [37] examined how developers
understand the support of an interactive static analysis tool using
a plugin for Eclipse that helps web developers detect and mitigate
security vulnerabilities as they write code.

None of this work, however, has investigated providing feedback
on code security to Android developers as they write their code.
This paper aims to fill this gap.

3 ANDROID APPLICATION DEVELOPMENT

The mobile operating system Android includes the Google Play
market with access to over 2.7 million user-developed apps. In the

early days of Android app development, developers either relied on
the Eclipse IDE with the Android Development Tools (ADT) plugin
or the NetBeans IDE with plugin for writing apps. In December 2014
Google released the Android Studio IDE based on JetBrains’ IntelliJ
IDEA, which functions together with the SDK as officially supported
Android IDE. Features of Android Studio include a Gradle-based
build system, and an Android Device emulator for testing apps.

3.1 Android Lint Tool

App Source Files

[Correctness j [Performance]

[Security j[i18n]

(lint.xml config j

|
|
|
i
[lint tool j-»i [Usability] [Accessibility]
|
|
|
|
|
|

Figure 1: Code scanning work flow with Lint tool

In addition to functional checks, the Android SDK includes the
Android Lint code scanning tool to detect problems with the struc-
tural quality of code. The lint tool takes a configuration file and
the source files of an app, performs static code analysis, and high-
lights over 200 problems? in the categories of correctness, security,
performance, usability, accessibility, and internationalization, (cf.
Figure 1). Examples of the problems lint highlights include missing
permissions for requested APIs, using a mock location provider
in production, and initializing a random number generator with a
fixed seed.

3.2 Lint Shortcomings

Though Lint is a very useful tool that helps developers to improve
code quality in general and some aspects of software security in
particular, its current implementation does not support the app de-
veloper optimally. The following sections identify a couple of draw-
backs that limit its effectiveness, and suggest actionable changes
for each to make Lint security more effective.

Cipher cipher = Cipher.getInstance("AES");

Figure 2: A vague highlighted code.

3.2.1 Limited User Interface. Lint security uses ‘vague highlight-
ing’ for detected security issues (e.g. ECB mode for cryptography) -
cf. Figure 2. This way of highlighting insecure code snippets has
two drawbacks:

o Lint uses the same highlighting for all kinds of warnings, i.e.
non-security related bad code smells are highlighted in the
same way as security related bad code smells.

Zhttps://sites.google.com/a/android.com/tools/tips/lint-checks

e Using the same highlighting for all sorts of coding prob-
lems may lead to habituation and even to overlooking the
highlighting entirely.

Proposed Action:

To attract the developer’s attention, the user interface
should consider insights from previous usable security
and privacy research [10, 32, 34].

Cipher cipher = Cipher.getInstance("AES");

Cipher.getInstance should not be called without setting the encryption mode and padding more... (38F1)
T

Cipher cipher = Cipher.getInstance("AES");

< Disable inspection

7 Edit 'Cipher.getinstance with ECB' inspection settings
X Suppress: Add @SuppressLint("Getinstance") annotation

Figure 3: Lint does not provide help in term of quick-fixes
for security bad practices .

3.22 No Way Out. While Lint highlights security problems and
even provides textual information in the form of tool tips (cf. Fig-
ure 3), it does not guide developers through the process of turning
insecure code into secure code. Although this is not possible in all
cases (in particular in cases that spread insecurities across many
different methods, classes and packages), in many cases develop-
ers could be instructed to apply secure coding practices. Examples
might be not using an empty TrustManager implementation, or
replacing an insecure mode of operation such as ECB for symmetric

cryptography.

Proposed Action:
Provide easy-to-use code snippets to turn insecure code
into secure code in as many cases as possible [14].

3.2.3 Limited Data Flow Analysis. Lint has a lightweight data
flow analysis to detect programming issues [19, 36]. It is able to
detect obvious security issues such as using ECB for symmetric
encryption or a HostNameVerifier that returns true (cf. Figure 4).

HostnameVerifier hostnameVerifier = new HostnameVerifier() {
@override
public boolean verify(String hostname, SSLSession session) {

always returns true, which could cause insecure network traffic due to trusting TLS/SSL
return true;

}:} @

Figure 4: Android Lint is able to detect an insecure Host-
NameVerifier that returns true.

However, due to the lack of comprehensive data flow analysis,
Lint does not detect more complex instances of the above problem
(cf. Figure 5).

https://sites.google.com/a/android.com/tools/tips/lint-checks

final boolean isTesting = true;

HostnameVerifier hostnameVerifier = new HostnameVerifier() {
@Override
public boolean verify(String hostname, SSLSession session) {
return isTesting;

- ®

Figure 5: Android Lint fails to detect a simple insecure Host-
NameVerifier.

While we are aware that comprehensive data flow analysis is an
ongoing branch of research in the field of static code analysis [18,
28], we feel that covering some more complex cases is crucial to
provide a good user experience, since it confuses users to detect
one instance of a problem but not another, more complex one.

Proposed Action:
Improve data flow analysis to cover more complex cases

4 FIXDROID

Given these limitations in Android Lint, we believe the tool has
only limited impact in helping developers to improve app security.
We hypothesized that an enhanced version might achieve better
security results. To test this hypothesis, we implemented a further
plug-in for Android Studio, tailored towards teaching developers
about app security. We call this tool ‘FixDroid’.

FixDroid addresses the Lint tool’s limitations, and adds function-
ality to learn about developer behavior, while supporting developers
in making security related decisions.

FixDroid aims to give its users unobtrusive feedback about the
privacy and security impact of the code, as they write it. FixDroid
scans a developers’ code for ‘pitfalls’: constructs with less-than-
ideal privacy and security. Additionally, FixDroid detects whenever
adeveloper pastes a code snippet and attempts to match it against an
online database of known insecure code snippets (from StackOver-
flow). FixDroid is available as an Intellij IDEA plugin for Android
Studio. It had had more than 500 downloads by August 2017 3.

4.1 Addressed Pitfalls

FixDroid currently covers 13 security pitfalls taken from the An-
droid Official documentation and from the existing research de-
scribed in Section 2. It indicates these problems on the appropriate
lines of code, using a ‘security indicator’ to catch developers’ atten-
tion. For some of those pitfalls, FixDroid offers quick-fixes; when
a quick-fix is not available, FixDroid provide a warning message
that describes the pitfall. The list of addressed security pitfalls is in
Table 1.

