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Abstract: Sentinel-2 and Sentinel-3 are two newly launched satellites for global monitoring. The Sentinel-2 9 

Multispectral Imager (MSI) and Sentinel-3 Ocean and Land Colour Instrument (OLCI) sensors have very 10 

different spatial and temporal resolutions (Sentinel-2 MSI sensor 10 m, 20 m and 60 m, 10 days, albeit 5 days 11 

with 2 sensors, conditional upon clear skies; Sentinel-3 OLCI sensor 300 m, <1.4 days with 2 sensors). For 12 

local monitoring (e.g., the growing cycle of plants) one either has the desired spatial or temporal resolution, 13 

but not both. In this paper, spatio-temporal fusion is considered to fuse Sentinel-2 with Sentinel-3 images to 14 

create nearly daily Sentinel-2 images. A challenging issue in spatio-temporal fusion is that there can be very 15 

few cloud-free fine spatial resolution images temporally close to the prediction time, or even available, strong 16 

temporal (i.e., seasonal) changes may exist. To this end, a three-step method consisting of regression model 17 

fitting (RM fitting), spatial filtering (SF) and residual compensation (RC) is proposed, which is abbreviated as 18 

Fit-FC. The Fit-FC method can be performed using only one Sentinel-3–Sentinel-2 pair and is advantageous 19 

for cases involving strong temporal changes (i.e., mathematically, the correlation between the two Sentinel-3 20 

images is small). The effectiveness of the method was validated using two datasets. The created nearly daily 21 

Sentinel-2 time-series images have great potential for timely monitoring of highly dynamic environmental, 22 

agricultural or ecological phenomena. 23 
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1. Introduction 26 

 27 

Sentinel-2 is a new programme of the European Space Agency (ESA) for fine spatial resolution global 28 

monitoring (Drusch et al., 2012; Hagolle et al., 2015; Segl et al., 2015). The Sentinel-2A and -2B satellites 29 

were launched on 23 June 2015 and 7 March 2017, respectively. The twin satellites are in the same orbit and 30 

180° apart from each other and they are now releasing data routinely. The Sentinel-2 Multispectral Imager 31 

(MSI) provides 13 spectral bands in the visible, near infrared (NIR) and short wave infrared (SWIR) 32 

wavelengths, with four bands at 10 m (centered at 490 nm, 560 nm, 665 nm and 842 nm), six bands at 20 m 33 

(centered at 705 nm, 740 nm, 783 nm 865 nm, 1610 nm, and 2190 nm) and three bands at 60 m spatial 34 

resolution (centered at 443 nm, 940 nm and 1375 nm) (Drusch et al., 2012; Du et al., 2016; Hagolle et al., 2015; 35 

Wang et al., 2016). The Sentinel-2 data can be used to support global land services including monitoring 36 

vegetation, soil and water cover, etc.. Such data are receiving increasing attention in remote sensing studies 37 

and applications (Fernández-Manso et al., 2016; Immitzer et al., 2016; Novelli et al., 2016; Storey et al., 2016; 38 

Van der Werff and Van der Meer, 2016). The Sentinel-2A or -2B satellite can revisit the same area every 10 39 

days (5 days with the twin satellites together). Due to cloud and shadow contamination, however, it generally 40 

requires more than 5 days (e.g., probably several months) to acquire a cloud-free Sentinel-2 image for specific 41 

areas. The temporally sparse Sentinel-2 observations, especially for areas that can be easily covered by clouds, 42 

are not sufficient for monitoring rapid changes such as growing cycle of plants. 43 

Sentinel-3, another very new programme of the ESA, is a satellite imaging mission designed for global 44 

monitoring for environment and security (GMES) to ensure frequent and near real-time measurements to 45 

ocean, land, and atmospheric services (Berger and Aschbacher, 2012; Donlon et al., 2012; Verhoef and Bach, 46 

2012). The Sentinel-3A satellite was launched on 16 February 2016. The instrument of the satellite includes a 47 

Sea and Land Surface Temperature Radiometer (SLSTR), a Synthetic Aperture Radar Altimeter (SRAL) and 48 

an Ocean and Land Colour Imager (OLCI). The OLCI sensor delivers 21-band wide-swath optical images at a 49 

temporal resolution of less than 2.8 days (will be increased to less than 1.4 days after the launch of the twin 50 
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satellite Sentinel-3B). Compared to Sentinel-2 MSI, Sentinel-3 OLCI can provide data more frequently for 51 

timely monitoring. However, the Sentinel-3 OLC images are at a much coarser spatial resolution of 300 m. 52 

Such a spatial resolution is too coarse to provide sufficient detail for local areas of interest. 53 

There is a great need for data that have simultaneously the spatial resolution of Sentinel-2 (10 m) and 54 

temporal resolution of Sentinel-3 (i.e., nearly daily Sentinel-2 time-series) to provide more informative data 55 

and support a wider range of monitoring applications, particularly for areas where the amount of available 56 

effective Sentinel-2 observations is limited due to cloud contamination. The daily Sentinel-2 images have 57 

great value for dynamic monitoring of rapid changes on the Earth’s surface at a required fine spatial resolution, 58 

such as timely crop monitoring (Gao et al., 2017). Both Sentinel-2 MSI and Sentinel-3 OLCI data are freely 59 

available to users and have global coverage. Furthermore, the two sensors have the similar wavelengths for 60 

four bands (i.e., blue, green, red and NIR bands), as shown in Table 1. In our previous study Wang et al. (2016), 61 

an accurate method based on area-to-point regression kriging (ATPRK) (Wang et al, 2015) was used to fuse 62 

the 20 m Sentinel-2 8a band with 10 m bands 2, 3, 4 and 8 to produce 10 m Sentinel-2 8a. This provides an 63 

excellent opportunity for spatio-temporal fusion of 10 m Sentinel-2 MSI and 300 m Sentinel-3 OLCI data to 64 

create 10 m, daily Sentinel-2 images. With this process, the number of cloud-free Sentinel-2 images, as well as 65 

the temporal resolution, can be maximized. 66 

 67 

Table 1 The corresponding bands for Sentinel-2 MSI and Sentinel-3 OLCI images 68 

Sentinel-2 Sentinel-3 

Band number Wavelength (nm) Spatial resolution (m) Band number Wavelength (nm) Spatial resolution (m) 

2 (Blue) 458-523 10 Oa4 (Blue) 437-447 300 

3 (Green) 543-578 10 Oa6 (Green) 555-565 300 

4 (Red) 650-680 10 Oa8 (Red) 660-670 300 

8a (NIR) 855-875 20 Oa17 (NIR) 855-875 300 

 69 

Spatio-temporal fusion approaches have been developed for blending fine spatial resolution, but coarse 70 

temporal resolution Landsat and fine temporal resolution, but coarse spatial resolution Moderate Resolution 71 

