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Abstract

In this paper, we investigate the finite volume method (FVbh)d distributed-order space-fractional advectioffidion
(AD) equation. The mid-point quadrature rule is used to apipnate the distributed-order equation by a multi-term
fractional model. Next, the transformed multi-term fractl equation is solved by discretizing in space by the finite
volume method and in time using the Crank-Nicolson scherapeéially, we use a novel technique to deal with the
convection term, by which the Riesz fractional derivatifeoder 0 < v < 1 is transformed into a fractional integral
form. And combining the nodal basis functions, we constthetdiscrete scheme, which is new and original. The
unigue solvability of the scheme is discussed. We also piteatethe Crank-Nicolson scheme is unconditionally stable
and convergent with second-order accuracy. Finally, we game examples to show th#etiveness of the numerical
method.

Keywords: Distributed-order equation; Finite volume method, Riesztional derivatives, Fractional
advection-dffusion equation, Stability and convergence

1. Introduction

In the past few decades, there has been considerable intemgny areas such as natural sciences, biology, geologica
sciences, medicine, signal processing, etc. As they dolmt the Gaussian statistics, a host of scientists put mate an
more attentions on how to model them [17, 22, 24, 31, 37, 38488 In general, these models have forms of the
single or multi-term time-, space-, or time-space-frawticdifferential equations. However, both the single and multi-
term fractional equations are not suitable to simulate iffeglon processes in multi-fractal media which have no fixed
scaling exponent, while distributed-ordeftdsion equations are shown to be useful tools to describe aloodifusion
characterized by two or more scaling exponents in the meaarsd displacement (MSD) or even by logarithmic time
dependency of the MSD.

Caputo [5] first proposed the use offérential equations with distributed-order derivativesdeneralizing stress-
strain relations of unelastic media. Later, he [6, 7] disedsdistributed-order time fractionalfiirential equations and
distributed-order space fractionatigirential equations, respectively and derived the solatwith closed form formulae
of the classic problems. He found that one of the majfiedénces between distributed-order time fractionfiedential
equations and distributed-order space fraction@déntial equations is that the former represents the l@#&tons and
is particularly valid when considering local phenomenailain an infinite medium it is more appropriate to introdulee t
space fractional order derivative to represent tiiect of the medium and its space interaction with the fluid Idwdhg
on from this work, Chechkin, Sokolov et al. [9, 42] gave outuliion-like equations with distributed-order time and
space fractional derivatives for the kinetic descriptiémoeomalous dfusion and relaxation phenomerighey showed
that the equations with the distributed-order derivativeshe proper side describe processes getting more anosnalou
in course of the time (accelerating supdiusion and decelerating sulffision), while the equations with the addition-
al distributed-order on the wrong side describe the sibnatigetting less anomalous (decelerating suffeision and
accelerating subfusion). In 2006, Meerschaert and Sdher [34] developed a stochastic model based on random
walks with a random waiting time between jumps. Scalingtbnoif these random walks were subordinated to random
processes whose density functions solved the ultraslffwsittn equation. Umarov and Steinberg [46] constructed the
multi-dimensional random walk models governed by distebiufractional order dierential equations. In addition, they
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used the distributed-orderftirential equations to model the input-output relationstiipnear time-variant system, some
ultraslow and lateral diusion processes, and to study of rheological propertie®miposite materials. Kochubei [25]
also applied distributed-orderfilision equation to discuss ultraslow and laterildion processes in 2008. In 2010, Ca-
puto and Carcione [8] developed and solved a dissipativeshfodthe propagation and attenuation of two-dimensional
dilatational waves, using a new modeling algorithm basedismibuted-order fractional time derivatives. Li et a26]
applied the distributed-order filtering technique to magighal processing. In 2011, Atanackovic et al. [1] studied®s

in a viscoelastic rod of finite length which was described pastitutive equation of fractional distributed-ordepey
with the special choice of weight functions. Eab and Lim [fftfoduced the distributed-order fractional Langevkeli
equations and applied them to describe anomaldtissiton without unique diusion or scaling exponent. The distributed-
order equations were also used to describe a variety of memechanisms and to represent the dispersion acting with
several diferent relaxations (e.g. Anelastic relaxation mechanisngpectral lines in the case of dielectric media) in
[33]. In 2013, on the basis of a subfiision model described by a distributed-order system of teansg Bulavatskya
and Krivonosa [4] performed mathematical modeling of theatyics of a locally nonequilibrium (in time) geomigration
process in a geoporous medium saturated with a salt sollRiecently, Sandev et al. [40] studied distributed-ordeeti
fractional difusion equations characterized by multifractal memory &ks;rin contrast to the simple power-law kernel of
common time fractional diusion equations. Su et al. [43] presented a distributed+drdctional difusion-wave equation
(dofDWE) to describe radial groundwater flow to or from a wahd three sets of solutions of the dofDWE for aquifer
tests: one for pumping tests, and two for slug tests, whialewseful for gaining further insights into groundwater flow
properties.