4.2 Learning Support

FixDroid ships with a sample ‘study project’ and instructions to
help developers learn how to use it. The sample project challenges
a developer to avoid many of the possible pitfalls, specifically those
related to secure network connections, SQL injection, and encryp-
tion.

Shttps://plugins jetbrains.com/plugin/9497-fixdroid

4.3 Research Support

Fixdroid also includes three features to support research, as follows.

4.3.1 Uploading Source Code. When participants complete a
security task in the study project, FixDroid sends their completed
implementation to our server.

4.3.2 Telemetry. FixDroid contains a telemetry feature to quan-
tify its usability and helpfulness, as well as the failures and limita-
tions of FixDroid. Its aim is to gain a better understanding of how
developers interact with FixDroid. Specifically, FixDroid’s telemetry
feature measures:

e Security bad practice events, including the time, the type of
bad practice (pitfall), and whether the code in question was
copied/pasted.

e Security good practice events, code that avoids a pitfall, to
help measure if participants’ security programming skills
improve from using FixDroid.

e Security tooltip events record whether a particular warning
message has been read by developers, how long developers
spend to read it.

o Quickfix events, indicating whether an offered quickfix was
used by developers, when it was used, and whether the devel-
oper used the default shortcut of Android Studio or clicked
on security indicator.

4.3.3 Experience Sampling. In our pilot study we found from
the exit survey that some participants could not recall the causes
of the issues detected, nor distinguish Fixdroid functionality from
existing Android Studio features. So we added functionality to
sample programmers’ experience as they interact with different
components of FixDroid. This functionality includes:

o Copy & Paste event: When FixDroid detects a pasted insecure
code snippet, it asks the programmer for the source of that
snippet, preferably as a URL.

o Quick-Fix applied event: When the programmer applies a
suggested quick-fix, FixDroid asks how useful they found
the quick-fix, on a five point Likert scale.

4.4 How FixDroid Works

FixDroid leverages the inspecting mechanism in Intelli] IDEA*. By
default, FixDroid analyzes all open files of Java and Xml source code.
It highlights all security bad practices as the developer writes code,
using both Intellij’s default highlighting and more visible ‘security
indicators’ on the insecure code’s line numbers. Furthermore, In-
tellij also supports developers running FixDroid inspection in bulk
mode where all source files will be inspected: thus the developer
can choose to inspect an entire project, or any scope within it.

When the developer moves the mouse over the highlighted code
or over the security indicator, the corresponding warning message
will be displayed. The developer can enable the available quick-
fix by using the default short-cut of Android Studio or by simply
clicking on the security indicator (cf. Figure 6).

*https://www.jetbrains.com/help/idea/running- inspections.html

https://www.jetbrains.com/help/idea/running-inspections.html

Pitfall

Security Tooltip

Quick-fix

Insecure Cipher.getInstance

You appear to be using Cipher.getInstance with the insecure default
ECB Mode. To improve security, a different encryption mode with

padding e.g. AES and CBC should be used.

AES/CBC/PKCS5Padding

Non-random Initial Vector for
Cipher.init

You appear to use a constant Initial Vector. To secure the encrypted
data against hacking attacks, the IV should be randomly generated and
passed or stored along with the encrypted data.

Constant key for encryption

You are using a constant key for encryption. To avoid an extraction
the hard-coded key of the hard-coded key by reverse-engineering, a
dynamically generated should be used, preferably from a server.

Less than 1000 iterations for PBE

You are using less than 1000 iterations for PBE. It is recommended to
use at least 1000 iterations to increase the difficulty of reversing the

hash.

Use 1000 iterations

ECB mode for encryption

You appear to be using the insecure ECB mode for encryption. It is
recommended to use a more secure mode like AES/CBC/PKCS5Padding.

AES/CBC/PKCS5Padding

Improper HostNameVerifier

You appear to be using an improper HostNameVerifier. This allows
an attacker to impersonate the host. It is recommended to use default
HostNameVerifier or, better still, SSL pinning.

SecureRandom with static seed

You are using a static seed, which allows an attacker to predict the
random numbers generated. It is recommended to use the default con-
structor of SecureRandom.

Remove static seed

HTTP over HTTPS

You are using an insecure HTTP connection. An attacker may intercept
and view all the traffic, or replace the server completely. It is recom-
mended to use HTTPS.

HTTPS upgrade

WebView HTTP over HTTPS

You are using an insecure HTTP connection. An attacker may intercept
and view all the traffic, or replace the server completely. It is recom-
mended to use HTTPS.

HTTPS upgrade

WebView Loading local HTML file

You are loading HTML content directly from the file system. A virus or
rogue app running on the device might replace this with other code. It
is recommended to load JavaScript only from secure areas.

Custom certificate

This is a connection to a server with a self-signed/untrusted certificate.
If you believe this server should be trusted, it is recommended to use
SSL pinning.

SSL pinning

Loading code from public places

You are loading code from the publicly accessible location. This code
can be infected from contact with a virus or rogue app running on the
device. It is recommended to load code only from secure sources.

SQL Injection

You are using a query that is vulnerable to SQL injection. An attacker
can enter text that is interpreted as SQL commands, allowing access to
the whole database. It is recommended to use a parameterized query.

Place-holder string

Table 1: Security tooltips and corresponding quick-fixes displayed by FixDroid.

4.5 Example of Use

Figures 6 through 8 show an Insecure Network Connection example.
Here FixDroid observes that developers are writing code to connect
to a given URL with the HTTP protocol — which is insecure. Fix-
Droid finds a quick-fix using the same URL but replacing HTTP by
HTTPS. Given this option is available, developers are informed by
highlighting the insecure code and marking the corresponding code
lines as insecure with a security warning icon. When developers
move their mouse over the highlighted code or the warning icon, a
corresponding message is shown, telling them what the problem
is and how to resolve it. Developers can fix the insecure code by

clicking on the warning icon or by using the built-in shortcut of An-
droid Studio (cf. Figure 7). When a quick-fix is applied (cf. Figure 8),
the previous warning message and security indicator disappear.