Imaging Spectroradiometer (MODIS) or MEdium Resolution Imaging Spectrometer (MERIS) images to 72 

create fine spatio-temporal resolution images (Gao et al., 2015; Zhang et al., 2015; Chen et al., 2015). The 73 
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implementation requires at least one coarse-fine spatial resolution image pair (e.g., MODIS-Landsat image 74 

pair acquired on the same day) or one fine spatial resolution image (hereafter called fine image) that is 75 

temporally close to the prediction day. In recent years, several spatio-temporal fusion approaches have been 76 

developed. The spatial and temporal adaptive reflectance fusion model (STARFM) is one of the earliest and 77 

most widely used spatio-temporal fusion approaches (Gao et al., 2006). Appreciating its simple 78 

implementation, it has been used to support various applications, such as forest monitoring, crop monitoring 79 

(Gao et al., 2015; Gao et al., 2017), leaf area index (LAI) monitoring (Dong et al., 2016; Houborg et al., 2016), 80 

land surface temperature (LST) monitoring (Shen et al., 2016) and gross primary productivity (GPP) 81 

monitoring (Singh, 2011). STARFM is performed based on the availability of at least one image-pair. It 82 

assumes that the temporal changes of all classes within a coarse pixel are uniform, which is more suitable for 83 

homogeneous landscape dominated by pure coarse pixels. To enhance the performance of STARFM for 84 

heterogeneous landscapes dominated by mixed pixels, an enhanced STARFM (ESTARFM) method was 85 

developed (Zhu et al., 2010). Based on the availability of two coarse-fine image pairs, ESTARFM estimates 86 

the temporal change rate of each class separately and assumes the change rates to be stable during a period 87 

(Emelyanova et al., 2013). STARFM was also extended for timely monitoring of forest disturbance based on a 88 

version termed spatial temporal adaptive algorithm for mapping reflectance change (STAARCH) (Hilker et al., 89 

2009). Based on the mechanism of machine learning, some learning-based methods were proposed, including 90 

sparse representation (Huang and Song, 2012; Song and Huang, 2013), extreme learning machine (Liu et al., 91 

2016), artificial neural network and support vector regression (Moosavi et al., 2015), and deep learning (Das 92 

and Ghosh, 2016). This type of method learns the relationship between the available coarse-fine image pairs, 93 

which is used to guide the prediction of fine images from coarse images on other days. 94 

Alternatively, spatial unmixing is a type of spatio-temporal fusion approach that can be performed using one 95 

fine image. More precisely, it requires a fine spatial resolution thematic map that can be derived by 96 

interpretation of the available fine spatial resolution data (Amorós-López et al., 2011,2013; Gevaert et al., 97 

2015; Zurita-Milla et al., 2008) or from other sources including an aerial image (Mustafa et al., 2014), or 98 
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land-use database (Zurita-Milla et al., 2009). Different from spectral unmixing which estimates for which the 99 

class proportions within coarse pixels and where the class endmembers (spectra) are known, spatial unmixing 100 

estimates the class endmembers within coarse pixels and the class proportions are known (calculated by 101 

upscaling the fine spatial resolution thematic map) (Busetto et al., 2008; Maselli, 2001; Zhukov et al., 1999). 102 

Spatial unmixing assumes that no land-cover/land-use changes occur during the period of interest and the class 103 

proportions are constant for coarse images at different times. This approach was used to create 30 m 104 

Landsat-like time-series from 300 m MERIS images using a 30 m thematic map obtained by classification of 105 

an available Landsat image (Zurita-Milla et al., 2008) or a fine spatial resolution land-use database LGN5 106 

(Zurita-Milla et al., 2009). Wu et al. (2012) extended spatial unmixing to cases with one coarse-fine image pair 107 

available and proposed a surface reflectance calculation model (SRCM). SRCM performs unmixing separately 108 

for two coarse images and estimates the temporal changes of each endmember spectra and finally adds the 109 

changes to the known fine image. Similarly to the idea of SRCM, Gevaert et al. (2015) performed unmixing 110 

directly for the residual image (defined as the difference between two coarse images) to estimate the changes 111 

of endmember spectra. Huang and Zhang (2014) developed an unmixing-based spatio-temporal reflectance 112 

fusion model (U-STFM) using two coarse-fine image pairs. The spatial unmixing approach can also be 113 

combined with STARFM and some hybrid methods were developed (Xu et al., 2015; Xie et al., 2016; Zhu et 114 

al., 2016). 115 

For spatio-temporal fusion in practice, one challenging problem is that sometimes very few fine images 116 

(Sentinel-2 image in this paper) that are temporally close to the prediction time are available for use, due to 117 

cloud and shadow contamination. Another problem is that even where one fine image is available, strong 118 

temporal changes may have occurred from the time of the fine image to prediction. This means that the 119 

observations at two times may be very different and do not have a strong correlation. This is exacerbated for 120 

the fusion of 10 m Sentinel-2 MSI and 300 m Sentinel-3 OLCI images, which involves a large zoom factor of 121 

30 (double of that from 500 m MODIS to 30 m Landsat spatial resolution) and a number of mixed pixels. In 122 

this case, the available fine image on one day may be very different to the ideal prediction on another day. 123 
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Thus, how to make full use of the available fine image is a critical issue. The U-STFM (Huang and Zhang, 124 

2014) and flexible spatiotemporal data fusion (FSDAF) (Zhu et al., 2016) methods were developed to deal 125 

with strong temporal changes. However, U-STFM requires at least two coarse-fine image pairs. Although 126 

FSDAF requires only one image pair, its performance may sometimes be compromised by the unmixing 127 

process where a global, linear unmixing model is considered. 128 

In this paper, to cope with the abovementioned problems, we propose a new method for fusion of Sentinel-2 129 

MSI and Sentinel-3 OLCI images. The new method consists of three stages, including regression model fitting 130 

(RM fitting, hereafter called RM), spatial filtering (SF) and residual compensation (RC). RM aims to increase 131 

the correlation between the observations acquired at two times. The SF step removes the blocky artifacts in the 132 

RM prediction. The residuals from RM are finally compensated by the RC step to make full use of the coarse 133 

spectral information. For simplicity, we abbreviate the new method as the Fit-FC method. This method can be 134 

performed with the availability of only one coarse-fine spatial resolution image (i.e., Sentinel-3–Sentinel-2) 135 

pair, and it is a promising choice for cases where strong temporal changes occurred from the time of the 136 

available image pair to prediction. 137 

 138 

 139 

2. Methods 140 

 141 

For spatio-temporal fusion of Sentinel-2 MSI and Sentinel-3 OLCI images, only the blue, green, red and 142 

NIR bands for Sentinel-2 (bands 2, 3, 4 and 8a) and Sentinel-3 (Oa4, Oa6, Oa8 and Oa17) were considered, as 143 

shown in Table 1. The 20 m Sentinel-2 8a band needs to be downscaled to 10 m in advance. This is achieved 144 

by fusion of this band with four 10 m Sentinel-2 bands (bands 2, 3, 4 and 8) acquired at the same time. 145 

