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 Random Forest classification of crop type using multi-temporal 

TerraSAR-X dual-polarimetric data 

The classification maps are required for management and for the estimation of 

agricultural disaster compensation; however, those techniques have yet to be 

established. Some supervised learning models may allow accurate classification. 

In this study, the Random Forest (RF) classifier and the classification and 

regression tree (CART) were applied to evaluate the potential of multi-temporal 

TerraSAR-X dual-polarimetric data, on the StripMap mode, for classification of 

crop type. Furthermore, comparisons of the two algorithms and polarizations 

were carried out. In the study area, beans, beet, grasslands, maize, potato and 

winter wheat were cultivated, and these crop types were classified using the data 

set acquired in 2009. The classification results of RF were superior to those of 

CART and the overall accuracies were 0.91 to 0.93. 

1. Introduction 

Land-cover classification is one of the most common applications of remote sensing. 

Crop type classification maps are useful for estimating the amount of crops harvested or 

the agricultural disaster compensation, in addition to the management of the agricultural 

field. However, those techniques have yet to be established. Optical remote sensing is 

still one of the most attractive options for obtaining biomass information, as new 

sensors are available with fine spatial and spectral resolutions (Sarker and Nichol 2011). 

In addition, some optical satellites such as RapidEye and Landsat have been used for 

crop type classification (Hartfield et al. 2013; Krahwinkler and Rossmann 2013). 

However, cloud cover strongly limits the number of available optical images. Radar 

provides a useful tool for monitoring agricultural fields, since it is unaffected by cloud 

cover or low solar zenith angles (Bindlish and Barros 2001). Furthermore, significant 

information about soil and vegetation parameters has also been obtained through 

microwave remote sensing, and these techniques are increasingly being used to manage 

land and water resources for agricultural applications (Fontanelli et al. 2013). Because, 



unlike passive systems, synthetic aperture radar (SAR) systems are not dependent on 

atmospheric influences or weather conditions, they are especially suitable for a multi-

temporal classification approach. The first large backscatter coefficient change occurs 

as a result of plowing and seeding. Then, smaller changes occur due mainly to 

variations of biomass and plant water content, and, for SAR data, to changes in plant 

structure. Furthermore, harvesting causes large backscatter coefficient changes.  

SAR signals acquired under different polarizations will obtain different backscatter 

responses, providing more information about vegetation (Brisco et al. 2013). TerraSAR-

X was launched on June 15, 2007, and X-band SAR data are widely available and 

operated with several polarizations. Furthermore, several studies have proven the high 

geometric accuracy of TerraSAR-X (Ager and Bresnahan 2009). Within this framework, 

the main objective of the present study is to evaluate the potential of Terra-SAR-X dual-

polarimetric data including Horizontal transmit - Horizontal receive polarization (HH) 

and Vertical transmit - Vertical receive polarization (VV) for crop type classification. 

The purpose of this study is to evaluate the classification results using TerraSAR-X data. 

2. Materials and methods 

The experimental area of this study is the farming area in western Tokachi plain, 

Hokkaido, Japan (142°55′12″ to 143°05′51″E, 42°52′48″ to 43°02′

42″N). The 4,955 fields (1,053 beans fields, 709 beet fields, 623 grasslands, 254 maize 

fields, 831 potato fields and 1,485 winter wheat fields) covered all the areas. The mean 

size of the fields is 2.16 ha (the maximum area is 18.0 ha and the smallest area is 0.01 

ha). 

Sixteen TerraSAR-X images were acquired in StripMap mode (incidence angle of 

42.3°) between May 2 and November 5, 2009 with 2.75 m pixel resolution. Multi-



temporal sigma nought ( 0 ) images, which are the the radiometrically calibrated power 

images referenced to the ground, have been revealed to be effective for crop type 

classification (Bargiel and Herrmann 2011). However, it is thought that the gamma 

nought ( 0 ) images, which are the radiometrically calibrated power images spaced 

equally, are better than 0  images for crop classification since they are less dependent 

on the incidence angle. Therefore, in this study, Level 1B Enhanced Ellipsoid Corrected 

products were converted from digital numbers to 0 . In order to reduce speckle and to 

avoid problems related to uncertainty in georeferencing, the pixel values of each fields 

were averaged and the 0  values of HH and VV were extracted from every acquisition 

(Bargiel and Herrmann 2011; Koppe et al. 2013). 

The reference data was provided by Tokachi Nosai (http://www.tokachi-nosai.or.jp/) 

as a polygon shape file in which the position of the fields and attribute data such as crop 

types were included. It was based on the report of the farmers and we considered it 

correct. 

