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Abstract In this paper, the two-dimensional multi-term time-space fractional
diffusion-wave equation on an irregular convex domain is considered as a much
more general case for wider applications in fluid mechanics. A novel unstructured
mesh finite element method is proposed for the considered equation. In most exist-
ing works, the finite element method is applied on regular domains using uniform
meshes. The case of irregular convex domains, which would require subdivision
using unstructured meshes, is mostly still open. Furthermore, the orders of the
multi-term time-fractional derivatives have been considered to belong to (0, 1] or
(1, 2] separately in existing models. In this paper, we consider two-dimensional
multi-term time-space fractional diffusion-wave equations with the time fractional
orders belonging to the whole interval (0, 2) on an irregular convex domain. We
propose to use a mixed difference scheme in time and an unstructured mesh finite
element method in space. Detailed implementation and the stability and conver-
gence analyses of the proposed numerical scheme are given. Numerical examples
are conducted to evaluate the theoretical analysis.
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1 Introduction

Over the past decades, fractional partial differential equations have attracted great
attention as a useful approach for modelling a range of anomalous phenomena and
processes with memory and hereditary properties (see [25,16,14,18,9,22]).Among
these, multi-term time fractional partial differential equation have been found
useful to describe more complicated real processes, especially in the field of non-
Newtonian fluids, such as fractional Maxwell viscoelastic fluids [12,26], fractional
Oldroyd-B fluids [24,20] and fractional Burgers fluids [24,32].

With its wide applications, analytical and numerical solutions have been s-
tudied for different kinds of multi-term time or time-space fractional partial dif-
ferential equations. Luchko [1] considered the initial-boundary-value problems for
linear and non-linear multi-term fractional diffusion equations with the Riemann-
Liouville time-fractional derivatives based on the maximum principle. Jiang et al.
[17] explored the analytical solutions for the multi-term time-space Caputo-Riesz
fractional advection-diffusion equations on a finite domain. Jin et al. [19] studied
the Galerkin finite element method for a multi-term time-fractional diffusion equa-
tion. Gao et al. [13] constructed a second order difference schemes based on the
interpolation approximation for the time multi-term and distributed-order frac-
tional sub-diffusion equations. Ren and Sun [27,28] considered efficient and stable
numerical methods separately for the multi-term time fractional sub-diffusion e-
quation with the fractional orders belonging to (0, 1), and the multi-term time
fractional diffusion-wave equation with the fractional orders belonging to (1, 2).
Bu et al. [2] considered the finite element multigrid method for one-dimensional
multi-term time-space fractional advection diffusion equations with the time frac-
tional orders belonging to (0, 2], but the discussion was also divided into two cases
when the time fractional orders belong to (0, 1] and (1, 2] separately.

As for the multi-term time-space fractional diffusion-wave equation, there are
two problems that needed to be addressed, which are also the two innovation
points of this paper. Firstly, most of existing research is limited to regular domains.
Given that many practical problems involve irregular convex domains, research on
numerical methods designed for an irregular convex domain is of great significance.
Secondly, most of the published works have been concerned with one dimension,
and the time fractional orders are considered to belong to (0, 1] and (1, 2] to cover
separately fractional diffusion and fractional wave propagation. To the best of
the authors’ knowledge, there is no work being published on the two-dimensional
multi-term time-space fractional diffusion-wave equation defined on an irregular
convex domain with the time fractional orders randomly belonging to the whole
interval (0, 2).

In this paper, we consider the following two-dimensional multi-term time-space
fractional diffusion-wave equation (2D MT-TSFDWE) on an irregular convex do-
main Ω:

P ( C
0 Dt)u(x, y, t) = kx

∂2β1u

∂|x|2β1
+ ky

∂2β2u

∂|y|2β2
+ f(x, y, t), (x, y, t) ∈ Ω× (0, T ], (1)
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Fig. 1 A convex domain Ω with boundaries xL(y), xR(y), yD(x), yU (x).

with the initial conditions

u(x, y, 0) = ψ0(x, y), (x, y) ∈ Ω, (2)

ut(x, y, 0) = ψ1(x, y), (x, y) ∈ Ω, (3)

and the boundary condition

u(x, y, t) = 0, (x, y, t) ∈ ∂Ω × (0, T ], (4)

where

P ( C
0 Dt)u =

s
∑

i=0

ai
C
0 D

αi

t u

= a0
C
0 D

α0
t u+ ...+ as0−1

C
0 D

αs0−1

t u+ as0

∂u

∂t
+ as0+1

C
0 D

αs0+1

t u+ ...+ as
C
0 D

αs

t u,

(5)

the time fractional orders satisfy 0 < αs < · · · < αs0+1 < αs0 = 1 < αs0−1 <
· · · < α1 < α0 < 2, 1/2 < β1, β2 < 1, kx > 0, ky > 0, ai ≥ 0 and ai ∈ R, (i =
0, 1, ..., s). As is shown in Fig.1, the irregular convex domain Ω is defined as Ω =
{(x, y)|xL(y) ≤ x ≤ xR(y), yD(x) ≤ y ≤ yU (x)}, where xL(y), xR(y) are the left
and right boundaries of Ω, and yD(x), yU (x) are the lower and upper boundaries of
Ω. We denote xmin = min

(x,y)∈Ω
xL(y), xmax = max

(x,y)∈Ω
xR(y), ymin = min

(x,y)∈Ω
yD(x)

and ymax = max
(x,y)∈Ω

yU (x).

