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ensemble learning 
 
Rei Sonobe,a,* Yuki Yamaya,b Hiroshi Tani,c Xiufeng Wang, c Nobuyuki Kobayashi, d Kan-
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cHokkaido University, Research Faculty of Agriculture, Sapporo, Japan, 060-5859 
dSmart Link Hokkaido, Iwamizawa, Japan, 068-0034 
ePASCO Corporation, Tokyo, Japan, 153-0043 
 

Abstract. The identification and mapping of crops are important for estimating potential harvest as well as for 
agricultural field management. Optical remote sensing is one of the most attractive options because it offers 
vegetation indices and some data have been distributed free of charge. Especially, Sentinel-2A, which is equipped 
with a multispectral sensor (MSI) with blue, green, red and near-infrared-1 bands at 10 m; red edge 1 to 3, near-
infrared-2 and shortwave infrared 1 and 2 at 20 m; and 3 atmospheric bands (Band 1, Band 9 and Band 10) at 60 m, 
offers some vegetation indices calculated to assess vegetation status. However, sufficient consideration has not been 
given to the potential of vegetation indices calculated from MSI data. Thus, 82 published indices were calculated 
and their importance were evaluated for classifying crop types. In this study, the two most common classification 
algorithms, random forests (RF) and support vector machine (SVM), were applied to conduct cropland classification 
from MSI data. Additionally, super learning was applied for more improvement, achieving overall accuracies of 
90.2–92.2%. Of the two algorithms applied (RF and SVM), the accuracy of SVM was superior and 89.3-92.0% of 
overall accuracies were confirmed. Furthermore, stacking contributed to higher overall accuracies (90.2-92.2%) and 
significant differences were confirmed with the results of SVM and RF. Our results showed that vegetation indices 
had the greatest contributions in identifying specific crop types. 
 
Keywords: crop, random forests, Sentinel-2, stacking, support vector machine, vegetation index. 
 
*First Author, E-mail: reysnb@gmail.com  

 

1 Introduction 

From a land-planning perspective, cropland diversity is vital and crop cover maps provide 

information for estimating potential harvest and agricultural field management. To document 

field properties such as cultivated crops and locations, some local governments in Japan have 

been using manual methods 1. However, more efficient techniques are required to reduce the high 

expense of these methods. Thus, satellite data-based cropland mapping has gained attention. 

Some spectral indices, which are combinations of spectral measurements at different 

wavelengths, have been used to evaluate phenology or quantify biophysical parameters 2-5. As a 
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result, they have also made crop maps more accurate in previous studies 6 and the abilities of 

optical remote sensing data have been improved for monitoring agricultural fields. The 

opportunities to obtain optical remote sensing data have improved due to the Sentinel-2A 

satellite launch on June 23, 2015. Now, it is collecting multispectral data including 13 bands 

covering the visible, SWIR wavelength regions. Sentinel-2B, which possesses the same 

specifications, was launched on March 7, 2017 and creates greater opportunities for monitoring 

agricultural fields. Furthermore, various spectral indices can be extracted including indices based 

on shortwave infrared bands (SWIR), which are influenced by plant constituents such as 

pigments, leaf water contents and biochemicals7, 8. Furthermore, vegetation indices derived from 

reflectance data acquired from optical sensors have been widely used to assess variations in the 

physiological states and biophysical properties of vegetation 9-11. Specifically, the Normalized 

Difference Vegetation Index (NDVI)12, Soil-Adjusted Vegetation Index (SAVI)13 and Enhanced 

Vegetation Index (EVI)14 have been used for monitoring vegetation systems or ecological 

responses to environmental change15. MSI data have been used for identifying crop types16-18, 

plastic-covered greenhouses19, water bodies20 and some previous studies showed the potential of 

VIs calculated from MSI data. However, it is possible to calculate a vast number of VIs from 

MSI data and most of them have been ignored in the previous studies. In this study 82 published 

indices and original reflectance data sources were evaluated to classify six crop types including 

beans, beetroot, grass, maize, potato and winter wheat, which are dominant crops on the western 

Tokachi plain, Hokkaido, Japan. 

In addition to qualities of remote sensing data, classification algorithms are important to 

improve classification accuracies of crop maps. Recently, random forests (RF) is a widely used 

machine learning algorithm consisting of an ensemble of decision trees and it has been an 
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extremely successful machine learning algorithm for classification and regression method21.It  

has been applied for generating land cover maps22, 23 and reached around 65% (tree species 

identification)17, 76% (crop types identification)17 and 90% (greenhouse detection)19 using MSI 

data in the previous studies. .  

 Some studies showed that support vector machine (SVM) performed better than RF for this 

purpose and it has been widely applied for crop for crop classification22, 24-26. Its robustness to 

outliers has been demonstrated and SVM is an excellent classifier when the number of input 

features is large27. 

The super learner (SL) methodology25, also called stacking, is an ensemble learning method 

in which the user-supplied library of algorithms is combined through a convex weighted 

combination, with the optimal weights to make the cross-validated empirical risk smaller. 

Therefore, SL could be expected to classify crop types more accurately than the single use of RF 

or SVM, both considered in this study. Next, an ensemble approach based on SL was applied for 

improving classification accuracies.   

Within this framework, the main objectives of the present study were to evaluate the 

potential of Sentinel-2 data for crop type classification and the potential of ensemble learning 

based on RF and SVM. 

2. Materials and Methods 

2.1. Study area 

The study area was located in the western part of Tokachi plain, Hokkaido, Japan (Fig.1, 

142°42′51″ to 143°08′47″ E, 42°43′20″ to 43°07′24″ N). Main cultivated crops types are beans, 
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beetroots, grasses, maize, potatoes and winter wheat. The average monthly temperatures were 

8.3–21.8°C and monthly precipitation was 12.0–94.5 mm from May to October. 