The land cover classification accuracy of the Random Forest (RF) from optical 

imagery was superior to the result of the maximum likelihood classifier (Rodriguez-

Galiano et al. 2012). Furthermore, RF is requires two parameters only to be set whereas 

the Support Vector Machine (SVM) requires a number of user-defined parameters the 

classification results are equally well to SVM (Pal 2005). Then, this algorithm was 

adopted in this study. RF is an ensemble learning technique that builds multiple trees 

based on random bootstrapped samples of the training data (Breiman 2001). Each tree is 

built using a different subset from the original training data, containing about two thirds 

of the cases, and the nodes are split using the best split variable out of randomly 

selected variables (Liaw and Wiener 2002). Through this strategy, RF is robust to over-

fitting and can handle thousands of input variables (dependent or independent) without 



variable deletion. The output is determined by a majority vote of the trees. Two user-

defined parameters are the number of trees (k) and the number of variables used to split 

the nodes (m); when increasing the number of trees, the generalization error always 

converges, and over-training is not a problem. On the other hand, a reduction in the 

number m of predictive variables results in each individual tree of the model being 

weaker; therefore, picking a large number of trees is recommended, as is using the 

square root of the number of variables for the value of m (Breiman 2001). The samples 

which are not present in the training subset are included as part of another subset called 

out-of-bag (OOB). These OOB elements, which are not considered for the training of 

the tree, can be classified by the tree to evaluate performance. The proportion between 

the misclassifications and the total number of OOB elements contributes an unbiased 

estimation of the generalisation error (Rodriguez-Galiano et al. 2012). RF uses the Gini 

Index as a measure for the best split selection, which measures the impurity of a given 

element with respect to the rest of the classes (Breiman et al. 1984). The data with a 

higher Gini Index is more important for discrimination. Thus, by using a given 

combination of features, a decision tree is made to grow up to its maximum depth with 

no pruning.  

Hartfield et al. (2013) demonstrated that the classification and regression tree 

(CART) was the best algorithm among CART, the maximum likelihood classifier and 

Object-oriented classifiers for mapping crops in Arizona, using Landsat 5 Thematic 

Mapper (TM) imagery. Therefore, CART was also produced for comparison in this 

study.  

These classifications algorithms were applied using R (R Core Team 2013), 

'randomForest' package (Liaw and Wiener 2002) and 'rpart' package (Therneau et al.  

2013). We used a stratified random sampling approach to select the fields used for 



training (Foody, 2009) and 20% of the crop fields were selected at random as training 

samples (Hartfield et al. 2013). Table 1 represents the numbers of fields of each crop 

type. In addition, the classifications were performed using HH, VV and the combination 

(HH+VV) in order to compare and understand the utilization of these polarizations.  

The classification maps were evaluated in terms of their overall accuracy (OA), 

producer’s accuracy (PA), user’s accuracy (UA) and the kappa index of agreement (κ). 

Furthermore, the two simple measures of quantity disagreement (QD) and allocation 

disagreement (AD), which are much more useful to summarize a cross-tabulation 

matrix than the kappa index of agreement was used for evaluation (Pontius and 

Millones 2011). The Jeffries-Matusita distance (Richards 1999) and the Bhattacharyya 

distance (Fukunaga 1990) were also calculated to compare the statistical separability 

among crop types. The value of the Jeffries-Matusita distance measurement ranges from 

0 to 2.0 and indicates how well the selected two crop types are statistically separated; 

values close to 1.9 indicate that the two crop types have good separability. 

Bhattacharyya distance is a distance measure in multidimensional space that takes into 

consideration the means and covariances of the samples. Lee and Choi (2000) presented 

a way to estimate the classification accuracy from Bhattacharyya distance values. 

According to their method, values greater than 1.47 correspond to less than 5% 

classification error. Laurin et al. (2013) used the Jeffries-Matusita distance to evaluate 

the separability of vegetations using SAR and lidar data and Miettinen and Liew (2011) 

used Bhattacharyya distance to evaluate the Separability of insular Southeast Asian 

woody plantation species in the Advance Land Observing Satellite (ALOS) / Phased 

Array L-band Synthetic Aperture Radar (PALSAR) data. Then, they indicate that these 

two separability measurements are useful for SAR data. 

 



3. Results and Discussion 

For application of RF, the number of trees was tuned and Figure 1 represents the 

relationships between the number of trees and the error rate for OOB. Since the results 

indicate that the number of more than approximately 50 is suitable for the three data sets 

(HH, VV and HH+VV), 50 was chosen as the number of trees in this study. 