In particular, as for the model (1), (i) if there are only three terms in time,
that is as0 = 1, a0 = λα2 , a1 = λα1 , with α0 = 2α+ 1, α1 = α + 1(0 ≤ α ≤ 1), and
β2 = 1, kx = 0, ky = ν, f = 0, then the equation (1) is simplified to the multi-
term fractional model for the incompressible fractional Burgers’ fluid occupying
the space above a flat plate situated in the (x, z) plane, in the absence of a pressure
gradient in the flow direction [21].

(ii) If there are only two terms in time, that is as0 = 1, a0 = λ, and β1 = β2 = 1,
kx = ky = ν, f = 0, then the equation (1) is equivalent to the governing equation
for an incompressible fractional Maxwell fluid at rest occupying the space above
an infinite plate perpendicular to the y-axis and between two side walls [30].
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(iii) Further, if all the coefficients ai being zero except as0 = 1, and kx = 0, ky =
ν, f = 0, then the equation (1) can be treated as the space fractional Navier-Stokes
equation used in describing motion of fluids, regardless of the pressure gradient in
the x-direction [31].

The time fractional derivative is defined in the Caputo sense:

C
0 D

γ
t u =

1

Γ (n− γ)

∫ t

0

(t−s)n−1−γ

(

d

ds

)n

u(x, y, s)ds, n−1 < γ < n, n ∈ N. (6)

The Riesz space fractional derivatives ∂2β1u
∂|x|2β1

is defined by

∂2β1u(x, y)

∂|x|2β1
= −cβ1

(

xĎ
2β1

L u(x, y) + xĎ
2β1

R u(x, y)
)

,

where cβ1
= 1

2 cos(β1π) , and the Riemann-Liouville fractional derivative operators
with n− 1 < µ < n are defined as

xĎ
µ
Lu(x, y) =

1

Γ (n− µ)

∂n

∂xn

∫ x

xL(y)

(x− s)n−µ−1u(s, y)ds, (7)

xĎ
µ
Ru(x, y) =

(−1)n

Γ (n− µ)

∂n

∂xn

∫ xR(y)

x

(s− x)n−µ−1u(s, y)ds. (8)

Note that xĎ
µ
Lu(x, y) and xĎ

µ
Ru(x, y) are different from the definitions used in

the finite element method for regular domains, since the boundaries of the irreg-
ular domain are functions of the space variables, rather than fixed constants. The

Riesz space fractional derivatives ∂2β2u
∂|y|2β2

with respect to y can be defined similarly

based on the Riemann-Liouville fractional derivative operators yĎ
µ
Du(x, y) and

yĎ
µ
Uu(x, y) [23] .
The finite element method (FEM) has been demonstrated to be a useful nu-

merical tool for solving fractional differential equations involving time or space
fractional operators [3,36,38,35]. However, most of the existing FEM schemes are
designed for regular domains, such as Ω = [a, b] × [c, d], where a, b, c, d are con-
stants. But different from the regular domain case, an irregular domain will have
more complex boundaries, which will require involved partitions using a structured
mesh. In view of this, for a fractional partial differential equation on an irregu-
lar domain, the development of a finite element method suitable for the irregular
domain using an unstructured mesh will be of much significance.

As for the two-dimensional multi-term time-space fractional diffusion-wave e-
quation on an irregular convex domain considered in this paper, taking into ac-
count the time fractional orders belonging to the whole interval (0, 2), we aim to
explore its stable numerical solution using a novel finite element method tailored
for the irregular convex domain. The rest of this paper is organized as follows. In
Section 2, we first recapture some notations and auxiliary lemmas. In Section 3,
we construct a fully discrete numerical scheme for the two-dimensional multi-term
time-space fractional diffusion-wave equation. In Section 4, we detail the imple-
mentation of the finite element method using an unstructured mesh. In Section 5,
we establish the stability and convergence of the fully discrete numerical scheme.
In Section 6, numerical examples are given to verify the efficiency of the developed
numerical method. Some conclusions are drawn in Section 7.
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2 Preliminaries

The fundamental definitions and lemmas of the FEM for fractional partial differ-
ential equations were due to Ervin and Roop [7,8], who constructed the fractional
derivative spaces and presented the theoretical framework of the finite element ap-
proximation. Developments of the FEM theory have been continued by a number
of researchers, such as Bu et al. [4,2], Zhu et al. [37], and Yang et al. [33]. For a
convex domain Ω shown in Fig. 1, we can define the following inner product and
L2-norm on the convex domain:

(u, v)Ω :=

∫

Ω

uvdΩ =

∫ ymax

ymin

∫ xR(y)

xL(y)

u(x, y)v(x, y)dxdy,

=

∫ xmax

xmin

∫ yU (x)

yD(x)

u(x, y)v(x, y)dydx,

(9)

‖u‖L2(Ω) = ((u, u)Ω)1/2. (10)

Similar to the preliminaries used in FEM for regular domains [8,4,37], we can
give the following definitions and lemmas for the irregular convex domain.

