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Abstract

In this paper, the two-dimensional distributed order space-fractional diffusion equation on an irregular domain is
considered. The finite element method using unstructured mesh adapted to the irregular domain is proposed. To
testify the efficiency of the proposed method, two numerical examples are given. By the the error analysis and the
comparison between the numerical solution and the exact solution, the finite element method applied in this paper is
shown to be valid in solving the two-dimensional distributed order space-fractional diffusion equation on an irregular
domain.
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1. Introdution

Fractional calculus has been widely used in various fields, such as physics, chemical, biology, medical science,
control system, finance, and so on. Research on fractional partial differential equation (FPDE) with time- or space-
fractional derivative and its applications have become thefocus of extensive researches. The related literature is rich.
Most recently, distributed order FPDEs, analyzed by Chechkin et al. in the year of 2002 [1], has been successfully
used to describe several problems in mathematical physics and engineering. Many researchers have payed much
attention to this topic. Atanackovic et al. [2] studied the distributed-order time fractional diffusion-wave equation
using analytical method. Katsikadelis [3] approximated the distributed order FDE with a multi-term FDE and then
developed a numerical method for solving distributed ordertime-fractional differential equations of general form.
Mashayekhi et al. [4] presented a numerical method based upon hybrid functions approximation for solving the
distributed order time-fractional differential equations. Li and Wu [5] proposed a numerical method based on the
reproducing kernel method for solving distributed order time-fractional diffusion equations.

In most existing literatures, attention is mainly focused on the analytical or numerical analysis for distributed order
time-fractional PDEs. However, as for the distributed order space-fractional diffusion equations, the development for
numerical methods to solve distributed order space-fractional diffusion equations is still an important issue.

In this paper, we consider the following two-dimensional distributed order space-fractional diffusion equation
(2D-DO-SFDE) on an irregular convex domain:

∂u
∂t
=

∫ 2

1
P(α)

∂αu
∂|x|α

+ Q(α)
∂αu
∂|y|α

dα + f (x, y, t), (x, y, t) ∈ Ω × [0,T], (1.1)

subject to the initial condition
u(x, y, 0) = ψ(x, y), (x, y) ∈ Ω, (1.2)
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and zero Dirichlet boundary condition
u(x, y, t) = 0, (x, y) ∈ ∂Ω, (1.3)

where an irregular convex domainΩ is defined asΩ = {(x, y)|a(y) ≤ x ≤ b(y), c(x) ≤ y ≤ d(x)}, wherea(y), b(y) are
the left and right boundaries ofΩ, andc(x), d(x) are the lower and upper boundaries ofΩ. P(α) andQ(α) are two
non-negative weight functions satisfying the conditions

P(α),Q(α) ≥ 0,P(α) . 0,Q(α) . 0, (1.4)

α ∈ (1, 2), 0<
∫ 2

1
P(α)dα < ∞, 0 <

∫ 2

1
Q(α)dα < ∞. (1.5)

The Riesz space fractional derivatives∂
αu

∂|x|α and ∂αu
∂|y|α are defined by [6]

∂αu(x, y)
∂|x|α

= −cα
(

xD
α
Lu(x, y) + xD

α
Ru(x, y)

)

, (1.6)

∂αu(x, y)
∂|y|α

= −cα
(

yD
α
Lu(x, y) + yD

α
Ru(x, y)

)

, (1.7)

wherecα = 1
2 cos(απ2 ) , and the Riemann-Liouville fractional derivative operators withn− 1 < α < n are defined as

xD
α
Lu(x, y) =

1
Γ(n− α)

∂n

∂xn

∫ x

a(y)
(x− s)n−α−1u(s, y)ds, (1.8)

xD
α
Ru(x, y) =

(−1)n

Γ(n− α)
∂n

∂xn

∫ b(y)

x
(s− x)n−α−1u(s, y)ds. (1.9)

With respect toy, the fractional derivative operators can be defined similarly.