According to our previous work (Wang et al., 2016), the ATPRK method (Wang et al., 2015) can produce 146 

more accurate results than eight benchmark methods and, thus, ATPRK was employed. 147 
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For simplicity of the problem description, suppose there are two 300 m Sentinel-3 images at time t1 and t2, 148 

and the 10 m Sentinel-2 image at t1 is available. The ultimate task of spatio-temporal fusion is to predict the 10 149 

m Sentinel-2 image at t2 based on the three available images. Let 1( , )i bC lX  and 2( , )i bC lX  be the reflectance 150 

of the Sentinel-3 pixel centered at location iX  in band bl  (b=1, 2, 3, and 4 represents the blue, green, red and 151 

NIR bands, respectively) of the Sentinel-3 OLCI image at t1 and t2, and 1( , )j bF lx  be the reflectance of the 152 

Sentinel-2 pixel centered at location jx  in band bl  of the Sentinel-2 MSI image at t1. The objective is to 153 

predict target variables 2( , )j bF lx  for all Sentinel-2 pixels in all four bands. The Fit-FC method consisting of 154 

RM, SF and RC is detailed as follows. 155 

 156 

2.1. Regression model fitting (RM) 157 

 158 

In the first stage, RM is used to relate the observations acquired at two times and minimize their differences. 159 

Based on the local spatial variation of land cover, a local linear regression model is considered. Specifically, 160 

for the two Sentinel-3 images, a moving window is used to fit the regression model for each center Sentinel-3 161 

pixel in each band. 162 

2 1( , ) ( , ) ( , ) ( , ) ( , )b b b b bC l a l C l b l R l  X X X X X                                             (1) 163 

where ( , )ba lX  and ( , )bb lX  are two coefficients for the pixel centered at X in band bl , and ( , )bR lX  is the 300 164 

m coarse residual. Since 1( , )bC lX  and 2( , )bC lX  for all Sentinel-3 pixels in the local window are known, the 165 

two coefficients can be estimated using the least square method. 166 

The models constructed at 300 m coarse resolution are applied to 10 m fine spatial resolution Sentinel-2 167 

images. For any fine pixel in band bl , say a fine pixel centered at 0x , the RM prediction at t2, denoted as 168 

RM 0
ˆ ( , )bF lx , is calculated as 169 

RM 0 0 1 0 0
ˆ ( , ) ( , ) ( , ) ( , )b b b bF l a l F l b l x X x X                                                  (2) 170 
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where 0X  is the center of the coarse pixel in which the fine pixel centered at 0x  falls. The two regression 171 

coefficients ( , )ba lX  and ( , )bb lX  estimated from (1) vary spatially at 300 m (i.e., at a spatial resolution of 300 172 

m) and the 10 m RM prediction in (2) is a linear transformation of each block of 30 by 30 Sentinel-2 pixels at 173 

t1. The inconsistency between the spatial resolutions of the regression coefficients and the Sentinel-2 image at 174 

t1 means that the RM prediction is dominated by blocky artifacts with a spatial size of 30 by 30 pixels, which 175 

corresponds with a Sentinel-3 pixel. The blocky artifacts are more obvious when the spatial and temporal 176 

variation in the two 300 m Sentinel-3 images is large (i.e., spatially and temporally non-stationary), where the 177 

two regression coefficients can vary greatly at different locations. 178 

 179 

2.2. Spatial filtering (SF) 180 

 181 

To deal with the blocky artifacts problem in the RM prediction, SF is considered in the second step. A 182 

natural solution is to use the neighboring 10 m pixels in a local window for filtering and to remove the blocky 183 

artifacts. However, we cannot use all neighboring pixels in the local window for SF. This is because the 184 

neighboring pixels are mostly not for the same class as the center pixel and may have very different 185 

reflectances. Using all of them will decrease the difference in spectra between classes, thereby leading to 186 

over-smooth predictions. Actually, the blocky artifacts in the RM prediction are produced due to the 187 

inconsistency in reflectance for pixels that belong to the same class and should have similar spectra. Thus, for 188 

SF, it is a more reasonable choice to select out these neighboring pixels and use them to reduce the difference 189 

in spectra for the same class. Since there already exist blocky artifacts in the RM prediction, it is inappropriate 190 

to use the contaminated image to search for spectrally similar neighboring pixels. Alternatively, the four bands 191 

of the Sentinel-2 image at t1 are used, based on the assumption of stable land cover boundaries (or very few 192 

changes in boundaries) occurring from t1 to t2. This assumption allows changes to the class of an entire object, 193 

as long as the boundary of the object is retained (i.e., no abrupt changes). This is a strategy used in STARFM 194 
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(Gao et al., 2006). The spectral difference between a neighboring pixel at ix  and the center pixel at 0x  is 195 

calculated as 196 

 
4

2

1 1 0

1

( , ) ( , ) 4i b b

b

D F l F l


  x x .                                                     (3) 197 

In the local window with w by w fine pixels, the first n pixels with smallest D (including the center pixel itself) 198 

are identified as spectrally similar neighbors and are selected for SF. For each 10 m pixel at t2, the SF 199 

prediction is determined as the linear combination of the RM prediction of spectrally similar neighboring 200 

pixels 201 

SF 0 RM

1

ˆ ˆ( , ) ( , )
n

b i i b

i

F l W F l


x x                                                             (4) 202 

where iW  is a weight determined according to the spatial distance between the neighboring and center pixels. 203 

Based on spatial dependence, spatially closer pixels are more likely to have similar reflectance to the center 204 

pixel and, thus, receive larger weights 205 

1

(1 ) (1 )
n

i i i

i

W d d


                                                                    (5) 206 

2

01 ( 2)i id w  x x .                                                             (6) 207 

The distance id  needs to be constrained to an appropriate range to exert reasonable influence on the weight iW . 208 

Thus, 1 and w/2 are used in (6) and id  ranges from 1 to 1+ 2  correspondingly. With the filtering scheme in 209 

(4), the spectral difference for the same class in the RM prediction can be reduced, which can alleviate the 210 

blocky artifacts. 211 

 212 

2.3. Residual compensation (RC) 213 

 214 
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In the first RM step, there exist residuals in the regression models. Without incorporation of the residuals, 215 

the uncertainty is propagated to the SF process and leads to spectral distortion. To further enhance the SF 216 

prediction, we take full advantage of the spectral information in the 300 m Sentinel-3 image at t2 in the third 217 

step, RC. 218 

The 300 m coarse residual ( , )bR lX  needs to be downscaled to 10 m to match the target spatial resolution 219 

first. This can be achieved using the simple bicubic interpolation. The produced 10 m residual, denoted as 220 

