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A vision-based sense-and-avoid system tested on a ScanEagle UAV

Dmitry Bratanov, Luis Mejias and Jason J. Ford.

Abstract— This paper presents a study of near collision
course engagements between a Cessna 172R aircraft and a
ScanEagle UAV carrying a custom built vision-based sense-and-
avoid system. Vision-based systems are an attractive solution for
the sense-and-avoid problem because of size, weight and power
considerations. We present post flight test analysis that shows
our detection system successfully detecting an approaching
Cessna aircraft in all 15 flight test encounters at ranges
greater than 1500 m, with no false alarms events. Moreover,
this paper characterises the image inter-frame stabilisation
required to achieve acceptable detection performance, and
compares a range of stabilisation techniques for achieving this
type of stabilisation precision. Our analysis illustrates that the
image inter-frame stabilisation requirements are demanding,
suggesting that images must be stabilised in real-time at 9Hz
to within 2 pixels between consecutive frames. We present
performance comparisons between stabilisation using GPS/INS,
IMU-only and image-based techniques.

I. INTRODUCTION

The current limitation of small-to-medium sized un-
manned aerial vehicles (UAVs) to replicate onboard human
pilot ability to sense-and-avoid (SAA) other aircraft, is one
of the main obstacles to greater integration of UAVs into
national airspace, and the routine and regular use of UAV for
commercial and civil applications in non-segregated airspace
[1], [2], [3], [4], [5]. A key challenge within the SAA
problem is to reliably and automatically detect potential mid-
air aircraft collisions (due to cost, power, size and weight
limitations that exclude well proven technology such as radar
for small to mediums sizes UAVs)[4]. Recently, vision-based
aircraft detection approaches have been shown to provide a
candidate approach for automated onboard mid-air aircraft
collision detection [6], [7], [8] (at least for detection from
sky-region backgrounds, under moderate to good lighting
conditions). However, these initial solutions have required
high accuracy inertial navigation systems (INS) to provide
an appropriate level of image stabilisation [6]. This image
stabilisation issue is examined in detail in this paper, and
several (low cost) approaches are characterised.

An automated vision-based SAA system would need to
detect any potential collision threats at sufficient distances
to allow enough time to avoid any potential collisions
(typically greater than 1 km) [9]. At these distances, at the
angular resolutions provided by current technologies, any
potential collision aircraft will only occupy a small number
of image pixels [9]. Over the last few decades, multi-stage
morphological-temporal filtering approaches have emerged
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as the leading candidates for achieving vision-based aircraft
collision detection (from sky-region backgrounds)[6], [7],
[8], [10], [11], [12]. These approaches required that the
any apparent image motion has been compensated using
an appropriate image stabilisation process (which has been
achieved in past studies through the use of expensive tactical
grade integrated GPS/INS system [7]).

The first contribution of this paper is the evaluation of
a custom built vision-based sense-and-avoid system fitted
to a ScanEagle UAV that is capable of reliable low-false
alarm sky-region aircraft collision detection. Motivated by
the importance and current cost of achieving inter-frame
stabilisation, a second contribution of this paper is to char-
acterise the inter-frame stabilisation requirement in terms
of overall system performance. This leads to a statement
of the stabilisation requirement in terms of the allowable
residue inter-frame motion remaining after the stabilisation
process. The final contribution of this paper is an examination
of several competing technologies for achieving stabilisa-
tion, which shows that the stabilisation requirement can be
achieved by an IMU-only based approaches that has lower
cost than a tactical grade GPS/INS approach.

This paper is structured as follows: In Section II, we
briefly provide an overview of the vision-based detection
system fitted to a ScanEagle UAV for testing purposes.
In Section III, we describe several candidate stabilisation
techniques. In Section IV, we present stabilisation analysis
studies, before presenting conclusions in Section V.