2. Preliminaries

In this section, we need to recall some theories that has beenstudied previously by Ervin and Roop [7, 8], Zhuet
al. [9] and Buet al. [10, 11]. As for a convex domainΩ ⊂ R

2, resulting from its irregularity, withxmin = min
(x,y)∈Ω

a(y),

xmax= max
(x,y)∈Ω

b(y), ymin = min
(x,y)∈Ω

c(x) andymax= max
(x,y)∈Ω

d(x), we denote the inner product andL2-norm as

(u, v)L2(Ω) :=
∫

Ω

uvdΩ =
∫ ymax

ymin

∫ b(y)

a(y)
u(x, y)v(x, y)dxdy,

=

∫ xmax

xmin

∫ d(x)

c(x)
u(x, y)v(x, y)dydx,

(2.10)

‖u‖L2(Ω) = ((u, u)L2(Ω))
1/2. (2.11)

Definition 1. ([9, 8, 10]) (Left fractional derivative space). Forµ > 0, we define the semi-norm

|u|JµL(Ω) :=
(

∥

∥

∥xD
µ

Lu
∥

∥

∥

2

L2(Ω)
+
∥

∥

∥yD
µ

Lu
∥

∥

∥

2

L2(Ω)

)
1
2

, (2.12)

and norm

‖u‖JµL(Ω) :=
(

‖u‖2
L2(Ω)
+ |u|2

JµL(Ω)

)
1
2

, (2.13)

where JµL(Ω), JµL,0(Ω) denote the closure of C∞(Ω),C∞0 (Ω) with respect to‖ · ‖JµL(Ω).

The Right fractional derivative space (|u|JµR(Ω), ‖u‖JµR(Ω)), the Fractional Sobolev space (|u|Hµ(Ω), ‖u‖Hµ(Ω)) and the
Symmetric fractional derivative space (|u|JµS(Ω), ‖u‖JµS(Ω)) can also be defined similarly.
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Lemma 1. ([12]) If µ ∈ (1, 2), u, v ∈ JµL,0(Ω) (or JµR,0(Ω)), then

(xD
µ

Lu, v)L2(Ω) = (xD
µ/2
L u, xD

µ/2
R v)L2(Ω), (yD

µ

Lu, v)L2(Ω) = (yD
µ/2
L u, yD

µ/2
R v)L2(Ω),

(xD
µ

Ru, v)L2(Ω) = (xD
µ/2
R u, xD

µ/2
L v)L2(Ω), (yD

µ

Ru, v)L2(Ω) = (yD
µ/2
R u, yD

µ/2
L v)L2(Ω).

Lemma 2. ([7]) If µ > 0, then

( xD
µ

Lu, xD
µ

Ru)L2(Ω) = cos(πµ)‖ xD
µ

Lu‖2L2(Ω), (2.14)

( yD
µ

Lu, yD
µ

Ru)L2(Ω) = cos(πµ)‖ yD
µ

Lu‖2L2(Ω). (2.15)

The proofs of the lemmas can be found in the corresponding references by consideringu to be a zero-extension
outside the domainΩ. Throughout the proceeding sections, we denote (·, ·) = (·, ·)L2(Ω), ‖ · ‖0 = ‖ · ‖L2(Ω).

3. Numerical method

The interval of fractional orderα ∈ (1, 2) can be discretized by the grid 1= ξ0 < ξ1 < · · · < ξS = 2, S ∈ N. We
denote∆ξm = ξm− ξm−1 = 1/S = σ, andαm =

ξm+ξm−1

2 = 1+ 2m−1
2S . Then the space distributed-order fractional item of

the Eq.(1.1) can be rewrote by using the mid-point quadrature rule as

∫ 2

1
P(α)

∂αu
∂|x|α

+ Q(α)
∂αu
∂|y|α

dα =
S
∑

m=1

∫ ξm

ξm−1

P(α)
∂αu
∂|x|α

+ Q(α)
∂αu
∂|y|α

dα

=

S
∑

m=1

[

P(αm)
∂αmu
∂|x|αm

+ Q(αm)
∂αmu
∂|y|αm

]

· ∆ξm +O(σ2),

(3.16)

