
This may be the author’s version of a work that was submitted/accepted
for publication in the following source:

Li, J., Liu, Fawang, Feng, Libo, & Turner, Ian
(2017)
A novel finite volume method for the Riesz space distributed-order
advection-diffusion equation.
Applied Mathematical Modelling, 46, pp. 536-553.

This file was downloaded from: https://eprints.qut.edu.au/104459/

© Consult author(s) regarding copyright matters

This work is covered by copyright. Unless the document is being made available under a
Creative Commons Licence, you must assume that re-use is limited to personal use and
that permission from the copyright owner must be obtained for all other uses. If the docu-
ment is available under a Creative Commons License (or other specified license) then refer
to the Licence for details of permitted re-use. It is a condition of access that users recog-
nise and abide by the legal requirements associated with these rights. If you believe that
this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

Notice: Please note that this document may not be the Version of Record
(i.e. published version) of the work. Author manuscript versions (as Sub-
mitted for peer review or as Accepted for publication after peer review) can
be identified by an absence of publisher branding and/or typeset appear-
ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1016/j.apm.2017.01.065

https://eprints.qut.edu.au/view/person/Liu,_Fawang.html
https://eprints.qut.edu.au/view/person/Feng,_Libo.html
https://eprints.qut.edu.au/view/person/Turner,_Ian.html
https://eprints.qut.edu.au/104459/
https://doi.org/10.1016/j.apm.2017.01.065


1

A novel finite volume method for the Riesz space distributed-order
advection-diffusion equation

J. Lia, F. Liub,∗, L. Fengb, I. Turnerb,c

a School of Mathematical Sciences, Changsha University of Science and Technology, Changsha 410114, China
b School of Mathematical Sciences, Queensland University ofTechnology, Brisbane, QLD 4001, Australia

c Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS), Queensland University of Technology (QUT),
Brisbane, Australia

Abstract

In this paper, we investigate the finite volume method (FVM) for a distributed-order space-fractional advection-diffusion
(AD) equation. The mid-point quadrature rule is used to approximate the distributed-order equation by a multi-term
fractional model. Next, the transformed multi-term fractional equation is solved by discretizing in space by the finite
volume method and in time using the Crank-Nicolson scheme. Especially, we use a novel technique to deal with the
convection term, by which the Riesz fractional derivative of order 0 < γ < 1 is transformed into a fractional integral
form. And combining the nodal basis functions, we constructthe discrete scheme, which is new and original. The
unique solvability of the scheme is discussed. We also provethat the Crank-Nicolson scheme is unconditionally stable
and convergent with second-order accuracy. Finally, we give some examples to show the effectiveness of the numerical
method.

Keywords: Distributed-order equation; Finite volume method, Riesz fractional derivatives, Fractional
advection-diffusion equation, Stability and convergence

1. Introduction

In the past few decades, there has been considerable interest in many areas such as natural sciences, biology, geological
sciences, medicine, signal processing, etc. As they do not obey the Gaussian statistics, a host of scientists put more and
more attentions on how to model them [17, 22, 24, 31, 37, 38, 39, 45]. In general, these models have forms of the
single or multi-term time-, space-, or time-space-fractional differential equations. However, both the single and multi-
term fractional equations are not suitable to simulate the diffusion processes in multi-fractal media which have no fixed
scaling exponent, while distributed-order diffusion equations are shown to be useful tools to describe anomalous diffusion
characterized by two or more scaling exponents in the mean squared displacement (MSD) or even by logarithmic time
dependency of the MSD.

Caputo [5] first proposed the use of differential equations with distributed-order derivatives for generalizing stress-
strain relations of unelastic media. Later, he [6, 7] discussed distributed-order time fractional differential equations and
distributed-order space fractional differential equations, respectively and derived the solutions with closed form formulae
of the classic problems. He found that one of the major differences between distributed-order time fractional differential
equations and distributed-order space fractional differential equations is that the former represents the local variations and
is particularly valid when considering local phenomena, while in an infinite medium it is more appropriate to introduce the
space fractional order derivative to represent the effect of the medium and its space interaction with the fluid. Following
on from this work, Chechkin, Sokolov et al. [9, 42] gave out diffusion-like equations with distributed-order time and
space fractional derivatives for the kinetic description of anomalous diffusion and relaxation phenomena.They showed
that the equations with the distributed-order derivativeson the proper side describe processes getting more anomalous
in course of the time (accelerating superdiffusion and decelerating subdiffusion), while the equations with the addition-
al distributed-order on the wrong side describe the situations getting less anomalous (decelerating superdiffusion and
accelerating subdiffusion). In 2006, Meerschaert and Scheffler [34] developed a stochastic model based on random
walks with a random waiting time between jumps. Scaling limits of these random walks were subordinated to random
processes whose density functions solved the ultraslow diffusion equation. Umarov and Steinberg [46] constructed the
multi-dimensional random walk models governed by distributed fractional order differential equations. In addition, they
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used the distributed-order differential equations to model the input-output relationshipof linear time-variant system, some
ultraslow and lateral diffusion processes, and to study of rheological properties of composite materials. Kochubei [25]
also applied distributed-order diffusion equation to discuss ultraslow and lateral diffusion processes in 2008. In 2010, Ca-
puto and Carcione [8] developed and solved a dissipative model for the propagation and attenuation of two-dimensional
dilatational waves, using a new modeling algorithm based ondistributed-order fractional time derivatives. Li et al. [26]
applied the distributed-order filtering technique to modelsignal processing. In 2011, Atanackovic et al. [1] studied waves
in a viscoelastic rod of finite length which was described by aconstitutive equation of fractional distributed-order type
with the special choice of weight functions. Eab and Lim [11]introduced the distributed-order fractional Langevin-like
equations and applied them to describe anomalous diffusion without unique diffusion or scaling exponent. The distributed-
order equations were also used to describe a variety of memory mechanisms and to represent the dispersion acting with
several different relaxations (e.g. Anelastic relaxation mechanisms or spectral lines in the case of dielectric media) in
[33]. In 2013, on the basis of a sub-diffusion model described by a distributed-order system of equations, Bulavatskya
and Krivonosa [4] performed mathematical modeling of the dynamics of a locally nonequilibrium (in time) geomigration
process in a geoporous medium saturated with a salt solution. Recently, Sandev et al. [40] studied distributed-order time
fractional diffusion equations characterized by multifractal memory kernels, in contrast to the simple power-law kernel of
common time fractional diffusion equations. Su et al. [43] presented a distributed-order fractional diffusion-wave equation
(dofDWE) to describe radial groundwater flow to or from a well, and three sets of solutions of the dofDWE for aquifer
tests: one for pumping tests, and two for slug tests, which were useful for gaining further insights into groundwater flow
properties.

