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Inverse Noncooperative Differential Games

Timothy L. Molloy, Jason J. Ford, and Tristan Perez

Abstract— Differential games are an important mathematical
tool for studying conflict in applications across engineering,
economics, and ecology. In noncooperative differential games,
the players (or decision makers) are concerned with achieving
their individual objectives under the dynamic constraints of
a system governed by differential equations without relying
on the cooperation of others. In this paper, we propose
three methods of inverse noncooperative differential games
that enable the recovery of player cost-functional parameters
from open-loop Nash equilibria. We first propose a nested
optimisation approach that provides a direct method for solving
inverse differential game problems. We then develop connec-
tions between our inverse noncooperative differential game
problem and the existing problem of inverse optimal control to
propose two alternative methods with modest implementation
and computational demands. We illustrate and compare our
three methods in simulation.

I. INTRODUCTION

Differential games provide a rich framework for analysing
conflicts between multiple players (or decision makers) in
continuous-time dynamical systems across fields including
automatic control [1], [2], economics [3], management [3],
and ecology [4]. In these fields, prior work in the area
of differential games has primarily been concerned with
developing techniques for identifying and analysing game
solutions under a variety of optimality concepts, information
structures, and cooperation assumptions. Noncooperative dif-
ferential games have arguably attracted the most attention in
the field of automatic control due to their utility in solving
robust control problems [1], and their applicability to real-
world problems such as vehicle collision avoidance [2]. A
considerable body of literature therefore exists for solving
noncooperative differential games to identify player controls
(or decisions) that achieve the objectives of individual players
despite conflicts of interest. In contrast, the inverse problem
of recovering the underlying objectives of individual players
from solutions to noncooperative differential games has re-
ceived limited attention. In this paper, we consider the inverse
differential game problem of computing the underlying ob-
jectives of individual players in an N -player noncooperative
differential game from example game solutions.

A noncooperative differential game involves multiple play-
ers individually selecting controls for a system governed
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by differential equations with the aim of minimising their
individual cost functionals [1]. Noncooperative differential
games are solvable under various information structures
governing the information players have access to about
the system state and the player controls. Open-loop Nash
equilibrium solutions are of particular interest since they
provide a benchmark for the value of the game [5]. These
open-loop Nash equilibrium solutions describe the controls
that players should select given only knowledge of the initial
game state so that they can do no better when every other
player selects their open-loop Nash equilibrium controls [1].
When solved under this open-loop information structure,
N -player noncooperative differential games are therefore
analogous to solving N coupled optimal control problems.

The majority of recent work on differential games has
focused on establishing properties of equilibrium solutions.
However, in the related fields of optimal control, static game
theory, and optimisation, there has been interest in inverse
problems involving the recovery of underlying objectives
from observed optimal or Nash equilibrium solutions [6]–
[13]. For example, [14] used necessary optimality conditions
to propose an approach for recovering the parameters of
optimisation problems from optimal solutions. Similar ap-
proaches based on analogous necessary optimality conditions
have since been developed to solve inverse static game [7],
[8], [13] and inverse optimal control problems [9], [10], [15].

The literature concerned with dynamic games (i.e., games
with state dynamics) has also started to examine the inverse
problem of estimating the underlying objectives of players
from Nash equilibrium solutions [16]–[21]. Most of these
inverse dynamic game problems have been posed and solved
in the discrete-time setting with the state evolving according
to either a Markov decision process with finite-state and
control space [16] or a set of difference equations [18]–
[20]. Although some progress has been made in posing and
solving inverse dynamic game problems in the continuous-
time setting where the states evolve according to finite-state
Markov processes [17], limited progress has been made in
posing and solving inverse differential game problems (i.e.,
dynamic games with state dynamics governed by differential
equations). For example, a two-player inverse differential
game problem was posed and solved in [21] under the
restrictive assumption that the control law of one player is
known so that the problem reduces to solving an inverse
optimal control problem.

