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Abstract

In this paper, the two-dimensional distributed order sgfa@etional difusion equation on an irregular domain is
considered. The finite element method using unstructureshradapted to the irregular domain is proposed. To
testify the déficiency of the proposed method, two numerical examples aengiBy the the error analysis and the
comparison between the numerical solution and the exaatisn| the finite element method applied in this paper is
shown to be valid in solving the two-dimensional distriltlteder space-fractionalftiision equation on an irregular
domain.

Keywords: distributed order space-fractionafitision equation, finite element method, irregular domain

1. Introdution

Fractional calculus has been widely used in various fieldsh @s physics, chemical, biology, medical science,
control system, finance, and so on. Research on fractiomglpdifferential equation (FPDE) with time- or space-
fractional derivative and its applications have becomeiloas of extensive researches. The related literaturetis ri
Most recently, distributed order FPDEs, analyzed by Chiecikal. in the year of 2002 [1], has been successfully
used to describe several problems in mathematical phystseagineering. Many researchers have payed much
attention to this topic. Atanackovic et al. [2] studied thistidbuted-order time fractional flusion-wave equation
using analytical method. Katsikadelis [3] approximateel distributed order FDE with a multi-term FDE and then
developed a numerical method for solving distributed otdwae-fractional diferential equations of general form.
Mashayekhi et al. [4] presented a numerical method based hpbrid functions approximation for solving the
distributed order time-fractional fierential equations. Li and Wu [5] proposed a numerical meéthased on the
reproducing kernel method for solving distributed orderdifractional difusion equations.

In most existing literatures, attention is mainly focusedlte analytical or numerical analysis for distributed orde
time-fractional PDEs. However, as for the distributed ogjegce-fractional diusion equations, the development for
numerical methods to solve distributed order space-fraatidifusion equations is still an important issue.

In this paper, we consider the following two-dimensionatdbuted order space-fractionalffidision equation
(2D-DO-SFDE) on an irregular convex domain:

au 2 4°u 4°u
— = P — f Q T 1.1
5= [ PO - Qoo 6. (cyd cax[0.T] ()

subject to the initial condition
ux,y,0) = w(xy), (xYy) € Q, (1.2)
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and zero Dirichlet boundary condition
u(x.y,t) =0, (x.y) € 09, (1.3)

where an irregular convex domathis defined a£2 = {(x, y)la(y) < x < b(y), c(x) <y < d(X)}, wherea(y), b(y) are
the left and right boundaries 6%, andc(x), d(x) are the lower and upper boundariestof P(«) and Q(«) are two
non-negative weight functions satisfying the conditions

2 2
a€(1,2),0< f P(a)da < 0,0 < f Q(a)da < co. (1.5)
1 1
The Riesz space fractional derivativg: and {oi; are defined by [6]
oru(x, o o
DD~ o, (D) + DR, (1.6)
a"u(x,y) N N
6|yla = —Co (yDLu(X’ y) + yDRu(X7 y)) ’ (17)
wherec, = Wﬁg) and the Riemann-Liouville fractional derivative operatwithn — 1 < a < n are defined as
an X 1
Dy ==—"— - g d 1.8
X LU(X7 y) F(n _ Cl) axn a(y)(x S) U(S, y) S ( )
@ _ (_1)n " fb(y) n—-a—1
xDRU(X, Y) = T(n—a)ax J, (s—%) u(s y)ds (1.9)

With respect toy, the fractional derivative operators can be defined sifgilar

2. Preliminaries

In this section, we need to recall some theories that has dtedied previously by Ervin and Roop [7, 8], Zkt
al. [9] and Buet al. [10, 11]. As for a convex domaif2 c R?, resulting from its irregularity, withmi, = (m)inQ a(y),
X,y)€!

Xmax= Max b(y), Ymin = mMin ¢(x) andymax= max d(x), we denote the inner product ahé-norm as
X,Y)EQ (X,y)eQ (xy)eQ

(
Ymax  0(Y)
(U, V) 12(q) = f uvdQ = f f u(x, y)v(x, y)dxdy,
Q Ymin a(y) (210)

Xmax  ~d(X)
- f U0, YV y)dydx
Xmin C(X)

lullL2) = ((u, U)LZ(Q))l/Z- (2.11)

Definition 1. ([9, 8, 10]) (Left fractional derivative space). Fpr> 0, we define the semi-norm