To date there are several papers focused on how to solve the distributed-order fractional equations. Meerschaert [35]
investigated explicit strong solutions and stochastic analogues for time distributed-order fractional diffusion equations
on bounded domains with Dirichlet boundary data. Gorenflo [16] and his co-workers provided the fundamental solu-
tion of the Cauchy problem for time distributed-order fractional equations by employing Laplace and Fourier transforms
and interpreted the fundamental solution as a probability density. Luchko et al. [32] showed the uniqueness and con-
tinuous dependence on the initial data for the generalized distributed-order fractional diffusion equations on bounded
domains. There are also a few papers that discuss the numerical solutions of distributed-order fractional equations. Ye
et al. [30, 48, 49] applied implicit numerical method and compact difference scheme for time distributed-order fraction-
al equations and obtained their convergence. Hu et al. [19, 20] used an implicit numerical method to discuss a time
distributed-order two-sided space-fractional advection-dispersion equation and obtained stability and convergence crite-
rion. Li et al. [27] applied reproducing kernel method to solve time distributed-order diffusion equations. Morgado et
al. [36] put forward implicit scheme for time distributed-order reaction-diffusion equations with a nonlinear source term.
Gao and Sun [14, 15, 44] focused on finite difference methods to solve one-dimensional and two-dimensional distributed-
order differential equations and derived two alternating direction implicit difference schemes. They also used extrapola-
tion method to improve the accuracy order and obtained high-order convergence rate. Wang and Liu [47] used shifted
Grünwald−Letnikov to get the second-order accurate implicit numerical method for the Riesz space distributed-order
advection-dispersion equations.Du, Hao and Sun [10] studied some high-order difference schemes for the distributed-
order time-fractional equations in both one and two space dimensions. Based on the composite Simpson formula and
Lubich second-order operator, they derived stable numerical solutions with higher order convergence rate in space.

However, to our best knowledge, there are only few works on the solution for distributed-order space fractional
equations, especially their numerical solutions.In Section 5 of [42], Sokolov et al. discussed distributed-order space
fractional diffusion equation:

∂u(x, t)
∂t

=

∫ 2

0
P(α)

∂αu(x, t)
∂|x|α

dα, (α , 1). (1)

WhereP(α) is a dimensional function of the order of the derivativeα, ∂α

∂|x|α denotes the Riesz space functional derivative.

In the general caseP(α) = lα−2Kw(α), l andK are dimensional positive constants, [l] = cm, [K] = cm2/secandw(α) =
A1δ(α − α1) + A2δ(α − α2), 0 < α1 < α2 ≤ 2, A1 > 0,A2 > 0. The equation for the characteristic function of Eq.(1) has
the solution

g(k, t) = exp−a1|k|
α1t − a2|k|

α2t (2)

with a1 = A1K/l2−α1 , a2 = A2K/l2−α2 . Equation (2) is a product of two characteristic functions ofLévy stable PDFs with
Lévy indexα1, α2 and the scale parametersa1/α1

1 anda1/α2

2 , respectively. Through a series of analysis, Solokov et al.[42]
concluded that at small times the characteristic displacement grew ast1/α2, whereas at large times it grew ast1/α1. It meant
that the process was an accelerated superdiffusion.

Based on this model, in this paper, we dedicate to the numerical method for the following more general space
distributed-order fractional advection-diffusion equation:

∂u(x, t)
∂t

= λ1

∫ 2

1
P(α)

∂αu(x, t)
∂|x|α

dα + λ2

∫ 1

0
Q(γ)

∂γu(x, t)
∂|x|γ

dγ + f (x, t), (x, t) ∈ (0, 1)× (0, 1], (3)
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with boundary data

u(0, t) = 0, u(1, t) = 0, t ∈ (0, 1] (4)

and initial data
u(x, 0) = ψ(x), x ∈ [0, 1]. (5)

In Eq.(3),λ1 > 0, λ2 > 0, P(α),Q(γ) are non-negative weight functions that satisfy the conditions

0 <
∫ 2

1
P(α)dα < ∞, 0 <

∫ 1

0
Q(γ)dγ < ∞, 1 < α < 2, 0 < γ < 1.

We can see that whenλ1 = λ2 = 1, P(α) = Q(γ) and f (x, t) = 0, Eq.(3) can be reduced to Eq.(1). Noting the advection
orders are always close to 1, here we suppose thatQ(γ) vanish outside the interval (1/2, 1) [2, 3].

First, we use the mid-point quadrature rule to transform thespace distributed-order diffusion Eq.(3) into a multi-term
fractional equation [21, 28]. The treatment of the convection term is sparse, of which the existed methods all are finite
difference methods [13, 41, 47] and there is no finite volume method or finite element method reported in the literature.
As the order of the fractional derivative of the convection term is 0< γ < 1, it is difficult to utilise finite volume method
to the convection term directly. Based on the definition of the fractional derivative, we rewrite the convection term as a
kind of integral form, which is suitable to apply the finite volume method. Then combining the nodal basis functions, the
discrete form of the convection term is obtained. It is worthto notice that the finite element method is also available to
deal with the convection term with this technique, which is encouraging and promising. Therefore, it becomes the most
significant contribution of this paper. And then by the finitevolume method (FVM) [12, 18, 29], we solve the multi-term
fractional equation and obtain the Crank-Nicolson scheme.Furthermore, we will prove that the Crank-Nicolson scheme
is unconditionally stable and convergent with the accuracyof second order.

The structure of this paper is as follows. In section 2, we discretize the space distributed-order fractional equation into
a multi-term fractional equation, then taking use of the finite volume method, we derive the Crank-Nicolson scheme for
the transformed multi-term fractional equation. We prove the stability and convergence of the Crank-Nicolson iteration
scheme in section 3. Finally, two examples are presented to show the effectiveness of our finite volume method in section
4 and some conclusions are drawn in section 5.

2. The Crank-Nicolson scheme with the finite volume method

We first introduce some preliminary definitions of the Riesz fractional derivatives. The Riesz fractional derivative is
defined as follows:for 0 < α < 2, α , 1,

∂αu(x, t)
∂|x|α

= −
1

2 cos(απ/2)

(

∂αu(x, t)
∂xα

+
∂αu(x, t)
∂(−x)α

)

with
∂αu(x, t)
∂xα

=
1

Γ(n− α)

(

∂

∂x

)n ∫ x

0

u(s, t)
(x− s)α−n+1

ds, n = [α] + 1,

∂αu(x, t)
∂(−x)α

=
1

Γ(n− α)

(

−
∂

∂x

)n ∫ 1

x

u(s, t)
(s− x)α−n+1

ds, n = [α] + 1,

and whenα = n (n = 1, 2), ∂αu(x,t)
∂|x|α =

∂nu(x,t)
∂xn . First, we discretize the integral interval (1, 2) in Eq.(3) forα by the grid

1 = ξ0 < ξ1 < · · · < ξS = 2 and denote∆ξk = ξk − ξk−1 =
1
S = σ, k = 1, 2, · · · ,S, αk =

ξk+ξk−1

2 = 1+ 2k−1
2S . Also, discretize

the integral interval (0, 1) for γ by the grid 0= η0 < η1 < · · · < ηS̄ = 1 and denote∆ηl = ηl −ηl−1 =
1
S̄
= ̺, l = 1, 2, · · · , S̄,