Then Eq.(1.1) can be approximated as

∂u
∂t
=

S
∑

m=1

[

P(αm)
∂αmu
∂|x|αm

+ Q(αm)
∂αmu
∂|y|αm

]

· ∆ξm + f (x, y, t) +O(σ2), (3.17)

By Eq.(1.6) and Eq.(7), we have

∂u
∂t
+

S
∑

m=1

cαm

[

P(αm)
(

xD
αm
L u+ xD

αm
R u
)

+ Q(αm)( yD
αm
L u + yD

αm
R u)
]

σ = f (x, y, t) + O(σ2), (3.18)

Let τ = T/N is the time step,tn = nτ, n = 0, 1, ...,N. Denoteu(x, y, tn) = un, un− 1
2 = un+un−1

2 . By using central
difference scheme,

∂u
∂t

∣

∣

∣

∣

t
n− 1

2

=
un − un−1

τ
+O(τ2) (3.19)

Denote∂tun− 1
2 = un−un−1

τ
, we have

∂tu
n− 1

2 + σ

S
∑

m=1

cαm

[

P(αm)
(

xD
αm
L un− 1

2 + xD
αm
R un−1/2

)

+ Q(αm)( yD
αm
L un− 1

2 + yD
αm
R un− 1

2 )
]

= f n− 1
2 + O(σ2 + τ2),

(3.20)

Then by Lemma 1, we obtain the variational formulation of problem (1.1)-(1.3): to findun ∈ V, such that

(∂tu
n− 1

2 , v) + σ
S
∑

m=1

Bm(un− 1
2 , v) = ( f n− 1

2 , v), ∀v ∈ V, (3.21)

(u0, v) = (ψ, v), ∀v ∈ V, (3.22)

3



whereV = Hλ
0(Ω), λ = max

1≤m≤S
{αm

2 }, and the bilinear form

Bm(u, v) =cαmP(αm)
[

( xD
αm
2

L u, xD
αm
2

R v) + ( xD
αm
2

R u, xD
αm
2

L v)
]

+ cαmQ(αm)
[

( yD
αm
2

L u, yD
αm
2

R v) + ( yD
αm
2

R u, yD
αm
2

L v)
]

(3.23)

Assume that{Th} is a family of unstructured triangulations of domainΩ andh is the maximum diameter of the
triangular elements inTh. The conforming finite element spaceVh ∈ V is defined as

Vh = {vh|vh ∈ C(Ω) ∩ V, vh|E ∈ Ps(E), ∀E ∈ Th}, (3.24)

wherePs(E) is the set of polynomials with degree at mosts in elementE.
Let un

h be the finite element solution at timet = tn, then the fully discrete scheme for the two-dimensional
distributed-order space-fractional diffusion equation can be expressed as: findun

h ∈ Vh for (n = 1, 2, ...,N) such
that

(∂tu
n− 1

2

h , vh) + σ
S
∑

m=1

Bm(u
n− 1

2

h , vh) = ( f n− 1
2 , vh), ∀vh ∈ Vh, (3.25)

and
u0

h = Pψ(x, y), (3.26)

whereP : L2(Ω)→ Vh is a projection operator.

4. Numerical examples

To testify the efficiency of the proposed finite element method, we give two examples in this section. In order to
conduct the error analysis, we first define the infinite norm and theL2 norm of the errors as

‖e‖∞ = max
1≤n≤N

{|un
h − un|}, (4.27)

‖e‖0 = ‖un
h − un‖L2(Ω), (4.28)

whereun denotes the exact solution, and theun
h denotes the corresponding numerical solution.