URL url = | URL()

This is an insecure HTTP connection, however a secure HTTPS connection is available. more... (%F1) |gpenConnection ()
conn. connect ()

Figure 6: FixDroid detects an insecure code snippet.

URL url = URL(

)
® Change http to https
HttpURLConnection conn = (Http _ 7
conn. connect () # Extract string resource

Figure 7: FixDroid suggests a quick fix.

URL url = URL()|

HttpURLConnection conn = (HttpURLConnection)url.openConnection()
conn. connect()

Figure 8: HTTPS Upgrade quick-fix has been applied.

Android .
. Code Editor Line Marker
Source Files
Security
Resolver
Telemetr
=
anager

Figure 9: FixDroid’s Architecture

—— | Inspectors

4.6 FixDroid Implementation

The different components of FixDroid are illustrated in Figure 9.
Inspectors are the center components that watch developer’s code.
Whenever the developer finishes writing a line of code, a method or
a class implementation, the appropriate Inspector invokes Security
Resolver to check if that given code snippet is secure or not. If the
code snippet is insecure, the Inspector forwards the information to
Telemetry Manager. At the same time the Inspector also informs de-
velopers via Code Editor by highlighting the insecure code snippet
as well as marking the insecure code with a security indicator.

When the developer invokes a quick-fix, this invokes Line Marker
to make the code change.

Web Service supports FixDroid’s communication with our back-
end database. Config File contains the mapping of which Inspector
is responsible for which security pitfall.

4.7 Static code analysis

FixDroid leverages the Intelli] IDEA static analysis techniques to
performs static code analysis at method, class and project levels.
Hence, FixDroid can statistically resolve variables that are computed
from different code locations. This eliminates mistakes similar to
the example of HostNameVerifier (c.f Section 3.2.3).

5 PILOT STUDY

In the developer review sections and the pilot study, we have the
same 3 programming tasks: network connection, SQL query, and
data encryption. They will be described in details in section 6.2

5.1 Initial User Interface Evaluation

First, we conducted three developer review sessions to gain a first
insight into how developers might use FixDroid in real world situa-
tions. The reviews were conducted with three Android developers
within the lead author’s organization, CISPA. These three devel-
opers were asked to solve three programming tasks with FixDroid
installed on their Android Studio. To closely observe the developers’
interaction with FixDroid, a researcher sat beside them while they
were solving the tasks. Developers expressed their feelings and
expectations during the study.
From the reviews, we observed:

o All the observations of programmer behavior could be au-
tomated by the tool, so we did not need to invite future
participants into our lab to watch them solve programming
tasks. This could help avoid the biases that lab studies often
face [16, 17].

o Highlighting insecure code is not enough. None of the three
developers noticed the highlighted code.

Therefore as a next step we redesigned the field study to be con-
ducted automatically and remotely. We invited later participants
to join in our study online, by installing FixDroid over the web.
We added functionality to gather and observe developers’ inter-
action and send anonymous details to FixDroid’s server. We also
added an additional security indicator (cf. Figure 6 and 7) to inform
developers of insecure practices.

5.2 Remote Pilot Study

We conducted a second pilot study with 9 participants, recruited
from our industry contacts. All were experienced professional de-
velopers; Table 2 shows the participant demographics.

Age
Mean = 26.11 Median = 26 Standard Deviation = 1.36
Professional Android Experience
Yes =5 No =4

Table 2: Pilot study participant demographics.

All participants reported that they noticed the security indicator
from FixDroid while only 3 participants noticed the highlighted
code. This indicates the effectiveness of the security indicator in
informing developers about their insecure code snippet.

In this study, 6 out of 9 participants used quick-fixes provided
by FixDroid. At this time FixDroid only provided participants with
quick-fixes for the SQLite and Connection tasks; only one partic-
ipant managed a secure solution for the Encryption task. That 8
out of 9 participants produced insecure code for the Encryption
task although all of them had read FixDroid’s warning messages,
suggests that the cryptographic APIs in Android are particularly
difficult for developers to use, even when they are aware of the
security implications of their code. With that in mind, we decided
to include a quick-fix for the Encryption task in our final study.

6 USER STUDY
6.1 Study Design

For our main study, we wanted to evaluate the effectiveness of
the FixDroid approach with professional Android developers. We
therefore recruited Android developers who submitted apps to the
Google Play store.

Our hypothesis H1 was that developers using FixDroid would
deliver more secure Android code; the corresponding null hypothe-
sis HO that they would not. We therefore divided participants into
two groups: developers in one group had all the functionality of
FixDroid (FixDroid enabled); developers in the other did not have
FixDroid fully enabled (no warning messages or quick-fixes). Both
groups had the Lint tool enabled. To balance the group sizes the
FixDroid server assigned participants based on the number of valid
participants so far received in each group.

Each participant carried out the ‘study project’. Our analysis
only considers participants who completed writing code for at least
1 code snippet and filled out our exit survey.

6.2 Study Tasks

In the ‘study project’, participants were provided a skeleton An-
droid application and asked to solve three different security related
programming tasks. Each participant received the same three pro-
gramming tasks, although the task ordering was randomized. For
each task, a corresponding unit test was provided that participants
could run to check if their solution is functional. Note that the test
cases do not check if the solution is secure.

The following sections describe the three tasks. While these
do not encompass the entire space of security relevant problems
encountered by Android developers, previous studies [1, 2] have
found that even simple problems similar or identical to those used
in the study lead to problems in production code.

Network Connection. This provides a code snippet to be com-
pleted to establish a connection to a server. Participants were given
the domain and query path of the URL, then requested to add a
protocol to make this URL valid and establish the connection and
get a return code status (i.e 200, 400 or 500). The goal of this task
was to check if participants used a secure connection (HTTPS) to
connect to the given host. The host supported both HTTP and
HTTPS protocols.

A corresponding test case was provided, which passes when the
method connect returns the value of 200.

Data Encryption. In this task, participants were asked to en-
crypt a given plain-text. Participants were expected to encrypt a
string and return an array of bytes. The goal of this task is to see
how knowledgeable developers are about cryptographic APIs.

A corresponding test case was provided, which passes when the
returned array of encryption method is not null and has a length
greater than 16.