II. AN AUTOMATED VISION-BASED AIRCRAFT
DETECTION SYSTEM FOR UAVS

Over the last few years, spatial-temporal filter detection
approaches have emerged as candidate vision-based aircraft
detection systems for the SAA problem (at least for detection
of aircraft collisions emerging from the sky-region), for
instance see the approaches in [7], [8], [13]. However, a SAA
system will likely have a high degree of customisation due to
the different requirements and operational contexts of each
UAV. For a detailed overview of current technologies and
contexts, the reader is referred to [14], [15] (and references
within). For sky-region collision detection, our system in-
volve the components shown in Figure 1. In this section, we
briefly describe each of the components of this custom built
vision-based SAA system that has been fitted to a ScanEagle
UAV as shown in Figure 2.

Physical mount: The detection system needs to be phys-
ically mounted on the platform to allow sensing in the
direction of potential collision course aircraft. In addition
to allowing sensing in the desired direction, the mounting



Fig. 1. The basic components of a spatial-temporal filter detection system.

Fig. 2. Captured ScanEagle carrying a custom built nose mounted detection
system (left). Details of the custom built nose mounted detection system
(right). Note the detection system contains its own GPS/INS independent
of the host UAV.

system should protect the sensor, and provide a low vibration
sensing environment. Past examples of physical mounting
approaches include: mounting above the airframe [6], mount-
ing on a wing strut [7], or mounting on the nose of the
platform [9], [16]. In the developed system, as shown in
Figure 2, the detection system was mounted on the nose of
the ScanEagle UAV for the purposes of real-time detection
of an approaching aircraft.

Sensor: A visual sensor and optical lens combination
needs to be selected to visually sense potential collision
course aircraft at sufficient ranges with reasonable field-
of-view (FOV). Past sensing systems include: 1024 ⇥ 768
pixel Basler Scout Series camera [6], [7] and a 8 Mega
pixel sensor [16]. Also a range of sensors and FOV choices
were examined in [8], [12]. In addition, the suitability of
infrared sensors for this application was examined in [17]
and conformal sensors of different types in [18]. With
current technology, a single sensor is unlikely to achieve the
FOV requirements, but several researchers have suggested
mounting configurations involving multiple sensors [9], [16],
[19].

The developed system used a commercial off the shelf
(COTS) Point Grey Grasshopper 50S5M-C 5MP (mono)
camera with a 5mm focal length lens Navitar NMV-5m-
23. As an initial prototype, our detection system uses a
single sensor that achieves a suitable detection range but
with smaller FOV than might be desired (such as suggested
in [1], [9]), with the understanding that a future system could
be developed on the basis of multiple sensors. This sensor

is body-mounted in a forward looking direction (i.e. not
gimbal mounted). Although this camera has a high resolution
capability, for computational reasons only a centred region
of interest (ROI) of 1024 ⇥ 768 pixels (corresponding to a
FOV of 41.5� ⇥ 28.7�) was processed at 9Hz (mono 8-bit).

Spatial temporal filter detector: This is the key component
of a sky-region aircraft collision detection system that per-
forms image processing to produce a detection alert. Past
approaches include: morphological-dynamic programming
approaches [7], [11], [20], Morphological-Hidden Markov
model filtering approaches [6], [7], [20], Morphological-
Extended Kalman filter approaches [16], [18], [21]. Some
approaches have also used shape descriptions, SVM-based
classification [8], [21] or feature detection techniques [22].

These spatial temporal filter detector algorithms can be
implemented in real-time using specialised computational
hardware. Details of past Morphological-Hidden Markov
model filtering implementations on specialised Graphic Pro-
cessing units (GPUs) are provided in [13], [23]. Examples of
FPGA implementations of other SAA detection approaches
are given in [3], [9], [19].

The developed system used a Morphological-Hidden
Markov model filtering approach, which is extensively de-
scribed in [7] and references within. In this implementation
we used the filter described in [7], except for the 3⇥ 3 mor-
phological structuring element. We highlight that this filter
has been designed to allow a maximum of 2 pixels motion of
the target between frames (see [6], [7] for justification on this
value, this 2 pixels motion number will play an important role
in our later analysis studies). The algorithm was implemented
on a NVIDIA GeForce 9400M GPU with 16 graphical cores
which allowed image processing at 9Hz.