To date there are several papers focused on how to solvestiddied-order fractional equations. Meerschaert [35]
investigated explicit strong solutions and stochastidanees for time distributed-order fractionalfiision equations
on bounded domains with Dirichlet boundary data. Gorenf& find his co-workers provided the fundamental solu-
tion of the Cauchy problem for time distributed-order frawtl equations by employing Laplace and Fourier transorm
and interpreted the fundamental solution as a probabiétysity. Luchko et al. [32] showed the uniqueness and con-
tinuous dependence on the initial data for the generaliz&tditilited-order fractional éfusion equations on bounded
domains. There are also a few papers that discuss the naingslations of distributed-order fractional equationg Y
et al. [30, 48, 49] applied implicit numerical method and @@t diference scheme for time distributed-order fraction-
al equations and obtained their convergence. Hu et al. [@Pu&ed an implicit numerical method to discuss a time
distributed-order two-sided space-fractional advecti@persion equation and obtained stability and convergenite-
rion. Li et al. [27] applied reproducing kernel method tovsotime distributed-order usion equations. Morgado et
al. [36] put forward implicit scheme for time distributededer reaction-dtusion equations with a nonlinear source term.
Gao and Sun [14, 15, 44] focused on finitéfelience methods to solve one-dimensional and two-dimealsigstributed-
order diferential equations and derived two alternating directioplicit difference schemes. They also used extrapola-
tion method to improve the accuracy order and obtained bigler convergence rate. Wang and Liu [47] used shifted
Griuinwald-Letnikov to get the second-order accurate implicit nunarinethod for the Riesz space distributed-order
advection-dispersion equationSu, Hao and Sun [10] studied some high-ordéfedtence schemes for the distributed-
order time-fractional equations in both one and two spaneedsions. Based on the composite Simpson formula and
Lubich second-order operator, they derived stable nurlesalutions with higher order convergence rate in space.

However, to our best knowledge, there are only few works @ndblution for distributed-order space fractional
equations, especially their numerical solutioms.Section 5 of [42], Sokolov et al. discussed distributeden space

fractional difusion equation:
Au(x, 1) 2 *u(x, t)
—t = P 1). 1
> fo (@) g da. (@ # 1) )

WhereP(«) is a dimensional function of the order of the deriva'rdu,e(,% denotes the Riesz space functional derivative.
In the general casB(a) = [°?Kw(a), | andK are dimensional positive constant§, £ cm [K] = cn?/secandw(a) =
Ard(a — a1) + Aod(a — @), 0 < a1 < a2 < 2, A1 > 0,A; > 0. The equation for the characteristic function of Eq.(1) has
the solution

g(k, t) = exp—ay|k|**t — ap|k|*?t (2)

with a; = AJK/I?Z1, @, = AyK/1222. Equation (2) is a product of two characteristic functions ey stable PDFs with
Lévy indexas, ap and the scale parametea#"l andaé/"z, respectively. Through a series of analysis, Solokov d#al
concluded that at small times the characteristic displacegrew as'/*2, whereas at large times it grewt&*. It meant
that the process was an accelerated suffasion.

Based on this model, in this paper, we dedicate to the nualemiethod for the following more general space
distributed-order fractional advectiongilision equation:

Au(x, 1) 2 du(x, 1) 1 au(x, 1)
—r - /lljl‘ P(a) B da + /lgj(; Qly) B dy + f(x.t), (xt)€(0,1)x(0,1], (3)
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with boundary data
u0,t) =0, u(l,t)=0, te(0,1] 4)

and initial data
u(x, 0) = ¥(x), xe€l0,1]. (5)

In Eq.(3),41 > 0, 1, > 0, P(@), Q(y) are non-negative weight functions that satisfy the cooialé
2 1
O<fP(a)da<oo,0< Qy)dy <o, 1<a<2, 0<y<l
1 0

We can see that wheh = 1, = 1, P(@) = Q(y) and f(x,t) = 0, Eq.(3) can be reduced to Eq.(1). Noting the advection
orders are always close to 1, here we supposeQfatvanish outside the interval (2, 1) [2, 3].

First, we use the mid-point quadrature rule to transfornstece distributed-orderfilision Eq.(3) into a multi-term
fractional equation [21, 28]. The treatment of the conv@tterm is sparse, of which the existed methods all are finite
difference methods [13, 41, 47] and there is no finite volume ndedhdinite element method reported in the literature.
As the order of the fractional derivative of the convectiemt is O< y < 1, it is difficult to utilise finite volume method
to the convection term directly. Based on the definition ef fitactional derivative, we rewrite the convection term as a
kind of integral form, which is suitable to apply the finitelvme method. Then combining the nodal basis functions, the
discrete form of the convection term is obtained. It is wdaammotice that the finite element method is also available to
deal with the convection term with this technique, whichns@uraging and promising. Therefore, it becomes the most
significant contribution of this paper. And then by the finildume method (FVM) [12, 18, 29], we solve the multi-term
fractional equation and obtain the Crank-Nicolson schefruethermore, we will prove that the Crank-Nicolson scheme
is unconditionally stable and convergent with the accudecond order.