4.1. Example 1

In this example, we consider the following problem on a rectangular regionΩ = (0, 1)× (0, 1):






















∂u
∂t =
∫ 2

1
P(α) ∂

αu
∂|x|α + Q(α) ∂

αu
∂|y|α dα + f (x, y, t), (x, y, t) ∈ Ω × [0,T],

u(x, y, 0)= ψ(x, y) = x2(1− x)2y2(1− y)2, (x, y) ∈ Ω,
u(x, y, t) = 0, (x, y) ∈ ∂Ω,

(4.29)

with
P(α) = Q(α) = −2Γ(5− α) cos(

πα

2
), (4.30)

f (x, y, t) = etx2(1− x)2y2(1− y)2 − etx2(1− x)2[R(x) + R(1− x)] − ety2(1− y)2[R(y) + R(1− y)], (4.31)

where
R(r) = Γ(5) · R1(r) − 2Γ(4) · R2(r) + Γ(3) · R3(r). (4.32)

and

R1(r) =
1

ln r
(r3 − r2), (4.33)

R2(r) =
1

ln r
(3r2 − 2r) +

1
(ln r)2

(r − r2), (4.34)

R3(r) =
1

ln r
(6r − 2)+

1
(ln r)2

(3− 5r) +
2

(ln r)3
(r − 1). (4.35)
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Figure 1: Comparison between the exact solution and the numerical solution of Example 2 withh = 1/64.

Table 1: Errors analysis for Example 1 withτ = 0.01,S = 10, T = 1.

h ‖e‖0 ‖e‖∞
1/4 6.9577e-4
1/8 1.6575e-4
1/16 4.1401e-5
1/24 1.8792e-5
1/32 1.0592e-5

The exact solution for the problem (4.29) can be obtained asu(x, y, t) = etx2(1− x)2y2(1− y)2.
To conduct the comparison of the figures between the exact solution and the numerical solution, we takeτ = 0.01,

S = 10,T = 1. As shown in Fig. 1, the numerical solution is in well accordance with the exact solution, demonstrating
that the finite element method proposed to solve the two-dimensional distributed order space-fractional diffusion
equation is valid and feasible. Besides, with different choices of the space steph, the errors between the exact solution
and the numerical solution are given in Tab. 1. The errors in 10−4 magnitude and the decreasing tendency withh
also verify the efficiency of the proposed finite element method in solve the two-dimensional distributed order space-
fractional diffusion equation.

4.2. Example 2

In this example, we consider the following problem defined ona regionΩ = {(x, y)| x2

a2 +
y2

b2 < 1}:























∂u
∂t =
∫ 2

1
P(α) ∂

αu
∂|x|α + Q(α) ∂

αu
∂|y|α dα + f (x, y, t), (x, y, t) ∈ Ω × [0,T],

u(x, y, 0)= ψ(x, y) = ( x2

a2 +
y2

b2 − 1)2, (x, y) ∈ Ω,
u(x, y, t) = 0, (x, y) ∈ ∂Ω,

(4.36)

with
P(α) = Q(α) = −2Γ(5− α) cos(

πα

2
), (4.37)

f (x, y, t) = −e−t(
x2

a2
+

y2

b2
− 1)2 − e−tP1(x, y, t) − e−tQ1(x, y, t), (4.38)

and

P1(x, y, t) =
Γ(5)
a4

(R1(x− xl) + R1(xr − x)) +
4xlΓ(4)

a4
R2(x− xl)

− 4xrΓ(4)
a4

R2(xr − x) + Γ(3)
4x2

l

a4
R3(x− xl) + Γ(3)

4x2
r

a4
R3(xr − x),

(4.39)
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Figure 2: Comparison between the exact solution and the numerical solution of Example 2 withh = 1/32.

Q1(x, y, t) =
Γ(5)
b4

(R1(y− yl) + R1(yr − y)) +
4ylΓ(4)

b4
R2(y− yl)

− 4yrΓ(4)
b4

R2(yr − y) + Γ(3)
4y2

l

b4
R3(y− yl) + Γ(3)

4y2
r

b4
R3(yr − y),

(4.40)

wherexl = − a
b

√

b2 − y2, xr =
a
b

√

b2 − y2, yl = − b
a

√
a2 − x2, yr =

b
a

√
a2 − x2.

The exact solution for the problem (4.36) can be obtained asu(x, y, t) = e−t( x2

a2 +
y2

b2 − 1)2.
We assumea = b = 1/4, τ = 0.01,S = 10,T = 1, then the exact solution and the numerical solution can be

obtained as in Fig. 2.

5. Conclusions
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