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Abstract

Video-based facial expression recognition is an open re-
search challenge not solved by the current state-of-the-art.
On the other hand, static image based emotion recognition
is highly important when videos are not available and hu-
man emotions need to be determined from a single shot only.
This paper proposes sequential-based and image-based tied
factor analysis frameworks with a deep network that simul-
taneously addresses these two problems. For video-based
data, we first extract deep convolutional temporal appear-
ance features from image sequences and then these fea-
tures are fed into a generative model that constructs a low-
dimensional observed space for all individuals, depending
on the facial expression sequences. After learning the se-
quential expression components of the transition matrices
among the expression manifolds, we use a Gaussian prob-
abilistic approach to design an efficient classifier for tem-
poral facial expression recognition. Furthermore, we anal-
yse the utility of proposed video-based methods for image-
based emotion recognition learning static tied factor anal-
ysis parameters. Meanwhile, this model can be used to pre-
dict the expressive face image sequences from given neutral
faces. Recognition results achieved on three public bench-
mark databases: CK+, JAFFE, and FER2013, clearly indi-
cate our approach achieves effective performance over the
current techniques of handling sequential and static facial
expression variations.

1. Introduction

The last two decades have seen an escalating interest
in methods for automating the coding of facial expression.
Such systems will have numerous applications in a wide
range of fields including business; security; consumer ap-
plications; education; mental and physical health; automo-
tive and robotics applications. Changes in facial expression
are also of significant interest to the biometric community

as face based human identification should be robust to ex-
pression variations of the subject. Yet, despite this keen in-
terest, the reality is that the promise of computer vision sys-
tems to efficiently and accurately recognise facial expres-
sions in natural and open settings has not been achieved.
The existing facial expression recognition algorithms can
be separated into two categories: image-based and video-
based methods. Temporal information of facial expressions
is highly important since expressions evolve as a space-time
visual phenomena and the temporal domain conveys more
information than the static domain. This additional infor-
mation should be exploited in video based expression recog-
nition methods. Image-based methods assume importance
when the the emotion needs to be accurately estimated from
a single shot or a few static frames in sequence and this may
at times be a harder problem as the significant temporal in-
formation is not available.

To combat the challenges of video-based facial expres-
sion recognition we propose in this paper novel techniques
to express the sequential nature of facial variations in a pro-
ductive way. Recent studies [6, 9, 28] have shown that
the deep neural network (DNN) and the deep convolutional
neural network (DCNN) can be used to obtain a more effec-
tive feature representation from raw video data [28]. As
benchmark video-based facial expression databases such
as the Cohn-Kanade Plus (CK+) have a small amount of
data, a standalone deep network is not enough for achiev-
ing high accuracy due to the overfitting problem. In order
to overcome this problem and boost the performance of the
video-based facial expression recognition, first we extract
the sequential appearance features from image sequences
and then these features are fed into the new interpretation
of the seminal factor analysis concept across different facial
expression sequences. In our work, we are interested in se-
quential factor analysis since the low dimensional subspace
and the manifold learning concepts can cater for significant
facial variations [1, 4]; but these have not yet addressed
video-based (sequential) facial expression recognition. In
this paper, we propose a sequential factor analysis approach



to recognize facial expression sequences in video data with
extracted sequential appearance features using a deep net-
work.

The sequential expression-invariant Tied Factor Anal-
ysis (sequential expression-invariant TFA) generative ap-
proach we propose here models the human face as a com-
bination of two factors: an identity factor and a sequen-
tial expression-dependent factor. We define a linear model
equation to compute and learn all components of our model.
First, we implement our generative model based on image-
data, and then we extend that static model into the tempo-
ral domain, adding sequential components as our goal is to
develop a video-based framework. According to our lin-
ear process, all components go through two different sub-
spaces: an identity space and an observed space. The iden-
tity space is associated with identity variables and the ob-
served space is associated with all sequential expression-
dependent parameters based on the video aspect of facial
expressions.