Field location and attribute data, such as crop types, were based on manual surveys and 

provided by Tokachi Nosai (Obihiro, Hokkaido) as a polygon shape file. A total of 12639 fields 

(2265 beans fields, 1548 beetroot fields, 2110 grasslands (timothy and orchard grass), 1000 

maize fields, 2452 potato fields and 3264 winter wheat fields) were observed. The fields ranged 

from 0.05 ha to 18.21 ha with an averaged value of 2.54 ha. Grasslands were located on the 

outskirts of the built-up area.  

 

<Fig. 1 Study area and the distribution of croplands (background map shows Sentinel-2A data 

obtained on August 11, 2016, R: Band 4, G: Band 3, B: Band 2).> 

 

2.2. Remote sensing data 

The data acquired from Sentinel-2 Multispectral Imager (MSI) contained blue, green, red and 

near-infrared-1 bands at 10 m; red edge 1 to 3, near-infrared-2 and SWIR 1 and 2 at 20 m; and 3 

atmospheric bands (Band 1, Band 9 and Band 10) at 60 m. In this study, the three atmospheric 

bands were removed because they were dedicated to atmospheric corrections and cloud 

screening28.  

Although Sentinel-2A imagery was gathered seven times from May to September 2016 for 

the whole site, all images were covered with clouds except for one acquired on 11 August. The 

Level 1C data acquired on August 11, 2016 were downloaded from EarthExplorer 

(https://earthexplorer.usgs.gov/). All bands were converted to 10 m resolution with a cubic 

convolution resampling method and average reflectance values of each band were calculated for 
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each field using the field polygons to compensate for spatial variability and to avoid problems 

related to uncertainty in georeferencing. 

Some vegetation indices such as NDVI have been used for improving classification 

accuracies in previous studies 16, 22, 29, 30. Eighty-two published vegetation indices for evaluating 

various vegetation properties were calculated in this study (Table 1). 

 

Table 1 Vegetation indices calculated from Sentinel-2 MSI data. 

Abbreviation Index Formula 

AFRI1.6 31 Aerosol free vegetation 
index 1.6 

𝐵𝑎𝑛𝑑8𝑎 − 0.66 ∗ 𝐵𝑎𝑛𝑑11
𝐵𝑎𝑛𝑑8𝑎 + 0.66 ∗ 𝐵𝑎𝑛𝑑11

 

AFRI2.131 Aerosol free vegetation 
index 2.1 

𝐵𝑎𝑛𝑑8𝑎 − 0.5 ∗ 𝐵𝑎𝑛𝑑12
𝐵𝑎𝑛𝑑8𝑎 + 0.5 ∗ 𝐵𝑎𝑛𝑑12

 

ARI32 Anthocyanin 
reflectance index 

1
𝐵𝑎𝑛𝑑3

−
1

𝐵𝑎𝑛𝑑5
 

ARVI33 
Atmospherically 
resistant vegetation 
index 

(𝐵𝑎𝑛𝑑8 − (𝐵𝑎𝑛𝑑4 − 𝛾(𝐵𝑎𝑛𝑑2 − 𝐵𝑎𝑛𝑑4))
(𝐵𝑎𝑛𝑑8 + (𝐵𝑎𝑛𝑑4 − 𝛾(𝐵𝑎𝑛𝑑2 − 𝐵𝑎𝑛𝑑4))

 
The γ is a weighting function that depends on aerosol type. In this study, a value of 1 for γ. 

ARVI233 
Atmospherically 
resistant vegetation 
index 2 

−0.18 + 1.17 ∗ �
𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4
𝐵𝑎𝑛𝑑8 + 𝐵𝑎𝑛𝑑4

� 

ATSAVI34 
Adjusted transformed 
soil-adjusted vegetation 
index 

a ∗ (Band8 − a ∗ Band4 − b)
Band8 + Band4 − ab + X(1 + 𝑎2)

 

a = 1.22, b = 0.03, X = 0.08 

AVI35 Ashburn vegetation 
index 2*Band8a − Band4 

BNDVI36 
Blue-normalized 
difference vegetation 
index 

(𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑2) (𝐵𝑎𝑛𝑑8 + 𝐵𝑎𝑛𝑑2)⁄  

BRI37 Browning reflectance 
index 

1 𝐵𝑎𝑛𝑑3⁄ − 1 𝐵𝑎𝑛𝑑5⁄
𝐵𝑎𝑛𝑑6

 

BWDRVI38 Blue-wide dynamic 
range vegetation index 

0.1 ∗ 𝐵𝑎𝑛𝑑7 − 𝐵𝑎𝑛𝑑2
0.1 ∗ 𝐵𝑎𝑛𝑑7 + 𝐵𝑎𝑛𝑑2

 

CARI39 

Chlorophyll absorption 
ratio index 

𝐵𝑎𝑛𝑑5 ∗ �(𝑎 ∗ 𝐵𝑎𝑛𝑑4 + 𝐵𝑎𝑛𝑑4 + 𝑏)2

𝐵𝑎𝑛𝑑4
∗ (𝑎2 + 1)0.5 

𝑎 = (𝐵𝑎𝑛𝑑5 − 𝐵𝑎𝑛𝑑3) 150⁄  
𝑏 = 𝐵𝑎𝑛𝑑3 ∗ 550 ∗ 𝑎 

CCCI40 
Canopy chlorophyll 
content index �𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑5

𝐵𝑎𝑛𝑑8 + 𝐵𝑎𝑛𝑑5�

�𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4
𝐵𝑎𝑛𝑑8 + 𝐵𝑎𝑛𝑑4�

 