γl =
ηl+ηl−1

2 = 2l−1
2S̄

. Applying the mid-point quadrature rule, we obtain that

∫ 2

1
P(α)

∂αu(x, t)
∂|x|α

dα =
S

∑

k=1

P(αk)
∂αku(x, t)
∂|x|αk

∆ξk +O(σ2), (6)

∫ 1

0
Q(γ)

∂γu(x, t)
∂|x|γ

dγ =
S̄

∑

l=1

Q(γl)
∂γl u(x, t)
∂|x|γl

∆ηl +O(̺2). (7)

Additionally, discretize the time domain [0, 1] by tn = nτ, n = 0, 1, · · · ,N with τ = 1/N. Let Sh be a uniform partition of
the space domain [0, 1], which is given byxi = ih, i = 0, 1, · · · ,M with h = 1/M. Assume thatu(x, ·) ∈ C3([0, 1]), u(·, t) ∈
C2([0, 1]) and lettn− 1

2
=

tn+tn−1
2 , then

∂u(x, tn− 1
2
)

∂t
=

u(x, tn) − u(x, tn−1)
τ

+O(τ2). (8)
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Combining Eqs.(6)-(8), we obtain

u(x, tn) − u(x, tn−1)
τ

=
λ1σ

2

S
∑

k=1

P(αk)

[

∂αku(x, tn)
∂|x|αk

+
∂αku(x, tn−1)

∂|x|αk

]

+
λ2̺

2

S̄
∑

l=1

Q(γl)

[

∂γl u(x, tn)
∂|x|γl

+
∂γl u(x, tn−1)

∂|x|γl

]

(9)

+
1
2
[

f (x, tn) + f (x, tn−1)
]

+O(σ2 + ̺2 + τ2).

Note that

∂αku(x, t)
∂|x|αk

= −
1

2 cos
(αkπ

2

)

[

∂αku(x, t)
∂xαk

+
∂αku(x, t)
∂(−x)αk

]

= −
1

2 cos
( αkπ

2

)

∂

∂x

[

∂βku(x, t)
∂xβk

−
∂βku(x, t)
∂(−x)βk

]

, (10)

with βk = αk − 1 and

∂γl u(x, t)
∂|x|γl

= −
1

2 cos
( γlπ

2

)

[

∂γl u(x, t)
∂xγl

+
∂γl u(x, t)
∂(−x)γl

]

= −
1

2 cos
( γlπ

2

)

∂

∂x

[

I1−γl

0+ u(x, t) − I1−γl

1− u(x, t)
]

, (11)

where

I1−γl

0+ u(x, t) =
1

Γ(1− γl)

∫ x

0

u(ζ, t)
(x− ζ)γl

dζ, I1−γl

1− u(x, t) =
1

Γ(1− γl)

∫ 1

x

u(ζ, t)
(ζ − x)γl

dζ.

Then, letxi− 1
2
=

xi+xi−1
2 , i = 1, 2, · · · ,M be the mid-point of the interval [xi−1, xi ] and take the integration of the governing

Eq.(9) over a control volume [xi− 1
2
, xi+ 1

2
] for i = 1, 2, · · · ,M − 1, which leads to

∫ x
i+ 1

2

x
i− 1

2

u(x, tn)dx−
S

∑

k=1

ak

[

∂βku(x, tn)
∂xβk

−
∂βku(x, tn)
∂(−x)βk

]x
i+ 1

2

x
i− 1

2

−

S̄
∑

l=1

bl

[

I1−γl

0+ u(x, tn) − I1−γl

1− u(x, tn)
]x

i+ 1
2

x
i− 1

2

(12)

=

∫ x
i+ 1

2

x
i− 1

2

u(x, tn−1)dx+
S

∑

k=1

ak

[

∂βku(x, tn−1)
∂xβk

−
∂βku(x, tn−1)
∂(−x)βk

]x
i+ 1

2

x
i− 1

2

+

S̄
∑

l=1

bl

[

I1−γl

0+ u(x, tn−1) − I1−γl

1− u(x, tn−1)
]x

i+ 1
2

x
i− 1

2

+
τ

2

∫ x
i+ 1

2

x
i− 1

2

[

f (x, tn) + f (x, tn−1)
]

dx+O(τh(σ2 + ̺2 + τ2)),

whereak = −
λ1στP(αk)
4 cos(

αkπ
2 )

> 0, bl = −
λ2̺τQ(γl )
4 cos(

γlπ
2 )
≤ 0.

Now, we define the spaceVh as the set of piecewise-linear polynomials on the meshSh. Then the approximate solution
uh(x, tn) ∈ P(0, 1) with piecewise polynomials can be expressed as

uh(x, tn) =
M−1
∑

j=1

un
jφ j(x) (13)

with φi , 0 ≤ i ≤ M being the nodal based functions ofVh. For more details, one can refer to [12]. Therefore, we obtain
the subsequent Crank-Nicolson scheme:

M−1
∑

j=1

un
j

∫ x
i+ 1

2

x
i− 1

2

φ j(x)dx−
M−1
∑

j=1

un
j

S
∑

k=1

ak

[

dβkφ j(x)

dxβk
−

dβkφ j(x)

d(−x)βk

]x
i+ 1

2

x
i− 1

2

−

M−1
∑

j=1

un
j

S̄
∑

l=1

bl

[

I1−γl

0+ φ j(x) − I1−γl

1− φ j(x)
]x

i+ 1
2

x
i− 1

2

=

M−1
∑

j=1

un−1
j

∫ x
i+ 1

2

x
i− 1

2

φ j(x)dx+
M−1
∑

j=1

un−1
j

S
∑

k=1

ak

[

dβkφ j(x)

dxβk
−

dβkφ j(x))

d(−x)βk

]x
i+ 1

2

x
i− 1

2

+

M−1
∑

j=1

un−1
j

S̄
∑

l=1

bl

[

I1−γl

0+ φ j(x) − I1−γl

1− φ j(x)
]x

i+ 1
2

x
i− 1

2

+
τ

2

∫ x
i+ 1

2

x
i− 1

2

[

f (x, tn) + f (x, tn−1)
]

dx.