( , )br lx , can be added straightforwardly to the 10 m SF predictions. This scheme, however, will produce 221 

over-smooth results due to the smoothing effect in bicubic interpolation. The SF process enables the pixels 222 

with similar spectra at t1 in the local window to have similar spectra in the intermediate SF prediction for t2. 223 

Based on the assumption of stable land cover boundaries from t1 to t2, in the final prediction for t2, these pixels 224 

are expected to have similar spectra. Thus, it is reasonable to assume that these pixels should have similar 225 

residuals. 226 

The 10 m residuals are used mainly to preserve the 300 m spectral information at t2, and they cannot provide 227 

much useful spatial detail at 10 m. To avoid the smoothing effect from bicubic interpolation in the final 228 

prediction, a possible solution is to average the 10 m residuals for the same class in the local window or within 229 

an object. For this process, a 10 m thematic map at t2 that contains class/object information is required, which 230 

can be approximately estimated as a segmentation prediction of the Sentinel-2 image at t1. Each class always 231 

covers a number of objects. For this solution, however, the number of classes is often related closely to the size 232 

of objects and needs to be set appropriately according to the study scene. On the one hand, the number of 233 

classes needs to be as large as possible (i.e., the size of objects needs to be as small as possible) to retain more 234 

spatial variation. On the other hand, the number of classes needs to be as small as possible (i.e., the size of 235 

objects needs to be as large as possible) to ensure the removal of the smoothing effect in the 10 m bicubic 236 

interpolation-derived residuals. Moreover, this solution is more suitable for areas where the intra-class 237 

variation of spectra is small. 238 
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Alternatively, a more generic solution is adopted in this paper, which allows a significant simplification of 239 

the RC process. Specifically, similarly to the SF process, the spectrally similar neighboring pixels are used to 240 

update the bicubic interpolation-derived residuals, ( , )br lx . For a fine pixel centered at 0x , the 10 m bicubic 241 

interpolation-derived residuals of spectrally similar neighboring pixels are weighted and combined linearly, 242 

thus, producing the new 10 m residual 243 

RC 0

1

ˆ ( , ) ( , )
n

b i i b

i

F l W r l


x x .                                                             (7) 244 

In (7), the weight iW  is calculated in the same way as that in (5) and (6). This process enables pixels with 245 

similar spectra at t1 in the local window to have similar residuals. 246 

Finally, the updated 10 m residual is added back to the SF prediction to preserve the spectral information, 247 

and the Fit-FC prediction is produced as follows 248 

2 0 SF 0 RC 0
ˆ ˆ ˆ( , ) ( , ) ( , )b b bF l F l F l x x x .                                                      (8) 249 

A flowchart describing the Fit-FC method is given in Fig. 1, where the processes of the three steps are 250 

marked in different colors. It is seen that the 10 m valuable information in the Sentinel-2 image at t1 is used 251 

throughout all three steps, but in different ways. In RM, according to the linear regression model built between 252 

the Sentinel-3 images at different times, the Sentinel-2 image at t1 is linearly transformed to produce the RM 253 

prediction for the Sentinel-2 image at t2. In SF and RC, by assuming stable land cover boundaries (i.e., 254 

non-shape changes), the Sentinel-2 image at t1 is used to search for spectrally similar pixels in every local 255 

window (or provide object information for RC, if required). 256 

 257 
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 258 

Fig. 1 Flowchart of the Fit-FC method. The lines in magenta, red and blue represent the processes of RM, SF and RC, respectively. 259 

 260 

 261 

3. Experiments 262 

 263 

3.1. Data and experimental setup 264 

 265 

For the Sentinel-2 images, the original Level-1C products were provided in top of atmosphere reflectance 266 

(TOA) units. The TOA was transformed to the bottom of atmosphere reflectance (BOA) using the Sen2Cor 267 

algorithm released by ESA (Muller-Wilm, 2016; Vuolo et al., 2016). The 20 m band 8a was fused with 10 m 268 

bands 2, 3, 4 and 8 to produce 10 m Sentinel-2 8a using the ATPRK method (Wang et al., 2016). For the 269 
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Sentinel-3 images, the atmospheric correction is currently under methodological development. To concentrate 270 

solely on the performance of the spatio-temporal fusion methods and avoid uncertainties introduced by 271 

radiometric correction and geometric registration, for the present experimental purpose we simulated 300 m 272 

Sentinel-3 images by degrading the four-band 10 m Sentinel-2 (in BOA) images with a zoom factor of 30. 273 

Such a setup is used widely in studies on spatio-temporal fusion (Gevaert et al., 2015; Zhang et al., 2015; Zhu 274 

et al., 2016). 275 

Two sets of images were used to validate the Fit-FC method. The images are located in Coleambally and 276 

Currawarna, Australia. Both have a spatial size of 15 km by 15 km, corresponding to 1500 by 1500 Sentinel-2 277 

pixels and 50 by 50 Sentinel-3 pixels. For both sites, the images were acquired on 25 December 2015 (t1) and 278 

21 August 2016 (t2). Fig. 1(a) and Fig. 1(b) show the Sentinel-2 images (in BOA) acquired on the two days for 279 

Coleambally, while Fig. 2(a) and Fig. 2(b) show the Sentinel-2 images (in BOA) for Currawarna. The 280 

corresponding Sentinel-3 images for the two sites are shown in Figs. 2(c) and 2(d) and Figs. 3(c) and 3(d). 281 

Many spatial details are lost in the 300 m Sentinel-3 images and the 10 m Sentinel-2 images can provide much 282 

more abundant spatial information at the local scale. As observed from the images at the two times, the study 283 

sites experienced strong temporal changes from 25 December 2015 to 21 August 2016. This necessitates the 284 

use of spatio-temporal fusion methods to create temporally more frequent Sentinel-2 images at a spatial 285 

resolution of 10 m. The task of spatio-temporal fusion for both sites in the experiments is to predict the 10 m 286 

Sentinel-2 image on 21 August 2016, using the 300 m Sentinel-3 images on 25 December 2015 to 21 August 287 

2016 and the 10 m Sentinel-2 images on 25 December 2015 as inputs. The available real Sentinel-2 image on 288 

21 August 2016 was used to evaluate the predictions objectively. 289 

Three spatio-temporal fusion methods, STARFM (Gao et al., 2006), spatial unmixing (Zurita-Milla et al., 290 

2008), and FSDAF (Zhu et al., 2016), can be implemented using the available input images (i.e., one 291 

coarse-fine image pair and one coarse image at the prediction time). Thus, they were considered as benchmark 292 

methods and compared with the Fit-FC method. Through trial-and-error tests, 30 spectrally similar pixels were 293 

found in the moving window with 30 by 30 fine pixels (at 10 m resolution) for STARFM and Fit-FC. The 294 
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number of classes was set to six for SU and FSDAF. For quantitative assessment, three indices were used: the 295 

root mean square error (RMSE), correlation coefficient (CC), and universal image quality index (UIQI) (Wang 296 

and Bovik, 2002). The ideal values of RMSE, CC and UIQI are 0, 1 and 1, respectively. The predictions are 297 

more accurate when the RMSE value is smaller and the CC and UIQI values are larger. 298 