As an initial stage, our DCNN is trained using image se-
quences and the feature vectors of the last convolution layer
are taken as a feature representation which is then fed as
feature vectors into the sequential expression-invariant TFA
model for classification purposes. Then we implement an
algorithm to derive all sequential expression-dependent pa-
rameters during the training stage. Our algorithm is based
on the Expectation-Maximization (EM) technique [15]. In
this algorithm, the identity values are estimated to opti-
mize the values of the sequential expression-dependent pa-
rameters iteratively. After learning the sequential expres-
sion components of an image sequence during the training
stage, video-based expression recognition is obtained. In
the testing stage, we use a probabilistic approach to obtain
the recognition decision of unknown expressive image se-
quences. Furthermore, this model can be used to predict the
expressive face image sequences from given neutral faces.
Meanwhile, our method can also be applied for successfully
handling image-based facial variations.

In summary, we make the following significant contri-
butions in this paper: (1) We propose a novel sequential
expression-invariant TFA generative model using extracted
sequential appearance features with a DCNN, in order to
recognize video-based facial expressions; (2) We show that
our technique can be applied to estimate facial expressions
of still images and demonstrate the better performance on
spontaneous expressions for the FER2013 wild data set.

2. Related Works

2.1. Facial expression recognition

One of the main challenges of facial expression recog-
nition algorithms is to determine the parameters which are
independent from the identity of human faces. In reality, fa-

cial expressions can present a great degree of inconsistency
in shape and texture. Various studies are proposed to auto-
matically recognize facial expressions.

Patil et al. [13] proposed a face expression recogni-
tion algorithm for image sequences using an Active Shape
Model (ASM) and the Support Vector Machine (SVM). The
major drawback of this model is the construction of a strong
and complex training process to obtain the trained matrix,
which is based on the expressions and recognition. Fur-
thermore, the ASM only locates the shape of the modeled
objects, and disregards the texture, so in practice this ap-
proach does not take full advantage of the information avail-
able. Chumkamon and Hayashi [3] introduced a facial ex-
pression recognition framework that uses Constrained Lo-
cal Models (CLMs) to extract facial features and follows
Hidden Markov Models (HMMs) to classify facial expres-
sions. This is the first study that applies the combination
of the CLM and HMM concepts to recognize human emo-
tions. They achieved good recognition performance when
they executed their framework for a long time with more
states, since there are many processes to compute of the fa-
cial expression recognition transition. However, they have
to expand the current framework in order to obtain simulta-
neous identity and expression recognition.

Shan et al. [17] introduced a model based on the LBP
features of face images. They used several machine learn-
ing methods to recognize facial expressions. Their exper-
iments showed that the LBP extraction method was more
robust than the Gabor wavelet method. They further ex-
panded their model with Boosted-LBP to extract the most
important facial features. Finally, they concluded that the
best recognition rate is achieved by using a SVM classifier
with Boosted-LBP facial features. Moreover, this model
works well for low resolution images.

2.2. Low dimensional subspace and factor analysis
approaches

In this section, we discuss the most recent work on the
factor analysis concept which is based on a low-dimensional
subspace. Factor analysis constructs a low dimensional sub-
space from a multi-scale and high-dimensional identity sub-
space. The observed subspace represents the facial varia-
tions of a person. The identity subspace is stable over all
facial variations and is dependent on the human face. In
[14], a pose-invariant TFA probabilistic framework is pro-
posed for viewpoint changes. According to their work, the
factors depend on the pose variation, but the factor loadings
(tied) are defined for each individual separately. Compa-
rable works are presented in [19] and [20]. Both studies
use the manifold learning technique to define a mapping
between data spaces. These probabilistic frameworks pro-
posed a class dependent factor analysis method to handle
facial variations. In [19], a class dependent model is intro-



duced for illumination changes. A probabilistic framework
is proposed for both face identification and verification in
[20]. Gong et al. [5] proposed a new approach for age-
invariant face recognition based on the hidden factor analy-
sis concept. Their model is based on two factors: an identity
factor and age factor. The identity component is dependent
on the face image of the person and the age factor is based
on the aging process. Extensive experiments confirmed that
their model is superior to the current state-of-the-art age-
invariant face recognition algorithms.

In our work, we propose a sequential expression-
dependent TFA to explicitly map facial expression se-
quences and show that the low dimensional subspace and
the manifold learning concept can provide remarkable per-
formance over the state-of-the-art.