The structure of this paper is as follows. In section 2, werdiize the space distributed-order fractional equatiom i
a multi-term fractional equation, then taking use of thetéiniolume method, we derive the Crank-Nicolson scheme for
the transformed multi-term fractional equation. We prdwe $tability and convergence of the Crank-Nicolson iterati
scheme in section 3. Finally, two examples are presentdwbiw the éfectiveness of our finite volume method in section
4 and some conclusions are drawn in section 5.

2. The Crank-Nicolson scheme with the finite volume method

We first introduce some preliminary definitions of the Rieszfional derivatives. The Riesz fractional derivative is
defined as followsfor 0 < @ < 2, @ # 1,
a"u(x,1) B 1 0%u(x, t) N 0*u(x, t)
X  2cosen/2)\ oxe A(—x)e

with

o"u(x,t) 1 a\" x u(s 1)
ox _F(n—a)(a_x) fo x—gemids N=lal+1

o"u(x 1) 1 o\t ust )
A(=x)" _r(n—a)( ) oxenids n=lad+1

and where = n(n = 1,2), "(;f(l“) = 24D First, we discretize the integral interval, @) in Eq.(3) fora by the grid

1=¢y<& <--- <& =2and denoté\& = & — &1 = § =0, k=1,2--,S,ax= &t = 1 + &1 Also, discretize
the integral interval (O1) fory by the grid0=1ng < < --- <ng =1 and denote\m -n-1== Q,I =1,2,---,S,
y = 222 = 2L Applying the mid-point quadrature rule, we obtain that

2 uxt) S %u(x, t)
fl Plo) == dar = kz; Pl =5 o A+ O(c?), (6)
au(x, t) 3 S aMu(x, t)
[ eV, - y= 3000 i an + 0 ™

Additionally, discretize the time domain [0] byt, = n7,n=0,1,---, N with r = 1/N. Let S;, be a uniform partition of
the space domain [@], which is given byx; = ih,i = 0,1,---, M with h = 1/M. Assume thati(x, -) € C3([0, 1]), u(-, t) €
C%([0,1]) and lett, ; = btha then

+ O(7?). (8)

au(x.t, 1) u(x tn) — u(X, th-1)

ot
3



Combining Egs.(6)-(8), we obtain

T 2 O|X|% O|X|%

U t) — UK th1) _ aor ZS: [aaku(x, ), 0™u(x to-s)
3|x|7| 3|X|7'

S_ | |
N TQ Z o) [67 u(x, tn) . oMu(x, tnl)] ©)

+ E[f(x, tn) + f(X too1)] + O(? + 0% + 7).

Note that
dmu(x 1) 1 9%u(x, 1) N anux 0| _ 1 Pu(x 1) du(x.1) (10)
axm 2 cog( % Axax (- | 2coy%r) ax A A(—xX)Br
with Bk = ax — 1 and
Mulx.t) 1 o'u(x.t)  oMu(x )| 1 0 |1 1 7
axm  2coq(E) [ o | T 2c0) ax [0 "U0e ) = 137" 0] (11)
where
T FUEY g, g 1 tuey
u(x, t) = , u(x, t) = dc.
e T A cer el R e § e
Then, letx;_ 1= AH1i=1,2,---, M be the mid- pomt of the intervak[_1, x;] and take the integration of the governing
Eq.(9) overacontrolvolume<[ 1 x,+1] fori=1,2,---,M -1, which leads to
X3 S Pu(x ty)  Bu(x ty) 1
2 s Y 1- Y i+
f u(x,tn)dx—kz:;ak[ PR T ] ) Zb' (X t) — 1) 'u(xt)]lj (12)
% 2 Pu(X, th- 63ku X, t S
= j): u(x, th-)dx+ kz;ak[ 3()@(“ 1) ( );k DL le l MU(X, thq) — |1_7 u(x, tn 1)] :f
-1 = i—% 2
X 1
+ % f (X tn) + F(X tra)]dX+ O(zh(c? + 02 + 72)),
X 1

-3

_ AorP(ay) A20tQ(y1)
whereay = ZcostE) >0,b = —4cos("”) <O0.
Now, we define the spadé, as the set of piecewise-linear polynomials on the nm&shThen the approximate solution

un(X, tn) € P(0, 1) with piecewise polynomials can be expressed as
M-1
Un(.t) = ) U6;(4) (13)
=1

with ¢i,0 < i < M being the nodal based functions\4f. For more details, one can refer to [12]. Therefore, we obtai
the subsequent Crank-Nicolson scheme:

M-1 M-1 s 1 M-1 S
(%) d% (X) ]2 L
2, uj ) * pj(x)dx - Z; uTkZ;ak[ dx:fk ')ﬁk] 1 u’ Izl:m 1 i) — 117 (x)] . ;
i= i-1 i= = 3 j= =
S [ S, [Fa0 #en)t oS
= Unflf " i(dx+ y U ak[ a4 + U [l 7'¢,(x)—|1‘7'¢(x) e
T X,
+—f [f(xtn) + F(X tho1)]dX
2 Jx ,
By direct calculations, it follows thatfor £ i, j < M -1,
h/8, li—jl=1,
f odx=) 4=l and
X 0, else



0, j>i+1, 0, j>i,
dﬁk¢j()(i+%) _ 1 261 j=i+1, dﬁk¢](x|——) 1 W1, =1,
dfc T T@-poHe | G/ P -2, =i, b T(2-pompe | (3/2)4P— 2, =i-1,
c o1 j<i, clk_j, i—1,
ck_l, j>i+1, ckal, i>i,
(%, 1) ~ 1 (3/2)1 B _ P, i=i+1, &’ di(%_1) 1 (3/2)1 B _ Pk, i=i,
d(=x)fc "~ T(Q2-pohpx | 25t i=i d(—XPx~ T(@2- B | 21 j=i-1,
0, j<i, 0, j<i-1,
herect = (i — 3)' 7 — 2 — L)1 A + (i + $)14,i = 2,3,--- In addition,
0, j>i+1
0106,) = W] @27, j=i+1,
AT TEy) | @2P -2, =i,
dil—j+1’ <
0, j>i,
_ hin | (172%™ j=i
1 N L > >
WD =T @2r 2027 j=i-1
d_ j<i-1,
d'J o j>i+1,
gy, ) = W™ ] @27 -21/27",  j=i+l,
227 1@ -y | /2™, =i,
0, j<i,
dlj i+l J > i’
gy (xy) = | (Br2F - 2127, =i
PP TE-wm) | (/277 j=i-1,
0, j<i-1
withd = (i — 37 = 2(i - 1)*7" + (i + $)*7,i = 2,3, - . Henceforth,
h M-1 M-1 h
é(u{Ll +6ul +u ) - Z ulGjj — Z u'Dyj = é(u,"jll +6uMt (14)
+urh + Z UGy + Z ul'D;j + f [£(% tn) + f(X th_1)]dx
whereG;; = Gyj — Gyjj, Dij = Dyjj — D2 and
s S ¢J(X1+1) (% 1) S dBk¢i(Xi+%) &g (%_3)
e kz TN Gaij = Z d(=x)pd(=xpc "
Dujj = Z billg o $i(Xi1) - 1o (% )l Dajj = Zb.[lif”qb,—(xn%) - |if7'¢j(xi7%)].
1=1
Fori = 1,2,---,M -1, denote E"); = 3 ”? [F(X tn) + F(X th-2)]dX Aj = fx'? ¢i(x)dx U™ = (uj,ug, -, uf, )"
?
Then, Eq.(14) can be expressed in matrlx form as
(A-G-D)U"=(A+G+ DU+ F" (15)

The initial condition is discretized &g = y(ih) for i
Dhy)".

=0,1,2,---,Mandu® = (ud,u,- -,

u, )" = W),y (2h),

(M=



3. Stability and convergence of Crank-Nicolson scheme
Along the same lines as the proof of Lemma 1 in [12], we caniplikee following two lemmas.
Lemmal ForO<pi=ak—1<1,¢ = (-3 -2 - )" P+ (i + )", i=23, ., the following hold:
(1) qk is increasing monotonically as i increases, arﬁckco,i =23,

(2) lim c =0;

i—+o0
3) z (6, — ) = =5
Lemma2. ForO<y <1,d = (i— )" -2 — 7 + (i + 1)*7,i=2,3,---, the following hold:
(1) q' is decreasing monotonically as i increases, ahd»d),i =2,3-;

2) lim d =

i—+o0

(3) Z(d.+1 d) = —d..

Also, following a proof similar to Theorem 1 in [12], we cantaln:
Theorem 1. For 0 < Bk < 1, the cogficients G; satisfy

M-1
Gil > > Gl i=12-- ,M-1,
j=Lj#i

i.e., G is strictly diagonally dominant.