 299 

(a)                                                     (b) 300 

  301 

(c)                                                     (d) 302 

  303 

Fig. 2 Images for Coleambally (15 km by 15 km). (a) and (b) are Sentinel-2 images (NIR, red, and green bands as RGB) acquired on 304 

25 December 2015 (t1) and 21 August 2016 (t2), respectively. (c) and (d) are the corresponding Sentinel-3 images. 305 

(a)                                                     (b) 306 

  307 

(c)                                                     (d) 308 
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  309 

Fig. 3 Images for Currawarna (15 km by 15 km). (a) and (b) are Sentinel-2 images (NIR, red, and green bands as RGB) acquired on 310 

25 December 2015 (t1) and 21 August 2016 (t2), respectively. (c) and (d) are the corresponding Sentinel-3 images. 311 

 312 

3.2. Implementation 313 

 314 

Fig. 4 shows the interim Sentinel-3 images produced in the RM process for both sites (i.e., a local, linear 315 

transformation of the Sentinel-3 image at t1, according to the regression model constructed in (1)). It is seen 316 

that the Sentinel-3 images at t1 and t2 are very different. By RM, however, the produced interim Sentinel-3 317 

images are visually highly similar to the image at t2. Table 2 is the quantitative evaluation of the original 318 

Sentinel-3 (or Sentinel-2) images at t1 and the interim Sentinel-3 (or Sentinel-2, i.e., the RM predictions) 319 

images, with the Sentinel-3 (or Sentinel-2) images at t2 as reference. The Sentinel-3 or Sentinel-2 images at t1 320 

and t2 have only a very small correlation with each other. The mean CCs or UIQIs between the Sentinel-3 321 

images for both sites are below 0.10. The linearly transformed Sentinel-3 images have a much larger 322 

correlation with the Sentinel-3 image at t2, and the mean CCs or UIQIs for two sites are around 0.90. For 323 

Sentinel-2 images, the mean CCs increase from below 0.15 to around 0.70 after RM, and the corresponding 324 

mean RMSEs decrease from around 0.12 to below 0.04. This means that the regression model built at fine 325 

spatial resolution (i.e., Equation (2)) based on the model at coarse spatial resolution (i.e., Equation (1)) is 326 

satisfactory and the RM process can much better relate the observation at t1 to that at t2. Starting with the 327 

interim Sentinel-3 images and the corresponding 10 m RM predictions (i.e., the interim coarse-fine image pair) 328 

in the RM process, it is expected to have more reliable predictions of Sentinel-2 images at t2. 329 
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(a)                                                     (b)                                                     (c) 330 

   331 

   332 

Fig. 4 The interim Sentinel-3 images produced from the RM process (NIR, red, and green bands as RGB). (a) and (b) are Sentinel-3 333 

images at t1 and t2. (c) is the interim Sentinel-3 image. Lines 1 and 2 are for Coleambally and Currawarna, respectively. 334 

 335 

Table 2 Relation between the original image at t1 or RM prediction with the image at t2 (t2 as reference), where the bold values mean 336 

the most accurate result in each term 337 

  Ideal 

Coleambally Currawarna 

Sentinel-3 Sentinel-2 Sentinel-3 Sentinel-2 

t1 RM t1 RM t1 RM t1 RM 

RMSE 

Blue 0 0.0581 0.0055 0.0639 0.0124 0.0692 0.0033 0.0736 0.0089 

Green 0 0.0683 0.0059 0.0750 0.0136 0.0843 0.0056 0.0898 0.0141 

Red 0 0.1259 0.0115 0.1352 0.0242 0.1594 0.0070 0.1656 0.0179 

NIR 0 0.1410 0.0511 0.1740 0.1057 0.1125 0.0368 0.1413 0.0952 

Mean 0 0.0983 0.0185 0.1120 0.0390 0.1063 0.0132 0.1176 0.0340 

CC 

Blue 1 -0.0031 0.8970 0.0380 0.6840 0.1278 0.9192 0.1477 0.6430 

Green 1 0.1747 0.8895 0.1644 0.6571 0.1786 0.9328 0.2208 0.7193 

Red 1 -0.0508 0.8959 -0.0060 0.6980 0.1264 0.9304 0.1377 0.6948 

NIR 1 0.0608 0.8976 0.0596 0.6905 -0.0684 0.9133 0.0453 0.6459 

Mean 1 0.0454 0.8950 0.0640 0.6824 0.0911 0.9239 0.1379 0.6758 

UIQI 

Blue 1 -0.0014 0.8847 0.0181 0.6597 0.0293 0.9102 0.0350 0.6213 

Green 1 0.0824 0.8754 0.0850 0.6206 0.0863 0.9247 0.1072 0.7058 

Red 1 -0.0205 0.8815 -0.0025 0.6727 0.0303 0.9232 0.0332 0.6803 

NIR 1 0.0554 0.8826 0.0540 0.6724 -0.0566 0.9038 0.0374 0.6336 

Mean 1 0.0290 0.8811 0.0387 0.6563 0.0223 0.9154 0.0532 0.6602 

 338 
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Figs. 5 and 6 show the 10 m predictions of the three different stages of Fit-FC for the two sites, where the 339 

results of two sub-areas are zoomed to facilitate visual comparison. Noticeably, the RM predictions contain a 340 

number of blocky artifacts. The further SF process can eliminate the blocky artifacts and produce visually 341 

continuous results. Without the consideration of the residuals in the RM process, however, the SF predictions 342 

suffer from spectral distortion when compared to the reference. With the residuals compensated for the SF 343 

predictions in the third RC step, more spectral information is preserved and the results are closer to the 344 

reference. The benefits of RC can be observed obviously by checking the restoration of the magenta pixels in 345 

Fig. 5(h) and the green pixels in Fig. 6(h). 346 

Table 3 gives the accuracy for the predictions at each step and the accuracy gains from RM to SF and SF to 347 

Fit-FC. For all four bands, the RMSEs decrease gradually and the CCs and UIQIs increase gradually from the 348 

first to the third steps, suggesting more accurate results are produced by considering all three steps. For 349 

Coleambally, from RM to SF, the mean RMSE decreases by 0.0018 and the mean CC and UIQI increase by 350 

0.0272 and 0.0162, respectively. From SF to Fit-FC, the mean CC and UIQI increase by 0.0769 and 0.0947, 351 

respectively. For Currawarna, the mean CC and UIQI increase by 0.0272 and 0.0183 from RM to SF and by 352 