In this paper, we consider inverse N -player noncoop-
erative differential games under an open-loop information
structure – including their reduction to inverse optimal
control problems without the restrictive assumption of [21].



Although open-loop differential games can also be reformu-
lated as (static) infinite-dimensional continuous games (cf.
[22]), our reduction of inverse differential game problems to
inverse optimal control problems rather than inverse contin-
uous games is fruitful due to the range of control-theoretic
techniques for inverse optimal control with continuous-time
systems governed by differential equations [10]–[12]. For
example, [12] proposes a bilevel optimisation approach for
recovering parameters of an optimal control cost-functional
from optimal state and control trajectories, and [10] proposes
an elegant alternative approach that exploits the minimum
principle of optimal control.

The key contribution of this paper is the proposal of three
approaches for solving open-loop inverse N -player noncoop-
erative differential game problems. We first propose a direct
method for solving our inverse differential game problem
without exploiting connections to inverse optimal control.
We then exploit connections between our inverse differential
game problem and the problem of inverse optimal control to
propose two simplified methods of inverse differential games
that are similar to the bilevel optimisation [12] and minimum
principle [10] methods of inverse optimal control.

This paper is structured as follows. In Section II, we pose
our inverse noncooperative differential game problem. In
Section III, we propose our three methods of inverse non-
cooperative differential games. In Section IV, we present an
illustrative simulation example before conducting a thorough
simulation study of our three proposed methods. Finally, we
present conclusions in Section V.

II. PROBLEM STATEMENT

We will consider a continuous-time N -player (poten-
tially nonzero-sum) noncooperative differential game played
with an open-loop information structure. Let us define the
continuous-time (potentially nonlinear) state process of the
game over the time interval t ∈ [0, T ] as

ẋ(t) = f
(
t, x(t), u1(t), . . . , uN (t)

)
, x(0) = x0 (1)

where x0 ∈ Rn is the initial state vector, f (·, ·, . . . , ·)
are (potentially nonlinear) functions that satisfy the usual
conditions for ensuring the uniqueness of solutions (cf. [1,
p. 226]), and ui(t) ∈ U i are control inputs belonging to the
control sets U i ⊂ Rmi for i ∈ N , {1, . . . , N}. Let x denote
the entire state trajectory, namely x (t) for t ∈ [0, T ], and let
ui denote the entire ith control trajectory, namely ui (t) for
t ∈ [0, T ]. We assume that the ith control trajectory ui is
selected by a player who is attempting to minimise the cost
functional

J i
(
u1, . . . , uN , θi

)
,
∫ T

0

θi′gi
(
t, x(t), u1(t), . . . , uN (t)

)
dt

(2)

subject to the constraints of the dynamics (1) and controls
ui(t) ∈ U i where gi (·, ·, ·, . . . , ·) : [0, T ] × Rn × Rm1 ×
. . . × RmN 7→ RMi are known basis functions, and θi ∈
Θi ⊂ RMi is a vector of parameters.

The solutions to the N -player noncooperative differential
game (1) and (2) played with an open-loop information struc-
ture are open-loop Nash equilibria. The control trajectories
uiθ for i ∈ N constitute an open-loop Nash equilibrium
solution of the game (1) and (2) with parameters θi ∈ Θ
for i ∈ N if and only if the inequalities [1, p. 266]

J1
(
u1
θ, u

2
θ, . . . , u

N
θ , θ

1
)
≤ J1

(
u1, u2

θ, . . . , u
N
θ , θ

1
)

J2
(
u1
θ, u

2
θ, . . . , u

N
θ , θ

2
)
≤ J2

(
u1
θ, u

2, . . . , uNθ , θ
2
)

...