Detection alert: A detection alert is produced by the
spatial temporal filter detector and is available for use by
other systems on the UAV. For example, it could be used to
trigger a collision avoidance action as described in [24], [25],
[26]. In particular, the Morphological-Hidden Markov model
filtering approach used in the developed system produce a
detection statistic ⌘

k

. A threshold T

D

was selected, and a
detection alert issued whenever ⌘

k

> T

D

.
Image inter-frame stabilisation: An image inter-frame

stabilisation stage is required to minimise the inter-frame
motion between image frames, so that there are suitable
measurements for the spatial-temporal filter detection ap-
proach [6], [17]. In particular, the requirement for inter-
frame stabilisation stems from the temporal filtering stage
of the detection approach which requires that there is a
correspondence between the pixel locations in successive
frames.

The developed system contained a GPS/INS NovAtel
ADIS-SPAN system with custom built image capture syn-
chronisation to facilitate image stabilisation (that is, within
the custom built nose section, and not dependent on the
ScanEagle UAV). The primary focus of this paper is to in-
vestigate and characterise the image inter-frame stabilisation
component of the developed system, and this stabilisation
technology will be described in more detail in the following



section.

III. IMAGE INTER-FRAME STABILISATION
TECHNOLOGIES

One of the important outcomes of this paper is the charac-
terisation and study of inter-frame stabilisation approaches in
terms of overall system performance. There have been two
main approaches for inter-frame stabilisation suggested in
the context of the sky-region vision-based aircraft detection
problem: inertial measurement based stabilisation [7], [16],
and image-based stabilisation [6]. In this section, we describe
several candidate stabilisation approaches before we proceed
to examine their effects on the overall detection system
performance in Section IV.

A. Aircraft GPS/INS attitude based image inter-frame mo-

tion stabilisation

In the previous studies [7], a high accuracy onboard
GPS/INS system was used to estimate aircraft heading, pitch
and roll angles. In the following, we will describe a method
for using this high-quality aircraft attitude information (head-
ing, pitch and roll angles) to compensate for inter-frame
image motion (an alternative approach is described in [17]).

Let �
k

, ✓
k

,  
k

denote the sensed roll, pitch and heading
(or yaw) angles of the aircraft at time k > 0 (for example,
sensed by our GPS/INS NovAtel ADIS-SPAN system). First,
let us smooth the heading angle to allow for yawing motion
of the aircraft in the following manner:
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where ↵ = 0.01 has experimentally been found to be a
reasonable smoothing coefficient, and the smoothed angle is
initialised so that  MA

0 =  1. Then the image is roll com-
pensated using Nvidia’s built in roll compensation function
of �
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available on our GPU hardware which also implements
translation compensation by calculated amounts
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where ✓⇤ is camera mounting offset angle, f
x

= 1408 pixels
and f

y

= 1405 pixels are the calibrated focal lengths of our
camera system in the x and y directions.

B. Aircraft IMU-only based image inter-frame stabilisation

The detection system is sensitive to inter-frame motion,
rather than accuracy of the attitude information. This ob-
servation motivates consideration of estimating inter-frame
motion directly from inertial measurement unit (IMU) infor-
mation (with the benefit of avoiding an expensive GPS/INS
sensor). Low computational load and ability to operate at
small sampling rates significantly reduces power and hard-
ware necessary for image stabilisation in target detection.

One recently proposed IMU-only attitude estimation ap-
proach is the IMU based gradient descent orientation al-
gorithm [27] that estimates heading  ̂

k

, pitch ✓̂

k

, roll �̂
k

angles with minimal drift. We applied this gradient descent
algorithm (which adjustable drift parameter set at b = 0.01)

to the raw 200 Hz Analog Devices ADIS-16488 IMU sensor
data (part of the NovAtel ADIS-SPAN system). The algo-
rithm’s estimated quaternions were used to construct Euler
angle estimates �̂

k

, ✓̂
k

,  ̂
k

in the standard manner.
Comparison with a custom built unscented Kalman filter-

based approach for IMU-only attitude estimation (and fully
GPS/INS attitude solution) confirmed the observations in
[27] that this gradient descent algorithm performs no worse
as conventional Kalman filter-based IMU-only attitude es-
timation techniques, whilst avoiding the usual parameter
tuning burdens. Once an attitude estimate is produced, it can
be mechanised into roll and lateral shifts of the image by
using (1)-(2) but with �̂

k

, ✓̂
k

,  ̂
k

used in place of �
k

, ✓
k

,
 

k

, respectively.