By direct calculations, it follows that for 1≤ i, j ≤ M − 1,

∫ x
i+ 1

2

x
i− 1

2

φ j(x)dx=



















h/8, |i − j| = 1,
3h/4, i = j,
0, else.

and
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dβkφ j(xi+ 1
2
)

dxβk
=

1
Γ(2− βk)hβk































0, j > i + 1,
2βk−1, j = i + 1,
(3/2)1−βk − 2βk, j = i,
ck

i− j+1, j < i,

dβkφ j(xi− 1
2
)

dxβk
=

1
Γ(2− βk)hβk































0, j > i,
2βk−1, j = i,
(3/2)1−βk − 2βk , j = i − 1,
ck

i− j , j < i − 1,

dβkφ j(xi+ 1
2
)

d(−x)βk
=

1
Γ(2− βk)hβk































ck
j−i , j > i + 1,

(3/2)1−βk − 2βk, j = i + 1,
2βk−1, j = i,
0, j < i,

dβkφ j(xi− 1
2
)

d(−x)βk
=

1
Γ(2− βk)hβk































ck
j−i+1, j > i,

(3/2)1−βk − 2βk , j = i,
2βk−1, j = i − 1,
0, j < i − 1,

here,ck
i =

(

i − 3
2

)1−βk − 2(i − 1
2)1−βk + (i + 1

2)1−βk, i = 2, 3, · · · In addition,

I1−γl

0+ φ j(xi+ 1
2
) =

h1−γl

Γ(3− γl)































0, j > i + 1,
(

1/2
)2−γl , j = i + 1,

(3/2)2−γl − 2
(

1/2
)2−γl , j = i,

dl
i− j+1, j < i,

I1−γl

0+ φ j(xi− 1
2
) =

h1−γl

Γ(3− γl)































0, j > i,
(

1/2
)2−γl , j = i,

(3/2)2−γl − 2
(

1/2
)2−γl , j = i − 1,

dl
i− j, j < i − 1,

I1−γl

1− φ j(xi+ 1
2
) =

h1−γl

Γ(3− γl)































dl
j−i, j > i + 1,

(3/2)2−γl − 2
(

1/2
)2−γl , j = i + 1,

(

1/2
)2−γl , j = i,

0, j < i,

I1−γl

1− φ j(xi− 1
2
) =

h1−γl

Γ(3− γl)































dl
j−i+1, j > i,

(3/2)2−γl − 2
(

1/2
)2−γl , j = i,

(

1/2
)2−γl , j = i − 1,

0, j < i − 1

with dl
i =

(

i − 3
2

)2−γl − 2
(

i − 1
2

)2−γl +
(

i + 1
2

)2−γl , i = 2, 3, · · · . Henceforth,

h
8

(un
i−1 + 6un

i + un
i+1) −

M−1
∑

j=1

un
jGi j −

M−1
∑

j=1

un
j Di j =

h
8

(un−1
i−1 + 6un−1

i (14)

+un−1
i+1 ) +

M−1
∑

j=1

un−1
j Gi j +

M−1
∑

j=1

un−1
j Di j +

τ

2

∫ x
i+ 1

2

x
i− 1

2

[

f (x, tn) + f (x, tn−1)
]

dx.

whereGi j = G1,i j −G2,i j ,Di j = D1,i j − D2,i j and

G1,i j =

S
∑

k=1

ak
[

dβkφ j(xi+ 1
2
)

dxβk
−

dβkφ j(xi− 1
2
)

dxβk

]

, G2,i j =

S
∑

k=1

ak
[

dβkφ j(xi+ 1
2
)

d(−x)βk
−

dβkφ j(xi− 1
2
)

d(−x)βk

]

,

D1,i j =

S̄
∑

l=1

bl
[

I1−γl

0+ φ j(xi+ 1
2
) − I1−γl

0+ φ j(xi− 1
2
)
]

, D2,i j =

S̄
∑

l=1

bl
[

I1−γl

1− φ j(xi+ 1
2
) − I1−γl

1− φ j(xi− 1
2
)
]

.

For i = 1, 2, · · · ,M − 1, denote (Fn)i =
τ
2

∫ x
i+ 1

2
x

i− 1
2

[

f (x, tn) + f (x, tn−1)
]

dx, Ai j =
∫ x

i+ 1
2

x
i− 1

2

φ j(x)dx, Un =
(

un
1, u

n
2, · · · , u

n
M−1

)T .

Then, Eq.(14) can be expressed in matrix form as

(A−G− D)Un = (A+G + D)Un−1 + Fn. (15)

The initial condition is discretized asψi = ψ(ih) for i = 0, 1, 2, · · · ,M andU0 =
(

u0
1, u

0
2, · · · , u

0
M−1

)T
= (ψ(h), ψ(2h), · · · , ψ((M−

1)h))T.
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3. Stability and convergence of Crank-Nicolson scheme

Along the same lines as the proof of Lemma 1 in [12], we can obtain the following two lemmas.

Lemma 1. For 0 < βk = αk − 1 < 1, ck
i =

(

i − 3
2

)1−βk − 2
(

i − 1
2

)1−βk +
(

i + 1
2

)1−βk, i = 2, 3, · · · , the following hold:

(1) ck
i is increasing monotonically as i increases, and ck

i < 0, i = 2, 3, · · · ;

(2) lim
i→+∞

ck
i = 0;

(3)
+∞
∑

i=2
(ck

i+1 − ck
i ) = −ck

2.

Lemma 2. For 0 < γl < 1, dl
i =

(

i − 3
2

)2−γl − 2
(

i − 1
2

)2−γl +
(

i + 1
2

)2−γl , i = 2, 3, · · · , the following hold:

(1) dl
i is decreasing monotonically as i increases, and dl

i > 0, i = 2, 3, · · · ;

(2) lim
i→+∞

dl
i = 0;

(3)
+∞
∑

i=2
(dl

i+1 − dl
i ) = −dl

2.

Also, following a proof similar to Theorem 1 in [12], we can obtain:

Theorem 1. For 0 < βk < 1, the coefficients Gi j satisfy

|Gii | >

M−1
∑

j=1, j,i

|Gi j |, i = 1, 2, · · · ,M − 1,

i.e., G is strictly diagonally dominant.

Theorem 2. For 0 < βk < 1, 1
2 < γl < 1, B = A −G − D, then B is also strictly diagonally dominant and the spectral

radius of B−1 fulfills

ρ(B−1) <
2
h
. (16)

Proof.

Bi j =



























































































































































S
∑

k=1

ak

Γ(2−βk)hβk

(

ck
j−i − ck

j−i+1

)

+
S̄
∑

l=1

blh1−γl

Γ(3−γl )

(

dl
j−i − dl

j−i+1

)

, j > i + 1,

h/8−
S
∑

k=1

ak

Γ(2−βk)hβk

[

3(1
2)1−βk − ( 3

2)1−βk + ck
2

]

−
S̄
∑

l=1

blh1−γl

Γ(3−γl )

[

3(1
2)2−γl − ( 3

2)2−γl + dl
2

]

, j = i + 1,

3h/4−
S
∑

k=1

2ak

Γ(2−βk)hβk

[

( 3
2)1−βk − 3(1

2)1−βk
]

−
S̄
∑

l=1

2blh1−γl

Γ(3−γl )

[

( 3
2)2−γl − 3(1

2)2−γl
]

, j = i,

h/8−
S
∑

k=1

ak

Γ(2−βk)hβk

[

3(1
2)1−βk − ( 3

2)1−βk + ck
2

]

−
S̄
∑

l=1

blh1−γl

Γ(3−γl )

[

3(1
2)2−γl − ( 3

2)2−γl + dl
2

]

, j = i − 1,

S
∑

k=1

ak

Γ(2−βk)hβk

(

ck
i− j − ck

i− j+1

)

+
S̄
∑

l=1

blh1−γl

Γ(3−γl )

(

dl
i− j − dl

i− j+1

)

, j < i − 1.

