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Abstract Distributed-order differential equations have recently been inves-
tigated for complex dynamical systems, which have been used to describe
some important physical phenomena. In this paper, a new time distributed-
order and two-sided space-fractional advection-dispersion equation is consid-
ered. Firstly, we transform the time distributed-order fractional equation into
a multi-term time-space fractional partial differential equation by applying
numerical integration. Then an implicit numerical method is constructed to
solve the multi-term fractional equation. The uniqueness, stability and con-
vergence of the implicit numerical method are proved. Some numerical results
are presented to demonstrate the effectiveness of the method. The method
and techniques can be extended to other time distributed-order and space-
fractional partial differential equations.
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1 Introduction

In recent years, anomalous diffusion is discussed at all scales, for example,
in pore scale simulations of fluid flow and solute movement [14,?] and in
field-scale simulations of dispersion in a heterogeneous aquifer [1]. However,
many physical processes involving decelerating subdiffusion and decelerating
superdiffusion lack power-law scaling over the whole time-domain. Such pro-
cesses may be described by derivatives of distributed-order, which first intro-
duced by Caputo (see [24] and the references therein). In some applications,
a more complicated process cannot be described by a single power law and a
mixture of power laws leads to a time distributed-order fractional derivative
(see [20] and the references therein). Furthermore, some materials have rheo-
logical properties that depend on temperature, electrostatic field strength, or
magnetic field strength. Lorenzo and Hartley [18] pointed out that if a sample
of this material was subject to a temperature distribution, a corresponding
order-distribution would exist throughout the material. Distributed-order d-
ifferential models have recently been reported as a more powerful tool to de-
scribe the complex dynamical systems than the classical and fractional-order
models.

Many details about a distributed-order dynamical system can be found
in [12] and the references therein. Two generic applications in engineering
practice are also discussed in their paper. One application is for distributed-
order filters in signal processing and the other is for optimal distributed-order
damping in control systems.

Recently, Morgado and her collaborators studied some numerical solutions
of the time distributed-order partial differential equations [3–5]. In [3], they
presented an implicit scheme for the distributed-order time-fractional reaction-
diffusion equations with a nonlinear source term and analyzed the stability and
convergence of the numerical scheme. However, to the best knowledge of the
authors, numerical studies for the distributed-order equations are relatively
limited, especially for the time distributed-order and space-fractional equations
[6,12,13,23].

Based on the above observations, in this paper, we focus on deriving a
numerical method for the new time distributed-order and two-sided space-
fractional advection-dispersion equation (TDO-TSSFADE). This model is ob-
tained by replacing the fractional derivative with the time distributed-order
derivative in a time-space fractional model which is used modeling the dis-
persion of aqueous tracers in heterogeneous soils, aquifers, and rivers [?] and
is believed to be describe the multiple anomalous dispersion adequately than
the original model. We first transform the distributed-order fractional equa-
tion into a multi-term fractional partial differential equation by adopting the
numerical integration method of mid-point quadrature [6]. Liu et al. [17] pro-
posed some numerical methods for solving the multi-term fractional partial
differential equations. Jiang et al. [11] discussed the fundamental solutions
for the multi-term modified power law wave equations. Ye et al. [26] derived
series expansion solutions for the multi-term time and space fractional par-
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tial differential equations in two and three dimensions. Jiang et al. [9] also
derived analytical solutions for the multi-term time-space Caputo-Riesz frac-
tional advection-diffusion equations on a finite domain. In this paper, by us-
ing L1 discretization to approximate the fractional-order derivative and using
the shifted Grünwald-Letnikov formulae to approximate the two-sided space-
fractional derivative in the multi-term fractional equation, we obtain an implic-
it difference method with convergence order O(τ1+

σ
2 +h+σ2). The uniqueness,

stability and convergence of the method are analyzed and numerical experi-
ments are provided.

By comparing and contrasting our work with the work in [3], we found
that the discrtization for the Caputo derivative used in [3] and used in this
paper is actually the same. This can be proved by some computations on these
two discretizations [7,8]. The difference between this paper and [3] is that
this we studied the two-sided space-fractional advection-dispersion equation
and Morgado and her coworkers studied the reaction-diffusion equations. The
remainder of the paper is arranged as follows. An implicit numerical method
is proposed for the TDO-TSSFADE in Section 2. The uniqueness, stability
and convergence of the implicit numerical method are discussed in Section 3.
Some numerical results are presented to demonstrate the effectiveness of the
method in Section 4. Finally, some conclusions are given.