C. Image-based stabilisation technologies

Image-based stabilisation is performed by first estimating
motion of the camera by analysing successive frames in
a video sequence. The motion of the camera is usually
described by a 3D dimensional motion vector, however for
stabilisation purposes only motion in 2D is generally used.
Once motion is estimated, the image is then shifted by an
amount proportional to the motion vector. There are two main
categories when describing motion estimation techniques:
feature-based and intensity-based. Feature-based methods
establish a correspondence between pairs of selected feature
points in two frames, and then attempts to match them
together in a motion model. This is more often useful for
applications of motion tracking. Intensity-based methods rely
on a constant intensity assumption, whereby the apparent
motion can be computed by measuring variations of intensity
values over time. This resulting pattern is a vector field
known as the optical flow field. In this paper, we make
use of feature-based techniques, and in particular, the Lucas-
Kanade method to estimate optical flow [28]. This is a well
established technique with many implementations, here we
used OpenCV version [29]. For details on this technique refer
to [30] and references within. Once optic flow is estimated,
a standard homography is applied to find the camera angles
between two consecutive frames. Finally, the current image is
stabilised (shifted) using the pitch and roll angles previously
estimated.

IV. FLIGHT TESTS AND DETECTION PERFORMANCE
STUDIES

In this section we conduct analysis studies related to the
image stabilisation process. We begin this section by the
describing the flight test data captured with the payload
fitted to a ScanEagle UAV [31]. Then, on the basis of
this flight test, we examine the baseline performance of
the system when using the GPS/INS NovAtel ADIS-SPAN
attitude solution for inter-frame image stabilisation. We then
examine the impact of inter-frame motion on the detection
performance by adding increasing levels of artificial inter-
frame image motion and then observing the resulting detec-
tion distance performance of the system. This study leads
to a description of the image stabilisation requirement to



Fig. 3. Different environment conditions from the flight test datasets
(zoomed to 450x500 pixel) in Encounter 2.

Fig. 4. Effect of the rain drop in three consecutive frames: no drop on
the left image, circular shaped drop contacted the lens in the centre, drop
disappearing due to airflow on the right image. Encounter 15.

ensure reliable detection. Finally, we conduct a comparison
study of various stabilisation approaches to evaluate a range
of proposed image stabilisation techniques.

A. Data capture

Data was captured from 15 head-on near collision course
encounters between a ScanEagle UAV carrying the custom-
built detection system and a Cessna 172R aircraft using
the approach described in [7]. During these flight tests,
encounters 1-5 were conducted in the afternoon with good
visibility, encounters 6-13 were conducted in the morning
with hazy visibility due to approaching inclement weather,
and encounters 14-15 were conducted in light rain condi-
tions. Figure 3 shows an example of sun reflections (frame
35, 1st encounter) and aircraft looking alike cloud features
(frame 687, 2nd encounter). Figure 4 shows 450x500 pixel
zoomed fragments of collected consecutive frames during
large rain drop and lens contact in 15th encounter. An
illustrative sample frame from encounter 14 is shown in
Figures 5 and 6.

B. Baseline system performance

Baseline stabilisation (GPS/INS image stabilisation): The
captured image sequences were stabilised using the GPS/INS
approach described in Section III-A. Detailed manual analy-
sis of these stabilised image sequences showed that much
of the raw inter-frame image motion had been removed
but that some residue of uncompensated inter-frame motion
remained (this is not completely surprising due to the attitude
accuracy limits of such inertial systems). Four of the 15
GPS/INS compensated image sequences (encounters 1, 8,
12 and 13, or 1046 frames in total) were manually analysed,
and the observed feature motion between frames was used

Fig. 5. Illustrative image frame from encounter 14 just after target is
detected (frame 790). The black region at bottom of the image is a result
of image stabilisation. The location of the detected target is shown by the
black box.