1
Uy = (llxD’[ullfz(Q) + IIyD’ﬁu||fz(Q))2 : (2.12)

and norm

1
— (12 2 \?
il = (IR + Uy ) (2.13)
where J(Q), J{' () denote the closure of §Q), C3’(Q2) with respect td| - [l y(q)-

The Right fractional derivative Spackulﬁg(g), ||u||Jg(Q)), the Fractional Sobolev spad@|f(q). [lUllH«q)) and the
Symmetric fractional derivative spadelgg(g), [Jul| Jg(g)) can also be defined similarly.
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Lemma 1. ([12]) If u € (1,2),u,v e I} 4(Q) (or J5 (), then
(DLW Vi) = (GO xDF V)i, (DU Vie = 6D} yDE V.

(xDRU, V) 2(q) = (xDﬁ/ZU, xD’ﬁ/zV)LZ(Q), (yDRU V)20 = (yDlé/ZU, yDIi/ZV)LZ(Q)'
Lemma 2. ([7]) If 4> 0, then

(DU, D)z = cost)ll xDuliZ, . (2.14)
(yDﬁU, yD}éu)LZ(Q) = COSQTIJ)“yD U|||_2(Q) (2.15)
The proofs of the lemmas can be found in the correspondirgertes by consideringto be a zero-extension
outside the domai. Throughout the proceeding sections, we denotg£ (-, )iz, Il - llo = Il - ll2)-

3. Numerical method

The interval of fractional ordar € (1, 2) can be discretized by the grid1éy < é1 < -+ <& =2,S € N. We
denoteAén = ém — Em1 = 1/S = o, andan fm+§"“ =1+ 2”” . Then the space dlstrlbuted order fractional item of
the Eq.(1.1) can be rewrote by using the m|d pomt quadeatlue as

aﬂ/ aﬂ/u S m aﬂ/
f Pla )a|x|w A7yt = ZEH F’(‘”)a|x|w Qe )a|y|w

s (3.16)
Aém + O(c?),
Z‘i[ m)alxl“ +Qa m)a|y|“ ] ém+0l")
Then Eq.(1.1) can be approximated as
U Fall )
ﬁ_mzl[ (o) g+ Qo |+ 1) + O, (3.17)
By Eq.(1.6) and Eq.(7), we have
ou 2
o Can| Pl@m) (xD{"u+ xDEu) + Qam)( yD{™u + \DEru)le = f(xyt) + O(c?), (3.18)
m=1

Lett = T/N is the time stept, = nr,n = 0,1,...,N. Denoteu(x,y, t,) = u", u: = & By using central

difference scheme,
u" — L‘In—l

L/ ——— 40 (3.19)

ath,,
3

- 1 -1
Denotediu™ 2 = =4 we have

S
FU™E + 0 Y G [Plam) (D{"UM2 + DU 2) + Qam)(y,Df"U™E + (D™ E)| = 775+ O(0? + 1),
m=1

(3.20)
Then by Lemma 1, we obtain the variational formulation ofipeon (1.1)-(1.3): to findi" € V, such that
hy 1 S 1 1
Gu™2, V) + O'Z Bn(U™2,v) = (f"%,v), YweV, (3.21)
m=1
(W,v) = @W,v), YeV, (3.22)
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whereV = H}(Q), 1 = max{%}, and the bilinear form
1<m<S

Brn(U, V) =Car, Pam)| (xD\% U, xDg V) + (xDg U, xD* V)| (3.23)
+ €3, Qam)| (yD,* U, yDg V) + (yDg U, yD* V)|

Assume tha{77} is a family of unstructured triangulations of doma#mandh is the maximum diameter of the
triangular elements iffil,. The conforming finite element spavg € V is defined as

Vh = {VhIVh € C(Q) NV, Wle € Ps(E), YE € Th}, (3.24)

wherePs(E) is the set of polynomials with degree at meéh elementE.

Let up be the finite element solution at tinte= t,, then the fully discrete scheme for the two-dimensional
distributed-order space-fractionalffiision equation can be expressed as: fifide Vj for (n = 1,2,...,N) such
that

1 S 1 1
@2 wh) + o Z Bu(Up 2, Vh) = (f"2, Vi), YV € Vi, (3.25)
m=1
and
Up = Py (x.Y), (3.26)

where® : L?(Q) — V, is a projection operator.