0.0576 and 0.0686 from SF to Fit-FC. As for the RMSE, it decreases by 0.0045 from RM to Fit-FC. The results 353 

reveal that all three steps are indispensable in the Fit-FC method. 354 

(a)                                          (b)                                          (c)                                          (d) 355 

    356 

(e)                                    (f)                                     (g)                                    (h)                                    (i) 357 

     358 
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Fig. 5 Results of the three different stages of Fit-FC for Coleambally (NIR, red, and green bands as RGB) at t2 (21 August 2016). (a) 359 

RM. (b) SF. (c) Fit-FC. (d) Reference at t2 (21 August 2016). (e) The sub-area (marked in yellow in (d)) for the Sentinel-2 image at 360 

t1 (25 December 2015). (f)-(i) are the corresponding results at t2 (21 August 2016) for the sub-area in (a)-(d). 361 

(a)                                          (b)                                          (c)                                          (d) 362 

    363 

(e)                                    (f)                                     (g)                                    (h)                                    (i) 364 

     365 

Fig. 6 Results of the three different stages of Fit-FC for Currawarna (NIR, red, and green bands as RGB) at t2 (21 August 2016). (a) 366 

RM. (b) SF. (c) Fit-FC. (d) Reference at t2 (21 August 2016). (e) The sub-area (marked in yellow in (d)) for the Sentinel-2 image at 367 

t1 (25 December 2015). (f)-(i) are the corresponding results at t2 (21 August 2016) for the sub-area in (a)-(d). 368 

 369 

Table 3 Accuracy for three different stages of Fit-FC (the bold values mean the most accurate result in each term) 370 

  Ideal 

Coleambally Currawarna 

RM 
SF 

(gain over RM) 

Fit-FC 

(gain over SF) 
RM 

SF 

(gain over RM) 

Fit-FC 

(gain over SF) 

RMSE 

Blue 0 0.0124 0.0119 (0.0005) 0.0105 (0.0014) 0.0089 0.0085 (0.0004) 0.0079 (0.0006) 

Green 0 0.0136 0.0132 (0.0005) 0.0119 (0.0013) 0.0141 0.0134 (0.0007) 0.0122 (0.0012) 

Red 0 0.0242 0.0232 (0.0010) 0.0202 (0.0030) 0.0179 0.0171 (0.0008) 0.0156 (0.0015) 

NIR 0 0.1057 0.1005 (0.0052) 0.0857 (0.0148) 0.0952 0.0902 (0.0050) 0.0822 (0.0080) 

Mean 0 0.0390 0.0372 (0.0018) 0.0321 (0.0051) 0.0340 0.0323 (0.0017) 0.0295 (0.0028) 

CC 

Blue 1 0.6840 0.7137 (0.0297) 0.7852 (0.0715) 0.6430 0.6718 (0.0288) 0.7310 (0.0592) 

Green 1 0.6571 0.6800 (0.0229) 0.7533 (0.0733) 0.7193 0.7443 (0.0250) 0.7952 (0.0509) 

Red 1 0.6980 0.7243 (0.0263) 0.8007 (0.0764) 0.6948 0.7182 (0.0234) 0.7734 (0.0552) 

NIR 1 0.6905 0.7205 (0.0300) 0.8068 (0.0863) 0.6459 0.6776 (0.0317) 0.7427 (0.0651) 

Mean 1 0.6824 0.7096 (0.0272) 0.7865 (0.0769) 0.6758 0.7030 (0.0272) 0.7606 (0.0576) 

UIQI 

Blue 1 0.6597 0.6774 (0.0177) 0.7656 (0.0882) 0.6213 0.6379 (0.0166) 0.7101 (0.0722) 

Green 1 0.6206 0.6312 (0.0106) 0.7235 (0.0923) 0.7058 0.7229 (0.0171) 0.7848 (0.0619) 

Red 1 0.6727 0.6888 (0.0161) 0.7839 (0.0951) 0.6803 0.6966 (0.0163) 0.7619 (0.0653) 

NIR 1 0.6724 0.6927 (0.0203) 0.7959 (0.1032) 0.6336 0.6567 (0.0231) 0.7316 (0.0749) 

Mean 1 0.6563 0.6725 (0.0162) 0.7672 (0.0947) 0.6602 0.6785 (0.0183) 0.7471 (0.0686) 

 371 
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3.3. Comparison with other methods 372 

 373 

The results of the STARFM, SU and FSDAF methods for the two sites are shown in Fig. 7(a)-(c) and Fig. 374 

8(a)-(c). The results of two sub-areas are zoomed for convenience of visual comparison. Due to the strong 375 

temporal changes and existence of a large number of mixed pixels in the 300 m Sentinel-3 images (see Figs. 376 

2(c) and 2(d) and Figs. 3(c) and 3(d)), there is spectral distortion in the STARFM predictions where the color 377 

appears noticeably different from the reference. For example, for the rectangular object in the top right of the 378 

area in Fig. 7(f), they should be in cyan but are inaccurately predicted as mixed red and green. With respect to 379 

the SU predictions, they contain blocky artifacts as the unmixing process is implemented in units of 300 m 380 

coarse pixels. This method cannot reproduce spatial variation within each object, especially for large-sized 381 

objects. FSDAF can reproduce more spatial variation for objects than SU and the spectral information can be 382 

more accurately preserved. However, the spatial variation is over-estimated in some cases (see the prediction 383 

for the red and green objects in Fig. 7(h)) and the spectral distortion is still obvious for some pixels (see the 384 

prediction for the green object in Fig. 8(h)). Compared to the three benchmark methods, the Fit-FC method 385 

performs satisfactorily in preserving both spatial and spectral information and the predictions are closer to the 386 

reference. This can be demonstrated by the restoration of the cyan and red objects in Fig. 7(i) and green objects 387 

in Fig. 8(i). 388 

Quantitative assessment for the four methods is listed in Table 4. As the relation between the observations at 389 

two times is weak (see Table 2), for both sites, the STARFM and SU methods produce mean CCs of around 390 

0.55 and 0.45, respectively. FSDAF increases the accuracy obviously and the CCs of the predictions are close 391 

to 0.70. For Fit-FC, the mean RMSEs for Coleambally is 0.0321, with a decrease of 0.0116, 0.0254 and 0.0031 392 

when compared to STARFM, SU and FSDAF. For Currawarna, the mean RMSE of Fit-FC is 0.0112, 0.0218 393 

and 0.0015 smaller than that of STARFM, SU and FSDAF, respectively. The mean CC and UIQI of Fit-FC for 394 

Coleambally is 0.7865 and 0.7672, with gains of 0.0951 and 0.0822 over that of FSDAF. For Currawarna, the 395 

mean CC and UIQI of Fit-FC are 0.0866 and 0.0826 larger than that of FSDAF. 396 
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 397 

(a)                                    (b)                                     (c)                                    (d)                                    (e) 398 