Fig. 6. Illustrative image frame cropped to show target (cropped from image
frame shown in Figure 5). The aircraft is at a distance of 1900 metres.

to estimate the amount of residue (or uncompensated) inter-
frame motion, which was 1.1 pixels per frame with a standard
deviation of 0.74 pixels.

Baseline detection performance: We now examine the
detection performance of the baseline system when using an
GPS/INS image stabilisation approach. Figure 7 illustrates
the typical behaviour of the baseline system’s detection
statistic (noting that higher values represent higher proba-
bilities that a target is present). As shown in this figure,
during a (near) collision course encounter the range between
aircraft will decrease until the aircraft are close enough and
the detection metric starts to rise. The strong distinct increase
in detection statistic between distances of 2000 m to 1000
m suggests that it is possible to achieve high probability of
detection with low probability of false alarm by appropriately
setting the threshold value T

D

.
Under a more detailed evaluation of all encounters, the
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Fig. 7. Example of detection metric ⌘k versus range (13th encounter).
Once aircraft is within a certain range, the detection metric is very distinct.

TABLE I
AVERAGE DETECTION DISTANCE VERSUS THRESHOLD CHOICE (15

ENCOUNTERS). NO FALSE ALARM EVENTS. STANDARD DEVIATIONS

SHOWN IN BRACKETS.

Threshold TD 0.45 0.6 0.8
Range 1886(156.9) m 1805(149.1) m 1606(129.7) m

baseline system with a detection threshold of 0.45 or above
successfully detected the near collision aircraft in all 15
encounters, with no false alarms. Table I shows a com-
parison of average detection range achieved for different
threshold choices. This study illustrates that the baseline
system robustly detected near collision course targets in this
experimental data set, and moreover illustrated that lower
threshold value can potentially achieve earlier detection (or
equivalently detection at longer range), but admittedly with
the potential of increased risk of false alarm events.

Hence the baseline system with GPS/INS image stabili-
sation approach seems to provide a credible technological
approach towards an automated image SAA technology for
UAVs. Two questions that arise are whether the high quality
stabilisation offered by the (high cost) GPS/INS technology
is actually required, and whether a cheaper or lighter tech-
nological solution might be adequate. We will study these
two questions in the following analysis.

C. Evaluation of the impact of inter-frame image motion on

detection performance

Inter-frame additive walk generation: For the purpose
of understanding the impact of image motion on detection
performance, we add additional inter-frame image motion
to the GPS/INS stabilised image sequence, and then run our
baseline detection system over this degraded image sequence
data.
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Fig. 8. Illustrative example of heading information corrupted caused by
additive deterministic walk of size D = 1.

To simplify our analysis we simulated the additional image
motion via an additive deterministic walk cycle of ten steps.
Let D denote the size of the inter-frame motion in units of
pixel, then the deterministic walk cycle (of amplitude 5D)
is described, for k > 0 by

�✓
k

= D(mod(k + 5, 10)� 5),

� 
k

= D(mod(k + 5, 10)� 5). (3)

This additive walk can be used to generate modified
attitude angles ✓̄

k

, ̄
k

as follows:
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where ✓
k

,  
k

are the GPS/INS solution for pitch and heading
at time k, and R

✓

, R
 

are orthogonal angular resolutions of
the sensor system in units of degree/pixel. Figure 8 shows an
example of the GPS/INS  

k

heading solution and modified
heading angle  ̄

k

after the addition of a walk noise with
D = 1 pixel.

An alternative stabilised image sequence (containing this
additional uncompensated motion) can then be produced by
using these modified attitude angles ✓̄

k

, ̄
k

to stabilise the
raw image sequence using the image sequence stabilisation
process described earlier in Section III-A but with ✓̄

k

,  ̄
k

used in place of ✓
k

, 
k

, respectively.
Performance in the presence of inter-frame additive walk:

The 15 encounters were examined with the 3 threshold
choices of: 0.45, 0.6 and 0.8. Figure 9 shows what proportion
of encounters could successfully achieve detection with
increasing additive walk size. This figure shows that with
threshold T

D

= 0.45 detection occurred in all datasets until
D = 0.6, that there was significant reduction in performance
for D > 0.9, but detection still occurred in some encounters
for D < 1.6. Moreover, the figure shows that the detection
system was less able to withstand additional inter-frame
motion when detection threshold T

D

was increased.
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Fig. 9. The proportion of encounters with successful detection versus
additive walk size. Performance reduces significantly for D > 0.9 and with
increasing threshold TD .