Definition 1 (Left fractional derivative space). For µ > 0, we define the semi-
norm

|u|J̌µ
L(Ω) :=

(

∥

∥

xĎ
µ
Lu
∥

∥

2

L2(Ω)
+
∥

∥

yĎ
µ
Du
∥

∥

2

L2(Ω)

) 1
2
, (11)

and norm

‖u‖J̌µ
L
(Ω) :=

(

‖u‖2L2(Ω) + |u|2
J̌µ
L(Ω)

) 1
2
, (12)

where J̌µ
L(Ω), J̌µ

L,0(Ω) denote the closure of C∞(Ω), C∞
0 (Ω) with respect to ‖ ·

‖J̌µ
L
(Ω).

Definition 2 (Right fractional derivative space). For µ > 0, we define the semi-
norm

|u|J̌µ
R(Ω) :=

(

∥

∥

xĎ
µ
Ru
∥

∥

2

L2(Ω)
+
∥

∥

yĎ
µ
Uu
∥

∥

2

L2(Ω)

) 1
2
, (13)

and norm

‖u‖J̌µ
R(Ω) :=

(

‖u‖2L2(Ω) + |u|2
J̌µ

R
(Ω)

) 1
2
, (14)

where J̌µ
R(Ω), J̌µ

R,0(Ω) denote the closure of C∞(Ω), C∞
0 (Ω) with respect to ‖ ·

‖J̌µ
R
(Ω).

Definition 3 (Fractional Sobolev space). For µ > 0, we define the semi-norm

|u|Hµ(Ω) := ‖|ξ|µF(û)(ξ)‖L2(R2) (15)

and norm

‖u‖Hµ(Ω) :=
(

‖u‖2L2(Ω) + |u|2Hµ(Ω)

) 1
2
, (16)

where F(û)(ξ) is the Fourier transformation of the function û, û is the zero ex-
tension of function u outside of Ω, and Hµ(Ω), Hµ

0 (Ω) denote the closure of
C∞(Ω), C∞

0 (Ω) with respect to ‖ · ‖Hµ(Ω).
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Definition 4 (Symmetric fractional derivative space). For µ > 0, µ 6= n − 1
2 , n ∈

N, we define the semi-norm

|u|J̌µ

S
(Ω) :=

(∣

∣

(

xĎ
µ
Lu, xĎ

µ
Ru
)

Ω

∣

∣+
∣

∣

(

yĎ
µ
Du, yĎ

µ
Uu
)

Ω

∣

∣

)
1
2 , (17)

and norm

‖u‖J̌µ

S
(Ω) :=

(

‖u‖2L2(Ω) + |u|2
J̌µ
S
(Ω)

) 1
2
, (18)

where J̌µ
S (Ω), J̌µ

S,0(Ω) denote the closure of C∞(Ω), C∞
0 (Ω) with respect to ‖ ·

‖J̌µ
S (Ω).

Lemma 1 (see [8,2]) If u ∈ J̌µ
L,0(Ω), 0 < η < µ, then we have

‖u‖L2(Ω) ≤ c|u|J̌µ

L
(Ω), |u|J̌η

L
(Ω) ≤ C|u|J̌µ

L
(Ω). (19)

If u ∈ J̌µ
R,0(Ω), 0 < η < µ, then we have

‖u‖L2(Ω) ≤ c|u|J̌µ
R(Ω), |u|J̌η

R(Ω) ≤ C|u|J̌µ
R(Ω). (20)

Similar results can be obtained for the fractional Sobolev space Hµ
0 (Ω) with η 6=

n− 1/2, n ∈ N.