     399 

(f)                                    (g)                                     (h)                                    (i)                                    (j) 400 

     401 

Fig. 7 Results of different spatio-temporal fusion methods for Coleambally (NIR, red, and green bands as RGB). (a) STARFM. (b) 402 

Spatial unmixing. (c) FSDAF. (d) The Fit-FC method. (e) Reference. (f)-(j) are the corresponding results for the sub-area (marked in 403 

yellow in (e)) in (a)-(e). 404 

 405 

(a)                                    (b)                                     (c)                                    (d)                                    (e) 406 

     407 

(f)                                    (g)                                     (h)                                    (i)                                    (j) 408 

     409 

Fig. 8 Results of different spatio-temporal fusion methods for Currawarna (NIR, red, and green bands as RGB). (a) STARFM. (b) 410 

Spatial unmixing. (c) FSDAF. (d) The Fit-FC method. (e) Reference. (f)-(j) are the corresponding results for the sub-area (marked in 411 

yellow in (e)) in (a)-(e). 412 

 413 
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Table 4 Accuracy for different spatio-temporal fusion methods (the bold values mean the most accurate result in each term) 414 

  Ideal 
Coleambally Currawarna 

STARFM SU FSDAF Fit-FC STARFM SU FSDAF Fit-FC 

RMSE 

Blue 0 0.0217 0.0196 0.0134 0.0105 0.0214 0.0149 0.0118 0.0079 

Green 0 0.0249 0.0212 0.0161 0.0119 0.0258 0.0229 0.0163 0.0122 

Red 0 0.0388 0.0393 0.0249 0.0202 0.0378 0.0344 0.0209 0.0156 

NIR 0 0.0893 0.1500 0.0864 0.0857 0.0779 0.1328 0.0747 0.0822 

Mean 0 0.0437 0.0575 0.0352 0.0321 0.0407 0.0513 0.0310 0.0295 

CC 

Blue 1 0.4532 0.4356 0.6635 0.7852 0.3834 0.3972 0.5617 0.7310 

Green 1 0.4418 0.4059 0.6035 0.7533 0.5566 0.4949 0.6914 0.7952 

Red 1 0.4925 0.4313 0.6964 0.8007 0.4429 0.3937 0.6543 0.7734 

NIR 1 0.7869 0.5171 0.8023 0.8068 0.7678 0.4775 0.7887 0.7427 

Mean 1 0.5436 0.4475 0.6914 0.7865 0.5377 0.4408 0.6740 0.7606 

UIQI 

Blue 1 0.4315 0.4309 0.6609 0.7656 0.3068 0.3823 0.5537 0.7101 

Green 1 0.4087 0.4023 0.6035 0.7235 0.5084 0.4842 0.6899 0.7848 

Red 1 0.4806 0.4261 0.6893 0.7839 0.3875 0.3676 0.6528 0.7619 

NIR 1 0.7660 0.5146 0.7865 0.7959 0.7373 0.4741 0.7617 0.7316 

Mean 1 0.5217 0.4435 0.6850 0.7672 0.4850 0.4270 0.6645 0.7471 

 415 

 416 

4. Discussion 417 

 418 

In the experiments, each of the used dataset covers a local area of 15 km by 15 km. However, the Fit-FC 419 

method can be applied readily to larger areas for larger scale monitoring, as local models are essentially 420 

considered in the new method (i.e., a local window is used in all three steps). As an example, the nearly daily 421 

Sentinel-2 images have great potential for monitoring phenology. For example, for smallholder croplands, the 422 

temporally frequent remote sensing data available to monitor crop growth dynamics and estimate phenology 423 

(such as Sentinel-3 or MODIS data) are too coarse to capture the heterogeneity and local variability of 424 

production (Duncan et al., 2015). Thus, there are large uncertainties in yield estimation and the identification 425 

of yield gaps based on phenological approaches. With a much finer spatial resolution of 10 m, the nearly daily 426 

Sentinel-2 images have great potential to enhance yield gap assessments, for example, in smallholder 427 

landscapes. 428 

Spatio-temporal fusion often requires fine images that are temporally close to the coarse images to be 429 

downscaled. Due to data quality issues (e.g., cloud contamination), sometimes very few effective Sentinel-2 430 

images are available for fusion. There may exist strong temporal changes from the time of the only effective 431 
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Sentinel-2 image to prediction, and the only available Sentinel-2 image may have only a small correlation with 432 

the ideal prediction of Sentinel-2 image at the prediction time. Fit-FC is proposed to deal with such strong 433 

temporal changes in this paper, which can be performed using only one coarse-fine image pair. Different from 434 

the classical STARFM method, Fit-FC uses a local regression model to create an interim coarse-fine image 435 

pair, which has much greater relation with the observations at the prediction time. This is not the case for 436 

STARFM, which starts directly from the time of available Sentinel-2 image and exacerbates this 437 

underperformance when the temporal changes are strong. In the two study areas, the relation between the 438 

Sentinel-2 images at two times is small (CCs are below 0.15). As a result, the STARFM predictions are not as 439 

accurate as those in other literature where the temporal changes are not strong and the relation between the t1 440 

and t2 images is not weak. 441 

In this paper, one fine image is considered for the Fit-FC method. However, multiple fine images can be 442 

readily used in Fit-FC, as long as they are available for the study area. Specifically, in the RM step, the 443 

multiple fine images can be incorporated by multiple regression. In SF and RC, the multiple fine images can be 444 

stacked together for searching spectrally similar pixel (or segmentation, if required in RC). Generally, 445 

uncertainties in spatio-temporal fusion tend to decrease when the number of available fine images increases, 446 

especially where there exist fine images both before and after the coarse image to be downscaled. On the one 447 

hand, the multiple fine images are more realistic for areas that are not easily contaminated by cloud. On the 448 

other hand, the multiple Sentinel-2 images can be created from other temporally close data, such as 30 m 449 

Landsat images. The Sentinel-2 data and Landsat data have similar wavelengths and the same geographic 450 

coordinate system. In our previous work (Wang et al., 2017), 30 m Landsat 8 OLI images were fused with the 451 

temporally close 10 m Sentinel-2 MSI images to create 10 m Landsat 8 OLI images. This seems a plausible 452 

solution to provide more temporally close Sentinel-2 images for Sentinel-3 images, but more importantly, 453 

provide another complementary solution to increase the temporal resolution of the Sentinel-2 images. 454 

Although Fit-FC is proposed initially for spatio-temporal fusion of Sentinel-2 and Sentinel-3 images in this 455 

paper, it is a generic method suitable for spatio-temporal fusion of other satellite sensor images, such as 456 
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MODIS/MERIS and Landsat images. For example, for spatio-temporal fusion of the MODIS and Landsat 457 

images for Coleambally, the CCs of the STARFM, SU and Fit-FC predictions are 0.4366, 0.4106 and 0.7332, 458 

respectively. For Currawarna, the corresponding CCs are 0.4986, 0.3771 and 0.7491, respectively. The 459 

advantages of the new method would be more obvious when the temporal changes in the study areas are strong. 460 