The encounter 3 experienced increased turbulence during
flight, and exhibited increased residue inter-frame image
motion following the GPS/INS image stabilisation such that
detection did not occur for D > 0.6, and hence this
encounter was removed from the next study of average
detection distance versus D. The detection distance of the
remaining 14 encounters for different D was examined with
the 3 threshold choices of: 0.45, 0.6 and 0.8. Figure 10
shows the average our SAA system detection distance as
a function of the size of additive walk. Only those data
points at which detection was achieved in all 14 encounters
are shown in this figure (thus explains why there are no
data points for D > 0.9). This figure (unsurprisingly) shows
that detection distance decreases with increasing threshold
T

D

and increasing size of additional additive walk D. This
observation and Figure 9 suggests the setting threshold T

D

as low as possible (whilst ensuring zero false alarm rate)
achieves longer detection distances and greatest robustness
to inter-frame motion. Alternatively, Figure 10 suggests
that improving inter-frame stabilisation improves detection
performance at a given threshold value.

Finally, we note that an inter-frame motion of D = 0.9
pixels added to the residue inter-frame motion of 1.1 pixels
that was measured in Section IV-B illustrates that the basic
detection system can tolerate inter-frame motion as great as
2 pixels with a detection threshold T

D

= 0.45. This observa-
tion is consistent with previous reports about the amount of
inter-frame motion that can be handled by Morphological-
Hidden Markov model filter detection approaches (where
this limit stems from the size of morphological structuring
element, which allowed 2 pixels in this implementation),
see [6]. The unreliable but occasional detection capability
for D > 0.9 described by Figure 9 occurs because the
Hidden Markov model filters in the baseline detection system
have some ability to “coast” over occasional inter-frame
motions beyond the 2 pixel allowance, whilst the apparent
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Fig. 10. Average detection distance versus additive deterministic walk size,
averaged over 14 encounters2. Standard error bars are shown.

variation in inter-frame tolerance between encounters occurs
because of variations in the residue inter-frame motion in
each encounter.

Remark: Although not presented here, we also conducted
studies where the additional additive motion was described
by additive Gaussian noise, rather than the deterministic
bounded walk described above. Analysis with additive Gaus-
sian noise leads to observations similar to those presented
here, however also demonstrates that the detection system
has some ability to handle occasional inter-frame motion of
a greater size (i.e. greater than 2 pixels). We are currently
investigating methods for properly characterising the system
capability when facing occasional inter-frame motion greater
than 2 pixels.

D. Comparison of alternative techniques for image stabili-

sation

We considered the inter-frame stabilisation on the basis of
the following attitude solutions:

• Aircraft GPS/INS attitude solution,
• Post-processed differential GPS/INS attitude solution,
• IMU-only attitude solution [27], and
• Image-based inter-frame stabilisation.
We begin with an illustrative comparison in Figure 11

which shows a comparison of the pitch attitude solution
achieved by the GPS/INS, IMU-only stabilisation approaches
and a post-processed (PP) attitude solution approach. The
post-process solution was generated using differential GPS
solution based on AUSPOS service3 within the NovAtel
Waypoint Inertial Explorer post-processing software. This
differential GPS post-processed multipass NovAtel Waypoint
Inertial Explorer solution cannot be implemented in real-time

2Encounter 3 was not included due to rough turbulence and excessive
residue inter-frame image motion before any additional motion was even
added.

3
http://www.ga.gov.au/scientific-topics/

positioning-navigation/geodesy/auspos
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Fig. 12. Comparison of detection metric versus range using GPS/INS
stabilisation (dotted line) and IMU-only stabilisation (solid line) in the 13th
encounter. In this case, the IMU-only approach leads to an early detection
alert (alerted at 1920 m compared to 1861 m, when TD = 0.45).

but is included to illustrate the best performance that might
be expected.