CRI55041 Carotenoid reflectance 
index 550 

1
𝐵𝑎𝑛𝑑2

−
1

𝐵𝑎𝑛𝑑3
 

CRI70041 Carotenoid reflectance 
index 700 

1
𝐵𝑎𝑛𝑑2

−
1

𝐵𝑎𝑛𝑑5
 

CVI42 
Chlorophyll vegetation 
index 

𝐵𝑎𝑛𝑑8 ∗ 𝐵𝑎𝑛𝑑4
(𝐵𝑎𝑛𝑑3)2
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Datt143 Vegetation index 
proposed by Datt 1 

𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑5
𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4

 

Datt244 Vegetation index 
proposed by Datt 2 

𝐵𝑎𝑛𝑑4
𝐵𝑎𝑛𝑑3 ∗ 𝐵𝑎𝑛𝑑5

 

Datt344 Vegetation index 
proposed by Datt 3 

𝐵𝑎𝑛𝑑8𝑎
𝐵𝑎𝑛𝑑3 ∗ 𝐵𝑎𝑛𝑑5

 

DVI 45 Differenced vegetation 
index 2.4 ∗ 𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4 

EPIcar44 
Eucalyptus pigment 
index for carotenoid 0.0049 ∗ �

𝐵𝑎𝑛𝑑4
𝐵𝑎𝑛𝑑3 ∗ 𝐵𝑎𝑛𝑑5

�
0.7488

 

EPIChla44 
Eucalyptus pigment 
index for chlorophyll a 0.0161 ∗ �

𝐵𝑎𝑛𝑑4
𝐵𝑎𝑛𝑑3 ∗ 𝐵𝑎𝑛𝑑5

�
0.7784

 

EPIChlab44 
Eucalyptus pigment 
index for chlorophyll 
a+b 

0.0236 ∗ �
𝐵𝑎𝑛𝑑4

𝐵𝑎𝑛𝑑3 ∗ 𝐵𝑎𝑛𝑑5
�
0.7954

 

EPIChlb44 
Eucalyptus pigment 
index for chlorophyll b 0.0337 ∗ �

𝐵𝑎𝑛𝑑4
𝐵𝑎𝑛𝑑3

�
1.8695

 

EVI14 Enhanced vegetation 
index 2.5 ∗

𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4
𝐵𝑎𝑛𝑑8 + 6 ∗ 𝐵𝑎𝑛𝑑4 − 7.5 ∗ 𝐵𝑎𝑛𝑑2 + 1

 

EVI246 Enhanced vegetation 
index 2 2.4 ∗

𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4
𝐵𝑎𝑛𝑑8 + 𝐵𝑎𝑛𝑑4 + 1

 

EVI2.247 Enhanced vegetation 
index 2.2 2.5 ∗

𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4
𝐵𝑎𝑛𝑑8 + 2.4 ∗ 𝐵𝑎𝑛𝑑4 + 1

 

GARI48 
Green atmospherically 
resistant vegetation 
index 

𝐵𝑎𝑛𝑑8 − (𝐵𝑎𝑛𝑑3 − (𝐵𝑎𝑛𝑑2 − 𝐵𝑎𝑛𝑑4))
𝐵𝑎𝑛𝑑8 − (𝐵𝑎𝑛𝑑3 + (𝐵𝑎𝑛𝑑2 − 𝐵𝑎𝑛𝑑4))

 

GBNDVI49 
Green-Blue normalized 
difference vegetation 
index 

𝐵𝑎𝑛𝑑8 − (𝐵𝑎𝑛𝑑3 + 𝐵𝑎𝑛𝑑2)
𝐵𝑎𝑛𝑑8 + (𝐵𝑎𝑛𝑑3 + 𝐵𝑎𝑛𝑑2)

 

GDVI50 Green difference 
vegetation index 𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑3 

GEMI51 
Global environment 
monitoring index 

𝑛 ∗ (1 − 0.25 ∗ 𝑛) − 𝐵𝑎𝑛𝑑4 − 0.125
1 − 𝐵𝑎𝑛𝑑4

 

𝑛 =
2 ∗ 𝐵𝑎𝑛𝑑52 − 𝐵𝑎𝑛𝑑42 + 1.5 ∗ 𝐵𝑎𝑛𝑑5 + 0.5 ∗ 𝐵𝑎𝑛𝑑4

𝐵𝑎𝑛𝑑5 + 𝐵𝑎𝑛𝑑4 + 0.5  

GLI52 Green leaf index 2 ∗ 𝐵𝑎𝑛𝑑3 − 𝐵𝑎𝑛𝑑5 − 𝐵𝑎𝑛𝑑2
2 ∗ 𝐵𝑎𝑛𝑑3 + 𝐵𝑎𝑛𝑑5 + 𝐵𝑎𝑛𝑑2

 

GNDVI48 
Green normalized 
difference vegetation 
index 

𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑3
𝐵𝑎𝑛𝑑8 + 𝐵𝑎𝑛𝑑3

 

GNDVI248 
Green normalized 
difference vegetation 
index 2 

𝐵𝑎𝑛𝑑7 − 𝐵𝑎𝑛𝑑3
𝐵𝑎𝑛𝑑7 + 𝐵𝑎𝑛𝑑3

 

GOSAVI53 
Green optimized soil 
adjusted vegetation 
index 

𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑3
𝐵𝑎𝑛𝑑8 + 𝐵𝑎𝑛𝑑3 + 0.16

 

GRNDVI54 
Green-Red normalized 
difference vegetation 
index 

𝐵𝑎𝑛𝑑8 − (𝐵𝑎𝑛𝑑3 + 𝐵𝑎𝑛𝑑5)
𝐵𝑎𝑛𝑑8 + (𝐵𝑎𝑛𝑑3 + 𝐵𝑎𝑛𝑑5)

 