2 Implicit numerical method

Consider the following TDO-TSSFADE:

DP (β)
t u(x, t) = −V

∂u(x, t)

∂x

+ D(
1

2
+

q

2
)
∂uα(x, t)

∂xα
+D(

1

2
− q

2
)
∂uα(x, t)

∂(−x)α
+ f(x, t), (1)

with boundary conditions

u(a, t) = 0, u(b, t) = 0, t ∈ [0, T ], (2)

and initial condition

u(x, 0) = ϕ0(x), x ∈ [a, b], (3)

where V > 0 is the drift of the process, D > 0 is the coefficient of dispersion,
1 < α < 2 is the order of fractional differentiation, −1 ≤ q ≤ 1 indicates
the relative weight of forward versus backward transition probability and the
function f(x, t) is a source/sink term. The time distributed-order operator is
defined as follows [24,12]

DP (β)
t u(x, t) =

∫ 1

0

P (β)C0 D
β
t u(x, t)dβ, (4)
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with C
0 D

β
t is the fractional derivative defined by the Caputo operator

C
0 D

β

t u(x, t) =
1

Γ (1− β)

∫ t

0

∂u(x, τ)

∂τ

dτ

(t− τ)β
, 0 < β < 1, (5)

and the non-negative weight function P (β) used in (4) satisfies the conditions

0 ≤ P (β), P (β) ̸≡ 0, β ∈ [0, 1], 0 <

∫ 1

0

P (β)dβ < ∞. (6)

The two-sided space-fractional derivative operators are defined by [16,22]

∂uα(x, t)

∂xα
=

1

Γ (n− α)

∂n

∂xn

∫ x

a

u(ξ, t)dξ

(x− ξ)α+1−n
, n− 1 < α ≤ n, (7)

∂uα(x, t)

∂(−x)α
=

(−1)n

Γ (n− α)

∂n

∂xn

∫ b

x

u(ξ, t)dξ

(ξ − x)α+1−n
, n− 1 < α ≤ n, (8)

which are called the left- and right-handed Riemann-Liouville derivatives of
order α respectively with n being a positive integer.

We first discretize the integral interval [0,1] by the grid 0 = ξ0 < ξ1 < · · · <
ξS = 1 and take ∆ξm = ξm − ξm−1 = 1

S = σ, βm = ξm+ξm−1

2 = 2m−1
2S , m =

1, 2, · · · , S, S ∈ N. Then using the mid-point quadrature rule, we obtain

DP (β)
t u(x, t) =

S∑
m=1

P (βm)C0 D
βm

t u(x, t)∆ξm +O(σ2) (9)

where σ is the step size of the discretization of the numerical integration.
Thus the distributed-order fractional equation (1) is now transformed into the
following multi-term fractional equation:

S∑
m=1

P (βm)

S
C
0 D

βm

t u(x, t) = −V
∂u(x, t)

∂x
+D(

1

2
+

q

2
)
∂uα(x, t)

∂xα

+D(
1

2
− q

2
)
∂uα(x, t)

∂(−x)α
+ f(x, t). (10)

Next, we discretize the domain [a, b] × [0, T ] using xi = a + ih, i =
0, 1, · · · ,M and tk = kτ, k = 0, 1, · · · , N, where h = (b− a)/M and τ = T/N
are the space and time steps respectively. We assume that u(x, t) ∈ C2([a, b]×
[0, T ]).

Lemma 1 [25] Suppose 0 < β < 1, y(t) ∈ C2[0, tn], it holds that∣∣∣∣ 1

Γ (1− β)

∫ tn

0

y′(s)ds

(tn − s)β

− τ−β

Γ (2− β)

[
b0y(tn)−

n−1∑
k=1

(bn−k−1 − bn−k)y(tk)− bn−1y(0)

]∣∣∣∣∣
≤ 1

Γ (2− β)

[
1− β

12
+

22−β

2− β
− (1 + 2−β)

]
max

0≤t≤tn
|y′′(t)|τ2−β ,

where bk = (k + 1)1−β − k1−β .
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Lemma 2 [21,19] For 1 < α < 2, suppose that u ∈ L1(R), u ∈ Cα+p(R),
the following two shifted Grünwald-Letnikov formulae hold:

∂α

∂xα
u(xi,tk+1

) =
1

hα

i+1∑
j=0

ωα
j u(xi+1−j , tk+1) +O(hp), (11)

∂α

∂(−x)α
u(xi,tk+1

) =
1

hα

M−i+1∑
j=0

ωα
j u(xi−1+j , tk+1) +O(hp). (12)

For different α, the above two formulae can lead to approximations of different
order p. In this paper, we take

ωα
j = (−1)j

α(α− 1) · · · (α− j + 1)

j!
, j = 0, 1, · · · , (13)

hence p = 1 in the two formulae (11)− (12).
Define the grid function Uk

i = u(xi, tk) as exact solution of the equations
(1)-(3), fk

i = f(xi, tk). By applying (5), Lemma 1, Lemma 2 and the backward
difference formula, we obtain the following discrete form of equation (10) at
the point (xi, tk+1):

S∑
m=1

P (βm)

µmS

Uk+1
i −

k∑
j=1

(bβm

k−j − bβm

k−j+1)U
j
i − bβm

k U0
i


= −V

h
(Uk+1

i − Uk+1
i−1 ) + (

1

2
+

q

2
)
D

hα

i+1∑
j=0

ωα
j U

k+1
i+1−j

+ (
1

2
− q

2
)
D

hα

M−i+1∑
j=0

ωα
j U

k+1
i−1+j + fk+1

i + rk+1
i , (14)

where bβm

k = (k+1)1−βm−k1−βm , µm = τβmΓ (2−βm), ωα
j = (−1)j

(
α
j

)
and

rk+1
i is the local truncation error. Noting that βm = (2m− 1)/2S, 1 ≤ m ≤ S
and 1/S = σ, we have

1 +
σ

2
= 2− Sσ +

1

2
σ ≤ 2− βm = 2−mσ +

1

2
σ ≤ 2− σ +

1

2
σ = 2− 1

2
σ.

Then, we derive the inequality (see [25,19] for further details)

|rk+1
i | = |O(τ2−βm + h+ σ2)| ≤ C(τ1+

σ
2 + h+ σ2). (15)

The coefficients ωα
j defined in equation (13) satisfy the properties given in

Lemma 3 (see [15] for further details).

Lemma 3 ([15]) The coefficients ωα
j , j = 0, 1, . . . , satisfy

(1) ωα
0 = 1, ωα

1 = −α < 0, and ωα
j > 0, (j ̸= 1);

(2)
∑∞

j=0 ω
α
j = 0, and for n = 1, 2, . . . ,

∑n
j=0 ω

α
j < 0.
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Let uk
i be the numerical solution to Uk

i . By omitting the local truncation
error term rk+1

i in (14) and considering the discretization of the initial and
boundary value conditions, we obtain the following implicit numerical scheme
for the TDO-TSSFADE (1)− (3) :

S∑
m=1

P (βm)

µmS

uk+1
i −

k∑
j=1

(bβm

k−j − bβm

k−j+1)u
j
i − bβm

k u0
i

 = −V

h
(uk+1

i − uk+1
i−1 )

+ (
1

2
+

q

2
)
D

hα

i+1∑
j=0

ωα
j u

k+1
i+1−j + (

1

2
− q

2
)
D

hα

M−i+1∑
j=0

ωα
j u

k+1
i−1+j + fk+1

i ,

i = 1, 2, · · · ,M − 1, k = 1, 2, · · · , N − 1, (16)

uk
0 = 0, uk

M = 0, k = 1, 2, · · · , N, (17)

u0
i = ϕ0(xi), i = 0, 1, · · · ,M. (18)

For the convenience of the following theoretical analysis, we rewrite the above
scheme as follows:

(1 +Gr1 +Gr2α)u
k+1
i −Gr1u

k+1
i−1 − (

1

2
+

q

2
)Gr2

i+1∑
j=0,j ̸=1

ωα
j u

k+1
i+1−j

− (
1

2
− q

2
)Gr2

M−i+1∑
j=0,j ̸=1

ωα
j u

k+1
i−1+j =

S∑
m=1

P (βm)

µmS
G

k∑
j=1

(bβm

k−j − bβm

k−j+1)u
j
i

+
S∑

m=1

P (βm)

µmS
Gbβm

k u0
i +Gfk+1

i , i = 1, · · · ,M − 1, k = 1, · · · , N − 1, (19)

uk
0 = 0, uk

M = 0, k = 1, 2, · · · , N, (20)

u0
i = ϕ0(xi), i = 0, 1, · · · ,M, (21)

where G = 1/
∑S

m=1
P (βm)
µmS , r1 = V/h, r2 = D/hα and Lemma 3 (1) is used.