SQOLite Query. In this task, participants were asked to build a
SQL query to retrieve the age of a given user name. In the skeleton
app, we have already created a SQLite database with a predefined
table named "users". Table "users" has 4 columns: id, name, age,

password. The goal of this task is to see if participants are aware of
SQL injection attacks.

A corresponding test case was provided, which passes when this
test case returns the correct age of a predefined user which has
been inserted into the attached SQLite database.

6.3 Participant Journey

After each participant finished installing FixDroid and its depen-
dencies®, the installer requested a restart of their Android Studio to
commission the newly installed plugin (FixDroid). FixDroid then
offered the participant to join our Android Research Study with a
reminder that all of the listed dependencies must be installed in
advance.

If the participant decided to join our study, FixDroid then pro-
vided instructions on how to navigate between tasks, test cases and
how to reset a solution back to the original version of the code;
then invited them to click start to get the first task. Every time the
participant built the Android application, the solution was sent to
FixDroid’s web service for later analysis.

Since the second group did not have FixDroid enabled for the
study, when a participant in this group had filled in our exit sur-
vey, FixDroid then enabled its full functionality. It also opened a
file containing example insecure code, allowing the participant to
see how the full-functionality FixDroid worked by examining the
warning message or applying the provided quick-fix. Thus each
participant in the second group received the benefit of the FixDroid
tool for later use without a biasing effect on our study results.

6.4 Exit Survey

While a participant was still completing the tasks, FixDroid showed
an "Open Survey” button, encouraging participation in our the
survey. When a participant had written code that passed all of the
three test cases, FixDroid prompted explicitly for participation in
the survey. FixDroid also asked for survey participation when a
participant closed or quitted Android Studio without completing
all the tasks.

For the group with FixDroid enabled the survey included ques-
tions about the participant’s interaction with FixDroid together
with demographic questions. For the group without FixDroid, the
survey asked only demographic questions. Appendix Section A has
details of the questions.

We considered including System Usability Scale (SUS) questions
[4] in our exit survey, but decided not for the following reasons:

e FixDroid is not a standalone system.

e Participants would be likely to think of the study project as
FixDroid’s functionality and rate that, which wouldn’t be a
useful measure.

6.5 Evaluating Participant Solutions

We invoked each sample of code submitted by our participants,
built into a suitable framework. For each task, we also manually
evaluated their security and functional correctness, creating a score
to reflect each outcome based on the properties of each task. Two
researchers were assigned to score the participants’ solutions, with

SDK Platform Android 7, Android SDK build-tools

a third coder providing a casting vote in cases of disagreement. The
scores were assigned as follows:

Functionality. For each programming task, a participant received
score 1 for their functionality if the code passed the test, otherwise
0 is given.

Security. Only functional solutions received a security score. De-

pending on the task, we evaluated different security considerations,
coding each as secure (1) or not (0) as follows.

6.6 Security Evaluation

For the Connection task, if a participant used https protocol for
their connection, their solution was considered secure; http was
considered insecure.

String query = "select age from users where name = ?";

Cursor cursor = database.rawQuery(query ,new

/] or

Cursor cursor2 = database.query("users" ,new String []{"age
"}, "name=?" ,new String []{userName}, null, null, null

)i
Listing 1: Parameterized query string

For the SQLite task, if a participant used question mark ? as string
placeholder and put userName as parameter of their rawQuery
method call; or if they used the query method specifying the col-
umn’s name, table’s name, and arguments as parameters, the solu-
tions was considered secure. See Listing 1, for example. However,
if a participant concatenated the variable userName to their query
string, the solutions was coded as insecure.

For the Encryption task, we captured how different parameters
affect a solution’s security as described in Table 3; that table only
lists options that were found in one or more participants’ solutions.

Parameter Secure Insecure
AES/CBC [39] DES, AES/ECB [9]
Cipher/Mode AES/GCM [33] Blowfish [38]
AES/CFB[33]
Initialization Vector provider generated static [9]
bad derivation[9]
static [9]

Key provider generated bad derivation [9]

< 1k iteration [21]
< 64-bit salt[21]
static salt [9]

>=1k iterations [21]
>=64-bit salt [21]
non-static salt [21]

Password Based
Encryption

Table 3: Encryption security parameters

6.7 Recruitment

To maintain the validity of our study, we wanted only to recruit
experienced Android developers. Therefore, we extracted develop-
ers’ emails from the Google Play Store, since any such developer
will have completed at least one working app. We sent emails in
batches, asking Google Play developers to participate in a study
on how to support Android developers in writing code. We did not
mention security in the recruitment email. However, this approach

did not scale well since participants wanted to know what FixDroid
does before installing it as an Android Studio plugin. We received
a number of emails asking for this information. We also provided
participants the option to stop receiving invitation emails from us.

To encourage more participants, we added more details to our
later emails, specifying that FixDroid helps developers write more
secure code with possible quick-fixes. After this change we had a
higher response rate. In all, we sent invitation emails to 210,854
developers and got 16 participants who volunteered to participate
in our study and finished both writing code and filling in our exit
survey.

We also recruited students to join in our study. As compensation
they received 25 Euros either in cash or as an Amazon voucher. We
sent invitation emails to five universities in Germany.

Our email linked to the FixDroid plugin in the Android Studio
plugins repository, allowing participants to download FixDroid
directly from their Android Studio.

To verify students’ Android programming experience we gave
them a set of 5 Android programming related questions to an-
swer. We only invited students who answered at least 3 questions
correctly. 65 students participated in our pre-study quiz; 59 were
invited. We stopped recruiting when we had 24 students, due to
budget constraints.

6.8 Ethical Concerns

All the telemetry data was gathered pseudonymously, with per-
sonally identifiable information removed before sending it to the
server. All data was sent securely to FixDroid’s web service using
HTTPS. Our study was approved by our institution’s ethics review
board.

We have concerns about researchers sending emails to large
numbers of developers, and are working with StackOverflow to
deliver an opt-in list for developers interested in working with
academic researchers.

7 STUDY RESULTS

7.1 Participants

In total, 409 participants downloaded FixDroid. Table 4 shows how
many from each group completed the exit survey. This includes
some participants who did not write any code.

Mode Started Completed
Full functionality 45 22
Only telemetry 70 35

Table 4: Number of participants who started and completed
surveys

Table 5 shows how many completed 1, 2, or 3 tasks, and how
many dropped out before completing any tasks. This includes all
participants, including those who didn’t complete a task or the
survey.