Theorem 2. For 0 < Bk < 1, % <y <1, B=A-G-D,then B is also strictly diagonally dominant and the spectral
radius of B* fulfills

_ 2
p(B™) < e (16)
Proof. =
S & K k S hht d d P
2 @ Ci-i = Cind) * Z e G — i) 1> 141
S
h/8 - kgl ey 3G - 3) P+ ]
_ZS: b|h1‘7l [3(:_L)2—y| _( )2 "+ d ] J = | + 1
@G- w) 2 ?
3n/4~ 2 e (3) 7 = 3G
Bij =
%?'353 (7 - 3Gy, j=i,
h/8 - kg‘l r(z_;kw[?)(%)liﬁk - (g)lﬁﬁk + CIE]
_ZS: b|h1‘7l [3(1)2—)4 _( )2 "+ d ] J = | — 1
S TE-y) T2 ?
S b d D
Z | T ﬁk)hek o -c j+l) + Z e (dij — dijp), J<i-1
Sinceay > 0,b; < 0, from Lemma 1 and Lemma 2, we kndy < O for j > i + 1 andj < i — 1. Note that
3 1_ﬁk 1 1_,Bk 1 1—ﬁk "
= _ = = Bk _
(2) 3(2) (2) @ -3)<0, a7)
3 2-y 1 2-y 1 2-y )
— — — - | = Y _
(2) 3(2) (2) (3 3)>0, (18)

6



which assert$; > 0. In addition,

1-px 1-px 1-p«

3(%) - (g) +c5= (%) (4 - 3. 34F 4 51H), (19)
2=y 2-y 2=y

3(%) —(g) +d, = (%) (4-3-3%7" 4 52M), (20)

Letg(x) = 4 - 3- 3*+ 5%, we know thatg(x) > 0 for x € (0,1) andg(x) < O for x € (1,3/2). Thus, for 0< gx < 1 and
I <y <1, wehave3 (3 — () +cs>0and 3 (3)* - (3)> +d, < 0. Hence

M-1 i-2 M-1
DB = D 1B+ > (Bl + Biical + Bijual
j=1,j#i j=1 j=i+2
_y i-2
Z re- ﬂk)hgk Z (C' jr1~ Gie l) Zr(?, ) Z (d' j+1 l)+Z r2- ﬂk)hgk Z (C] i+1 '—i)

j=—o0 j=i+2

S +00

h 2ay 1 4 ) S 2byht-n | »
Zl“r(f% w)z("” dlj_i)+Z+k2:;r(2—ﬂk)hgk[3(§)lﬁ_ Gr* +|Z‘r(3 " )Zy ()2y+d|2]

= i & 2c ) + ZS: hl_ (= 2d! )+ = + Z (3 (})1—/fk _ (§)1—[3k " Ck]
T LT -p) 24T 2 re- /3 VB2 2 2
S
bt 2 _ (3y2n ¢
Zl a1 GF - (P +d)
h S 2a3(3) A - (3)+4 S| 2bht | [3G)2 — (327
2 ;; NZﬂmﬁ +Z; rG-7)
3h S 2a3E)A - (3 S 2bhtn| [3G)2 - (3)7]
“a ;: NzﬂMﬁ "2 NERE
= Bj.
The proof of Eq.(16) followgart b of Theorem 2 in [12]. O

SinceB = A—-G-D is strictly diagonally dominant, thedis nonsingular and invertible. The Crank-Nicolson scheme
can be rewritten as
U"=BYA+G+DU"+BIF (21)
Theorem 3. Define W= (1 - 1)A- (1 +1)(G+D),for0< B« < 1,5 <y < 1,if 1> 1or A < -1, we can conclude that
W is strictly diagonally dominant, i.e.,

M-1
|V\/|||> |\/Vi]-|7i=1’27”"M_1'
j=Lj#i
Proof.
(1+ 1)[ 4 T2 ,Bk)th (C Ci- |+1) + Z &2—_77:) (dl'—i - d|'7i+1)]’ j>i+1,
(A-1)3 - @+ 1% r@mmw(f” )P+
S biht .
+ 38 [%ﬁﬂ—«%ﬁmm, =i+l
I

= 1B

W-DF -+ 3 mmmuﬁ“ 33

S o o
+é?%mu»2ﬂ—a9%ML =i

(A-1)8 -+ 3 rmmmw(f” (&) P+ &
‘3 #eé‘l;.') B @ e d, iZio1

S
bt ;.
(1+ 1)[ . T, oy (G~ G ) + El ray @ —d )l j<i-l

7



(1) If 2 > 1, sinceax > 0,by < 0, (17) and (18) yield tha¥\i > 0. From Lemma 1 and Lemma 2, it is obvious that
Wi > 0 andW; <O for j > i+ 1andj <i— 1. Now, we focus on the sign o i_; andW 1.
3(3) () k] z (3G 7 -Gy +d]) <O,

(i) If V\/i,i—l = VVi,i+l = (/1_1) (/H'l){ F(2 ﬁk)hﬂk[
then
M-1 i—2 M-1
I Z I+ W+ W] + (Wl
j=Lj#i j= j=i+2
i-2 S
K
<@A+1) Z | j+1 CI J)+ Z Z F(S ( i—j+1 J)+ Z kEl T(2- ﬂk)hgk J —i+l iji)
j=i+2 k=

Zr@ B R
S
R R

j=—00 k=1
—d V-—(1=1— =
+ J:zH;ZIZ: r j i+1 d —|)] (/1 1)4 + 2(/1 + 1){ kZ:; F(Z—ﬂk)hgk
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Therefore,
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as

s S
11*k 31,k 51*k b|h1_ 2-y 32,| 52,|
2(1+ 1) ;r(z 85 T -6+ 25) P+ ), [8(5)77 - 65" + 207

= TB-7)
=41+ 1) zsl — (2 )l P4 - 3. 3P4 51 4 i b (5 )2*7' [4-3.327 + 527
- £iT(2- /3 )hp 2 LiTE— ) 2
>0>—-(1- 1)2.