3 Stability and convergence

In this section, we analyze the implicit numerical method (19)− (21) obtained
in Section 2.

Lemma 4 For the coefficients G, r1, r2, ωα
j defined in (19), we have

Gr1 +Gr2α− 1 + q

2
Gr2

i+1∑
j=0,j ̸=1

ωα
j − 1− q

2
Gr2

M−i+1∑
j=0,j ̸=1

ωα
j > 0.
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Proof By applying Lemma 3, we obtain

1 + q

2
Gr2

i+1∑
j=0

ωα
j = −1 + q

2
Gr2α+

1 + q

2
Gr2

i+1∑
j=0,j ̸=1

ωα
j < 0, (22)

1− q

2
Gr2

M−i+1∑
j=0

ωα
j = −1− q

2
Gr2α+

1− q

2
Gr2

M−i+1∑
j=0,j ̸=1

ωα
j < 0. (23)

By adding (22) and (23) together, we have

Gr2α− 1+q
2 Gr2

∑i+1
j=0,j ̸=1 ω

α
j − 1−q

2 Gr2
∑M−i+1

j=0,j ̸=1 ω
α
j > 0,

which implies Lemma 4 holds.

The equation (19) can be written in the following matrix form:

Auk+1 =

S∑
m=1

P (βm)

µmS
G

k∑
j=1

(bβm

k−j − bβm

k−j+1)u
j +

S∑
m=1

P (βm)

µmS
Gbβm

k u0 +Gfk+1,

i = 1, · · · ,M − 1, k = 1, · · · , N − 1, (24)

where

A =

[
I +Gr1B− (

1

2
+

q

2
)Gr2C− (

1

2
− q

2
)Gr2C

T

]
,

B =


1
−1 1

. . .
. . .

0 0 −1 1


(M−1)×(M−1)

,

C =


ω1 ω0

ω2 ω1 ω0

. . .

ωM−1 ωM−2 ωM−3 · · · ω1


(M−1)×(M−1)

,

and uk = (uk
1 , u

k
2 , · · · , uk

M−1)
T , fk = (fk

1 , f
k
2 , · · · , fk

M−1)
T . Lemma 4 implies

that the coefficient matrix A of equation (24) is strictly diagonally dominant.
Thus the coefficient matrixA is reversible and therefore, the difference method
(19)− (21) is uniquely solvable.

Now, let us consider the stability and convergence of the numerical method.

Theorem 1 Let vki (0 ≤ i ≤ M, 0 ≤ k ≤ N) be the solution of the implicit
numerical method (19)− (21), it holds that

∥vk+1∥∞ ≤ ∥v0∥∞ +G(bβm

k )−1 max
1≤l≤N

|f l|.
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Proof We use mathematical induction to prove the result. Let max1≤i≤M−1 |vji | =
|vji0 |, j = 0, 1, 2, · · · , N. For k = 0, from Lemma 4, we have

∥v1∥∞ = |v1i0 |

≤ |v1i0 |

1 +Gr1 −Gr1 +Gr2α− 1 + q

2
Gr2

i+1∑
j=0,j ̸=1

ωα
j − 1− q

2
Gr2

M−i+1∑
j=0,j ̸=1

ωα
j


≤ |v1i0 |+Gr1|v1i0 | −Gr1|v1i0−1|+Gr2α|v1i0 | −

1 + q

2
Gr2

i+1∑
j=0,j ̸=1

ωα
j

∣∣v1i0+1−j

∣∣
−1− q

2
Gr2

M−i+1∑
j=0,j ̸=1

ωα
j

∣∣v1i0−1+j

∣∣
≤ |v1i0 +Gr1v

1
i0 −Gr1v

1
i0−1 +Gr2αv

1
i0

−1 + q

2
Gr2

i+1∑
j=0,j ̸=1

ωα
j v

1
i0+1−j −

1− q

2
Gr2

M−i+1∑
j=0,j ̸=1

ωα
j v

1
i0−1+j |

=

∣∣∣∣∣
S∑

m=1

P (βm)

µmS
Gbβm

0 v0i0 +Gf1
i0

∣∣∣∣∣
≤ ∥v0∥∞ +G max

1≤l≤N
|f l|

≤ ∥v0∥∞ +G(bβm

0 )−1 max
1≤l≤N

|f l|.