2.3. Deep neural network models for facial expres-
sion recognition

Liu et al. [10] proposed a novel Boosted Deep Belief
Network (BDBN) for facial expression recognition using
three training stages iteratively in a unified loopy frame-
work. In their experiments, they selected the first frame
(with neutral expression), and the last three frames from
each image sequence, in order to obtain more samples from
the CK+ database. Extensive experiments with CK+ and
the Japanese Female Facial Expression (JAFFE) databases
proved that their framework achieved dramatic improve-
ments over current state-of-the-art algorithms which have
been benchmarked on these two databases.

In recent studies, Jung et al. [7] and Khorrami et al. [8]
applied convolutional neural networks (CNNs) to facial ex-
pression recognition. In [7], the authors trained a network
for facial expression recognition, extracting and combin-
ing both appearance and geometric features. Further, they
trained their system for video data and automatic facial ac-
tion detection is another main contribution of their work. In
[8], they followed expression recognition for a single image
introducing a new approach to decipher which parts of the
face affect the classification task.

In contrast, our work is based on facial expression recog-
nition of image sequences that incorporate deep learning-
based temporal appearance features.

Recent facial expression models [11, 12, 21, 26] can be
considered as a black box, coupled with deep architecture
with different configurations. In [25], authors deal with
static expression recognition for the Emotion Recognition
in the wild challenge using multiple CNN models while
in [18], they boosted the wild facial expression recogni-
tion performance by replacing softmax classification func-
tion with SVM. Both spontaneous facial expression recog-
nition methods generated state-of-the-art performance on
the FER2013 database.

3. Expression-Invariant TFA Model
3.1. Image-based Expression-Invariant TFA Model

Initially, we define a TFA generative model to handle
image-based facial expression variations. The model lever-
ages the strengths of the standard factor analysis approach
including an identity-dependent component but unlocks sig-
nificant new capability with an expression-invariant repre-
sentation. Since, observed expressive images are gener-
ated by the low dimensional factors in the observed space
and image identities are computed by the noisy high di-
mensional pixels in the identity space, these spaces are re-
ferred as a low dimensional observed space and a high-
dimensional identity space respectively. A Bayesian gen-
erative model and posterior probability distribution are the
key concepts behind this method. The generative model
can be organized into two key stages: (i) represent a low-
dimensional observed space, (ii) map a high-dimensional
identity data space to a low-dimensional observed space
by using an expression-dependent transformation function.
The model begins with two data spaces: a high-dimensional

Figure 1. Mapping between identity space and observed emotional
space.

data space (identity space) and a low-dimensional observed
space. In order to achieve a low-dimensional observed
space from the high-dimensional identity data space, we
employ a Bayesian generative technique.

Each position in the identity data space indicates a differ-
ent individual. The identity data space consists of variables
which are mapped with each individual. These variables are
known as identity variables. Each identity variable in the
identity data space defines a particular person as shown in
Figure 1. This paper further addresses the identity variable
of the individual in a multi-dimensional space. Hence we
can term it as a multi-dimensional identity variable. More-
over, each position in the low-dimensional observed space
specifies a different image variable with facial expressions.
The same person will be represented at different places in
the observed space, depending on the facial expression of
the person as shown in Figure 1. In this TFA generative
model, information in the observed space is defined by an
expression-dependent transformation function as,



xije = me + Fehi + εije. (1)

where xije represents the j image of individual i in the
eth expression, Fe is a linear function specialized for each
expression e, hi is the identity variable of individual i, me

represents the mean of expression e, and εije is the observed
noise. The factors (Fe and me) depend on the expression
and the factor loadings hi are the same at each expression.
From this expression-invariant TFA model, our goal is to
determine all parameters and identify the eth value that de-
pends on expression. Next we extend the above static model
into a temporal model as explained in the following section.

3.2. Sequential Expression-Invariant TFA Model
for Video-based data

We propose a new sequential model to handle sequential
information of facial expressions, learning sequential TFA
parameters. The sequential principle is highly important
since facial expressions are space-time visual phenomena.
Moreover, video sequences capture a wider range of facial
expressions as they consist of a large number of sequential
images and the temporal domain conveys more information
regarding an expression than what is contained in a static
image frame.

Figure 2. Manifold representation of temporal domain facial ex-
pression variation.