Mode 0 Task 1Task 2Tasks 3 Tasks
Full functionality 33 9 3 19
Only telemetry 55 5 3 19

Table 5: Number of participants who completed tasks

Our participants in the developers group were aged between
21 and 47 (see Table 7) while participants in students groups were
aged between 19 and 30.

Country Count | Country Count
Moldova 1 Poland 1
UK 1 Colombia 1
Germany 3 India 3
Vietnam 2 Turkey 1
Czech Republic 1 Greece 1
Kenya 1

Table 6: Country of origin of developers

All the students come from Germany; the developers included
participants from nearly all over the world (Table 6).

Full functionality Only Telemetry

Age

Mean 25.32 27.45
Median 25.00 25.00
Standard Deviation 4.60 5.88
Information Security Background

Yes 7 12
No 6 14
Apps Submitted

Mean 4.89 6.95
Median 3.00 3.00
Standard Deviation 4.42 7.05

Table 7: Participant Background

Almost all participants have been programming in Android for
at least 6 months (see Figure 10). The exception was two students
who had only taken Android programming related courses.

7.2 Findings from Participants’ Experience

This section explores our findings from the exit survey, telemetry
features and experience sampling. This analysis considers only
participants who completed both at least one task and the exit
survey.

7.2.1 Sources of Information. Figure 11 shows participants’ de-
scriptions of where they looked for coding support. The results are
consistent with Acar et al’s earlier research [2], suggesting that
these developers are typical in their use of development resources.

1 year - 2 years

|

< 6 months

Not at all .

0 2 4 6 8 10 12 14 16

= Only Telemetry ™ Full Functionality

Figure 10: Android programming experience

Other I
Stackexchange —
Official Documentation -_
Commonsware s
A OVerfIow

Search engine | —

o

2 4 6 8 10 12

W Only Telemetry M Full functionality

Figure 11: Where do you usually look for security related
coding questions?

7.2.2 Perceived use of FixDroid features. Moving on to consider
survey information from the participants using FixDroid, Figure 12
shows which features of FixDroid users believed they used. Con-
sistently the students used more features; and the warning icon
and quick-fix were used most. This is consistent with the telemetry
recorded by FixDroid (see Section 7.2.4)

Quick-fix

Warning Message

Highlighted code _

Warning Icon

o

1 2 3 4 5 6 7 8 9

W Developers M Student

Figure 12: FixDroid features reported by participants

7.2.3 Perceived value of quick fixes. Every time participants used
a quick-fix offered by FixDroid, they were immediately presented
with a question asking for the usefulness of the provided quick-fix,
using a 5-point Likert scale ranging from “Strongly Disagree” to

“Strongly Agree”. Figure 13 summarises the responses; a majority
of quick-fix users agreed or strongly agreed that their provided
quick-fixes were useful.

The provided quickfix was useful

Students{ 5% [o% | e
Developers{ 3% I 17%
'

100 50 0 50 100

. Strongly disagree | Disagree Neutral | Agree . Strongly agree

Figure 13: Reported value of each quickfix applied

On the exit survey, nearly two third of the participants (63.15%)
in the FixDroid group reported that they used at least one provided
quick-fix; they all reported that the provided quick-fix was useful
(n=19). Interestingly only half of participants in this group reported
having used IDE-provided quick-fixes prior to our study, although
quick-fixes are generally available for non-security related issues.

7.2.4 Actual Use of FixDroid Features. Figure 14 shows the ac-
tual use of FixDroid’s features during each of the tasks, as measured
by FixDroid’s telemetry functionality. The Encryption task gener-
ated significantly more activities than the other two, suggesting
that that this is particularly difficult for developers.

Encryption r

Connection -

saite -_
0 5 10 15 20 25 30 35

® Tooltip ™ QuickFix

Figure 14: Actual use of FixDroid features

7.2.5 Use of copy/paste. Figure 15 shows the developer use of
copy/paste during each of the tasks. Again, the Encryption task gen-
erated significantly than the other two, suggesting that it required
much more online research on the part of developers. Whenever
participants copied and pasted an insecure code snippet to their
solution, FixDroid asked them to provide us the URL of the website
from which they copied the code. The most common source was
StackOverflow; this supports the reported information sources in
our exit survey. We manually examined the links, and found that,
for encryption related questions, every link contained at least one
insecure code snippet.

Other participants reported that they copied code from other
projects or from their notepad.

7.3 Regression Model

The following sections show the results of applying a regression
model to analyze the results in detail. Table 8 shows the factors
analyzed. Since we are only interested in binary outcomes (e.g., se-
cure vs. insecure), we used logistic regression. When we considered

saue
Connection .
nenveten _
0 5 10 15 20 25 30 35 40

M Only telemetry M Full functionality

Figure 15: Number of copied and pasted insecure code events

Factor Description Baseline
Required factors
Mode FixDroid or Default Only
telemetry
feature
Task One of the three tasks Connection
described in Section 6.2
Optional factors
Group Developer or student Developer
Experienced True if participant has False
submitted more than 5
apps or has more than
3 years of experience
otherwise False. Self-
reported.
Security background True or False, self re- False
ported

Table 8: Factors used in regression analysis

results on a per-task rather than a per-participant basis, we used a
mixed model that adds a random intercept to account for multiple
tasks from the same participant.

For the regression analysis, we considered a set of candidate
models and selected the model with the lowest Akaike Information
Criterion (AIC) [5]. The included factors are described in Table 8.
We considered candidate models consisting of the required factors
mode and task, the participant random intercept, plus every possible
combination of the optional variables.

We report the outcome of our regressions in Table 9. Each row
measures the change in the analyzed outcome related to changing
from the baseline value for a given factor to a different value for
that factor (such as changing from not having access to FixDroid
functionality to having FixDroid activated). Logistic regressions
produce an odds ratio (O.R.) that measures the change in likelihood
of the targeted outcome; baseline factors by construction have
O.R.=1. In each row, we also give a 95% confidence interval (C.I.)
and a p-value indicating statistical significance.