Sinceak > 0, bl < 0, from Lemma 1 and Lemma 2, we knowBi j < 0 for j > i + 1 and j < i − 1. Note that

(

3
2

)1−βk

− 3

(

1
2

)1−βk

=

(

1
2

)1−βk

(31−βk − 3) < 0, (17)

(

3
2

)2−γl

− 3

(

1
2

)2−γl

=

(

1
2

)2−γl

(32−γl − 3) > 0, (18)
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which assertsBii > 0. In addition,

3

(

1
2

)1−βk

−

(

3
2

)1−βk

+ ck
2 =

(

1
2

)1−βk

(4− 3 · 31−βk + 51−βk), (19)

3

(

1
2

)2−γl

−

(

3
2

)2−γl

+ dl
2 =

(

1
2

)2−γl

(4− 3 · 32−γl + 52−γl ). (20)

Let g(x) = 4− 3 · 3x + 5x, we know thatg(x) > 0 for x ∈ (0, 1) andg(x) < 0 for x ∈ (1, 3/2). Thus, for 0< βk < 1 and
1
2 < γl < 1, we have 3· ( 1

2)1−βk − ( 3
2)1−βk + ck

2 > 0 and 3· ( 1
2)2−γl − ( 3

2)2−γl + dl
2 < 0. Hence

M−1
∑

j=1, j,i

|Bi j | =

i−2
∑

j=1

|Bi j | +

M−1
∑

j=i+2

|Bi j | + |Bi,i−1| + |Bi,i+1|

<

S
∑

k=1

ak

Γ(2− βk)hβk

i−2
∑

j=−∞

(

ck
i− j+1 − ck

i− j

)

+

S̄
∑

l=1

blh1−γl

Γ(3− γl)

i−2
∑

j=−∞

(

dl
i− j+1 − dl

i− j

)

+

S
∑

k=1

ak

Γ(2− βk)hβk

+∞
∑

j=i+2

(

ck
j−i+1 − ck

j−i

)

+

S̄
∑

l=1

blh1−γl

Γ(3− γl)

+∞
∑

j=i+2

(

dl
j−i+1 − dl

j−i

)

+
h
4
+

S
∑

k=1

2ak

Γ(2− βk)hβk

[

3(
1
2

)1−βk − (
3
2

)1−βk + ck
2
]

+

S̄
∑

l=1

2blh1−γl

Γ(3− γl)
[

3(
1
2

)2−γl − (
3
2

)2−γl + dl
2
]

=

S
∑

k=1

ak

Γ(2− βk)hβk
· (−2ck

2) +
S̄

∑

l=1

blh1−γl

Γ(3− γl)
· (−2dl

2) +
h
4
+

S
∑

k=1

2ak

Γ(2− βk)hβk

[

3(
1
2

)1−βk − (
3
2

)1−βk + ck
2
]

+

S̄
∑

l=1

2blh1−γl

Γ(3− γl)
[

3(
1
2

)2−γl − (
3
2

)2−γl + dl
2
]

=
h
4
+

S
∑

k=1

2ak
[

3(1
2)1−βk − ( 3

2)1−βk
]

Γ(2− βk)hβk
+

S̄
∑

l=1

2blh1−γl
[

3(1
2)2−γl − ( 3

2)2−γl
]

Γ(3− γl)

<
3h
4
+

S
∑

k=1

2ak
[

3(1
2)1−βk − ( 3

2)1−βk
]

Γ(2− βk)hβk
+

S̄
∑

l=1

2blh1−γl
[

3(1
2)2−γl − ( 3

2)2−γl
]

Γ(3− γl)

= Bii .

The proof of Eq.(16) followspart b of Theorem 2 in [12]. �

SinceB = A−G−D is strictly diagonally dominant, thenB is nonsingular and invertible. The Crank-Nicolson scheme
can be rewritten as

Un = B−1(A+G+ D)Un−1 + B−1F. (21)

Theorem 3. Define W= (λ − 1)A− (λ + 1)(G+ D), for 0 < βk < 1, 1
2 < γl < 1, if λ > 1 or λ < −1, we can conclude that

W is strictly diagonally dominant, i.e.,

|Wii | >

M−1
∑

j=1, j,i

|Wi j |, i = 1, 2, · · · ,M − 1.

Proof.

Wi j =



























































































































































(λ + 1)
[

S
∑

k=1

ak

Γ(2−βk)hβk

(

ck
j−i − ck

j−i+1

)

+
S̄
∑

l=1

blh1−γl

Γ(3−γl )

(

dl
j−i − dl

j−i+1

)]

, j > i + 1,

(λ − 1)h
8 − (λ + 1)

{

S
∑

k=1

ak

Γ(2−βk)hβk

[

3
(1

2

)1−βk −
(3

2

)1−βk + ck
2

]

+
S̄
∑

l=1

blh1−γl

Γ(3−γl )

[

3(1
2)2−γl − ( 3

2)2−γl + dl
2

]}

, j = i + 1,

(λ − 1)3h
4 − (λ + 1)

{

S
∑

k=1

2ak

Γ(2−βk)hβk

[(3
2

)1−βk − 3
(1

2

)1−βk
]

+
S̄
∑

l=1

2blh1−γl

Γ(3−γl )

[

( 3
2)2−γl − 3(1

2)2−γl
]}

, j = i,

(λ − 1)h
8 − (λ + 1)

{

S
∑

k=1

ak

Γ(2−βk)hβk

[

3
(1

2

)1−βk −
(3

2

)1−βk + ck
2

]

+
S̄
∑

l=1

blh1−γl

Γ(3−γl )

[

3(1
2)2−γl − ( 3

2)2−γl + dl
2

]}

, j = i − 1,

(λ + 1)
[

S
∑

k=1

ak

Γ(2−βk)hβk

(

ck
i− j − ck

i− j+1

)

+
S̄
∑

l=1

blh1−γl

Γ(3−γl )

(

dl
i− j − dl

i− j+1

)]

, j < i − 1.
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(1) If λ > 1, sinceak > 0, bl < 0, (17) and (18) yield thatWii > 0. From Lemma 1 and Lemma 2, it is obvious that
Wii > 0 andWi j < 0 for j > i + 1 and j < i − 1. Now, we focus on the sign ofWi,i−1 andWi,i+1.