4. Numerical examples

To testify the #ficiency of the proposed finite element method, we give two gtasnn this section. In order to
conduct the error analysis, we first define the infinite norchthieL, norm of the errors as

— n_n
llelles = max{lup — ', (4.27)
lleflo = llup = UMl (4.28)

whereu" denotes the exact solution, and tifedenotes the corresponding numerical solution.

4.1. Example 1
In this example, we consider the following problem on a negtdar regiorQ2 = (0, 1) x (0, 1):

W= [FP@ZL + Q@) Zhda + f(xy.1). (xy.1) € Qx[0,T],

((xy.0) = w(xy) = @1~ PPA-YP. (k) <O (4.29)
u(x,y,t) =0, (%, y) € 0Q,
with o
P(a) = Q(a) = -2I'(5 - a) cos(%), (4.30)
f(xy.1) = €x(1 - X221 - y)* - e%(1 - X’[R(X) + R(1 - X)] — €y*(1 - y)’[R(Y) + R(L - y)]. (4.31)
where
R(r) = T(5) - Ru(r) — 2I'(4) - Ro(r) + I'(3) - Ra(r). (4.32)
and
Ri(r) = ﬁ(ﬁ —r?), (4.33)
Ro(r) = ﬁ(3r2 -2r) + (Inlr )Z(r -r?), (4.34)
1 1 2
Rg(r) = W(GI’ - 2) + W(S - 5r) + W(r - 1) (435)
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u(z,y,t) = ela?(1 —2)2y*(1 —y)?

(a) the exact solution (b) the numerical solution

Figure 1: Comparison between the exact solution and the ncaheolution of Example 2 with = 1/64.

Table 1: Errors analysis for Example 1 with= 0.01,S = 10, T = 1.
h li€llo llelloo
1/4 6.9577e-4
1/8 1.6575e-4
1/16 4.1401e-5
1/24 1.8792e-5
1/32 1.0592e-5

The exact solution for the problem (4.29) can be obtainat\ay, t) = €x2(1 — x)?y?(1 - y)°.

To conduct the comparison of the figures between the exadi@oland the numerical solution, we take: 0.01,
S =10,T = 1. As shown in Fig. 1, the numerical solution is in well acarde with the exact solution, demonstrating
that the finite element method proposed to solve the two-dio@al distributed order space-fractionaffasion
equation is valid and feasible. Besides, witfifglient choices of the space stefthe errors between the exact solution
and the numerical solution are given in Tab. 1. The errorsOirf inagnitude and the decreasing tendency \ith
also verify the éiciency of the proposed finite element method in solve thedwoensional distributed order space-
fractional difusion equation.

4.2. Example 2

In this example, we consider the following problem definedaagionQ = {(x, y)|§—§ + ;’—z <1}

2 @ @
o= P(a)% + Q@) Zhda + f(x Y, 1), (XY.t)eQx][0,T],

e
u(x, y, 0) = y(x,y) = ;—2 +y§ — 1% (x,y) € Q, (4.36)
u(x,y,t) =0, (%, y) € 9Q,
with o
P(a) = Q(a) = —2I'(5 - a) cos%), (4.37)
X2 y2
f(xy,t) =- _t(g tE T 1)? - e 'Py(x, y, 1) — € 'Qu(x, y, 1), (4.38)
and
Pi(% Y1) = %45) (Ru(X= %) + Ri(% — X)) + 4X'ar4(4) Ro(X - )
) (4.39)
_4xT(4) 4

X 4xt
> Ro(% — X) + 1"(3)¥ Rs(x —x) + Iﬂ(3)¥ Rs(% — X),
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u(z,y,t) = e T(a?/a® + y? /0% —1)?

“‘\\‘ 3 ,ﬂ T
Mm\\\\ | | w u

\\\\
) BT

-04  -04 -04  -04

(a) the exact solution (b) the numerical solution

Figure 2: Comparison between the exact solution and the ncaheolution of Example 2 with = 1/32.

() ()

Q% Y, 1) = =~ (Ru(y — ¥i) + Ru(yr — Y))

‘1)/rtf(‘1)|Q2(),r Y) +F(3) Rs(y y|)+F(3) R3(Yr y),

wherex = -2 /2 —y2, x = 202 —y2,y = w/a2 X2,y =B \/ .
The exact solution for the problem (4.36) can be obtameubasl, t)=¢et g—i + § - 1)%

We assumaa = b = 1/4, 7 = 0.0L,S = 10, T = 1, then the exact solution and the numerical solution can be
obtained as in Fig. 2.

Ry - 1)
(4.40)

5. Conclusions
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