JN
(
u1
θ, u

2
θ, . . . , u

N
θ , θ

N
)
≤ JN

(
u1
θ, u

2
θ, . . . , u

N , θN
) (3)

hold for all admissible player control trajectories ui. We shall
denote the states associated with open-loop Nash equilibrium
control trajectories uiθ for i ∈ N as xθ(t) for t ∈ [0, T ],
and we will let xθ denote the open-loop Nash equilibrium
state trajectory. Finally, let U i

(
θ1, . . . , θN

)
denote the set

of open-loop Nash equilibrium control trajectories uiθ for
player i in the N -player nonzero-sum noncooperative game
(1) and (2) with parameters θi ∈ Θi for i ∈ N. Similarly,
let X

(
θ1, . . . , θN

)
denote the set of open-loop Nash equi-

librium state trajectories xθ for the N -player noncooperative
game (1) and (2) with parameters θi ∈ Θi for i ∈ N.

In the inverse N -player noncooperative differential game
problem, we are given the state trajectory x∗ and the control
trajectories ui∗ for i ∈ N that satisfy the conditions (3) of
an open-loop Nash equilibrium solution for the parameters
θi = θi∗ ∈ Θ for i ∈ N. We assume that some (or all)
of the player cost-functional parameters θi∗ are unknown.
Our aim is to recover the unknown parameters θi∗ from
open-loop Nash equilibrium trajectories given knowledge of
the dynamics f (·, ·, . . . , ·), the constraint sets U i, and the
basis functions gi (·, ·, . . . , ·) for i ∈ N. We shall make no
assumptions about the linearity of the state dynamics (1) or
the convexity of the cost functionals (2).

By inspecting (3), we note that the unknown parameters
θi∗ will only be recoverable up to an unknown scale since
if x∗ and ui∗ constitute an open-loop Nash equilibrium of
the differential game (1) and (2) with θi = θi∗, then they
are also an open-loop Nash equilibrium of the game with
θi = riθi∗ for any 0 < ri < ∞ and i ∈ N. We also note
that θi = 0 is a trivial solution to the inverse differential
game problem. Without loss of generality, in this paper we
enforce unambiguous scaling and avoid trivial solutions by
considering the sets Θi , {θi ∈ RMi : θi1 = 1} for all i ∈ N.
Similar approaches to avoiding non-unique scaling are used
widely in inverse optimal control literature (cf. [10], [12],
[23]), along with approaches that constraint the sum of the
elements of θi to 1 (cf. [24]).

III. METHODS OF INVERSE DIFFERENTIAL GAMES

In this section, we propose three methods for solving the
inverse differential game problem. Our first method solves
the inverse differential game problem by finding player
cost-functional parameters that lead to matching open-loop
Nash equilibrium trajectories. We then exploit connections



between optimal control and differential games to propose
our other two methods of inverse differential games.

A. Proposed Nested Optimisation (NOP) Method

To present our first method of inverse differential games,
let us define the objective functional

JT
(
x, u1, . . . , uN

)
=

∫ T

0

[
‖x(t)− x∗(t)‖2 +

N∑
i=1

‖ui(t)− ui∗(t)‖2
]
dt.

(4)

This objective functional provides a natural squared-error
metric between candidate state x and control trajectories ui,
and the open-loop Nash equilibrium state x∗ and control tra-
jectories ui∗ where i ∈ N. In our nested optimisation (NOP)
method, we therefore propose finding player cost-functional
parameters θi for i ∈ N by solving the optimisation problem

inf
θ1,...,θN

JT
(
xθ, u

1
θ, . . . , u

N
θ

)
s.t. xθ ∈ X

(
θ1, . . . , θN

)
uiθ ∈ U i

(
θ1, . . . , θN

)
, i = 1, . . . , N

θi ∈ Θi, i = 1, . . . , N.

(5)

Our proposed NOP method (5) intuitively aims to find player
cost-functional parameters θi that give rise to open-loop Nash
equilibrium trajectories that closely match the open-loop
Nash equilibrium trajectories associated with the unknown
parameters θi∗ for i ∈ N. The NOP method involves
nested optimisation since the constraints in (5) are met by
solving the N -player noncooperative differential game (1)
and (2) with candidate parameters θi for open-loop Nash
equilibrium trajectories xθ and uiθ for i ∈ N. Solving N -
player noncooperative differential games for open-loop Nash
equilibria is nontrivial in general, and so the implementation
of our proposed NOP method is typically demanding and
complex. For example, we later implement our NOP method
using a derivative-free numeric optimisation technique, and
a numeric two-point boundary value problem solver to solve
the N -player noncooperative differential games. We shall
now propose two simplified methods of inverse differential
games that do not require the nested solution of differential
games for candidate cost-functional parameters.