As expected, the offset in the IMU-only pitch attitude
solution illustrates that the IMU-only stabilisation approach
exhibits a drift in estimation accuracy over time (however,
this offset may not matter because the performance of the
detection approach is sensitive to inter-frame motion, rather
than absolute accuracy). Figure 12 shows a detection metric
comparison of the GPS/INS stabilisation approach with the
IMU-only stabilisation approach. The performance of the two
approaches is quite similar in this illustrative case, but the
IMU-only approach leads to an earlier detection alert (alerted
at 1920 m compared to 1861 m, when T

D

= 0.45).

The candidate approaches were then more extensively
compared on the basis of their detection distance perfor-
mance on all encounters (unfortunately, insufficient IMU
data was recorded in the 15th encounter to allow the IMU-
only approach to be implemented). In this comparison, all
detection systems use T

D

= 0.45 (but we noted similar
performance under other threshold choices). Table II shows
the detection distance comparison of GPS/INS attitude so-
lution approach, IMU-only attitude solution approach, PP
attitude solution approach and the image-based stabilisation
approach.

This table suggests roughly similar levels of detection
distance performance when stabilised by either the GPS/INS
or IMU-only approaches (although it is surprising that the
IMU-only approach leads to similar mean detection distance,
admittedly with higher variance, to the differential GPS post-
processed stabilisation approach). Importantly, this study
illustrates that the IMU-only approach is able to reduce
inter-frame motion to an amount at least comparable to
the GPS/INS approach, even though the absolute error in
heading and pitch angle grows with time. Although not
done here, the attitude drift might be further compensated
using earth’s magnetic sensor measurements (available in
the Analog Devices ADIS-16488 IMU sensor). However, the
benefits of the extra compensation are likely to be minor.

TABLE II
COMPARISON OF DETECTION DISTANCE FOR DIFFERENT STABILISATION

APPROACHES. TD = 0.45 (NO FALSE ALARM EVENTS). STANDARD

DEVIATIONS SHOWN IN BRACKETS.

Encounter GPS/INS, m IMU, m PP, m Image, m
1 1792 1497 1732 1581
2 1869 2563 1969 1582
3 1573 1522 1599 1695
4 2113 2031 2121 1798
5 1810 1869 1903 1549
6 1801 2038 1801 1565
7 1980 2195 2180 1315
8 2031 1968 2013 1528
9 1976 2019 2286 1194
10 2184 1907 2184 1574
11 1946 1946 1939 1701
12 1861 1942 1942 1312
13 1776 1920 1828 1069
14 1857 1959 1900 1464
15 1715 n/a† n/a† 1567
Average 1886 1955 1957 1502

(156.9) (256.1) (189.3) (195.3)
† Encounter 15 had insufficient IMU data recorded to allow either the IMU-
only or the post-processed approach to be implemented.

The table also illustrates that, on average, an image-
based inter-frame stabilisation approach achieved shorter
detection distances than the other inertial sensor based ap-
proaches. It was noticed that the image-based approach was
computationally slower and less accurate in environments
with less distinct image features. Importantly, the image-
based stabilisation approach out-performed the inertial based



approaches in encounter 3 (which involved significant flight
turbulence and platform motion that was not inertially sensed
accurately). Overall, considering the significantly reduced
cost of the IMU-only approach, this study suggests that the
IMU-only approach might be the preferred implementation
approach in a real system.

V. CONCLUSIONS

This paper described the performance of a custom built
image-based SAA system fitted to a ScanEagle UAV for
testing purposes. This paper studied the impact of inter-frame
motion on detection performance, and also evaluated the
performance of several candidate stabilisation approaches.
The investigation showed that the stabilisation requirement
is related to a design choice within the detection algorithm.
Significantly, this study also demonstrated that this inter-
frame stabilisation requirement can be achieved using a
much cheaper IMU-only stabilisation approach compared
to the current expensive GPS/INS approach. Finally, this
study suggested that inertial based approaches resulted in su-
perior performance to image-based inter-frame stabilisation
approaches.
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