Our sequential domain framework consists of a collec-
tion of expression manifolds as shown in Figure 2. The tran-
sition matrices among the expression manifolds are learned
from training videos. For that, we implement TFA mod-
els in order to represent the transition matrices among the
expression manifolds. Each TFA model (transition matrix)
explains the difference between any two consecutive video
frames (moving from one expression to another expression).
So, we use the sequence of TFA models (sequence of tran-
sition matrices) to identify the expression for each input
video. Each identity variable in the identity data space de-
fines a particular person as explained in the image-based

model. The same person will be represented at different
places in the observed space, depending on the video frame
of the particular facial expression sequence.

3.3. Learning Sequential Parameters

Model parameters for a facial expression sequence can
be formulated as follows,

Fe = (Fe
1, Fe

2, ..., Fe
N−1), (2)

me = (me
1,me

2, ...,me
N−1), (3)

Σe = (Σe
1,Σe

2, ...,Σe
N−1), (4)

where N is the number of the frames. Hence we can reinter-
pret the earlier expression-dependent transformation func-
tion (Equation 1) as follows for video-based data,

xije
n = me

n + Fe
nhi + εije

n, n = 1, 2, ..., N − 1. (5)

Here, Fe
n, me

n, and Σe
n are expression-dependent param-

eter values between any two consecutive video frames and
Fe, me, and Σe are all expression-dependent parameter val-
ues for a particular facial expression sequence.

The relationship between the identity variable of the
identity space and the expression-dependent parameters of
the observed space are clearly stated in Equations 1 and 5.
Since we employ a probabilistic framework, we cannot de-
fine an exact value for the identity variable. Thus, we con-
sider the identity variable has a prior distribution. For any
two consecutive video frames, we define the probability dis-
tribution of the identity variable based on the first frame, hi

(p(hi)), so we can generate the observed variable of the sec-
ond frame, xije

n as the conditional probability distribution
(p(xije

n|hi)). These two definitions are given by (6) and
(7),

p(xije
n|hi) = Gx[Fe

nhi + me
n,Σe

n], (6)

p(hi) = Gh[0, I], (7)

where Ga[b, C] explains a Gaussian distribution in a with
mean b and covariance value C. Equation 7 describes a
prior distribution of the identity factor and Equation 6 de-
scribes the conditional probability distribution of the ob-
served face image.

In order to estimate the model parameters using the EM
algorithm, we maximize the following objective function,

p(hi|xi∗∗
n) =

J∏
j=1

E∏
e=1

p(xije
n|hi)p(hi). (8)

The above objective function can be explained as a Gaus-
sian distribution with mean EVm and covariance EVc as



shown in Equations 9 and 10,

EVm[hi|xi∗∗
n] = (I +

J∑
j=1

E∑
e=1

Fe
nT Σe

n−1Fe
n)−1·

J∑
j=1

E∑
e=1

Fe
nT Σe

n−1(xije
n −me

n), (9)

EVc[hih
T
i |xi∗∗

n] = (I +

J∑
j=1

E∑
e=1

Fe
nT Σe

n−1Fe
n)−1+

EVm[hi|xi∗∗
n] · EVm[hi|xi∗∗

n]T , (10)

˜Fe
n = [Fe

n me
n], (11)

hhi = [hT
i 1]T , (12)

˜Fe
n = (

I∑
i=1

J∑
j=1

xije
nEVm[hhi|xi∗∗

n]T )·

(

I∑
i=1

J∑
j=1

EVc[hhihh
T
i |xi∗∗

n]), (13)

Σe
n =

1

IJ

I∑
i=1

J∑
j=1

[xije
nxije

nT − Fe
nEVm[hhi|xi∗∗

n]

xije
nT ]. (14)

The EM algorithm iteratively maximizes the likelihood val-
ues of the model parameters until convergence.

4. DCNN Feature Learning
Feature learning and feature extraction stages are very

important to accurately represent the facial expressions of
human face images. Furthermore, these stages make a sig-
nificant contribution to reduce the classification error and to
improve recognition accuracy. Hence, in our experiments
we select an effective DCNN architecture to extract deep
feature information from expressive face images since deep
features have shown to be the most powerful feature repre-
sentation methods in many computer vision tasks.

In our framework, we follow a DCNN and extract deep
features from image sequences, modeling the video (image
sequence) as an ordered sequence of frames. In the DCNN
model, the first hidden layer h1 can be defined as follows
using the hyperbolic tangent function, tanh,

h1 = tanh(W1x + b1), (15)

where h1 is the output from first hidden layer, W1 is a
weight matrix, b1 is a bias vector and x is an input pattern.