B. Proposed Bilevel Optimisation (BOP) Method

To present our second method of inverse differential
games, recall that in our inverse noncooperative differential
game problem, we are given the open-loop Nash equilibrium
control trajectories ui∗ for all i ∈ N. By inspecting the
conditions for open-loop Nash equilibria (3), we see that the
ith player control trajectory ui∗ is the solution to the optimal
control problem

inf
ui

J i
(
u1∗, . . . , ui, . . . , uN∗, θi∗

)
s.t. ẋ(t) = f

(
t, x(t), u1∗(t), . . . , ui(t), . . . , uN∗(t)

)
x(0) = x0

ui(t) ∈ U i, t ∈ [0, T ]

(6)

given the N − 1 open-loop Nash equilibrium control trajec-
tories of the other players (uj∗ with j ∈ N, j 6= i). Hence,
we may recover the parameters θi∗ for any player i ∈ N by
solving the inverse optimal control problem corresponding
to the optimal control problem (6). Our second proposed
method of inverse differential games is therefore to solve
an inverse optimal control problem for each player i ∈ N
using the bilevel optimisation method of [12]. Specifically,
our proposed bilevel optimisation (BOP) method is to solve
the optimisation problem

inf
θi
J̄T
(
xθ, u

i
θ

)
s.t. ẋθ(t) = f

(
t, xθ(t), u

1∗(t), . . . , uiθ(t), . . . , u
N∗(t)

)
J i
(
u1∗, . . . , uiθ, . . . , u

N∗, θi
)

≤ J i
(
u1∗, . . . , ui, . . . , uN∗, θi

)
∀ui ∈ U i

xθ(0) = x0

uiθ(t) ∈ U i, t ∈ [0, T ]

θi ∈ Θi

(7)

for all i ∈ N where we define the squared error objective
functional

J̄T
(
x, ui

)
=

∫ T

0

[
‖x(t)− x∗(t)‖2 + ‖ui(t)− ui∗(t)‖2

]
dt.

In contrast to our NOP method, our BOP method recovers
the parameters of a single player without needing to compute
those of the other players. Furthermore, our BOP method
avoids solving nested differential games by instead solving
optimal control problems. Since the solution of optimal con-
trol problems is usually easier than the solution of differential
games, implementations of our proposed BOP method will
usually be less complex and less computationally expensive
than implementations of our NOP method. We shall now
propose our final method of inverse differential games that
avoids the need to solve nested optimal control and differ-
ential game problems for candidate parameters.

C. Proposed Minimum Principle (MP) Method

Our third proposed method of inverse differential games is
inspired by the minimum principle method of inverse optimal
control proposed in [10]. In contrast to [10], we shall propose
our method by exploiting necessary conditions for open-loop
Nash equilibria.

1) Necessary Conditions for Open-Loop Nash Equilibria:
Let us define the Hamiltonian of the ith player, i ∈ N, as

Hi
(
t, λi(t), x(t), u1(t), . . . , uN (t), θi

)
, θi′gi

(
t, x(t), u1(t), . . . , uN (t)

)
+ λi′(t)f

(
t, x(t), u1(t), . . . , uN (t)

)
for t ∈ [0, T ] where λi(·) : [0, T ] 7→ Rn for t ∈ [0, T ]
are costate (or adjoint) functions. Let us also introduce the
following assumptions.

Assumption 1: The function f
(
t, ·, u1(t), . . . , uN (t)

)
is

continuously differentiable on Rn for all t ∈ [0, T ].