GVMI55 
Global vegetation 
moisture index 

(𝐵𝑎𝑛𝑑8 + 0.1) − (𝐵𝑎𝑛𝑑12 + 0.02)
(𝐵𝑎𝑛𝑑8 + 0.1) + (𝐵𝑎𝑛𝑑12 + 0.02)

 

Hue56 Hue 
𝑎𝑡𝑎𝑛 �

2 ∗ 𝐵𝑎𝑛𝑑5 − 𝐵𝑎𝑛𝑑3 − 𝐵𝑎𝑛𝑑2
30.5 ∗ (𝐵𝑎𝑛𝑑3 − 𝐵𝑎𝑛𝑑2)� 

IPVI57 
Infrared percentage 
vegetation index 

𝐵𝑎𝑛𝑑8
𝐵𝑎𝑛𝑑8 + 𝐵𝑎𝑛𝑑5

2
�
𝐵𝑎𝑛𝑑5 − 𝐵𝑎𝑛𝑑3
𝐵𝑎𝑛𝑑5 + 𝐵𝑎𝑛𝑑5

+ 1� 

LCI43 Leaf chlorophyll index 𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑5
𝐵𝑎𝑛𝑑8 + 𝐵𝑎𝑛𝑑4
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Maccioni58 Vegetation index 
proposed by Maccioni 

𝐵𝑎𝑛𝑑7 − 𝐵𝑎𝑛𝑑5
𝐵𝑎𝑛𝑑7 − 𝐵𝑎𝑛𝑑4

 

MCARI59 
Modified chlorophyll 
absorption in 
reflectance index 

�(𝐵𝑎𝑛𝑑5 − 𝐵𝑎𝑛𝑑4) − 0.2 ∗ (𝐵𝑎𝑛𝑑5 − 𝐵𝑎𝑛𝑑3)� ∗
𝐵𝑎𝑛𝑑5
𝐵𝑎𝑛𝑑4 

MCARI/MTVI260 MCARI/MTVI2 𝑀𝐶𝐴𝑅𝐼 𝑀𝑇𝑉𝐼2⁄  

MCARI/OSAVI61 MCARI/OSAVI 𝑀𝐶𝐴𝑅𝐼 𝑂𝑆𝐴𝑉𝐼⁄  

MCARI161 
Modified chlorophyll 
absorption in 
reflectance index 1 

1.2 ∗ (2.5 ∗ (𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4) − 1.3 ∗ (𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑3)) 

MCARI261 
Modified chlorophyll 
absorption in 
reflectance index 2 

1.5 ∗
2.5 ∗ (𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4) − 1.3 ∗ (𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑3)

�(2 ∗ 𝐵𝑎𝑚𝑑8 + 1)2 − �6 ∗ 𝐵𝑎𝑛𝑑8 − 5 ∗ √𝐵𝑎𝑛𝑑4� − 0.5
 

MGVI62 Green vegetation index 
proposed by Misra −0.386 ∗ Band3− 0.530 ∗ Band4 + 0.535 ∗ Band6 + 0.532 ∗ Band8 

mNDVI63 
Modified normalized 
difference vegetation 
index 

𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4
𝐵𝑎𝑛𝑑8 + 𝐵𝑎𝑛𝑑4 − 2 ∗ 𝐵𝑎𝑛𝑑2

 

MNSI62 Non such index 
proposed by Misra 0.404 ∗ Band3 + 0.039 ∗ Band4− 0.505 ∗ Band6 + 0.762 ∗ Band8 

MSAVI64 Modified soil adjusted 
vegetation index 

2 ∗ 𝐵𝑎𝑛𝑑8 + 1 −�(2 ∗ 𝐵𝑎𝑛𝑑8 + 1)2 − 8 ∗ (𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑5)
2  

MSAVI264 Modified soil adjusted 
vegetation index 2 

2 ∗ 𝐵𝑎𝑛𝑑8 + 1 −�(2 ∗ 𝐵𝑎𝑛𝑑8 + 1)2 − 8 ∗ (𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4)
2  

MSBI62 Soil brightness index 
proposed by Misra 0.406 ∗ Band3 + 0.600 ∗ Band4 + 0.645 ∗ Band6 + 0.243 ∗ Band8 

MSR67065 

Modified simple ratio 
670/800 

𝐵𝑎𝑛𝑑8
𝐵𝑎𝑛𝑑4 − 1

�𝐵𝑎𝑛𝑑8
𝐵𝑎𝑛𝑑4 + 1

 

MSRNir/Red66 

Modified simple ratio 
Nir/Red 

𝐵𝑎𝑛𝑑8
𝐵𝑎𝑛𝑑5 − 1

�𝐵𝑎𝑛𝑑8
𝐵𝑎𝑛𝑑5 + 1

 

MTVI261 
Modified triangular 
vegetation index 2 1.5 ∗

1.2 ∗ (𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑3) − 2.5 ∗ (𝐵𝑎𝑛𝑑4 − 𝐵𝑎𝑛𝑑3)

�(2 ∗ 𝐵𝑎𝑚𝑑8 + 1)2 − �6 ∗ 𝐵𝑎𝑛𝑑8 − 5 ∗ √𝐵𝑎𝑛𝑑4� − 0.5
 

NBR67 
Normalized difference 
Nir/Swir normalized 
burn ratio 

𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑12
𝐵𝑎𝑛𝑑8 + 𝐵𝑎𝑛𝑑12

 

ND774/67768 Normalized difference 
774/677 

𝐵𝑎𝑛𝑑7 − 𝐵𝑎𝑛𝑑4
𝐵𝑎𝑛𝑑7 + 𝐵𝑎𝑛𝑑4

 

NDII69 Normalized difference 
infrared index 

𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑11
𝐵𝑎𝑛𝑑8 + 𝐵𝑎𝑛𝑑11

 