M-1
Henceforth|W| > >, [Wjl.
j=1,j#i

(2) If 2 < -1, it can be easily seen thef; <0 andV\/., > 0forj>i+1andj<i-1 Alongthe same line of the proof

M-
for the casel > 1, we also can obtaifW;| > 2 [Wj.
j=1j=

This proof is completed. O

Theorem 4. The spectral radius of B(A + G + D) satisfieso(B™1(A + G + D)) < 1, hence the Crank-Nicolson scheme
(21) is unconditionally stable.

Proof. SinceB, A, G andD are symmetric positive definite, it is easy to conclude Brdtis symmetric positive definite
and

B(A+G+D)=B72(BZ(A+G+D)B?)Bz,
which means thaB-X(A+ G + D) ~ B2(A+ G + D)B%. Thus,B"Y(A+ G + D) andB~%(A+ G + D)B"Z have the same
eigenvalues. The symmetric positive definitenesa,@, D andB gives thatB~2(A + G + D)B~Z is symmetric positive

definite. Thus, all the eigenvaluesf%(A+ G+D) -2 are real and so a@ (A + G + D). Supposel is an eigenvalue
of B}(A+ G+ D), and

det(ll - B"Y(A+ G + D)) = detB™}) - detlB - (A+ G + D)) = 0. (22)

Note thatB is nonsingular and invertible, then dBt{) # 0, thus det{B - (A+ G + D)) = 0. LetW = AB— (A+ G + D),
then
=(1-1)A-(1+1)(G+D)

(i) If 2= +1o0r0,itis obvious thatV is diagonally dominant;
(i) If 2> 1orad< -1, Theorem 3 asserts thatis also diagonally dominant.

Therefore, de¥) = O forall1 > 1 ora < -1 orA = 0. According to the above analysis, as the roots of the equation
det(lB - (A+ G + D)) = 0 exist,A must satisfy-1 < 1 < 0 or 0< A < 1, which means the eigenvalue Bf*(A + G + D)
satisfy|1| < 1. Thus,o(B™(A+ G + D)) < 1, which completes the proof. O

By following the proof in Corollary 1 [12], it follows that
Lemma3. ForO<pgc<1,2 <y <1,if UKD ¢ | IR, then

xﬂk +1

Putc )iy _ K o4 ¢n(x.+1> ~i05-y)
2 ,Zl‘ Yj ( e |+ o), (23)
Pu(x, tn) %y = n dEk(pl(XH%) dEk‘ﬁJ(XIf%)
A(=xP Ix g ; “1( d—0F T d(xp +O(h°), (24)
M-1
lo- ylu(x th)| % = Z n(ll yI¢J(Xi+%) o yI¢J(X. 1)) +0(h%), (25)
5 3 =1
|i__7’l u(X, tn) X'+z — u" ( 1—7|¢](XI+1) _ |1—7|¢](X 1)) + O(hg). (26)




Theorem 5. Let U' be the exact solution of the problem (3). Then the numeriatisn U" unconditionally converges
to the exact solution"uas h r and o, o tend to zero. Moreover,

lu" — UM < C(0? + 0% + 72 + hP),
where & = (U(xy, t), U(X2, t), - -, U(Xp-1, t0)), U™ = (U], 3, - - U, ;).

Proof. Let €' denote the error at the poinki(t,). Substitutinge’ = u(x;, t,) — u" into (14) and combining (12) with
Eqgs.(23)-(26) yields that

h M-1 M-1 h 7 7
é(ein—l + 6qn + e|'n+1) Z GIJ - erj]DiJ = é(er—ll + 6qn Lt e|n+1l)
) =
M-1 M-1
+ Z -G + 1D,, + O(th(o? + 0% + 72 + h?)).

=1 1
Note thate] = €}, = 0 ande’ = 0 fori = 1,2,--- ,M - 1. Thus,
= (A+ G+ D)E™! + O(th(c? + 02 + 72 + h?))y,

herey = (1,1,--- ,1)T,E" = (¢}, €},--- , &}, )T. SettingQ = B(A+ G + D) andb = O(rh(c® + ¢* + 72 + h?))B™%, by
iteration, one has

E"=(Q" 1+ Q"2 +.--+1)b.