For the regression, we set using normal Android Studio (only
with FixDroid telemetry features) as the baseline. In addition, we

used the connection task as the baseline, as this seems like a likely
task for developers to encounter in real life and has been done
before by Acar et al. [2]. All baseline values are given in Table 8.

7.4 Functional Correctness Results

We observed no statistically significant difference in the number
of functional solutions between each task, and between groups (cf.
Figure 16). Developers and students with FixDroid’s support do not
perform significantly better compared to participants with only the
telemetry features, in terms of functional correctness.

0,00% 20,00% 40,00% 60,00% 80,00% 100,00%

HOnly telemetry B Full functionality

Figure 16: Funtionality results for each task

7.5 Security Correctness Results

Figure 17 shows the proportion of developers and students achiev-
ing a secure solution in each of the tasks. We were pleased to see a
dramatic difference in security success, with more than twice the
proportion achieving a secure solution in the Encryption and Con-
nection tasks. Interestingly there was little difference in security
success for the SQLite task.

Fenvren &
connection h
sae =
0,00% 20,00% 40,00% 60,00% 80,00% 100,00%

W Only telemetry M Full functionality

Figure 17: Security results for each task

Table 9 shows the analysis for these figures, considering factors
contributing to task security, performed on functionally correct
tasks. Statistically significant values are indicated with *.

Since we used the group of participants with no security quick-
fixes or warning messages available as our baseline, our hypothesis

Factor O.R. C.L

FixDroid 19.55
Encryption 0.37
SQLite 0.99

p.value

[2.42,157.84] 0.005*
[0.13,1.06] 0.065
[0.34,2.88] 0.993

Table 9: Mixed logistic regression on factors contributing to
task security

H1 (that FixDroid has an impact on security) is represented by the
factor ‘FixDroid’ in the analysis. We can therefore reject the null
hypothesis, HO, that FixDroid has no impact, with the p value of
0.005.

8 LIMITATIONS

We can identify the following limitations to our sampling process.
First, since the participants are in effect self-selecting, we have an
opt-in bias. There is the possibility that these results won’t extend to
the full set of programmers. We also have a relatively small sample
set, though we have addressed that using appropriate statistical
methods.

As we wanted to have more participants, we had to compen-
sate students to join our study while professional developers were
not paid. However, we observed only one significant difference:
professional developers were more likely to drop out.

There is an issue with acquiescence bias or the Hawthorne ef-
fect, especially in the reported value of quick-fixes in section 7.2.3:
participants are more likely to report liking a new system.

As we describe in Section 6.7, we had to briefly mention what
FixDroid does in order to recruit more professional developers. This
could possibly introduce bias into our study. It is not an easy task to
convince developers to install a third party plugin without telling
them what it does.

Though we believe it is important, we did not focus on improving
data flow analysis except for leveraging the existing features of
Intelli] IDEA previously ignored by Lint (see Section 4.7).

9 FUTURE WORK

We have identified several areas for further work:

e FixDroid provides a good platform for the analysis of pro-
grammer coding behaviour with regards to security. Clearly
there is scope for exercises covering further kinds of defect
and using FixDroid to analyse how developers address them.

e Improved data flow analysis will help developers detect more
kinds of defect; work on this will improve the usefulness of
FixDroid app still more.

o FixDroid continuously measures security good practices and
security bad practices. This has the potential to support a fu-
ture longitudinal study to see if people actually use FixDroid
and get better at writing secure code over time.

o Further, and more ambitiously, FixDroid telemetry feedback
has the potential to support machine learning to start to
identify software security ‘smells’ and provide more sophis-
ticated analysis of developer code.

10 CONCLUSION

This paper explored the possibility of supporting Android develop-
ers to write secure code. Section 3 showed the limitations of the
existing Android Lint tool, and suggests improvements. These im-
provements motivated the creation of a new IDE plug-in, FixDroid,
as described in Section 4.

A series of studies evaluated this approach, as described in Sec-
tion 6, and analyzed in Section 7. Early studies discovered the im-
portance of a more visible signal of security issues than the existing
Lint indicators. The later studies also validated the approach of
using telematics in an IDE to determine programmer behavior.

Finally, the studies conclusively proved the effectiveness of such
a tool in improving the security of code produced.

These findings suggest that it will significantly improve the secu-
rity of developed apps if future Android IDEs contain functionality
similar to the FixDroid tool, with a clear indication of security errors
and offers of security ‘quick-fixes’.

We conclude that, to improve app security, it’s vital that future
versions of the Android development environments incorporate
similar features.

ACKNOWLEDGMENTS

We would like to thank the GP3S group for providing us the industry
contacts to carry out our pilot study, and the anonymous reviewers
for their valuable feedback. This work was supported by the Ger-
man Federal Ministry of Education and Research (BMBF) through
funding for the Center for IT-Security, Privacy and Accountability
(CISPA) (FKZ: 16KIS0656).

REFERENCES

[1] Yasemin Acar, Michael Backes, Sven Bugiel, Sascha Fahl, Patrick McDaniel, and

Matthew Smith. 2016. SoK: Lessons Learned From Android Security Research

For Appified Software Platforms. In Proceedings of the 2016 IEEE Symposium on

Security and Privacy (SP ’16).

Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L. Mazurek,

and Christian Stransky. 2016. You Get Where You’re Looking For: The Impact Of

Information Sources On Code Security. In Proceedings of the 2016 IEEE Symposium

on Security and Privacy (SP ’16).

[3] RBalebako, A Marsh, J Lin, and] Hong. 2014. The Privacy and Security Behaviors
of Smartphone App Developers. In Workshop on Usable Security (USEC’14).
http://www.mathcs.richmond.edu/~dszajda/classes/cs334/Fall_2014/papers/
Balebako_privacy_security_behaviors_smartphone_app_developers.pdf

[4] John Brooke. 1996. "SUS-A quick and dirty usability scale." Usability evaluation
in industry. CRC Press. https://www.crcpress.com/product/isbn/9780748404605
ISBN: 9780748404605.

[5] K. P. Burnham. 2004. Multimodel Inference: Understanding AIC and BIC in
Model Selection. Sociological Methods & Research 33, 2 (2004), 261-304. https:
//doi.org/10.1177/0049124104268644

[6] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. 2011.
Analyzing Inter-application Communication in Android. In Proc. 9th International
Conference on Mobile Systems, Applications, and Services (MobiSys’11). ACM. https:
//doi.org/10.1145/1999995.2000018

[7] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. 2011.
Analyzing inter-application communication in Android. In Proc. 9th International
Conference on Mobile Systems, Applications, and Services (MobiSys’11). ACM.