NDRE70 Nnormalized difference 
Red-edge 

𝐵𝑎𝑛𝑑7 − 𝐵𝑎𝑛𝑑5
𝐵𝑎𝑛𝑑7 + 𝐵𝑎𝑛𝑑5

 

NDSI71 Normalized difference 
salinity index 

𝐵𝑎𝑛𝑑11 − 𝐵𝑎𝑛𝑑12
𝐵𝑎𝑛𝑑11 + 𝐵𝑎𝑛𝑑12

 

NDVI12 Normalized difference 
vegetation index 

𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4
𝐵𝑎𝑛𝑑8 + 𝐵𝑎𝑛𝑑4

 

NDVI250 Normalized difference 
vegetation index 2 

𝐵𝑎𝑛𝑑12 − 𝐵𝑎𝑛𝑑8
𝐵𝑎𝑛𝑑12 + 𝐵𝑎𝑛𝑑8

 

NGRDI68 Normalized green red 
difference index 

𝐵𝑎𝑛𝑑3 − 𝐵𝑎𝑛𝑑5
𝐵𝑎𝑛𝑑3 + 𝐵𝑎𝑛𝑑5

 

OSAVI53, 72 Optimized soil adjusted 
vegetation index 1.16 ∗

𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4
𝐵𝑎𝑛𝑑8 + 𝐵𝑎𝑛𝑑4 + 0.16
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PNDVI54 
Pan normalized 
difference vegetation 
index 

𝐵𝑎𝑛𝑑8 − (𝐵𝑎𝑛𝑑3 + 𝐵𝑎𝑛𝑑5 + 𝐵𝑎𝑛𝑑2)
𝐵𝑎𝑛𝑑8 + (𝐵𝑎𝑛𝑑3 + 𝐵𝑎𝑛𝑑5 + 𝐵𝑎𝑛𝑑2)

 

PVR73 Photosynthetic vigour 
ratio 

𝐵𝑎𝑛𝑑3 − 𝐵𝑎𝑛𝑑4
𝐵𝑎𝑛𝑑3 + 𝐵𝑎𝑛𝑑4

 

RBNDVI54 
Red-Blue normalized 
difference vegetation 
index 

𝐵𝑎𝑛𝑑8 − (𝐵𝑎𝑛𝑑4 + 𝐵𝑎𝑛𝑑2)
𝐵𝑎𝑛𝑑8 + (𝐵𝑎𝑛𝑑4 + 𝐵𝑎𝑛𝑑2)

 

RDVI74 
Renormalized 
difference vegetation 
index 

𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4
√𝐵𝑎𝑛𝑑8 + 𝐵𝑎𝑛𝑑4

 

REIP75 
Red-edge inflection 
point 700 + 40 ∗ �

�𝐵𝑎𝑛𝑑4 + 𝐵𝑎𝑛𝑑7
2 � − 𝐵𝑎𝑛𝑑5

𝐵𝑎𝑛𝑑6 − 𝐵𝑎𝑛𝑑5
� 

Rre76 Reflectance at the 
inflexion point 

𝐵𝑎𝑛𝑑4 + 𝐵𝑎𝑛𝑑7
2

 

SAVI13 Soil adjusted vegetation 
index 1.5 ∗

𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4
𝐵𝑎𝑛𝑑8 + 𝐵𝑎𝑛𝑑4 + 0.5

 

SBL45 Soil background line Band8 − 2.4 ∗ Band4 

SIPI77 Structure intensive 
pigment index 

𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑2
𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4

 

SIWSI78 Shortwave infrared 
water stress index 

𝐵𝑎𝑛𝑑8𝑎 − 𝐵𝑎𝑛𝑑11
𝐵𝑎𝑛𝑑8𝑎 + 𝐵𝑎𝑛𝑑11

 

SLAVI79 Specific leaf area 
vegetation index 

𝐵𝑎𝑛𝑑8
𝐵𝑎𝑛𝑑4 + 𝐵𝑎𝑛𝑑12

 

TCARI59 
Transformed 
chlorophyll absorption 
Ratio 

3 ∗ �(𝐵𝑎𝑛𝑑5 − 𝐵𝑎𝑛𝑑4) − 0.2 ∗ (𝐵𝑎𝑛𝑑5 − 𝐵𝑎𝑛𝑑3) �
𝐵𝑎𝑛𝑑5
𝐵𝑎𝑛𝑑4�� 

TCARI/OSAVI72 TCARI/OSAVI 𝑇𝐶𝐴𝑅𝐼 𝑂𝑆𝐴𝑉𝐼⁄  

TCI42, 80 
Triangular chlorophyll 
index 1.2 ∗ (Band5− Band3) − 1.5 ∗ (Band4 − Band3) ∗ �

𝐵𝑎𝑛𝑑5
𝐵𝑎𝑛𝑑4 

TVI81 Transformed vegetation 
index √𝑁𝐷𝑉𝐼 + 0.5 

VARI70082 Visible atmospherically 
resistant index 700 

𝐵𝑎𝑛𝑑5 − 1.7 ∗ 𝐵𝑎𝑛𝑑4 + 0.7 ∗ 𝐵𝑎𝑛𝑑2
𝐵𝑎𝑛𝑑5 + 2.3 ∗ 𝐵𝑎𝑛𝑑4 − 1.3 ∗ 𝐵𝑎𝑛𝑑2

 

VARIgreen82 Visible atmospherically 
resistant index green 

𝐵𝑎𝑛𝑑3 − 𝐵𝑎𝑛𝑑4
𝐵𝑎𝑛𝑑3 + 𝐵𝑎𝑛𝑑4 − 𝐵𝑎𝑛𝑑2

 

VI70083 Vegetation index 700 𝐵𝑎𝑛𝑑5 − 𝐵𝑎𝑛𝑑4
𝐵𝑎𝑛𝑑5 + 𝐵𝑎𝑛𝑑4

 

WDRVI84 Wide dynamic range 
vegetation index 

0.1 ∗ 𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4
0.1 ∗ 𝐵𝑎𝑛𝑑8 + 𝐵𝑎𝑛𝑑4

 

 

2.3. Classification algorithm 

All samples were divided into the following three groups using a stratified random sampling 

approach: training data (50%) for developing classification models, validation data (25%) for 

hyperparameter tuning and test data (25%) for evaluation of classification accuracies 85 and table 

2 shows the numbers of fields of each crop type.  
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Table 2 Crop type and number of fields. 