Suppose that ∥vj∥∞ ≤ ∥v0∥∞ + G(bβm

j−1)
−1 max1≤l≤N |f l| for j = 1, 2, · · · , k.

Then for j = k + 1, according to the inductive assumption, Lemma 3 and
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Lemma 4, and using a similar argument as for the case k = 0, we have

∥vk+1∥∞ = |vk+1
i0

|

≤ |vk+1
i0

|

1 +Gr1 +Gr2α− 1 + q

2
Gr2

i+1∑
j=0,j ̸=1

ωα
j − 1− q

2
Gr2

M−i+1∑
j=0,j ̸=1

ωα
j


≤ |vk+1

i0
|+Gr1|vk+1

i0
|+Gr2α|vk+1

i0
| − 1 + q

2
Gr2

i+1∑
j=0,j ̸=1

ωα
j

∣∣vk+1
i0

∣∣
−1− q

2
Gr2

M−i+1∑
j=0,j ̸=1

ωα
j

∣∣vk+1
i0

∣∣
≤ |vk+1

i0
+Gr1v

k+1
i0

−Gr1v
k+1
i0−1 +Gr2αv

k+1
i0

−1 + q

2
Gr2

i+1∑
j=0,j ̸=1

ωα
j v

k+1
i0+1−j −

1− q

2
Gr2

M−i+1∑
j=0,j ̸=1

ωα
j v

k+1
i0−1+j |

=

∣∣∣∣∣∣
S∑

m=1

P (βm)

µmS
G

k∑
j=1

(bβm

k−j − bβm

k−j+1)v
j
i0
+

S∑
m=1

P (βm)

µmS
Gbβm

k v0i0 +Gfk+1
i0

∣∣∣∣∣∣
≤

S∑
m=1

P (βm)

µmS
G

k∑
j=1

(bβm

k−j − bβm

k−j+1)
∣∣∣vji0 ∣∣∣+ S∑

m=1

P (βm)

µmS
Gbβm

k

∣∣v0i0 ∣∣+G|fk+1
i0

|

≤
S∑

m=1

P (βm)

µmS
G

k∑
j=1

(bβm

k−j − bβm

k−j+1)

(
∥v0∥∞ +G(bβm

k )−1 max
1≤l≤N

|f l|
)

+

S∑
m=1

P (βm)

µmS
Gbβm

k ∥v0∥∞ +G max
1≤l≤N

|f l|

≤
S∑

m=1

P (βm)

µmS
G(1− bβm

k )(∥v0∥∞ +G(bβm

k )−1 max
1≤l≤N

|f l|) +
S∑

m=1

P (βm)

µmS
Gbβm

k ∥v0∥∞

+G max
1≤l≤N

|f l|

≤ ∥v0∥∞ +G(bβm

k )−1 max
1≤l≤N

|f l|.

Remark. In fact, since (1 − βm)(k + 1)−βm < bβm

k < (1 − βm)k−βm , k =
0, 1, · · · , N + 1 (see [28] for further deatails), we have

G(bβm

k )−1 =
1∑S

m=1
P (βm)bβm

k

µmS

≤ 1∑S
m=1

P (βm)(1−βm)
(k+1)βmµmS

≤ 1∑S
m=1

(1−βm)P (βm)
TβmΓ (2−βm)S

≤ 1∫ 1

0
(1−β)P (β)
TβΓ (2−β)

dβ
≤ C.
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Hence, the conclusion of Theorem 1 can actually be written as

∥vk+1∥∞ ≤ ∥v0∥∞ + C max
1≤l≤N

|f l|.

Since the equation is linear, the implicit numerical method (19)− (21) is un-
conditionally stable to the initial data and the right source term.

Theorem 2 Suppose u(x, t) satisfies the smooth conditions of Lemma 1, Lem-
ma 2 and is the smooth solution of problem (1)–(3) and {uk

i | 0 ≤ i ≤ M, 0 ≤
k ≤ N} be the numerical solution of the scheme (19)−(21). Let eki = u(xi, tk)−
uk
i , 0 ≤ j ≤ M, 0 ≤ k ≤ N . Then for kτ ≤ T , it holds that

∥ek+1∥∞ ≤ C
(
τ1+

σ
2 + h+ σ2

)
, k = 1, · · · , N − 1.