(i) If Wi,i−1 =Wi,i+1 = (λ−1)h
8−(λ+1)

{

S
∑

k=1

ak

Γ(2−βk)hβk

[

3
(1

2

)1−βk−
( 3

2

)1−βk+ck
2

]

+
S̄
∑

l=1

blh1−γl

Γ(3−γl )

[

3(1
2)2−γl−( 3

2)2−γl+dl
2

]}

< 0,

then

M−1
∑

j=1, j,i

|Wi j | =

i−2
∑

j=1

|Wi j | +

M−1
∑

j=i+2

|Wi j | + |Wi,i−1| + |Wi,i+1|

< (λ + 1)
[

i−2
∑

j=−∞

S
∑

k=1

ak

Γ(2− βk)hβk

(

ck
i− j+1 − ck

i− j

)

+

i−2
∑

j=−∞

S̄
∑

l=1

blh1−γl

Γ(3− γl)
(

dl
i− j+1 − dl

i− j

)

+

+∞
∑

j=i+2

S
∑

k=1

ak

Γ(2− βk)hβk

(

ck
j−i+1 − ck

j−i

)

+

+∞
∑

j=i+2

S̄
∑

l=1

blh1−γl

Γ(3− γl)
(

dl
j−i+1 − dl

j−i

)]

− (λ − 1)
h
4
+ 2(λ + 1)

{

S
∑

k=1

ak

Γ(2− βk)hβk

[

3
(1
2
)1−βk −

(3
2
)1−βk + ck

2
]

+

S̄
∑

l=1

blh1−γl

Γ(3− γl)
[

3
(1
2
)2−γl −

(3
2
)2−γl + dl

2
]}

< (λ − 1)
3h
4
+ 2(λ + 1)

{

S
∑

k=1

ak

Γ(2− βk)hβk

[

3
(1
2
)1−βk −

(3
2
)1−βk

]

+

S̄
∑

l=1

blh1−γl

Γ(3− γl)
[

3
(1
2
)2−γl −

(3
2
)2−γl

]}

=Wii .

Therefore,

|Wii | >

M−1
∑

j=1, j,i

|Wi j |.

(ii) If Wi,i−1 =Wi,i+1 = (λ−1)h
8−(λ+1)

{

S
∑

k=1

ak

Γ(2−βk)hβk

[

3
(1

2

)1−βk−
( 3

2

)1−βk+ck
2

]

+
S̄
∑

l=1

blh1−γl

Γ(3−γl )

[

3(1
2)2−γl−( 3

2)2−γl+dl
2

]}

≥ 0,

then

M−1
∑

j=1, j,i

|Wi j | =

i−2
∑

j=1

|Wi j | +

M−1
∑

j=i+2

|Wi j | + |Wi,i−1| + |Wi,i+1|

< (λ + 1)
[

i−2
∑

j=−∞

S
∑

k=1

ak

Γ(2− βk)hβk

(

ck
i− j+1 − ck

i− j

)

+

i−2
∑

j=−∞

S̄
∑

l=1

blh1−γl

Γ(3− γl)
(

dl
i− j+1 − dl

i− j

)

+

+∞
∑

j=i+2

S
∑

k=1

ak

Γ(2− βk)hβk

(

ck
j−i+1 − ck

j−i

)

+

+∞
∑

j=i+2

S̄
∑

l=1

blh1−γl

Γ(3− γl)
(

dl
j−i+1 − dl

j−i

)]

+ (λ − 1)
h
4
− 2(λ + 1)

{

S
∑

k=1

ak

Γ(2− βk)hβk

[

3
(1
2
)1−βk −

(3
2
)1−βk + ck

2
]

+

S̄
∑

l=1

blh1−γl

Γ(3− γl)
[

3
(1
2
)2−γl −

(3
2
)2−γl + dl

2
]}

= (λ − 1)
h
4
− 2(λ + 1)

{

S
∑

k=1

ak

Γ(2− βk)hβk

[

5
(1
2
)1−βk − 5

(3
2
)1−βk + 2

(5
2
)1−βk

]

+

S̄
∑

l=1

blh1−γl

Γ(3− γl)
[

5
(1
2
)2−γl − 5

(3
2
)2−γl + 2

(5
2
)2−γl

]}

< (λ − 1)
3h
4
+ 2(λ + 1)

{

S
∑

k=1

ak

Γ(2− βk)hβk

[

3
(1
2
)1−βk −

(3
2
)1−βk

]

+

S̄
∑

l=1

blh1−γl

Γ(3− γl)
[

3
(1
2
)2−γl −

(3
2
)2−γl

]}

=Wii
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as

2(λ + 1)
{

S
∑

k=1

ak

Γ(2− βk)hβk

[

8
(1
2
)1−βk − 6

(3
2
)1−βk + 2

(5
2
)1−βk

]

+

S̄
∑

l=1

blh1−γl

Γ(3− γl)
[

8
(1
2
)2−γl − 6

(3
2
)2−γl + 2

(5
2
)2−γl

]}

= 4(λ + 1)
{

S
∑

k=1

ak

Γ(2− βk)hβk

(1
2
)1−βk

[

4− 3 · 31−βk + 51−βk
]

+

S̄
∑

l=1

blh1−γl

Γ(3− γl)
(1
2
)2−γl

[

4− 3 · 32−γl + 52−γl
]}

> 0 > −(λ − 1)
h
2
.

Henceforth,|Wii | >
M−1
∑

j=1, j,i
|Wi j |.

(2) If λ < −1, it can be easily seen thatWii < 0 andWi j > 0 for j > i + 1 and j < i − 1. Along the same line of the proof

for the caseλ > 1, we also can obtain|Wii | >
M−1
∑

j=1, j,i
|Wi j |.

This proof is completed. �

Theorem 4. The spectral radius of B−1(A+G + D) satisfiesρ(B−1(A+G + D)) < 1, hence the Crank-Nicolson scheme
(21) is unconditionally stable.

Proof. SinceB,A,G andD are symmetric positive definite, it is easy to conclude thatB−1 is symmetric positive definite
and

B−1(A+G + D) = B−
1
2
(

B−
1
2 (A+G+ D)B−

1
2
)

B
1
2 ,

which means thatB−1(A+G+ D) ∼ B−
1
2 (A+G+ D)B−

1
2 . Thus,B−1(A+G+ D) andB−

1
2 (A+G+ D)B−

1
2 have the same

eigenvalues. The symmetric positive definiteness ofA,G,D andB gives thatB−
1
2 (A+G + D)B−

1
2 is symmetric positive

definite. Thus, all the eigenvalues ofB−
1
2 (A+G+ D)B−

1
2 are real and so areB−1(A+G+ D). Supposeλ is an eigenvalue

of B−1(A+G + D), and

det(λI − B−1(A+G+ D)) = det(B−1) · det(λB− (A+G+ D)) = 0. (22)

Note thatB is nonsingular and invertible, then det(B−1) , 0, thus det(λB− (A+G+ D)) = 0. Let W = λB− (A+G+ D),
then

W = (λ − 1)A− (λ + 1)(G+ D)

(i) If λ = ±1 or 0, it is obvious thatW is diagonally dominant;

(ii) If λ > 1 orλ < −1, Theorem 3 asserts thatW is also diagonally dominant.