The output feature vector is then computed as follows;

h5 = tanh(W5h4 + b5), (16)

h6 = vector(h5), (17)

where h5 is the output features from the fifth hidden
layer, W5 is a weight matrix, b5 is a bias vector and h4 is the
output from the fourth hidden layer. Finally, a deep feature
vector h6 is computed from h5 feature maps.

Our DCNN architecture consists of an input layer,
three convolution layers, two sub-sampling layers, a fully-
connected layer, and the softmax output layer. The DCNN
extracts facial features of the input pattern. The convolution
kernel size is equal to 5 and outputs maps from the first, sec-
ond and third convolution layers are equal to 32, 64 and 128
respectively.

5. Probabilistic Approach for Recognition

After the deep feature extraction process, each face im-
age is expressed by a deep feature vector. Then we imple-
ment the sequential expression-invariant TFA model based
on image sequences of the CK+ training data set. As a final
stage we classify the expression sequence of the given im-
age sequence as follows. An overview of the entire frame-
work is illustrated in Figure 3.

The given image sequence, Iseq can be formulated as
below,

Iseq = (x1, x2, x3, ..., xN ). (18)

The trained expression sequence models can be defined
as below,

M = (M1,M2,M3, ...,MJ). (19)

For J = k,

Mk = (Mk
1,2,M

k
2,3, ...,M

k
S−1,S), (20)

where N = number of frames in the given image se-
quence, J = number of trained expression sequence models,
and S = number of frames in sequence model, Mk.

Our goal is to determine the posterior probability that
the given image sequence matches each trained expression
sequence model and finally identify the maximum posterior
probability model as below,

Pk = max
1≤j≤k

(

N
2∏

i=1

p(x2i−1, x2i|M j
2i−1,2i)). (21)



Figure 3. Outline of the entire framework. At the training
stage, the training images are pre-processed, followed by DCNN
feature extraction (Section 4) on each training image. After
the DCNN feature extraction process, the sequential expression-
invariant model is implemented (Section 3) by the training images
(CK+ database). At the testing process, the expression sequence
of the given unknown image sequence (Section 5) is obtained by
extracting features, and then using the probabilistic approach. Fi-
nally, the maximum posterior probability model is computed, in
order to achieve the recognition decision.

Figure 4. Performance comparison on the CK+ in terms of classi-
fication rate for six facial expressions.

6. Experiments
6.1. Image-based static experiments

First, our model is evaluated on CK+ image-based pixel
data to determine that the model has identified the rela-
tionship between the identity data space and the low di-
mensional observed space. In image-based experiments,
we selected the first frame (neutral expression) and the

last frame (peak expression) from each image sequence.
During training, we learned the unknown parameter val-
ues (expression-dependent linear matrix, mean vector, and
covariance vector). Meanwhile we implemented a single
expression-invariant TFA model. This expression-invariant
TFA model consists of 6 sub models, each including the pa-
rameters to explain the difference between one of the 6 ex-
pressions (surprise, smile, anger, sadness, fear, and disgust)
and the neutral expression. In Figure 4, we present results
for six different facial expressions. It is clearly seen that the
surprise expression achieves the highest performance com-
pared to other expressions. The overall facial expression
recognition performance is 93.9% with 32 identity variable
dimensions.

Recognition Method Accuracy
Ada+SVM(Linear) [17] 0.404
Ada+SVM(Poly) [17] 0.404
Ada+SVM(RBF) [17] 0.413

BDBN [10] 0.680
Proposed Method with image-data 0.722

Table 1. Trained on CK+ database and tested on the JAFFE
database, in terms of average classification rate.

We also followed the cross-database validation as shown
in Table 1: trained on the CK+ database and tested on
the JAFFE database. Images of all two databases are
processed using illumination normalization process, in or-
der to keep the same lighting condition. Our proposed
method achieves 0.722 expression recognition accuracy on
the JAFFE database. Cross-database validation results usu-
ally shows low performance in the state-of-the-art. How-
ever, our method achieves stronger results than the bench-
mark BDBN approach [10]. Hence, we conclude that our
trained model can be easily adjusted to another data set in
order to recognize facial expressions.