< Figure 1> 

Figure 2 shows the relative importance of the contribution to the RF classification 

model. According to the Gini index, the features with the greater contribution to the 

classification model are the data acquired during June to August (the highest values 

were observed on 7 July for HH and on 26 June for VV). In this period, all kinds of 

crops were cultivated and the influence of soil were ignorable for all fields while the 

SAR data had high sensitivity to soil moisture or roughness due to sparse vegetation 

covers before June (seedlings or  transplanting of beans, beet and maize) and after 

August (the harvest season of winter wheat).  

< Figure 2> 

< Table 2> 

< Table 3> 

The classifications accuracies are given in Table 2 and the results of the classification 

comparisons using Z-test (Congalton and Green 1999) are given in Table 3. RF is 

superior to CART and the best result was obtained using RF for HH+VV and the 

overall accuracy of the classification was 0.93 with a kappa of 0.91 (this case also offers 

the best results in terms of QD and AD). However, the difference of the classification 

results was not meaningful (p < 0.05) between HH+VV and HH. The worst result was 

obtained using CART for VV and the difference of the classification results was not 

meaningful between VV and HH. In particular, the PA and the UA for maize were 0 for 

VV. The Jeffries-Matusita distance and the Bhattacharyya distance were calculated to 



compare the statistical separability among beans and maize (Figure 3). Due to the low 

values for both polarization (the Jeffries-Matusita distance measurements were less than 

0.20 and the Bhattacharyya distance measurements were less than 0.11), it is difficult to 

distinguish between beans and maize using backscattering coefficient values such as 0 . 

The discrimination may be improved with the use of the polarimetric parameters such as 

averaged alpha angle and entropy. 

<Table 3> 

< Figure 3> 

4. Conclusions 

In order to generate classification maps, in this study sixteen StripMap images from 

TerraSAR-X were used. First, the performances of the two algorithms for crop type 

classifications were evaluated and the results of RF were superior to those of CART in 

terms of some indices of agreement. The overall accuracies were over 90 %. Next, the 

comparisons of polarizations were carried out and it was revealed that the 0  of HH 

polarization was more useful than that of VV and the combination of the two 

polarization was not effective for RF classification by Z-test.  

Although it is possible to discriminate crop types from agricultural fields using RF, 

the low producer’s accuracies were observed for maize because of low separability 

between them.  
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Table 1. Crop type and number of fields. 

 

Test data Training data

Beans 842 211

Beet 567 142

Grassland 499 124

Maize 204 50

Potato 664 167

Wheat 1188 297

No. of fields
Crop type

 



Table 2. Accuracy results for RF and CART. 

HH+VV HH VV HH+VV HH VV

PA

Beans 0.919 0.905 0.898 0.792 0.827 0.822

Beet 0.959 0.952 0.959 0.935 0.922 0.940

Grasslands 0.938 0.940 0.938 0.844 0.872 0.844

Maize 0.534 0.475 0.265 0.417 0.353 0.000

Potato 0.935 0.947 0.946 0.899 0.756 0.890

Wheat 0.982 0.981 0.974 0.943 0.945 0.943

UA

Beans 0.879 0.872 0.826 0.809 0.753 0.736

Beet 0.932 0.923 0.943 0.826 0.853 0.826

Grasslands 0.911 0.916 0.902 0.863 0.784 0.863

Maize 0.886 0.829 0.659 0.733 0.661 0.000

Potato 0.932 0.918 0.929 0.841 0.841 0.836

Wheat 0.976 0.979 0.968 0.946 0.963 0.946

OA 0.929 0.924 0.910 0.863 0.845 0.847

κ 0.911 0.905 0.887 0.828 0.806 0.807

QD 2.043 2.195 3.078 3.052 4.642 5.525

AD 5.045 5.399 5.928 10.671 10.822 9.788

RF CART
Statistic Class

 

Note: PA, producer’s accuracy; UA, user’s accuracy; OA, overall accuracy; κ, kappa 

index of agreement; QD, quantity disagreement; AD, allocation disagreement. 



Table 3. Z-test results. 

HH+VV HH VV HH+VV HH VV

HH+VV 0.87 3.22 9.92 12.17 12.09

HH 2.35 9.06 11.32 11.24

VV 6.74 9.00 8.92

HH+VV 2.26 2.18

HH 0.08

VV

CART

RF

CART

RF

 

 



 

 

Figure1. Relationships between number of trees and error rate for OOB samples for HH, VV 

and Dual (HH+VV) polarization data.  



 

Figure 2. Importance of data acquisition date based on Gini measures. 



 

 

Figure 3. Jefferi-Matusita distance and Bhattacharyya distance between beans and maize for 

TerraSAR-X data. 