Lemma 2 (see [8]) If µ > 0, µ 6= n− 1

2
, n ∈ N, u ∈ J̌µ

L,0(Ω) ∩ J̌µ
R,0(Ω) ∩Hµ

0 (Ω),

then there exist positive constants C1, C
′
1 independent of u such that

C1|u|Hµ(Ω) ≤ max{|u|J̌µ
L
(Ω), |u|J̌µ

R
(Ω)} ≤ C ′

1|u|Hµ(Ω), (21)

Lemma 3 (see [29]) For u ∈ Hµ
0 (Ω), 0 < η < µ, then there exist positive con-

stants C1, C2, C3, C4 independent of u such that

‖u‖L2(Ω) ≤ C1‖xĎη
Lu‖L2(Ω) ≤ C2‖xĎµ

Lu‖L2(Ω), (22)

‖u‖L2(Ω) ≤ C3‖yĎη
Du‖L2(Ω) ≤ C4‖yĎµ

Du‖L2(Ω). (23)

Lemma 4 (see [34,33]) If µ ∈ (1, 2), u, v ∈ J̌µ
L,0(Ω) (or J̌µ

R,0(Ω)), then

(xĎ
µ
Lu, v)Ω = (xĎ

µ/2
L u, xĎ

µ/2
R v)Ω, (yĎ

µ
Du, v)Ω = (yĎ

µ/2
D u, yĎ

µ/2
U v)Ω ,

(xĎ
µ
Ru, v)Ω = (xĎ

µ/2
R u, xĎ

µ/2
L v)Ω , (yĎ

µ
Uu, v)Ω = (yĎ

µ/2
U u, yĎ

µ/2
D v)Ω .

Lemma 5 (see [8]) If µ > 0, µ 6= n − 1

2
, n ∈ N, then J̌µ

L,0(Ω), J̌µ
R,0(Ω), J̌µ

S,0(Ω)

and Hµ
0 (Ω) are equivalent with equivalent norms and semi-norms.

More details on the proofs of the lemmas are given in the corresponding ref-
erences by considering u to be a zero extension outside the domain Ω. In what
follows, for the sake of simplicity, we denote (·, ·) = (·, ·)Ω, ‖ · ‖0 = ‖ · ‖L2(Ω).
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3 The fully discrete numerical scheme

Let τ = T/N be the time step, tk = kτ, (k = 0, 1, ...,N). Denote u(x, y, tk) = uk

be the exact solution at time t = tk, and u
k−1/2 = uk+uk−1

2 , δtu
k−1/2 = uk−uk−1

τ ,

fk−1/2 = fk+fk−1

2 . As for the Caputo time fractional operators with different
orders, we use the corresponding finite difference schemes.

For 0 < αi < 1, we have C
0 D

αi

t uk = D
αi

t uk +R
αi

k ,where [2]

D
αi

t uk =
τ−αi

Γ (2− αi)

[

uk −
k−1
∑

j=1

(aαi

k−j−1 − aαi

k−j)u
j − aαi

k−1u
0
]

,

=
τ1−αi

Γ (2− αi)

k
∑

j=1

aαi

k−jδtu
j− 1

2 ,

(24)

the coefficients aαi

j = (j + 1)1−αi − j1−αi , j = 0, 1, ..., k − 1 satisfy aαi

0 = 1, and
the truncation error

|Rαi

k | ≤ C max
0≤t≤T

|∂
2u

∂t2
|τ2−αi , 0 < αi < 1. (25)

For 1 < αi < 2, we have C
0 D

αi

t uk−
1
2 = ∇αi

t uk−
1
2 + Rαi

k , where [10]

∇αi

t uk−
1
2 =

τ1−αi

Γ (3− αi)

[

bαi

0 δtu
k−1/2 −

k−1
∑

j=1

(bαi

k−1−j − bαi

k−j)δtu
j−1/2 − bαi

k−1u
0
t

]

,

(26)
the coefficients bαi

j = (j + 1)2−αi − j2−αi , j = 0, 1, ..., k − 1 satisfy bαi

0 = 1,
k
∑

j=1

bαi

k−j = k2−αi ,
k−1
∑

j=1

(bαi

k−1−j − bαi

k−j) + bαi

k−1 = 1. The truncation error

|Rαi

k | ≤ C max
0≤t≤T

|∂
3u

∂t3
|τ3−αi , 1 < αi < 2. (27)

Besides, for αi = 1, using the center difference scheme, we have

∂u(x, y, tk−1/2)

∂t
=
u(x, y, tk)− u(x, y, tk−1)

τ
+R0, (28)

where R0 ≤ Cτ2.
Let ukh be the numerical solution at time t = tk, then at time t = tk− 1

2
, for the

two-dimensional multi-term time-space fractional diffusion-wave equation (1), we
have

s0−1
∑

i=0

ai∇αi

t u
k− 1

2

h + as0δtu
k− 1

2

h +
s
∑

i=s0+1

ai
2
(D

αi

t ukh +D
αi

t uk−1
h )

= kx
∂2β1u

k− 1
2

h

∂|x|2β1
+ ky

∂2β2u
k− 1

2

h

∂|y|2β2
+ fk− 1

2 ,

(29)

Define V = Hβ1

0 (Ω) ∩ Hβ2

0 (Ω) to be the numerical solution space. Assume
that {Th} is a family of unstructured triangulations of domain Ω and h is the
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maximum diameter of the triangular elements in Th. We define the conforming,
finite dimensional subspace Vh ⊂ V as

Vh = {vh|vh ∈ C(Ω) ∩ V, vh|E ∈ Pŝ(E), ∀E ∈ Th}, (30)

where Pŝ(E) is the set of polynomials with degree at most ŝ in element E.