Therefore, det(W) , 0 for all λ ≥ 1 or λ ≤ −1 or λ = 0. According to the above analysis, as the roots of the equation
det(λB− (A+G+ D)) = 0 exist,λ must satisfy−1 < λ < 0 or 0< λ < 1, which means the eigenvalue ofB−1(A+G+ D)
satisfy|λ| < 1. Thus,ρ(B−1(A+G+ D)) < 1, which completes the proof. �

By following the proof in Corollary 1 [12], it follows that

Lemma 3. For 0 < βk < 1, 1
2 < γl < 1, if ∂βk+1u(x,t)

∂xβk+1 ∈ L1(R), then

∂βku(x, tn)
∂xβk

∣

∣

∣

∣

x
i+ 1

2

x
i− 1

2

=

M−1
∑

j=1

un
j















dβkφ j(xi+ 1
2
)

dxβk
−

dβkφ j(xi− 1
2
)

dxβk















+O(h3), (23)

∂βku(x, tn)
∂(−x)βk

∣

∣

∣

∣

x
i+ 1

2

x
i− 1

2

=

M−1
∑

j=1

un
j















dβkφ j(xi+ 1
2
)

d(−x)βk
−

dβkφ j(xi− 1
2
)

d(−x)βk















+O(h3), (24)

I1−γl

0+ u(x, tn)
∣

∣

∣

∣

x
i+ 1

2

x
i− 1

2

=

M−1
∑

j=1

un
j
(

I1−γl

0+ φ j(xi+ 1
2
) − I1−γl

0+ φ j(xi− 1
2
)
)

+O(h3), (25)

I1−γl

1− u(x, tn)
∣

∣

∣

∣

x
i+ 1

2

x
i− 1

2

=

M−1
∑

j=1

un
j

(

I1−γl

1− φ j(xi+ 1
2
) − I1−γl

1− φ j(xi− 1
2
)
)

+O(h3). (26)

9



Theorem 5. Let un be the exact solution of the problem (3). Then the numerical solution Un unconditionally converges
to the exact solution un as h, τ andσ, ̺ tend to zero. Moreover,

‖un − Un‖ ≤ C(σ2 + ̺2 + τ2 + h2),

where un = (u(x1, tn), u(x2, tn), · · · , u(xM−1, tn)), Un = (un
1, u

n
2, · · · , u

n
M−1).

Proof. Let en
i denote the error at the point (xi , tn). Substitutingen

i = u(xi, tn) − un
i into (14) and combining (12) with

Eqs.(23)-(26) yields that

h
8

(en
i−1 + 6en

i + en
i+1) −

M−1
∑

j=1

en
j Gi j −

M−1
∑

j=1

en
j Di j =

h
8

(en−1
i−1 + 6en−1

i + en−1
i+1 )

+

M−1
∑

j=1

en−1
j Gi j +

M−1
∑

j=1

en−1
j Di j +O(τh(σ2 + ̺2 + τ2 + h2)).

Note thaten
0 = en

M = 0 ande0
i = 0 for i = 1, 2, · · · ,M − 1. Thus,

BEn = (A+G + D)En−1 +O(τh(σ2 + ̺2 + τ2 + h2))χ,

hereχ = (1, 1, · · · , 1)T ,En = (en
1, e

n
2, · · · , e

n
M−1)T . SettingQ = B−1(A+G + D) andb = O(τh(σ2 + ̺2 + τ2 + h2))B−1, by

iteration, one has
En =

(

Qn−1 + Qn−2 + · · · + I
)

b.

According to Theorem 2, we know thatρ
(

B−1) < 2
h andρ(Q) < 1, then there exists a vector norm and induced matrix

norm‖ · ‖ such that‖Q‖ < 1 and‖B−1‖ < Ch−1. Then upon taking norms, we have

‖En‖ ≤
(

‖Qn−1‖ + ‖Qn−2‖ + · · · + 1
)

‖b‖ ≤ n‖b‖ ≤ O(σ2 + ̺2 + τ2 + h2).

Therefore, ‖En‖ ≤ C(σ2 + ̺2 + τ2 + h2). �

4. Numerical examples

In order to illustrate the behavior of our numerical method and demonstrate the effectiveness of our theoretical analysis,
some examples are given.

4.1. Example 1

Firstly, we consider the following distributed-order equation [47]:

∂u(x, t)
∂t

=

∫ 2

1
P(α)

∂αu(x, t)
∂|x|α

dα +
∫ 1

0
Q(γ)

∂γu(x, t)
∂|x|γ

dγ + f (x, t), (x, t) ∈ (0, 1)× (0, 1], (27)

with boundary data
u(0, t) = 0, u(1, t) = 0,

and initial data
u(x, 0) = x2(1− x)2.

Here,

P(α) = −2Γ(5− α) cos
(πα

2
)

, Q(γ) =

{

0, 0 < γ ≤ 1
2 ,

2Γ(5− γ) cos
( πγ

2

)

, 1
2 < γ < 1.

f (x, t) = et x2(1− x)2
−

∫ 2

1
P(α)

∂αu(x, t)
∂|x|α

dα −
∫ 1

0
Q(γ)

∂γu(x, t)
∂|x|γ

dγ

= et x2(1− x)2 − et[R1(x) + R1(1− x)−R2(x)−R2(1− x)].
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Figure 1: Exact solution and numerical solution withσ = ̺ = τ = h = 1/80 att = 1.0.

Where,R1(x) = Γ(5) ·
1

ln x
(x3 − x2) − 2Γ(4)

[ 1
ln x

(3x2 − 2x) −
1

(ln x)2
(x2 − x)

]

+ Γ(3)
1

ln x
[

6x− 2−
5x
ln x
+

3
ln x
+

2x
(ln x)2

−
2

(ln x)2

]

,

R2(x) = Γ(5)
1

ln x
(

x
7
2 − x3) − 2Γ(4)

[ 1
ln x

(7
2

x
5
2 − 3x2) −

1
(ln x)2

(

x
5
2 − x2)]

+
Γ(3)
ln x

[35
4

x
3
2 − 6x−

1
ln x

(

6x
3
2 − 5x−

2x
3
2

ln x
+

2x
ln x

)]

.

The exact solution of Eq.(27) isu(x, t) = etx2(1− x)2.

Figure 1 exhibits a comparison of the exact and numerical solutions for this example. We can see that the numerical
solution is in excellent agreement with the analytical solution. Table 1 shows the error and convergence orders for our
method with respect toτ andh. For differentσ, ̺ (σ = ̺ = 1/40 andσ = ̺ = 1/80), with decreasingτ = h, the
convergence orders ofτ andh reach second order. Table 2 shows the error and convergence orders with respect toσ and
̺. For differentτ andh (τ = h = 1/100 andτ = h = 1/200), with decreasingσ = ̺, we can obtain that the convergence
orders ofσ and̺ are also second order. According to the errors and convergence rates in the first two tables, the finite
volume method for the Riesz-space distributed-order equations is effective and stable as expected.In Table 3, we present
a comparison of the errors and convergence orders between our finite volume method and finite difference method in [47].
Compared to [47], our numerical error is much smaller. Therefore, our method is more effective for the one-dimensional
case. However, when comes to high dimensional problem, [47]can apply alternating direction method to reduce the CPU
computation time, which is their advantage.

Table 1: The errors and convergence orders with respect toτ andh.