We also investigated the performance for downscaling the Sentinel-3 image on 14 March 2016, using the 461 

Sentinel-3–Sentinel-2 image pair on 25 December 2015. The CC between the Sentinel-2 images on 25 462 

December 2015 and 14 March 2016 is 0.2711, obviously larger than the CC between 25 December 2015 and 463 

21 August 2016 (see Section 3.2 and Table 2). As a result, the CCs of the STARFM, SU, FSDAF and Fit-FC 464 

predictions are 0.8256, 0.6578, 0.8366 and 0.8811, respectively. The accuracy gains of Fit-FC are not as 465 

obvious as those for the predictions on 21 August 2016. 466 

Apart from reflectance data, Fit-FC is applicable for spatio-temporal fusion issues of other variables, such 467 

as Normalized Difference Vegetation Index (NDVI) (Gao et al., 2015; Rao et al., 2015), Normalized 468 

Difference Water Index (NDWI) (Jarihani et al., 2014), LST (Weng et al., 2014; Shen et al., 2016), 469 

evapotranspiration (Bhattarai et al., 2014; Ke et al., 2017), LAI (Dong et al., 2016; Houborg et al., 2016), and 470 

GPP (Singh, 2011). For example, when performing on the NDVI images for the Coleambally dataset, the CC 471 

and UIQI of the Fit-FC-based NDVI prediction are 0.8400 and 0.8307, which are 0.0664 and 0.0656 larger 472 

than that of the STARFM method. This provides a set of promising avenues for future research. 473 

A limitation of Fit-FC is the restoration of abrupt changes (such as the magenta objects in Fig. 5(i)). 474 

Actually, abrupt changes have been a long-standing problem in spatio-temporal fusion. The information on 475 

abrupt changes is not represented in the available fine image. The problem is greatest where there is a change 476 

of land cover boundaries. For example, in the available Sentinel-2 image, a region may be dominated by a 477 

large pure patch (e.g., bare soil), but may be broken down into several smaller patches of very different classes 478 

(e.g., vegetation, water, and impervious surface) at the prediction time. In this case, the available Sentinel-2 479 

image cannot provide much helpful information on the new boundaries. In Fit-FC, it is assumed that there are 480 

very few abrupt changes (i.e., stable land cover or object boundaries), an assumption used in existing 481 



 

 

24 

spatio-temporal fusion methods, including the classical STARFM and SU methods. As mentioned by Wu et al. 482 

(2016), the performance of spatio-temporal fusion can be greatly influenced by the changes of land cover 483 

boundaries. A straightforward solution to the issue of abrupt changes is to seek as much auxiliary data as 484 

possible to provide related information for the new boundaries at the prediction time. For fusion of Sentinel-2 485 

and Sentinel-3 images, such data can be intermediate spatial resolution data such as 30 m Landsat images that 486 

are temporally close to the prediction time. 487 

It is also worthwhile to develop more alternative schemes for the RM, SF and RC steps in the framework of 488 

Fit-FC. The Fit-FC method is substantially different from the regression-based spatio-temporal fusion method 489 

developed in Hazaymeh and Hassan (2015), which classifies the entire ratio image between two coarse images 490 

into three clusters (i.e., negligible, negative and positive changes) and build a regression model for each cluster. 491 

Fit-FC, however, performs RM for each local window (note that the global regression model cannot change 492 

the correlation between coarse images), and need not identify the change type. The residuals in the regression 493 

models, however, are ignored in Hazaymeh and Hassan (2015). There are also relevant studies for considering 494 

residuals, such as those from the unmixing process (Zhu et al., 2016). It would also be interesting to consider 495 

sparse representation for RC (Huang and Song, 2012; Song and Huang, 2013). All these topics are worthy of 496 

investigation for the framework of Fit-FC in future research. 497 

In the experiments, we tested the performance of spatio-temporal fusion by creating a Sentinel-2 image for 498 

a single day. This paper can be treated as a crucial step towards creating a Sentinel-2 time-series. In future 499 

research, the Fit-FC method will be employed to create a daily Sentinel-2 time-series to support practical 500 

applications. In applications where Sentinel-2 time-series data are required (e.g., for long-time monitoring of 501 

dynamic environmental, agricultural or ecological phenomena), an issue worthy of consideration would be the 502 

selection of the fine Sentinel-2 images. A natural solution is to consider the Sentinel-2 image that is temporally 503 

close to the Sentinel-3 image to be downscaled or if applicable, Sentinel-2 images that are available both 504 

before and after the Sentinel-3 image. It would also be worthy to consider alternative schemes based on a 505 

cascade approach (Demir et al., 2013). For example, in a forecasting sense, the already-created Sentinel-2 506 
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images (from earlier Sentinel-3 images in the time-series) along with the available Sentinel-2 images can be 507 

accumulated to provide the fine image set for downscaling future Sentinel-3 images. This would also work in 508 

the same way for hind-casting where accumulated Sentinel-2 images can be used to downscale older 509 

Sentinel-3 images. The approach would be particularly suitable for land cover experiencing unidirectional (in 510 

time) changes, such as the expansion of urban areas in urbanization and reduction of forest coverage in 511 

deforestation. However, it should be stressed that there are uncertainties in the created Sentinel-2 images, 512 

which will be propagated and enlarged along the accumulation directions (e.g., past to future in forecasting). It 513 

is not clear how much the accumulated uncertainties will affect the final predictions. Moreover, in creating a 514 

Sentinel-2 time-series (especially for a very long time), some challenges will be encountered in handling “big 515 

data”, such as computational costs and memory issues. All these issues motivate future research. 516 

 517 

 518 

5. Conclusion 519 

 520 

The newly launched Sentinel-2 and Sentinel-3 satellites provide excellent new opportunities for global 521 

monitoring. This paper presents a new method, called Fit-FC, for spatio-temporal fusion of Sentinel-2 and 522 

Sentinel-3 images to create nearly daily Sentinel-2 images. It includes regression model fitting (RM fitting), 523 

spatial filtering (SF) and residual compensation (RC), and all three steps are indispensable. The RM fitting 524 

step is used to relate the observations acquired at two times and minimize their differences. SF aims to remove 525 

the blocky artifacts in the RM fitting prediction, while RC compensates the residuals from RM fitting to 526 

preserve the spectral information. The Fit-FC method can be performed with a minimum number of input 527 

images. It was tested using two datasets and compared to the existing STARFM, SU and FSDAF methods. The 528 

results show that Fit-FC can produce more accurate results. Fit-FC is particularly relevant for cases involving 529 

strong temporal changes, where the correlation between the coarse images is small. 530 

 531 
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