According to Theorem 2, we know thatB™1) < % andp(Q) < 1, then there exists a vector norm and induced matrix
norm|| - || such that|Q|| < 1 and||B~Y| < Ch™. Then upon taking norms, we have

IEM < (IQ™ Y+ IQ™ 2 + - - + D)lbll < nilbl| < O(c® + 0* + 7 + h?).

Therefore, IE"| < C(0? + 0 + 72 + h?). O

4. Numerical examples

In order to illustrate the behavior of our numerical methond demonstrate thetectiveness of our theoretical analysis,
some examples are given.

4.1. Example 1
Firstly, we consider the following distributed-order etioa [47]:
au(x, ) du(x, t) fl au(x, 1)
o fl Pt | Q—ro=dy+ 1D, (x) e @D x @1} (27)

with boundary data
u0,t) =0, u(1l,t)=0

and initial data
u(x, 0) = x3(1 - x)%

Here,
1
P(a) = —2I'(5 - @) cos( = ) QW) = { 21"(5—)/())’(;05(%), zizi 1

~ 2 du(x, t) au(x, t)
F(x.1) = €x3(1— X)? — fl P(0) e f )50

= e'x?(1 - x)? - €'[Ry(X) + Ri(1 — X)~Ro(X)~Ro(1 - X)].

10



Figure 1: Exact solution and numerical solution with= o = 7 = h = 1/80 att = 1.0.

1 1 1
Where,Ry(x) = I(5)- —(X3 %) ~ AA (X -2 - o
5x 3 2X 2

¢ = X)]

* F(S) [GX 2= Inx In X (In @Inx)2  (In x)2]
Ro(x) = T(B) (¢ ~ x) ~ @)~ (5} ~3¥) - (m X)z( )
F(3) 35 1 E 2X
In [ ~6x- W(GX 77 Inx In x)]

The exact solution of Eq.(27) igx, t) = €x?(1 - x)2.

Figure 1 exhibits a comparison of the exact and numericatigois for this example. We can see that the numerical
solution is in excellent agreement with the analytical §olu Table 1 shows the error and convergence orders for our
method with respect to andh. For diferento, o (0 = 0 = 1/40 ando = o = 1/80), with decreasing = h, the
convergence orders efandh reach second order. Table 2 shows the error and convergestexs avith respect to- and
o. For differentr andh (r = h = 1/100 andr = h = 1/200), with decreasing = o, we can obtain that the convergence
orders ofo- andp are also second order. According to the errors and conveegeates in the first two tables, the finite
volume method for the Riesz-space distributed-order éopmis dfective and stable as expectéd.Table 3, we present
a comparison of the errors and convergence orders betwedéniteivolume method and finite fierence method in [47].
Compared to [47], our numerical error is much smaller. Tfogeg our method is morefiective for the one-dimensional
case. However, when comes to high dimensional problem ddapply alternating direction method to reduce the CPU
computation time, which is their advantage.

Table 1: The errors and convergence orders with respecanalh.

o=0=1/40 oc=0=1/80
7=h error order error order
1/8 | 2.9352E-03 - | 2.9370E-03

1/16 | 7.5119E-04 1.97| 7.5301E-04 1.96
1/32 | 1.8832E-04 2.00| 1.9014E-04 1.99
1/64 | 4.5576E-05 2.05| 4.7381E-05 2.00
1/128 | 9.6818E-06 2.23| 1.1439E-05 2.05

4.2. Example 2
Next, we consider the following distributed-order equati®, 42]:

(’)u(x t) 0*u(x, t)
5t fo P(a)———— BIXe da. (28)

11



Table 2: The errors and convergence orders with respectiudo.

T=h=1/200 T=h=1/400
oc=p0 error order error order
1/2 | 9.9864E-04 - | 1.0031E-03

1/4 | 2.4910E-04 2.00| 2.5273E-04 1.99
1/8 | 5.9049E-05 2.08| 6.2526E-05 2.02
1/16 | 1.1457E-05 2.37| 1.4798E-05 2.08
1/32 | 1.8889E-06 2.60| 2.8853E-06 2.36

Table 3: The errors and convergence orders comparison of &¥MFDM in [47] foro- = o = 1/1000 att = 1.