By Lemma 4, the fully discrete scheme associated with the variational form of
Eq.(1) can be defined as: find ukh ∈ Vh for (k = 1, 2, ...,N) such that

s0−1
∑

i=0

aiτ
1−αi

Γ (3− αi)

[

bαi

0 (δtu
k−1/2
h , vh)−

k−1
∑

j=1

(bαi

k−1−j − bαi

k−j)(δtu
j−1/2
h , vh)

− bαi

k−1((u
0
h)t, vh)

]

+ as0(δtu
k− 1

2

h , vh)

+

s
∑

i=s0+1

aiτ
1−αi

2Γ (2− αi)

[

k
∑

j=1

aαi

k−j(δtu
j− 1

2

h , vh) +

k−1
∑

j=1

aαi

k−1−j(δtu
j− 1

2

h , vh)
]

+B(u
k− 1

2

h , vh) = (fk− 1
2 , vh), ∀vh ∈ Vh.

(31)

with the initial and boundary conditions

u0h = u0h, ukh|∂Ω = 0, (32)

where u0h ∈ Vh is a reasonable approximation for u0, and (u0h)t ∈ Vh is a reason-
able approximation for u0t . The bilinear form B(u, v) is derived as

B(u, v) =kxcβ1

{

(xĎ
β1

L u, xĎ
β1

R v) + (xĎ
β1

R u, xĎ
β1

L v)
}

+ kycβ2

{

(yĎ
β2

D u, yĎ
β2

U v) + (yĎ
β2

U u, yĎ
β2

D v)
}

.
(33)

4 Implementation of the unstructured mesh FEM

For a general irregular convex domain, the software Gmsh [15] can be applied in the
mesh generation using the unstructured triangular or quadrilateral elements. In
this paper, we use the unstructured triangulation to deal with the convex domain
Ω. As is shown in Fig. 2, the nodes are defined as {(xn, yn) : n = 1, 2, ...,Np},
where Np is the total number of the nodes in the mesh. Let ϕn(xm, ym) = δnm,
(n,m = 1, 2, ...,Np) be the basis functions, where δnm is the Kronecker delta
symbol. Then, for each time step t = tk, the finite element solution ukh can be
expressed as

ukh =

Np
∑

n=1

uknϕn(x, y). (34)
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Let vh = ϕm(x, y), then by combining the equations (31) and (34), we can get
that

s0−1
∑

i=0

2ωi

Np
∑

n=1

(ϕn, ϕm)ukn + 2as0

Np
∑

n=1

(ϕn, ϕm)ukn +
s
∑

i=s0+1

2ri

Np
∑

n=1

(ϕn, ϕm)ukn

+ τ

Np
∑

n=1

B(ϕn, ϕm)ukn

=

s0−1
∑

i=0

2ωi

Np
∑

n=1

(ϕn, ϕm)uk−1
n + 2as0

Np
∑

n=1

(ϕn, ϕm)uk−1
n +

s
∑

i=s0+1

2ri

Np
∑

n=1

(ϕn, ϕm)uk−1
n

+

s0−1
∑

i=0

2ωi

k−1
∑

j=1

(bαi

k−1−j − bαi

k−j)
[

Np
∑

n=1

(ϕn, ϕm)ujn −
Np
∑

n=1

(ϕn, ϕm)uj−1
n

]

−
s
∑

i=s0+1

2ri

k−1
∑

j=1

(aαi

k−j + aαi

k−1−j)
[

Np
∑

n=1

(ϕn, ϕm)ujn −
Np
∑

n=1

(ϕn, ϕm)uj−1
n

]

+

s0−1
∑

i=0

2τωib
αi

k−1((u
0
h)t, ϕm)− τ

Np
∑

n=1

B(ϕn, ϕm)uk−1
n + 2τ(fk− 1

2 , ϕm),

(35)

where ωi =
aiτ

1−αi

Γ (3−αi)
, ri =

aiτ
1−αi

2Γ (2−αi)
, and m = 1, 2, ...,Np. The scheme (35) can be

rewritten as the following matrix form:

[

(

s0−1
∑

i=0

2ωi + 2as0 +

s
∑

i=s0+1

2ri)M+ τA
]

Uk

=
[

(

s0−1
∑

i=0

2ωi + 2as0 +

s
∑

i=s0+1

2ri)M− τA
]

Uk−1

+

k−1
∑

j=1

s0−1
∑

i=0

2ωi(b
αi

k−1−j − bαi

k−j)
[

MUj −MUj−1
]

+

s0−1
∑

i=0

2τωib
αi

k−1W
0

−
k−1
∑

j=1

s
∑

i=s0+1

2ri(a
αi

k−j + aαi

k−1−j)
[

MUj −MUj−1
]