[8] Erika Michelle Chin. 2013. Helping Developers Construct Secure Mobile Applica-
tions. UC Berkeley: Computer Science. http://escholarship.org/uc/item/4x48p6rz

[9] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. 2013.

An Empirical Study of Cryptographic Misuse in Android Applications. In Proc.

20th ACM Conference on Computer and Communication Security (CCS’13). ACM.

https://doi.org/10.1145/2508859.2516693

Serge Egelman, Lorrie Faith Cranor, and Jason Hong. 2008. You’ve been warned:

an empirical study of the effectiveness of web browser phishing warnings. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.

ACM, 1065-1074.

[2

=

[10

William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. 2011. A
Study of Android Application Security. In Proc. 20th Usenix Security Symposium
(SEC’11). USENIX Association. http://www.enck.org/pubs/enck-sec11.pdf
Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgartner, Bernd
Freisleben, and Matthew Smith. 2012. Why Eve and Mallory Love Android: An
Analysis of Android SSL (in)Security. In Proc. 19th ACM Conference on Computer
and Communication Security (CCS’12). ACM. https://doi.org/10.1145/2382196.
2382205

Sascha Fahl, Marian Harbach, Henning Perl, Markus Koetter, and Matthew Smith.
2013. Rethinking SSL Development in an Appified World. In Proc. 20th ACM
Conference on Computer and Communication Security (CCS’13). ACM. https:
//doi.org/10.1145/2508859.2516655

Felix Fischer, Konstantin Bottinger, Huang Xiao, Christian Stransky, Yasemin
Acar, Michael Backes, and Sascha Fahl. 2017. Stack Overflow Considered Harmful?
The Impact of Copy&Paste on Android Application Security. In Symposium on
Security and Privacy (Oakland’17). IEEE.

Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh, and
Vitaly Shmatikov. 2012. The Most Dangerous Code in the World: Validating SSL
Certificates in Non-browser Software. In Proc. 19th ACM Conference on Computer
and Communication Security (CCS’12). ACM. https://doi.org/10.1145/2382196.
2382204

Randall A Gordon and Richard D Arvey. 2004. Age Bias in Laboratory and Field
Settings: A Meta-Analytic Investigationl. Journal of applied social psychology 34,
3 (2004), 468-492.

Nielsen Norman Group. [n. d.]. Field Studies. https://www.nngroup.com/articles/
field-studies/. ([n. d.]). Last visited: 12/09/2016.

Gerard J Holzmann. 2016. Cobra: a light-weight tool for static and dynamic
program analysis. Innovations in Systems and Software Engineering (2016), 1-15.
S. C. Johnson. 1978. Lint, a C Program Checker. In COMP. SCI. TECH. REP.
78-1273.

Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. 2006. Pixy: A static
analysis tool for detecting web application vulnerabilities. In Security and Privacy,
2006 IEEE Symposium on. IEEE, 6-pp.

B. Kaliski. 2000. PKCS #5: Password-Based Cryptography Specification Version
2.0. (2000).

Miryung Kim, Lawrence Bergman, Tessa Lau, and David Notkin. 2004. An ethno-
graphic study of copy and paste programming practices in OOPL. In Empirical
Software Engineering, 2004. ISESE’04. Proceedings. 2004 International Symposium
on. IEEE, 83-92.

Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. 2012. Chex:
statically vetting android apps for component hijacking vulnerabilities. In Pro-
ceedings of the 2012 ACM conference on Computer and communications security.
ACM, 229-240.

Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin. 2011. Attacks
on WebView in the Android system. In Proc. 27th Annual Computer Security
Applications Conference (ACSAC’11). ACM.

Stacey Watson Madiha Tabassum and Heather Richter Lipford. 2017. Comparing
Educational Approaches to Secure programming: Tool vs. TA. In Thirteenth Sym-
posium on Usable Privacy and Security (SOUPS 2017). USENIX Association, Santa
Clara, CA. https://www.usenix.org/conference/soups2017/workshop-program/
wsiw2017/tabassum

Vitaly Shmatikov Martin Georgiev, Suman Jana. 2014. Breaking and Fixing
Origin-Based Access Control in Hybrid Web/Mobile Application Frameworks. In
Proc. 21st Annual Network and Distributed System Security Symposium (NDSS’14).
The Internet Society.

Patrick Mutchler, Adam Doupé, John Mitchell, Christopher Kruegel, and Giovanni
Vigna. 2015. A Large-Scale Study of Mobile Web App Security. In Proc. 2015
Mobile Security Technologies Workshop (MoST’15). IEEE.

Marco Pistoia, Omer Tripp, and David Lubensky. 2016. Combining Static Code
Analysis and Machine Learning for Automatic Detection of Security Vulnera-
bilities in Mobile Apps. Mobile Application Development, Usability, and Security
(2016), 68.

Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel,
and Giovanni Vigna. 2014. Execute This! Analyzing Unsafe and Malicious Dy-
namic Code Loading in Android Applications. In Proc. 21st Annual Network and
Distributed System Security Symposium (NDSS’14). The Internet Society.

A. Porter Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. 2011. Android Permis-
sions Demystified. In Proc. 18th ACM Conference on Computer and Communication
Security (CCS’11). ACM.

Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk, Steve Hanna, and
Erika Chin. 2011. Permission Re-Delegation: Attacks and Defenses. In Proc. 20th
Usenix Security Symposium (SEC’11). USENIX Association.