Assumption 2: The player cost-functional basis functions
gi
(
t, ·, u1(t), . . . , uN (t)

)
are continuously differentiable on

Rn for all i ∈ N and all t ∈ [0, T ].
Assumption 3: The open-loop Nash equilibrium controls

ui∗(t) of the N -player noncooperative dynamic game (1) and
(2) with θi = θi∗ are in the interior (i.e., not the boundaries)
of the control constraint sets U i for all for t ∈ [0, T ] and all
i ∈ N.

Assumptions 1 and 2 are conditions on the dynamics
and cost functional of the game that are trivially satisfied
by linear dynamics with quadratic cost functional. Both of
these assumptions are standard in the study of N -player
noncooperative differential games (cf. [1, Chapter 6]). In
contrast, Assumption 3 is potentially restrictive since it
excludes the use of open-loop Nash equilibrium trajectories
with active control constraints. It is however easily checked
given knowledge of the player control trajectories ui∗ and
constraint sets U i.

Let us now define the shorthand notation
ft , f

(
t, x∗(t), u1∗(t), . . . , uN∗(t)

)
, and git ,

gi
(
t, x∗(t), u1∗(t), . . . , uN∗(t)

)
, for i ∈ N. We shall

denote the matrix of partial derivatives of f (·, ·, . . . , ·) with
respect to x(t) evaluated at t, x∗(t) and ui∗(t) for i ∈ N as

∇xft ,


∂f1

t

∂x1(t) . . .
∂fn

t

∂x1(t)

...
. . .

...
∂f1

t

∂xn(t) . . .
∂fn

t

∂xn(t)

 .
We shall similarly use ∇uift to denote the matrix of partial
derivatives of f (·, ·, . . . , ·) with respect to ui(t) evaluated at
t, x∗(t) and ui∗(t). Finally, let ∇xgit and ∇uigit denote the
matrices of partial derivatives of gi (·, ·, . . . , ·, ·) by x(t) and
ui(t), respectively (evaluated at x∗(t), ui∗(t) for i ∈ N).

Under Assumptions 1 and 2, Theorem 6.11 of [1] gives
that if x∗ and ui∗ for i ∈ N are open-loop Nash equilibrium
trajectories of the N -player noncooperative differential game
(1) and (2) with parameters θi = θi∗ ∈ Θ for i ∈ N, then
the player costate functions solve the differential equations

λ̇i (t) = −∇xHi
(
t, λi(t), x∗(t), u1∗(t), . . . , uN∗(t), θi∗

)
(8)

with terminal boundary condition λi′ (T ) = 0 for i ∈ N.
Furthermore, the player controls satisfy

ui∗ (t) = arg min
ū∈Ui

Hi
(
t, λi(t), x∗(t), u1∗(t), . . . ,

ui−1∗(t), ū, ui+1∗(t), . . . , uN∗(t), θi∗
)

for all t ∈ [0, T ] and all i ∈ N, which, under Assumption 3,
reduces to the Hamiltonian gradient conditions that

∇uiHi
(
t, λi(t), x∗(t), u1∗(t), . . . , uN∗(t), θi∗

)
= 0 (9)

for all t ∈ [0, T ] and all i ∈ N.
By recalling the parameterisation of the player cost func-

tionals (2) and our shorthand notation, we may rewrite the
necessary conditions expressed in the differential equations
(8) and (9) for i ∈ N as the system of equations

F i(t)zi∗(t) +Gi(t)vi∗(t) = 0 (10)

where vi∗(t) , λ̇i(t), Gi(t) , [In, 0]′ ∈ R(mi+n)×n,

F i(t) ,

[
∇xgit ∇xft
∇uigit ∇uift

]
, and zi∗(t) ,

[
θi∗

λi(t)

]
.

It follows that for i ∈ N,

żi∗ (t) = Bivi∗(t)

where Bi , [0, In]′ ∈ R(Mi+n)×n, and the terminal
boundary condition implies that

zi∗(T ) =

[
θi∗

0

]
. (11)

Here, we have used In to denote the n× n identity matrix.
We now exploit the system of equations (10) to propose
our minimum principle (MP) method of inverse differential
games.