Proof By subtracting (14) from (19), we obtain the error equation

(1 +Gr1 +Gr2α)e
k+1
i −Gr1e

k+1
i−1 − (

1

2
+

q

2
)Gr2

i+1∑
j=0,j ̸=1

ωα
j e

k+1
i+1−j

− (
1

2
− q

2
)Gr2

M−i+1∑
j=0,j ̸=1

ωα
j e

k+1
i−1+j =

S∑
m=1

P (βm)

µmS
G

k∑
j=1

(bβm

k−j − bβm

k−j+1)e
j
i

+
S∑

m=1

P (βm)

µmS
Gbβm

k e0i +Grk+1
i , i = 1, · · · ,M − 1, k = 1, · · · , N − 1, (25)

where rki satisfy (15). By using a similar argument to that of Theorem 1, we
obtain

∥ek+1∥∞ ≤ G(bβm

k )−1 max1≤l≤N |rl| ≤ C(τ1+
σ
2 + h+ σ2), k = 1, 2, · · · , N − 1.

Therefore, Theorem 2 holds.

4 Numerical results

A combined space-time nonlocal model can be used to describe the multiple
anomalous behaviors [27]. Furthermore, it has been demonstrated that by
using the distributed-order concept, we can depict the dynamical process of
the real world more accurately [12]. The TDO-TSSFADE model investigated in
this paper has more potential in describing the multiple anomalous dispersion
in heterogeneous soils, aquifers, and rivers than the model discussed in paper
[?].

In this section, we demonstrate the effectiveness of our numerical scheme
by applying it to the following two TDO-TSSFADE examples.
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Example 1. Consider the following problem∫ 1

0

Γ (3− β)C0 D
β
t u(x, t)dβ = −∂u(x, t)

∂x
+

1

2

∂uα(x, t)

∂xα

+
1

2

∂uα(x, t)

∂(−x)α
+ f(x, t), (x, t) ∈ [0, 1]× [0, T ], (26)

u(0, t) = 0, u(1, t) = 0, t ∈ [0, T ], (27)

u(x, 0) = 0, x ∈ [0, 1], (28)

with 1 < β < 2 and

f(x, t) = f1(x, t) + f2(x, t) + f3(x, t) + f4(x, t),

f1(x, t) = 2x2(1− x)2(t2 − t)/ln t,

f2(x, t) = 2x(1− x)(1− 2x)t2,

f3(x, t) = −x2−αt2[(3− α)(4− α)− 6(4− α)x+ 12x2]/Γ (5− α),

f4(x, t) = −(1− x)2−αt2 × f5(x, t)/Γ (5− α),

f5(x, t) = (3− α)(4− α)− 6(4− α)(1− x) + 12(1− x)2.

The exact solution is u(x, t) = t2x2(1− x)2.
To solve problem (26)–(28) numerically, we first transform the integral

distributed-order equation (26) into the following multi-term equation

S∑
m=1

Γ (3− βm)

S
C
0 D

βm

t u(x, t)

= −∂u(x, t)

∂x
+

1

2

∂uα(x, t)

∂xα
+

1

2

∂uα(x, t)

∂(−x)α
+ f(x, t). (29)

Then we use the method (19)-(21) to compute the numerical solution of e-
quation (29). Take h = 1/1000, τ = T/1000, σ = 1/10. Figure 1 exhibits a
comparison of the exact and numerical solutions for this example with differ-
ent α and T . We can see that the numerical solutions are in good agreement
with the exact solutions.

From Theorem 2, we see that the convergence order of the scheme con-
structed here isO(τ+h+σ2) when σ is small enough. We take τ = T/1000, σ =
1/100. Table 1 provides some numerical results of the maximum errors and the
spatial convergence orders with α = 1.2, 1.8 respectively at T = 1.5 computed

by the formula log2
e∞(τ,2h,σ)
e∞(τ,h,σ) .

Then we take h = τ and σ = τ
1
2 . Table 2 provides some numerical results

of the max errors and the temporal convergence orders with α = 1.2, 1.8

respectively at T = 1.5 computed by the formula log2
e∞(2τ,2h,2

1
2 σ)

e∞(τ,h,σ) .

Finally, we take τ = h = σ
1
2 . Table 3 provides some numerical results of the

max errors and the numerical integration convergence orders with α = 1.2, 1.8

respectively at T = 1.5 computed by the formula log2
e∞(4τ,4h,2σ)
e∞(τ,h,σ) . The data
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Fig. 1 Exact and numerical solutions: (a) α = 1.4, T = 1.5, 0.8, 0.3; (b) α = 1.8, T =
1.8, 1.2, 0.6.