Crop type Training data Validation data Test data 
Beans 1132 566 567 

Beetroot 774 387 387 
Grassland 1055 527 528 

Maize 500 250 250 
Potato 1226 613 613 
Wheat 1632 816 816 

 

SVM partitions data using maximum separation margins86 and the ‘kernel trick’ has 

frequently been applied instead of attempting to fit a non-linear model in previous studies29. In 

this study, the Gaussian Radial Basis Function (RBF) kernel, which has mostly been used for 

classification purposes29, was used as a kernel and two parameters were tuned to control the 

flexibility of the classifier, the regularization parameter C and the kernel bandwidth γ. If the C 

value is too large, there is a high penalty for no separable points and we may store many support 

vectors and overfit. If it is too small, there may be under-fitting. It controls the trade-off between 

errors of the SVM on training data and margin maximization (C = ∞ leads to hard margin SVM). 

The γ value defines how far the influence of a single training example reaches, with low values 

meaning ‘far’ and high values meaning ‘close.’  

RF is an ensemble learning technique composed of multiple decision trees based on random 

bootstrapped samples of the training data87. The output is determined by a majority vote of the 

results of decision trees. There are two user-defined hyperparameters including the number of 

trees (ntree) and the number of variables used to split the nodes (mtry). If ntree is made larger, 

the generalization error always converges, and over-training will not be a problem. On the other 

hand, a reduction in mtry makes each individual decision tree weaker.  
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The best combinations of these hyperparameters were determined using the Gaussian process, 

Bayesian optimization88, which has been widely applied for hyperparameter tuning of machine 

learning algorithms1. 

Ensemble machine learning methods have been used to obtain better predictive performance 

than from single learning algorithms and the SL methodology has been proposed89. In this 

method, given algorithms are combined through a convex weighted combination to minimize 

cross-validated errors. First, classification models based on RF or SVM were trained as the base 

algorithms using the training data. Next, a ten-fold cross-validation was performed on each and 

the cross-validated predicted results were obtained. N is the number of rows in the training data, 

cross-validated predicted results were combined and an N by two matrix was obtained as the 

“level-one” data and meta-learning model was generated. To predict the test data, the predictions 

from the base learners were feed into the meta-learning model to generate the ensemble 

prediction.  

The data-based sensitivity analysis (DSA)90, which performs a pure black box use of the 

fitted models by querying the fitted models with sensitivity samples and recording their 

responses, was applied for assessing the sensitivity of the classification models. 

2.4. Accuracy assessment 

Classification accuracies were evaluated based on the simple measures of quantity disagreement 

(QD) and allocation disagreement (AD)91. They provide an effective summary of confusion 

matrices92. 

The proportion of fields that are classified as crop i and their actual classes are crop j (Pij) is 

expressed in the following equation (1): 

𝑃𝑖𝑗 = 𝑊𝑖
𝑛𝑖𝑗
𝑛𝑖+

                                  (1) 
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where Wi are the fields classified as crop i, nij is the number of fields classified as crop i and their 

actual classes are crop j. ni+ is the row totals of the confusion matrix. In this case, AD and QD 

are calculated using the following equations (2–5): 

𝐴𝐷𝑖 = 2 min(𝑝𝑖+,𝑝+𝑖) − 2𝑝𝑖𝑖     (2) 

AD = 1
2
∑ 𝐴𝐷𝑖
𝑁𝑐
𝑖=1                          (3) 

𝑄𝐷𝑖 = |𝑝𝑖+ − 𝑝+𝑖|                     (4) 

QD = 1
2
∑ 𝑄𝐷𝑖
𝑁𝑐
𝑖=1                        (5) 

where Nc is the number of classes (six in this study), pi+ and p+i are the row and column totals of 

the confusion matrix, ADi is the allocation disagreement of crop i and QDi is the quantity 

disagreement of crop i. The sum of QDi (QD) and ADi (AD) are calculated and the total 

disagreement can be evaluated by the sum of QD and AD91.  

In addition, three indicators including overall accuracy (OA, equations (6)), producer’s 

accuracy (PA, equations (7)) and user’s accuracy (UA, equations (8)) were calculated because 

they have widely been applied for assessing classification accuracies.  

OA = ∑ 𝑝𝑖𝑖𝑁
𝑖=1 / N                       (6) 

PA = 𝑝𝑖𝑖/𝑅𝑖                                (7) 

UA = 𝑝𝑖𝑖/𝐶𝑖                               (8) 

where N is the number of fields, Ri and Ci represent the total number of crop i in the correct data 

and the total number from the classification results, respectively. McNemar’s test93 has been 

used to judge whether the differences between two given classification results were significant94 

and it was also applied in this study.  
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3. Results and Discussion 

3.1. Classification accuracy 

Crop classification maps are shown in Fig. 2, the maximum, minimum and averaged accuracies 

of ten repetitions and confusion matrices when all the repetitions were merged are shown in 

Table 3 and 4. Averaged OAs were 89.0% for RF, 90.6% for SVM and 91.6% for the ensemble 

machine learning method and the mean PAs and mean UAs derived using the machine learning 

algorithms were greater than 0.8, excepting those of RF (mean UA for maize was 0.797). All 

machine learning algorithms performed well in classifying croplands. Especially, the good 

accuracies were confirmed for the PAs and UAs for wheat (more than 93.8%) and beet (more 

than 89.9%). However, the chi-squire values based on McNemar’s tests were 12.02 – 40.60, 

27.78 – 62.43 and 17.00 – 51.60 for R – SVM, RF – SL and SVM – SL, respectively. As the 

results, significant differences were confirmed among the results of three machine learning 

algorithms (p < 0.05).  