+ 2τFk,

(36)

where Uk = (uk1 , u
k
2 , ..., u

k
Np

)T is the unknown numerical solution vector. The
matrix M = ((ϕn, ϕm))Np×Np

is the mass matrix, and A = (B(ϕn, ϕm))Np×Np
is

the stiffness matrix. We also have the matrices W0 = (w0
1, w

0
2, ...,w

0
Np

)T , where

w0
m = ((u0h)t, ϕm), and Fk = (F k

1 , F
k
2 , ..., F

k
Np

)T , F k
m =

(

fk+fk−1

2 , ϕm

)

, n,m =

1, 2, ...,Np, k = 1, 2, ...,N .
To obtain the unknown solution vector Uk given in Eq. (36), the most critical

part is to construct the matrix A. The (n,m) element in the matrix A is given by

B(ϕn, ϕm) =kxcβ1

{

(xĎ
β1

L ϕn, xĎ
β1

R ϕm) + (xĎ
β1

R ϕn, xĎ
β1

L ϕm)
}

+ kycβ2

{

(yĎ
β2

D ϕn, yĎ
β2

U ϕm) + (yĎ
β2

U ϕn, yĎ
β2

D ϕm)
}

.
(37)
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A2

A3

A4

A5

B3

B2

k

B1A1

A6 B4

Ωk
LxΩk

Rx

Ωek

Ωk
Rx

Ωk
Lx

A2

A3

A4

A5

B3

B2

k

D1 D2

D3 D4
Ωk

Uy

Ωk
Dy

Ωek

Ωk
Dy

Ωk
Uy

Fig. 2 The unstructured triangular mesh of domain Ω with four nonzero support domains

of the fractional derivative for node k. Ωk
Lx is the nonzero support domain for xĎ

β1
L ϕk(x, y);

Ωk
Rx is for xĎ

β1
R ϕk(x, y), Ω

k
Dy is for yĎ

β2
D ϕk(x, y), and Ωk

Uy is for yĎ
β2
U ϕk(x, y).

There are four inner products to be calculated. Taking the first inner product
(xĎ

β1

L ϕn, xĎ
β1

R ϕm) as an example. By using the Gauss quadrature [5,6], we have

(xĎ
β1

L ϕn, xĎ
β1

R ϕm) =
∑

E∈Th

∫

E
xĎ

β1

L ϕn · xĎ
β1

R ϕmdxdy

=
∑

E∈Th

∑

(xci,yci)∈GE

xĎ
β1

L ϕn|(xci,yci) · xĎ
β1

R ϕm|(xci,yci) · ωi,

(38)

where GE is the set of the Gauss points in a certain element E and ωi are the
weights corresponding to the Gauss points (xci, yci). To calculate the non-local

fractional derivatives xĎ
β1

L ϕn(x, y)|(xci,yci), the piecewise continuous basis func-
tions ϕn(x, y) should be formulated first.

As shown in Fig. 3, noting that the support domain Ωen is composed of six
triangular elements E1, E2, ...,E6, by combining the local element shape function
of each triangle, we can construct the piecewise continuous basis function ϕn(x, y).
Since ∀(x, y) ∈ ∂Ωen , ϕn(x, y) = 0, the domain of definition of the basis function
ϕn(x, y) can be extended from Ωen to the whole domain Ω.

By the definition given in Eq. (7), only when the Gauss point P (xc, yc) is within

the region Ωn
Lx that the value of xĎ

β1

L ϕn(xc, yc) is nonzero. Thus, ∀P (xc, yc) ∈
Ωn

Lx, we have

xĎ
β1

L ϕn(xc, yc) =
(

xL(yc)Ď
β1
x ϕn(x, yc)

)

|x=xc

=

(

1

Γ (1− β1)

d

dx

∫ x

xL(yc)

(x− ξ)−β1ϕn(ξ, yc)dξ

)

x=xc

,
(39)

which requires an integral from the left boundary xL(yc) to xc. As long as we have

found the intersection points, we can compute the value of the xD
β1

L ϕn(xc, yc).
As for the Gauss point P (xc, yc), the line y = yc intersects the support domain

Ωen at three points P1(x1, y1), P2(x2, y2), and P3(x3, y3). P0(xL(yc), yc) is the
boundary point intersected with the domain Ω, as is shown is Fig. 3. To calculate
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n

P (xc, yc)P0

(xL(yc), yc)
P1

(x1, y1)

P2

(x2, y2)

P3

(x3, y3)

E1

E2

E3
E4

E5

E6

Ωen

A
2

A
5

B
2

B
3

A
3

A
4

Fig. 3 The support domain Ωen composed of six triangular elements E1, E2, ...,E6, inserted
by line y = yc.

the left fractional derivative operator with respect to x, the basis function ϕn(x, yc)
can be constructed in the following form:

ϕn(x, yc) =







0, x < x1 or x > x3,
ϕk1(x, yc), x1 ≤ x < x2,
ϕk2(x, yc), x2 ≤ x ≤ x3,

(40)

where ϕk1(x, yc) and ϕk2(x, yc) can be easily constructed within the single triangle
to which x belongs. Then we have

xĎ
β1

L ϕn(x, yc) =















0, x < x1,

x1Ď
β1
x ϕk1(x, yc), x1 ≤ x < x2,

x1Ď
β1
x2
ϕk1(x, yc) + x2Ď

β1
x ϕk2(x, yc), x2 ≤ x < x3,

x1Ď
β1
x2
ϕk1(x, yc) + x2Ď

β1
x3
ϕk2(x, yc), x3 ≤ x.

(41)

Finding the interval to which xc belongs, and replacing x with xc, then we can
obtain xĎ

β1

L ϕn(xc, yc).

Similarly, we can obtain the fractional derivatives xĎ
β1

R ϕn(xc, yc), yĎ
β2

D ϕn(xc, yc),

and yĎ
β2

U ϕn(xc, yc), with support domains being Ωn
Rx, Ω

n
Dy, Ω

n
Uy (shown in Fig.

2), respectively. Then the matrix A can be formed, which allows the numerical
solution Uk to be obtained.

For each node n (n = 1, 2, ...,Np), the algorithm for calculating xĎ
β1

L ϕn(xc, yc)
is summarized in Algorithm 1.

5 Stability and Convergence

To analyse the stability and convergence of the fully discrete scheme on the irreg-
ular convex domain, similar to that defined on regular domains, we first define the
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Algorithm 1 Calculate xĎ
β1

L ϕn(xc, yc) at Gauss point P (xc, yc).

1: Partition the convex domain Ω using an unstructured triangular mesh via a suitable
mesh generation software; Save the element information (nodes number and coordinates
(xn, yn), (n = 1, 2, ...,Np), the triangular elements Ej ∈ Th(j = 1, 2, ...,Ne) characterized
by three vertices;)

2: for j = 1, 2, ..., Ne do

3: Generate the Gauss points GEj
= {(xci, yci)|i = 1, ..., Ng} and the corresponding

weights ωi for each element Ej ;
4: end for

5: Find the support domain Ωen ;
6: Calculate the yn = min{y|(x, y) ∈ Ωen}, yn = max{y|(x, y) ∈ Ωen}, then construct the

nonzero support domain Ωn
Lx, as shown in Fig. 2;

7: for all Gauss point (xc, yc) ∈ GE1
∪GE2

· · · ∪ GENe
do

8: if (xc, yc) ∈ Ωn
Lx then

9: Intersect Ωen with line y = yc, find the coordinates of the intersection points and
calculate the piecewise continuous basis function ϕn(x, yc) ;

10: Calculate the xĎ
β1
L ϕn(xc, yc);

11: else

12: xĎ
β1
L ϕn(xc, yc) = 0.

13: end if

14: end for

new semi-norm | · |(β1,β2) and the norm ‖ · ‖(β1,β2) as

|u|(β1,β2) =
(

kx‖xĎβ1

L u‖20 + ky‖yĎβ2

D u‖20
)1/2

, (42)

‖u‖(β1,β2) =
(

‖u‖20 + |u|2(β1,β2)

)1/2
. (43)

Throughout the following sections, we suppose C,C1, C2, C3 are positive con-
stants that may be different depending on the discussed context.

5.1 Stability

Before giving the proof, we first introduce some lemmas.

Lemma 6 (see [3]) The bilinear form B(u, v) is symmetrical, continuous and

coercive. Therefore, ∀u, v ∈ Hβ1

0 (Ω) ∩Hβ2

0 (Ω), there ∃ C1, C2 satisfying

B(u, v) ≤ C1‖u‖(β1,β2)‖v‖(β1,β2), B(u, u) ≥ C2‖u‖2(β1,β2). (44)

Lemma 7 For 0 < α < 1, define aαj = (j + 1)1−α − j1−α, j = 0, 1, 2, ..., then for

any positive integer M and vector (v1, v2, ..., vM ) ∈ R
M , we have

M
∑

l=1

l
∑

j=1

aαl−j(vj , vl) ≥ 0, (45)

M
∑

l=1

l
∑

j=1

aαl−j(vj , vl) +

M
∑

l=1

l−1
∑

j=1

aαl−1−j(vj , vl) ≥ 0. (46)
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Proof To proof the inequality (45), we have

M
∑

l=1

l
∑

j=1

aαl−j(vj , vl) =
M
∑

l=1

l
∑

j=1

aαl−j

∫

Ω

vjvldxdy

=

∫

Ω

(

M
∑

l=1

l
∑

j=1

aαl−jvjvl)dxdy.