2) Minimum Principle (MP) Method: Our proposed MP
method of inverse differential games is to find player cost-
functional parameters and costate variables that minimise
the violation of the necessary conditions of open-loop Nash
equilibria (10) that hold exactly under Assumptions 1 – 3.
Specifically, our proposed MP method is to identify functions
zi(·) : [0, T ] 7→ RMi+n and vi(·) : [0, T ] 7→ Rn for each
player i ∈ N that solve the optimal control problem

inf
zi(·),vi(·)

∫ T

0

‖F i(t)zi(t) +Gi(t)vi(t)‖2 dt

s.t. żi(t) = Bivi(t).

(12)

We may then simply extract the parameters of player’s cost-
functional θi∗ ∈ Θ from the corresponding components of
zi(t) for any t ∈ [0, T ] (under the constraints imposed by
the set Θ).

Although our method appears to require the solution of N
optimal control problems of the form (12) with free initial
states, we note that the system dynamics are linear, and the
objective functional is quadratic in the sense that

‖F i(t)zi(t) +Gi(t)vi(t)‖2

= zi′(t)Qi(t)zi(t) + vi′(t)Ri(t)vi(t) + 2zi′(t)Si(t)vi(t)

for i ∈ N where Qi(t) , F i′(t)F i(t), Ri(t) , Gi′(t)Gi(t),
and Si(t) , F i′(t)Gi(t). We may therefore apply the
standard tools of linear quadratic (LQ) optimal control to
solve our inverse differential game problem (regardless of the
linearity of the system dynamics (1)). The following theorem
establishes a useful approach for solving our proposed MP
problem (12).

Theorem 1: Consider any player i ∈ N. If Ri(t) is
positive definite for all t ∈ [0, T ], and

Qi(t)− Si(t)(Ri(t))−1Si′(t)

is nonnegative definite for all t ∈ [0, T ], then the function
zi(·) solving (12) is the solution to the differential equation

żi(t) = BiKi(t)zi(t) (13)



for t ∈ [0, T ] with initial conditions zi(0) = zi0 given by the
solution to the optimisation problem

inf
zi0∈RMi+n

zi′0 P
i(0)zi0. (14)

Here,

Ki(t) , −(Ri(t))−1
[
Bi′P i(t) + Si′(t)

]
and P i(·) : [0, T ] 7→ R(Mi+n)×(Mi+n) is the solution to the
Riccati differential equation

0 = Ṗ i − (P iBi + Si)(Ri)−1(Bi′P i + Si′) +Qi (15)

with P i(T ) = 0 where we have omitted the time argument
for brevity.

Proof: Under the theorem conditions on Ri(t) and
Qi(t) − Si(t)(Ri(t))−1Si′(t), [25, Section 3.4] gives that
the control function vi(t) solving the LQ optimal control
problem (12) for any initial state zi(0) = zi0 is given by

vi(t) = Ki(t)zi(t)

for all t ∈ [0, T ]. The first theorem result (13) follows by
substituting the optimal control vi(t) = Ki(t)zi(t) into the
dynamics żi(t) = Bivi(t).

Now, under the conditions of the theorem, [25, Section
3.4] also gives that the minimum value of the optimal control
problem (12) with solutions żi(t) = Bivi(t) and vi(t) =
Ki(t)zi(t) is given by

zi′0 P
i(0)zi0 (16)

for any initial state zi(0) = zi0 where P i(0) is obtained
from the solution to the Riccati differential equation (15).
Hence, minimising (12) with an unknown initial state zi0 is
equivalent to minimising (16) over zi0. The second theorem
result (14) follows and the proof is complete.