Classification results by SL had the best OA and AD+QD (8.5%) and SVM had a slightly better 

PA of wheat (97.1%). On the contrary, identifying maize fields was difficult due to the similarity 

in their reflectance. Grasses cultivation employs fewer controls and then a lot of weeds were 

mixed with timothy and orchard grass in grasslands. As a result, variation in reflectance features 

were larger than in other crop types, causing misclassifications of relatively larger fields.  

 

<Fig. 2. Crop classification map generated by (a) RF, (b) SVM and (c) SL.> 
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Table 3 Classification accuracies of each algorithm. 

  RF SVM SL 

  Minimum Maximum Mean±std Minimum Maximum Mean±std Minimum Maximum Mean±std 

PA          
Beans 80.6% 86.4% 83.4±1.6% 81.1% 90.5% 86.2±2.2% 84.7% 90.3% 87.6±1.4% 
Beet 89.9% 94.8% 93.0±1.3% 91.0% 96.4% 94.5±1.5% 93.8% 96.1% 95.1±0.6% 
Grassland 84.3% 88.3% 86.0±1.2% 86.7% 93.8% 89.4±2.5% 89.8% 94.3% 92.1±1.4% 
Maize 78.8% 84.8% 80.8±1.7% 78.8% 87.6% 83.0±3.1% 81.2% 87.6% 84.6±1.8% 
Potato 82.9% 89.7% 87.0±1.8% 83.5% 89.9% 87.6±1.9% 84.0% 89.7% 88.1±1.6% 
Wheat 96.4% 97.9% 97.0±0.5% 96.3% 97.5% 97.1±0.4% 95.7% 97.5% 97.0±0.7% 
UA          
Beans 84.9% 88.6% 86.8±1.1% 82.0% 91.4% 86.4±2.9% 83.4% 90.3% 88.6±2.0% 
Beet 94.5% 96.9% 95.6±0.8% 94.3% 97.3% 95.7±0.9% 95.1% 97.1% 96.0±0.6% 
Grassland 88.0% 93.3% 91.0±1.4% 89.9% 96.6% 94.0±2.3% 93.8% 97.7% 95.7±1.1% 
Maize 77.8% 82.0% 79.7±1.3% 78.4% 87.3% 81.9±2.2% 81.4% 85.2% 83.6±1.4% 
Potato 78.5% 83.1% 81.5±1.2% 82.1% 87.8% 85.2±1.9% 83.0% 86.8% 85.4±1.1% 
Wheat 93.8% 96.1% 95.0±0.7% 94.5% 97.2% 95.9±0.8% 95.1% 97.2% 96.2±0.6% 

          
OA 88.5% 89.4% 89.0±0.2% 89.3% 92.0% 90.6±0.9% 90.2% 92.2% 91.6±0.6% 
κ 85.9% 87.0% 86.5±0.3% 86.8% 90.2% 88.4±1.1% 88.0% 90.5% 89.6±0.8% 
AD 8.0% 9.9% 9.0±0.6% 6.5% 9.7% 7.9±1.0% 6.5% 8.8% 7.3±0.7% 
QD 1.3% 2.8% 2.0±0.5% 0.7% 2.5% 1.5±0.6% 0.6% 2.3% 1.2±0.5% 

 

Table 4 Confusion matrices for (a) RF, (b) SVM and (c) SL. 

(a) RF        
    Reference data 

    Beans Beetroot Grasslands Maize Potato Wheat 

C
la

ss
ifi

ed
 d

at
a 

Beans 4726 59 247 100 287 26 

Beet 48 3599 23 28 65 1 

Grasslands 172 65 4543 52 116 43 

Maize 139 21 128 2019 177 48 

Potato 503 119 230 235 5332 123 

Wheat 82 7 109 66 153 7919 

        
(b) SVM        

    Reference data 

    Beans Beetroot Grasslands Maize Potato Wheat 

C
la

ss
ifi

ed
 d

at
a Beans 4888 77 212 119 333 34 

Beet 61 3659 17 22 63 2 

Grasslands 110 34 4720 40 70 49 

Maize 112 14 130 2076 166 40 
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Potato 429 79 121 189 5368 115 

Wheat 70 7 80 54 130 7920 

        
(c) SL        

    Reference data 

    Beans Beetroot Grasslands Maize Potato Wheat 

C
la

ss
ifi

ed
 d

at
a 

Beans 4965 82 105 83 333 42 

Beet 61 3680 11 17 61 3 

Grasslands 59 17 4861 37 52 53 

Maize 85 8 121 2114 169 32 

Potato 426 77 113 200 5403 112 

Wheat 74 6 69 49 112 7918 

 

Figure 3 shows the relationship between field area and misclassified fields for each algorithm 

after ten repetitions (i.e. the total number is ten times of that of the test data). More than 75% of 

the misclassified fields were less than 200 a in area for all algorithms, and 95.1% (RF), 95.5% 

(SVM) and 96.1% (SL) of misclassified fields were below 450 a. Applying stacking made the 

model more robust for classifying smaller fields and the number of misclassified croplands 

decreased (813 fields for smaller than 50 a) compared with the results by RF (909 fields for 

smaller than 50 a) and SVM (855 fields for smaller than 50 a). It was especially useful for 

identifying beans fields. It was not effective for identifying small grasslands since grass 

cultivation employs fewer controls and many weeds were present in grasslands. However, 

stacking was useful for identifying grasslands more than 500 a, which had a certain homogeneity 

with Dactylis glomerata or Phleum pretense in the MSI image.  