6.2. Experimental Setup for CK+ video data

For video-based experiments, we used 64×80 resolution
images from the CK+ database. The CK+ database has 593
image sequences from 123 subjects. We selected 327 image
sequences from 100 subjects that can be labeled as one of
six expression sequences: surprise, smile, anger, sadness,
fear, and disgust. Our selection criterion was that the video
sequence is equal or longer than 7 frames and a sequence
can be labelled as one of the six basic expressions (smile,
surprise, sad, anger, fear, and disgust). Most previous re-
search has only used the last frame as they contain the peak
(apex) of the expression. We follow a segmentation proce-
dure which enables us to overcome the challenging problem
of the different lengths of the sequences. In CK+ database,
all sequences start from a neutral expression and continue
gradually to the apex. We find that we can select 7 signif-



icant frames which are able to demonstrate the sequential
behaviour of expression sequences with arbitrary length. If
the length of the expression sequence is equal to n, then we
select the first frame, n/6 frame, n/3 frame, middle frame,
2n/3 frame, 5n/6 frame, and the last frame.

Next we randomly divided all individuals into ten
groups and followed a leave-one-group-out cross valida-
tion. All images were segmented from the background
and processed through an illumination normalization pro-
cess in order to keep the same lighting condition. Dur-
ing training, we learned the unknown parameter values (se-
quence of expression-dependent linear matrix, mean vec-
tor, and covariance vector). We implemented six sequen-
tial expression-invariant TFA models. Each sequential
expression-invariant TFA model consists of the parameters
to explain the difference between any consecutive frames
of the expression sequence. Our sequential expression-
invariant TFA model employs the EM algorithm to calculate
the unknown sequential expression-dependent parameters.

During the training process, we trained the DCNN on
the CK+ training sets, extracting activation neurons from
the last hidden layer of the DCNN architecture. We imple-
mented a 32c-2s-64c-2s-128c DCNN architecture. Then we
fed the extracted activation neurons of the last hidden layer
of the training data set to the training model and obtained
model parameters. We trained our model for 10 iterations
to obtain the optimized values for model parameters. Once
the model has been tuned, we used testing data set to mea-
sure the recognition performance.

6.3. Experiments with deep learning-based video
data

Expression Accuracy Expression Accuracy
Surprise 1.0000 Sadness 0.9500
Smile 0.9834 Fear 1.0000
Anger 0.9334 Disgust 0.9667

Table 2. Performance Comparison on the CK+ in terms of classi-
fication rate for six facial expression sequences.

In this section we explain the experiments carried out
based on the deep learning-based video data. In Table 2,
we present video-based results for six different facial ex-
pressions. It is clearly seen that, each expression sequence
achieves better performance than static data above. The
overall facial expression recognition rate is 97.23% for deep
learning-based video data. Table 2 results show that the
worst performance is obtained across the anger and sad ex-
pression sequences. Furthermore, we compared the per-
formance of our deep learning-based temporal model with
recent dynamic facial expression recognition methods for
each expression.

In Figure 5, we visualize the prediction results of six dif-

Figure 5. Predicted results from sequential expression-invariant
TFA. Column 01: Original neutral image from test set. Column
02 to Column 07: Predicted results for six different expression
sequences.

ferent expressive image sequences from the given neutral
face. In this test, we calculated the identity variable value of
the given neutral face as a posterior distribution. Then we
transformed this probability value of the identity variable
to the observation space by using the learned parameters
from one of the sequential expression-invariant TFA models
(neutral-surprise, neutral-smile, neutral-angry, neutral-sad,
neutral-fear, and neutral-disgust). In order to visualize the
predicted images, we employ a probability distribution over
the predicted images. It is clearly seen that our model can
successfully predict the expression sequences, but the iden-
tity of the predicted faces contains obvious noise due to the
Bayesian nature of our framework. However, the noiseless
prediction is not an important factor for recognition deci-
sions, since all the major variations of each expression are
captured and stored in the sequential expression-invariant
TFA model for each individual.