Theorem 1 establishes that our MP method of inverse
differential games (12) reduces to solving the Riccati dif-
ferential equation (15) followed by solving the quadratic
program (14) for each player i ∈ N. We are free to impose
the set constraint θi ∈ Θi during the solution of the quadratic
program (14). We note that Ri(t) will always be positive
definite due to the definition of Gi(t), and the nonnegative
definite condition on Qi(t)−Si(t)(Ri(t))−1Si′(t) is testable
without knowledge of the unknown cost-functional parame-
ters. Furthermore, as in our BOP method, our MP method
allows for the recovery of a single player’s cost-functional
parameters without needing to recover the cost-functional
parameters of the other players (and the true player cost-
functional parameters and costate functions are clearly one
solution to our proposed MP method (12)).

Finally, it is fruitful to note that an analogous method
of discrete-time inverse dynamic games is developed in
[19] using necessary conditions for discrete-time open-loop
Nash equilibria. In contrast to our proposed MP method
(12) involving optimisation over both the unknown player
cost-functional parameters and player costate functions, the
discrete-time approach of [19] only involves optimisation
over the player cost-functional parameters since the player

costates can be expressed as linear functions of the param-
eters via a backwards recursion. Although this discrete-time
optimisation problem is simple, the backwards recursive rela-
tionship between the player costates and parameters prohibits
the use of truncated state and control trajectories (which are
handled by our proposed MP method).

We now illustrate and compare the practical performance
of our three proposed methods of inverse differential games.

IV. SIMULATION EXAMPLE AND STUDY

In this section, we examine the performance of our pro-
posed NOP, BOP, and MP methods of inverse noncooperative
differential games in simulations of a two-player noncooper-
ative differential game. To introduce the game, consider the
integrator with two (unconstrained) control inputs

ẋ(t) = u1(t) + u2(t), x(0) = 20

for t ∈ [0, 10]. We assume that the ith player with i ∈ N =
{1, 2} is attempting to drive the value of the integrator to a
desired value ci ∈ R by minimising the cost-functional

J̃ i
(
u1, u2, θi

)
=

∫ 10

0

θi1
(
x(t)− ci

)2
+ θi2

(
ui(t)

)2
dt.

(17)

The inverse noncooperative differential game problem there-
fore corresponds to finding the parameters θi and the value
ci for both players.

The cost-functional (17) is nonlinear in the unknown
parameters θi and value ci. However, by expanding the
parentheses in (17), defining the additional parameter θi3 ,
−2ciθi1 and disregarding the constant term θi1(ci)2, we see
that a differential game played with the cost-functionals (17)
will share the same open-loop Nash equilibrium solutions as
a differential game played with the cost-functionals

J i
(
u1, u2, θi

)
=

∫ 10

0

θi1 (x(t))
2

+ θi2
(
ui(t)

)2
+ θi3x(t) dt

(18)

for i ∈ N. With these linearly parameterised cost functionals,
we may now apply our three methods of inverse differential
games with the basis functions

gi
(
t, x(t), u1(t), u2(t)

)
=
[
(x(t))

2 (
ui(t)

)2
x(t)

]′
to recover the unknown parameters θi∗ ∈ Θi ⊂ R3, and
hence the values ci for i ∈ N.

A. Illustrative Example and Computational Effort

To illustrate our proposed methods of inverse differential
games, we first simulated open-loop Nash equilibrium state
x∗ and control ui∗ trajectories for our two-player differential
game with cost functionals (18), and parameters θ1∗ =
[1, 2, 5]′ and θ2∗ = [1, 2,−5]′. With these parameters, Player
1 attempts to drive the integrator to c1 = −2.5, and Player
2 attempts to drive it to c2 = 2.5. The simulated open-loop
Nash equilibrium state and control trajectories are shown in
Fig. 1. We used our methods of inverse differential games



0 1 2 3 4 5 6 7 8 9 10

Time, t

-25

-20

-15

-10

-5

0

5

10

15

20
S

ta
te

 a
nd

 C
on

tr
ol

 V
al

ue
s

State, x*(t)

Player 1 Control, u1*(t)

Player 2 Control, u2*(t)

Fig. 1. Illustrative Example: Open-loop Nash equilibrium state and control
trajectories. The state is initially x(0) = 20 before Player 1 attempts to drive
it to x(t) = −2.5 and Player 2 attempts to drive it to x(t) = 2.5. The
open-loop Nash equilibrium solution corresponds to driving x∗(t)→ 0 as
t→ 10.

to compute the parameters θi from these open-loop Nash
equilibrium state and control trajectories. The performance
of the methods is reported in Table I.