<Fig.3 Relationship between field area and misclassified fields.> 

3.2. Sensitive factor analysis 

Reflectance values obtained from Sentinel-2A are shown in Fig. 4. Differences in reflectance 

were particularly clear between wheat and beans since the wheat harvest was finished on 11 
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August and the reflectance of wheat fields was similar to that of bare soil. Beetroot had the 

steepest gradient between Bands 5 and 6 and some differences in the reflectance values at Band 

11 were confirmed between maize and potato. Differences in the reflectance patterns between 

grass and beans were not clear. 

 <Fig. 4 Reflectance spectra of each crop.> 
 
 
To clarify which variables contributed to identifying each crop type, DSA was conducted for 

each algorithm and their importance values were calculated.  

For identifying beans fields, Datt3 (6.0%, 6.6% and 6.3% for RF, SVM and SL, respectively) 

and REIP (6.4%, 8.2% and 7.3% for RF, SVM and SL, respectively) played important roles in 

the three algorithms. Some variables (the reflectance values at Bands 2 and 3, AFRI2.1, CVI and 

NDSI) possessed importance values of more than 5.0% in the RF-based model, while no 

variables except for Datt3 and REIP had importance values of more than 5.0% for SVM and SL. 

Even though the importance values of GEMI, Maccioni and MNSI in SVM were less than 5.0%, 

they were more than 5 times those in RF. AFRI1.6 and SIWSI were useful for identifying 

beetroot fields and AFRI1.6 occupied 11.1%, 6.8% and 9.0% and SIWSI occupied 10.6%, 7.1% 

and 8.9% of the importance for RF, SVM and SL, respectively. GEMI and NDSI also had 

importance values of more than 10% for RF, but were less than 5% for the others. In contrast, 

REIP was useful in SVM and it occupied 9.1% of the importance in SVM. AFRI1.6, REIP and 

MNSI were effective for identifying grassland for all algorithms, while SIWSI played an 

important role (7.8%) for RF and the reflectance at Band 6 played an important role (8.2%) for 

SVM. For identifying maize fields, no variable had importance values more than 5.0% for any 

algorithm, but the importance value of REIP was 25.3% for SVM (2.9% for RF). CRI550, 

CRI700 and MSBI were 9.1%, 12.9% and 5.6% in RF, respectively (those in SVM were 2.4%, 
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2.2% and 3.6%, respectively). REIP played the greatest role for identifying potato fields in all 

algorithms (12.8%, 6.9% and 9.9% for RF, SVM and SL, respectively). The importance values 

of CCCI and CVI were also high in RF (9.9%) but those in SVM were less than 3.0%. In contrast, 

Maccioni had an importance of 6.9% in SVM but in RF was 1.4%. REIP also played a great role 

for identifying wheat fields in SVM but 1.2% of the importance value was confirmed in RF 

while AVI occupied 15.1% in RF (1.2% in SVM). However, the original reflectance values 

possessed importance values of less than 1.0%. 

In this season, the photosynthetic activities of each crop type were different; maize is a C4 

plant, beans and beetroot were in their growing season, grassland was after second harvest, 

potato growth was inhibited by chemicals for easy harvesting and wheat fields were cultivated. 

Besides indices related to chlorophyll content, the additional use of shortwave infrared data 

contributed to the estimation of photosynthetic pigments, water, nitrogen, cellulose, lignin, 

phenols, and leaf mass per area (e.g. NDSI). As a result, vegetation indices had greater influence 

on the classification results than the original reflectance. However, there were differences among 

algorithms in which vegetation indices were more important. The importance values in SL were 

near the averaged values of RF and SVM. So, the differences in importance between RF and 

SVM were useful when stacking was applied, and the modification contributed to identifying 

croplands with higher accuracies. 

4. Conclusions and future work 

Cropland classifications were conducted using a single image from Sentinel-2 MSI and the 

suitability and accuracy of vegetation indices from the original reflectance data from Sentinel-2 

MSI were assessed. 
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Of the two algorithms applied (RF and SVM), the accuracy of SVM was superior and 89.3–

92.0% of OAs were confirmed. Furthermore, stacking contributed to higher OAs (90.2–92.2%) 

and significant differences were confirmed with the results of SVM. Based on DSA, the 

vegetation indices calculated from the original reflectance from Sentinel-2 MSI data were useful 

to identify the specific crop types. Although the vegetation indices that played the largest roles 

were different between RF and SVM, stacking helped to modify and reduce the importance of 

specific variables, which might prevent overfitting. Stacking should be utilized to monitor 

agricultural fields for improving classification accuracies. 

The field is used as a basic unit in classification and some problems related to the borders of 

fields remain to be resolved. We are planning to evaluate the potential of geographic object-

based image analysis in conjunction with MSI data and address this question in future work. 
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Caption List 

Fig. 1 Study area and the distribution of croplands (background map shows Sentinel-2A data 

obtained on August 11, 2016, R: Band 4, G: Band 3, B: Band 2). 
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Fig. 2 Crop classification map generated by (a) RF, (b) SVM and (c) SL. 
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Fig. 3 Relationship between field area and misclassified fields. 
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Fig. 4 Mean reflectance spectra and standard deviations of each crop. 
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Table 1 Vegetation indices calculated from Sentinel-2 MSI data. 

Table 2 Crop type and number of fields. 

Table 3 Classification accuracies of each algorithm. 

Table 4 Confusion matrices for (a) RF, (b) SVM and (c) SL. 
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