Table 1 Maximum errors and spatial convergence orders with α = 1.2, 1.8 at T = 1.5.

h α = 1.2 α = 1.8
e∞(τ, h, σ) Order e∞(τ, h, σ) Order

1/20 1.8367e-2 - 3.8700e-3 -
1/40 9.5767e-3 0.9395 2.1868e-3 0.8235
1/80 4.8640e-3 0.9774 1.1552e-3 0.9207
1/160 2.4407e-3 0.9947 5.9241e-4 0.9635

Table 2 Maximum errors and temporal convergence orders with α = 1.2, 1.8 at T = 1.5.

τ α = 1.2 α = 1.8
e∞(τ, h, σ) Order e∞(τ, h, σ) Order

T/100 3.8475e-3 - 9.1494e-4 -
T/200 1.9313e-3 0.9943 4.6833e-4 0.9661
T/400 9.6663e-4 0.9985 2.3699e-4 0.9762
T/800 4.8339e-4 0.9997 1.19262e-4 0.9907

Table 3 Maximum errors and numerical integration convergence orders with α = 1.2, 1.8
at T = 1.5.

σ α = 1.2 α = 1.8
e∞(τ, h, σ) Order e∞(τ, h, σ) Order

1/20 1.8040e-2 - 3.7372e-3 -
1/40 4.7960e-3 1.9113 1.1300e-3 1.7257
1/80 1.2080e-3 1.9892 2.9533e-4 1.9359
1/160 3.0212e-4 1.9994 7.4736e-5 1.9825

of these three tables are computed for case 1. From these tables, we can see
that the convergence order of the scheme is O(τ + h+ σ2) as anticipated.

Example 2. Consider the following time distributed-order and two-sided
space-fractional advection-dispersion problem
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∫ 1

0

P (β)C0 D
β
t u(x, t)dβ = −∂u(x, t)

∂x
+

∂uα(x, t)

∂xα
+

∂uα(x, t)

∂(−x)α
+ sinx(1 + t2),

(x, t) ∈ [0, 1]× [0, 5], (30)

u(0, t) = 0, u(1, t) = 0, t ∈ [0, 5], (31)

u(x, 0) = 10δ(x), x ∈ [0, 1], (32)

It has been proved that when p(β) = δ(β − α), 0 < α < 1, the funda-
mental solution of a distributed-order time-factional diffusion equation can
be interpreted as a probability density with respect to the spatial variable x
evolving in time t [10]. Atanackovic et al. [2] considered the solutions of the
distributed-order time-factional diffusion-wave equation in the special cases of
the derivative weight function p(β) = δ(β − α), 0 < α < 2 and p(β) = τβ ,
where τ is a positive constant.

Here we also take these two cases as examples to investigate the numerical
solutions of this problem. We take P (β) = δ(β − 0.5) and P (β) = τβ respec-
tively. Figures 2 a, b, c and d illustrate the effect of these two weight function
P (β) and the spatial fractional order α with h = 1/40, τ = 1/20, σ = 1/10.
First, we can see from these four solution profiles that different diffusion phe-
nomena occur under different weight function P (β) condition with fixed α. In
this example, when P (β) = δ(β − 0.5), it leads to a faster diffusion than that
of P (β) = τβ . This implies that we can model different complex dynamical
process by choosing appropriate P (β). Then, we can see the effect of the spa-
tial order α with fixed P (β). In this example, we see that increasing the value
of α leads to a lower diffusion.

5 Conclusions

In view of the potential application of the distributed-order partial differential
equations, in this paper, we have investigated an implicit numerical method for
the time distributed-order and two-sided space-fractional advection-dispersion
equation. We first discretize the integral term in the equation by applying the
mid-point quadrature numerical integration method enabling the distributed-
order equation to be transformed into a multi-term time-space fractional par-
tial differential equation. Then, we solve the multi-term time-space fractional
partial differential equation by an implicit difference method. The method is
proved to be stable and convergent with convergence order O(τ1+

σ
2 +h+σ2).

Numerical experiments show that the method is effective and simple to be
implemented. And we can select appropriate weight function P (β) to simulate
different complicated dynamical process which can not be described by the
fractional-order system.
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