From Table I, we see that all three methods recovered the
unknown parameters θ1∗ and θ2∗ with errors comparable to
the precision of the numeric optimisation and boundary value
problem solvers. However, the compute time required by our
MP method is significantly less than that of the BOP and
NOP methods which require the solution of nested optimal
control and differential game problems, respectively. These
compute times were calculated on a Dell Latitude E5550
i7 5600U notebook with MATLAB 2016a using the bvp4c
boundary value problem solver (in all three methods) and
the simplex optimisation algorithm of fminsearch (for
the NOP and BOP methods).

B. Simulation Study With Noise

We now study the performance of our proposed methods
when the open-loop Nash equilibrium state and control
trajectories are sampled and corrupted by additive Gaussian
noise. To conduct our study, we sampled the open-loop
Nash equilibrium state and control trajectories simulated
in Section IV-A at a rate of 0.1 seconds and added zero-
mean Gaussian noise with standard deviation σ ∈ [0.1, 3].
We linearly interpolated the noise-corrupted sampled state
and control trajectories to enable the application of our
continuous-time NOP, BOP and MP methods. Similar to the
two-stage approach adopted in [15], we also applied our MP
method to noise-corrupted sampled trajectories after they had
been preprocessed with cubic smoothing splines – we refer to
this method as the 2-Stage MP method. The mean squared
error in the calculated value of Player 1’s parameter θ1

2 is
plotted in Fig. 2 for all four methods. The mean value was
calculated over 200 independent realisations of the noise.
Here, we do not report the mean squared errors of the other
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Fig. 2. Simulation Study With Noise: Mean squared error of the calculated
value of the player cost-functional parameter θ12 against the standard devia-
tion of additive Gaussian noise corrupting the open-loop Nash equilibrium
state and control trajectories. The mean squared error was calculated over
100 independent noise realisations.

Player 1 parameters and those of Player 2 since they are all
less than those shown in Fig. 2.

The results in Fig. 2 suggest that our BOP and NOP
methods are able to recover the parameters of the player
cost functionals with the lowest mean squared error over
the full range of noise standard deviations considered. In
contrast, our proposed MP method performs poorly when the
state and control trajectories are corrupted by noise (despite
offering the best error performance in the illustrative example
of Section IV-A with no noise). Although preprocessing the
trajectories with cubic smoothing splines appears to improve
the performance of our proposed MP method (in the form of
the 2-Stage MP method), our BOP and NOP methods still
appear to offer lower parameter estimation error.

V. CONCLUSION

This paper considers the problem of inverse N -player
noncooperative differential games in the case of an open-loop
information structure. To solve this problem, we propose a
direct method involving the nested solution of noncoopera-
tive differential games. We then exploit connections between
our inverse differential game problem and the problem of
inverse optimal control to propose two simplified methods of
inverse differential games based on the bilevel optimisation
and minimum principle methods of inverse optimal control.
The utility of our proposed methods is demonstrated through
simulations of a two-player noncooperative differential game.

Future work will investigate the use of these inverse dif-
ferential game techniques to model behaviours of biological
agents such as birds in mid-air collision encounters.
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TABLE I
ILLUSTRATIVE EXAMPLE: PERFORMANCE SUMMARY OF INVERSE DIFFERENTIAL GAME METHODS.

Method Absolute Parameter Error No. Differential No. Optimal Control Compute Time
Mean Maximum Games Solved Problems Solved (seconds)

NOP 4.08e-5 8.83e-5 388 0 369
BOP 5.15e-4 1.10e-3 0 187 48.0
MP 1.18e-5 2.16e-5 0 0* 8.56

* Excludes the solution of two Riccati equations.
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