S. E. Schechter, R. Dhamija, A. Ozment, and L Fischer. 2007. The Emperor’s New
Security Indicators. In 2007 IEEE Symposium on Security and Privacy (SP '07).
51-65. https://doi.org/10.1109/SP.2007.35

Yaron Sheffer, Peter Saint-Andre, and Ralph Holz. 2015. Recommendations for
Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer
Security (DTLS). RFC 7525. (May 2015). https://doi.org/10.17487/rfc7525

http://www.mathcs.richmond.edu/~dszajda/classes/cs334/Fall_2014/papers/Balebako_privacy_security_behaviors_smartphone_app_developers.pdf
http://www.mathcs.richmond.edu/~dszajda/classes/cs334/Fall_2014/papers/Balebako_privacy_security_behaviors_smartphone_app_developers.pdf
https://www.crcpress.com/product/isbn/9780748404605
https://doi.org/10.1177/0049124104268644
https://doi.org/10.1177/0049124104268644
https://doi.org/10.1145/1999995.2000018
https://doi.org/10.1145/1999995.2000018
http://escholarship.org/uc/item/4x48p6rz
https://doi.org/10.1145/2508859.2516693
http://www.enck.org/pubs/enck-sec11.pdf
https://doi.org/10.1145/2382196.2382205
https://doi.org/10.1145/2382196.2382205
https://doi.org/10.1145/2508859.2516655
https://doi.org/10.1145/2508859.2516655
https://doi.org/10.1145/2382196.2382204
https://doi.org/10.1145/2382196.2382204
https://www.nngroup.com/articles/field-studies/
https://www.nngroup.com/articles/field-studies/
https://www.usenix.org/conference/soups2017/workshop-program/wsiw2017/tabassum
https://www.usenix.org/conference/soups2017/workshop-program/wsiw2017/tabassum
https://doi.org/10.1109/SP.2007.35
https://doi.org/10.17487/rfc7525

[34]

[35]

[36]

[37

[38

[39]

[40]

A

Pan Shi, Heng Xu, and Xiaolong (Luke) Zhang. 2011. Informing Security Indicator
Design in Web Browsers. In Proceedings of the 2011 iConference (iConference ’11).
ACM, New York, NY, USA, 569-575. https://doi.org/10.1145/1940761.1940839
Sooel Son, Kathryn S McKinley, and Vitaly Shmatikov. 2011. Rolecast: finding
missing security checks when you do not know what checks are. ACM SIGPLAN
Notices 46, 10 (2011), 1069-1084.

Android Team. 2017. Android Lint tool. https://developer.android.com/studio/
write/lint.html. (2017). Last visited: 17/05/2017.

Tyler W. Thomas, Heather Lipford, Bill Chu, Justin Smith, and Emerson Murphy-
Hill. 2016. What Questions Remain? An Examination of How Developers Under-
stand an Interactive Static Analysis Tool. In Twelfth Symposium on Usable Privacy
and Security (SOUPS 2016). USENIX Association, Denver, CO. https://www.usenix.
org/conference/soups2016/workshop-program/wsiw16/presentation/thomas
Serge Vaudenay. 1996. On the weak keys of blowfish. Springer Berlin Heidelberg,
Berlin, Heidelberg, 27-32. https://doi.org/10.1007/3-540-60865-6_39

Serge Vaudenay. 2002. Security Flaws Induced by CBC Padding - Applications
to SSL, IPSEC, WTLS In Proceedings of the International Conference on the
Theory and Applications of Cryptographic Techniques: Advances in Cryptology
(EUROCRYPT ’02). Springer-Verlag, London, UK, UK, 534-546. http://dLacm.org/
citation.cfm?id=647087.715705

Rui Wang, Luyi Xing, XiaoFeng Wang, and Shuo Chen. 2013. Unauthorized
Origin Crossing on Mobile Platforms: Threats and Mitigation. In Proc. 20th ACM
Conference on Computer and Communication Security (CCS’13). ACM.

EXIT SURVEY

A.1 FixDroid specific questions

e During the study, did you notice any interaction from Fix-

Droid while performing the tasks? If yes:

— What interaction did you see from FixDroid? Warning
messages, Highlighted code, warning icon, quick-fixes,
other

o Did the plugin provide you any additional information?

A2

¢ Did you use any provided quick-fix in our lab study? If yes:
— Did the inserted code FixDroid work?
— Do you feel it was helpful?

General questions

What is your age?

What is your gender?

Where are you from?

For how many years have been programming in Android?

What is your highest degree of education?

Is programming your primary job? If yes: Is writing Android

code part of your primary job?. If no: Was programming part

of your job in the last 5 years?

e Do you have information security background?

e How many Android applications you have developed?

e Where do you usually look for security related coding ques-
tions? (website)

e Are you familiar with Android Studio (or IntelliJ IDE in
general)?

EXPERIENCE SAMPLING SURVEY

e How do you think this quick-fix is useful? (Strongly agree;
agree; neutral; disagree; strongly disagree)

o It seems like you are copying code from somewhere, could
you please tell us the website (the link) you have copied this
code from?

https://doi.org/10.1145/1940761.1940839
https://developer.android.com/studio/write/lint.html
https://developer.android.com/studio/write/lint.html
https://www.usenix.org/conference/soups2016/workshop-program/wsiw16/presentation/thomas
https://www.usenix.org/conference/soups2016/workshop-program/wsiw16/presentation/thomas
https://doi.org/10.1007/3-540-60865-6_39
http://dl.acm.org/citation.cfm?id=647087.715705
http://dl.acm.org/citation.cfm?id=647087.715705

	Abstract
	1 Introduction
	2 Related Work
	2.1 Security Issues in Android Development
	2.2 Tools that Support Developers

	3 Android Application Development
	3.1 Android Lint Tool
	3.2 Lint Shortcomings

	4 FixDroid
	4.1 Addressed Pitfalls
	4.2 Learning Support
	4.3 Research Support
	4.4 How FixDroid Works
	4.5 Example of Use
	4.6 FixDroid Implementation
	4.7 Static code analysis

	5 Pilot Study
	5.1 Initial User Interface Evaluation
	5.2 Remote Pilot Study

	6 User Study
	6.1 Study Design
	6.2 Study Tasks
	6.3 Participant Journey
	6.4 Exit Survey
	6.5 Evaluating Participant Solutions
	6.6 Security Evaluation
	6.7 Recruitment
	6.8 Ethical Concerns

	7 Study Results
	7.1 Participants
	7.2 Findings from Participants' Experience
	7.3 Regression Model
	7.4 Functional Correctness Results
	7.5 Security Correctness Results

	8 Limitations
	9 Future Work
	10 Conclusion
	Acknowledgments
	References
	A Exit Survey
	A.1 FixDroid specific questions
	A.2 General questions

	B Experience Sampling Survey