We also benchmark our performance through a com-
parison of image-based and video-based facial expression
recognition performance of our proposed method with other
state-of-the-art expression recognition approaches as shown
in Table 3. After analyzing Table 3, we summarize that
the average expression recognition results of our method
(with deep learning) is the best among temporal expression
recognition methods in the state-of-the-art. Furthermore,
it is clearly indicated that the combination of DCNN for
feature extraction, followed by TFA for classification per-
forms better than either a straight DCNN system with the
softmax classifier or the sequential TFA with a pixel repre-
sentation. According to the individual performance of each



component (the individual sequential TFA achieved 94.45%
and the individual DCNN achieved 94.83%), we can ana-
lyze that each component equally contributes to the final
results. However, our method obtains remarkable perfor-
mance for temporal expression recognition by presenting a
single deep network model and a sequential TFA approach
with a simple probabilistic classifier. Since the transition
matrices among the expression manifolds are effectively
highlighted through the sequential TFA expression factors
which are based on the deep convolutional features, our
proposed model works so well for video-based expression
recognition even with a simple classifier.

Hence the proposed framework has a value within the
video-based expression recognition community for effec-
tively managing varying expressions through a more opti-
mal combination of a deep hierarchical feature representa-
tion managed by a generative classification approach.

Recognition Method Accuracy (%)
CSPL∗ [27] 89.9

Combined features + Adaboost∗ [23] 92.3
AdaGabor∗ [2] 93.3

Image-based TFA with pixel data∗ 93.9
LBPSVM∗ [17] 95.1

BDBN∗ [10] 96.7
Zero-bias CNN+AD∗ [8] 98.3
One-shot Learning [24] 86.7

Bayesian Temporal Manifold [16] 91.8
LGBP-TOP [22] 92.0

Sequential TFA with pixel data 94.45
Straight DCNN with softmax classifier 94.83

DTAGN [7] 96.94
Sequential TFA with DCNN features 97.23

* indicates the static expression recognition methods

Table 3. Comparison with recent advances in expression recogni-
tion on CK+ dataset.

6.4. Experiments with FER2013 database

For experiments in the wild, we used 48× 48 resolution
images from the FER2013 database. The training set con-
sists of 28,709 images. The public test set consists of 3,589
examples (validation set) and the private test set consists of
another 3,589 examples (final test set). During the training
process, we trained the unknown wild expression parame-
ter values and implemented seven expression-invariant TFA
models (including neutral) based on the wild conditions.

Our system achieved 0.7111 accuracy with the private
leaderboard data set and 0.6987 accuracy with the pub-
lic leaderboard data set which shows comparative perfor-
mance with against the benchmarked methods. Table 4 rep-
resents the performance comparison of our proposed model

with multiple network learning [25] and DLSVM [18] ap-
proaches. The multiple network learning [25] method ob-
tained the best results on FER2013 wild database and the
DLSVM [18] method achieved remarkable performance by
replacing the softmax function with the linear SVM func-
tion (69.4% for public leaderboard and 71.2% for private
leaderboard). Our method shows effective results using a
combination of a DCNN (with softmax) and a wild image
based TFA model. This is the one of the main contributions
of this work.

Dataset DLSVM [18] MNL [25] Ours
Public Validation 0.694 0.7 0.6987
Private final test 0.712 0.72 0.7111

Table 4. Performance comparison with the benchmarking ap-
proaches on FER2013.

7. Conclusion

Sequential expression-invariant TFA with a deep net-
work has been shown to handle both video-based expression
recognition and prediction tasks through a complete proba-
bilistic framework used for classification, and incorporation
of learned sequential model parameters. Our method can
also be applied for successfully handling image-based facial
variations. Our system performance is very competitive on
the benchmarking CK+ database. It achieved 97.23% tem-
poral expression accuracy which is the best performance in
the benchmarking exercises on CK+ database. Hence the
proposed framework has a value within the video-based ex-
pression recognition community for effectively managing
varying expressions through a more optimal combination
of a deep hierarchical feature representation managed by
a generative classification approach. Moreover, our model
provides effective and comparable performance for static
expression recognition among cross-database evaluation ap-
proaches in the state-of-the-art. Furthermore, one of the im-
portant contributions of this work is that our model provides
remarkable performance with the FER2013 wild static ex-
pression database. In future work, we will examine a more
complex generative model that is based on the joint factor
analysis concept to explore different facial variations. We
will also investigate the performance of our approach on
more challenging databases: spontaneous facial expression
databases such as AFEW and SFEW.
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