FVM FDM
T=h error order error order
1/20 | 4.8471E-04 - | 3.592E-02 -

1/40 | 1.2238E-04 1.986 8.916E-03 2.01(
1/80 | 3.0745E-05 1.993 2.204E-03 2.016
1/160 | 7.7034E-06 1.997 5.388E-04 2.032

According to [9, 42], ifu(x,0) = 6(X) andP(e) = KI*?[Ai6(a — a1) + Axd(a — a2)], then the solution of Eq.(28) is a
convolution of two stable PDFs,

S +00 X— X X
U(x.t) = a, "a, 7t f L%l(—l)L(,z,l(—l)dx, (29)
- (agt)™ (axt)™

wherea; = AjK/IZ %, a; = A,K/I2*2 and L, ; is the PDF of a symmetric Lévy stable law given by its chagestic
function

I:(Y,l(é:) = exp(_|§|(y)'

As the exact solution involves convolution and inverse kauransform, it is challenging to observe the behavior of
u(x, t) directly from Eq.(29). Therefore the numerical soluti@cbmes a promising tool. Without loss of generality, here
we consider the numerical solution of Eq.(28) with initi@nditionu(x, 0) = 6(x — 0.5), x € (0,1) andK = 2,1 = 3,

A; = A, = 1. To give the error estimate, here we choose the numerit#i@ou(x, t,) = i:m’ll u'¢i(x) on a fine grid

(h = 1/500) as the exact solution. Then we adopt a set of points twledé the discrete, error on the coarse grids,
which is given in the Table 4. We can see that the second osdatdined, which shows the stability and reliability of
our method again. Now we observe th&asion behaviour ofi(x, t). Figure 3 displays a €usion behaviour ofi(x, t) at
differenttimed = 1,5, 10, 20 that decays with increasing time. Figure 4 and FigurauStilate the impact af; anda, on

the difusion behaviour ofi(x, t). We can observe that with increasiagor a», u(x, t) decays and thefiect ofa, on the
diffusion is more significant. Although we give the numericalesub of Eq.(28), how to apply the scheme to solve the
actually problem and establish the connection betweenitietiks equation and multifractality need further invgation.

Table 4: The errors and the convergence orders avitho = 1/100,a1 = 0.955,a2 = 1.255 att = 1.
T=h error order
1/160 | 1.0414E-02| -

1/200 | 7.3644E-03] 1.55
1/320 | 2.7608E-03| 2.09

4.3. Example 3
Finally, we consider the following distributed-order etjaa:

with boundary data
u0,t) =0, u(1l,t)=0

12



u(w,t)

Figure 2: Numerical solution profile af(x, t) at differentt with o = o = 1/100,7 = h = 1/200,a1 = 0.955,a, = 1.255.
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0.01 1
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u(z,t)
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Figure 3: Numerical solution profile af(x, t) for differenta; with o = o = 1/100,7 = h = 1/200,a = 1.255 att = 1.

—x—a,=1.255

NOoNDONN

Figure 4: Numerical solution profile af(x, t) for differenta, with o = o = 1/100,7 = h = 1/200,a7 = 0.955 att = 1.
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Figure 5: Numerical solution at fierent times.
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Figure 6: Numerical solution for fierenta; .
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Figure 7: Numerical solution for fierenty;.
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Figure 8: Numerical solution for fierentP(«).
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Figure 9: Numerical solution for fierentQ(y).
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and initial data
u(x, 0) = sin(rx).

Here we choose

P(e) = 1°?KAS(@ - a1), Q) = I"2KA¥(y — y1),

o=p0=1=h=1/100,l = 3,K = 1, Ay = 8 andA, = 2. Firstly, in Figure 5 we exhibit the flusion behavior
of u(x, t) at the diferent timesT = 0.5, 0.7, 1.0 with a; = 1.255 y; = 0.755, which decays with increasing time.
Then we consider the filusion behavior ofi(x, t) by choosing distinctr; at T = 1.0 with y; = 0.755, which is shown
in Figure 6. Similarly, in Figure 7, we observe théfdsion behavior ofi(x,t) by adopting distinct; at T = 1.0 and
zoom the [045,0.55] x [0.852 0.875] part. We can similarly see that with increasimgor y1, u(x,t) decays and the
effect of @ on the ditusion is more significant. Finally, we exhibit a compariseaghics of the dtusive behavior of
u(x, t) by selecting dierentP(a) or Q(y) at T = 0.5 in Figure 8 and Figure 9 at time = 0.5, respectively, in which
Po(e) = 8-3*25(a — 1.255), P1(a) = 1, Py(a) = &, P3(a) = 3* 2 andQ(y) = 2- 3-25(y — 0.755) in Figure 8, while
Qo(y) = 2- 3" 25(y — 0.755),Q1(y) = % Qu(y) = y—lz Qs(y) = 32 andP(a) = 8- 3*25(a — 1.255) in Figure 9. We can
conclude that the botR(«) andQ(y) have dfects on the dfusion behavior ofi(x, t).

5. Conclusions

In this paper, we have investigated a second order in botbesaad time numerical scheme for the Riesz space
distributed-order advection4tlision equation. We prove that the Crank-Nicolson schemadsnditionally stable and
convergent with second order accurdfy? + o> + 7> + h?). Three numerical examples are presented to show the ef-
fectiveness of our computational methad the future, we would like to develop the finite volume metho solve time
distributed-order, time-space distributed-order adweeetliffusion equations in one-dimensional and two-dimensional s-
pace. Moreover, we shall consider other computational austo improve the convergence rate.
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