σ = ̺ = 1/40 σ = ̺ = 1/80
τ = h error order error order

1/8 2.9352E-03 - 2.9370E-03 -
1/16 7.5119E-04 1.97 7.5301E-04 1.96
1/32 1.8832E-04 2.00 1.9014E-04 1.99
1/64 4.5576E-05 2.05 4.7381E-05 2.00
1/128 9.6818E-06 2.23 1.1439E-05 2.05

4.2. Example 2

Next, we consider the following distributed-order equation [9, 42]:

∂u(x, t)
∂t

=

∫ 2

0
P(α)

∂αu(x, t)
∂|x|α

dα. (28)
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Table 2: The errors and convergence orders with respect toσ and̺.

τ = h = 1/200 τ = h = 1/400
σ = ̺ error order error order

1/2 9.9864E-04 - 1.0031E-03 -
1/4 2.4910E-04 2.00 2.5273E-04 1.99
1/8 5.9049E-05 2.08 6.2526E-05 2.02
1/16 1.1457E-05 2.37 1.4798E-05 2.08
1/32 1.8889E-06 2.60 2.8853E-06 2.36

Table 3: The errors and convergence orders comparison of FVMand FDM in [47] forσ = ̺ = 1/1000 att = 1.

FVM FDM
τ = h error order error order

1/20 4.8471E-04 - 3.592E-02 -
1/40 1.2238E-04 1.986 8.916E-03 2.010
1/80 3.0745E-05 1.993 2.204E-03 2.016
1/160 7.7034E-06 1.997 5.388E-04 2.032

According to [9, 42], ifu(x, 0) = δ(x) andP(α) = Klα−2[A1δ(α − α1) + A2δ(α − α2)], then the solution of Eq.(28) is a
convolution of two stable PDFs,

u(x, t) = a
− 1
α1

1 a
− 1
α2

2 t−
1
α1
− 1
α2

∫ +∞

−∞

Lα1,1

( x− x′

(a1t)
1
α1

)

Lα2,1

( x′

(a2t)
1
α2

)

dx′, (29)

wherea1 = A1K/l2−α1, a2 = A2K/l2−α2 andLα,1 is the PDF of a symmetric Lévy stable law given by its characteristic
function

L̂α,1(ξ) = exp(−|ξ|α).

As the exact solution involves convolution and inverse Fourier transform, it is challenging to observe the behavior of
u(x, t) directly from Eq.(29). Therefore the numerical solution becomes a promising tool. Without loss of generality, here
we consider the numerical solution of Eq.(28) with initial conditionu(x, 0) = δ(x − 0.5), x ∈ (0, 1) andK = 2, l = 3,
A1 = A2 = 1. To give the error estimate, here we choose the numerical solution u(x, tn) =

∑m−1
i=1 un

i φi(x) on a fine grid
(h = 1/500) as the exact solution. Then we adopt a set of points to calculate the discreteL2 error on the coarse grids,
which is given in the Table 4. We can see that the second order is attained, which shows the stability and reliability of
our method again. Now we observe the diffusion behaviour ofu(x, t). Figure 3 displays a diffusion behaviour ofu(x, t) at
different timest = 1, 5, 10, 20 that decays with increasing time. Figure 4 and Figure 5 illustrate the impact ofα1 andα2 on
the diffusion behaviour ofu(x, t). We can observe that with increasingα1 or α2, u(x, t) decays and the effect ofα2 on the
diffusion is more significant. Although we give the numerical scheme of Eq.(28), how to apply the scheme to solve the
actually problem and establish the connection between the kinetics equation and multifractality need further investigation.

Table 4: The errors and the convergence orders withσ = ̺ = 1/100,α1 = 0.955,α2 = 1.255 att = 1.

τ = h error order
1/160 1.0414E-02 -
1/200 7.3644E-03 1.55
1/320 2.7608E-03 2.09

4.3. Example 3

Finally, we consider the following distributed-order equation:

∂u(x, t)
∂t

=

∫ 2

1
P(α)

∂αu(x, t)
∂|x|α

dα +
∫ 1

0
Q(γ)

∂γu(x, t)
∂|x|γ

dγ, (x, t) ∈ (0, 1)× (0, 1], (30)

with boundary data
u(0, t) = 0, u(1, t) = 0,
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Figure 2: Numerical solution profile ofu(x, t) at differentt with σ = ̺ = 1/100,τ = h = 1/200,α1 = 0.955,α2 = 1.255.
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Figure 3: Numerical solution profile ofu(x, t) for differentα1 with σ = ̺ = 1/100,τ = h = 1/200,α2 = 1.255 att = 1.
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Figure 5: Numerical solution at different times.
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Figure 6: Numerical solution for differentα1.
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Figure 8: Numerical solution for differentP(α).
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and initial data
u(x, 0) = sin(πx).

Here we choose
P(α) = lα−2KA1δ(α − α1), Q(γ) = lγ−2KA2δ(γ − γ1),

σ = ̺ = τ = h = 1/100, l = 3, K = 1, A1 = 8 andA2 = 2. Firstly, in Figure 5 we exhibit the diffusion behavior
of u(x, t) at the different timesT = 0.5, 0.7, 1.0 with α1 = 1.255, γ1 = 0.755, which decays with increasing time.
Then we consider the diffusion behavior ofu(x, t) by choosing distinctα1 at T = 1.0 with γ1 = 0.755, which is shown
in Figure 6. Similarly, in Figure 7, we observe the diffusion behavior ofu(x, t) by adopting distinctγ1 at T = 1.0 and
zoom the [0.45, 0.55]× [0.852, 0.875] part. We can similarly see that with increasingα1 or γ1, u(x, t) decays and the
effect ofα1 on the diffusion is more significant. Finally, we exhibit a comparison graphics of the diffusive behavior of
u(x, t) by selecting differentP(α) or Q(γ) at T = 0.5 in Figure 8 and Figure 9 at timeT = 0.5, respectively, in which
P0(α) = 8 · 3α−2δ(α − 1.255), P1(α) = 1

α
, P2(α) = 1

α2 , P3(α) = 3α−2 andQ(γ) = 2 · 3γ−2δ(γ − 0.755) in Figure 8, while
Q0(γ) = 2 · 3γ−2δ(γ − 0.755),Q1(γ) = 1

γ
, Q2(γ) = 1

γ2 , Q3(γ) = 3γ−2 andP(α) = 8 · 3α−2δ(α − 1.255) in Figure 9. We can
conclude that the bothP(α) andQ(γ) have effects on the diffusion behavior ofu(x, t).

5. Conclusions

In this paper, we have investigated a second order in both space and time numerical scheme for the Riesz space
distributed-order advection-diffusion equation. We prove that the Crank-Nicolson scheme is unconditionally stable and
convergent with second order accuracyO(σ2 + ̺2 + τ2 + h2). Three numerical examples are presented to show the ef-
fectiveness of our computational method.In the future, we would like to develop the finite volume method to solve time
distributed-order, time-space distributed-order advection-diffusion equations in one-dimensional and two-dimensional s-
pace. Moreover, we shall consider other computational methods to improve the convergence rate.
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