(47)

Since
M
∑

l=1

l
∑

j=1
aαl−jvjvl ≥ 0 (see Lemma 5 in [11]), then we can obtain the inequality

M
∑

l=1

l
∑

j=1
aαl−j(vj , vl) ≥ 0.

Since
M
∑

l=1

l
∑

j=1
aαl−jvjvl +

M
∑

l=1

l−1
∑

j=1
aαl−1−jvjvl ≥ 0 (see Lemma 5 in [11]), the

similar proof of (46) can be obtained.

Theorem 1 (Stability) The fully discrete scheme (31) is unconditionally stable.

Proof In scheme (31), let vh = δtu
k−1/2
h , then

s0−1
∑

i=0

aiτ
1−αi

Γ (3− αi)

[

bαi

0 ‖δtuk−1/2
h ‖20 −

k−1
∑

j=1

(bαi

k−1−j − bαi

k−j)(δtu
j−1/2
h , δtu

k−1/2
h )

− bαi

k−1((u
0
h)t, δtu

k−1/2
h )

]

+ as0‖δtuk−1/2
h ‖20 +

s
∑

i=s0+1

aiτ
1−αi

2Γ (2− αi)
×

[

k
∑

j=1

aαi

k−j(δtu
j−1/2
h , δtu

k−1/2
h ) +

k−1
∑

j=1

aαi

k−1−j(δtu
j−1/2
h , δtu

k−1/2
h )

]

+B(u
k−1/2
h , δtu

k−1/2
h ) = (fk−1/2, δtu

k−1/2
h ).

(48)

Note that B(u
k−1/2
h , δtu

k−1/2
h ) =

B(uk
h,u

k
h)−B(uk−1

h
,uk−1

h
)

2τ , denoting

Qs,k =
s
∑

i=s0+1

aiτ
2−αi

Γ (2− αi)

[

k
∑

j=1

aαi

k−j(δtu
j−1/2
h , δtu

k−1/2
h )

+

k−1
∑

j=1

aαi

k−1−j(δtu
j−1/2
h , δtu

k−1/2
h )

]

,

(49)

then we have

s0−1
∑

i=0

2aiτ
2−αi

Γ (3− αi)
‖δtuk−1/2

h ‖20 + 2τas0‖δtuk−1/2
h ‖20 +B(ukh, u

k
h)

=

s0−1
∑

i=0

2aiτ
2−αi

Γ (3− αi)

[

k−1
∑

j=1

(bαi

k−1−j − bαi

k−j)(δtu
j−1/2
h , δtu

k−1/2
h ) + bαi

k−1((u
0
h)t, δtu

k−1/2
h )

]

+B(uk−1
h , uk−1

h ) + 2τ(fk−1/2, uk−1
h )−Qs,k.

(50)
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By the Cauchy-Schwarz inequality,

s0−1
∑

i=0

2aiτ
2−αi

Γ (3− αi)
‖δtuk−1/2

h ‖20 + 2τas0‖δtuk−1/2
h ‖20 +B(ukh, u

k
h)

≤
s0−1
∑

i=0

aiτ
2−αi

Γ (3− αi)

[

k−1
∑

j=1

(bαi

k−1−j − bαi

k−j)(‖δtu
j−1/2
h ‖20 + ‖δtuk−1/2

h ‖20)

+ bαi

k−1(‖(u
0
h)t‖20 + ‖δtuk−1/2

h ‖20)
]

+ τ(
1

2as0

‖fk−1/2‖20 + 2as0‖δtuk−1/2
h ‖20)

+ B(uk−1
h , uk−1

h )−Qs,k.

(51)

Note that
k−1
∑

j=1
(bαi

k−1−j − bαi

k−j) + bαi

k−1 = 1, and bαi

0 = 1, then we have

s0−1
∑

i=0

aiτ
2−αi

Γ (3− αi)
‖δtuk−1/2

h ‖20 +B(ukh, u
k
h) +

s0−1
∑

i=0

aiτ
2−αi

Γ (3− αi)

k−1
∑

j=1

bαi

k−j‖δtu
j−1/2
h ‖20

≤ B(uk−1
h , uk−1

h ) +

s0−1
∑

i=0

aiτ
2−αi

Γ (3− αi)

k−1
∑

j=1

bαi

k−1−j‖δtu
j−1/2
h ‖20

+

s0−1
∑

i=0

aiτ
2−αi

Γ (3− αi)
bαi

k−1‖(u
0
h)t‖20 +

τ

2as0

‖fk−1/2‖20 −Qs,k.

(52)

Let

Gk = B(ukh, u
k
h) +

s0−1
∑

i=0

aiτ
2−αi

Γ (3− αi)

k
∑

j=1

bαi

k−j‖δtu
j−1/2
h ‖20, (53)

then (52) can be rewritten as

Gk ≤ Gk−1 +

s0−1
∑

i=0

aiτ
2−αi

Γ (3− αi)
bαi

k−1‖(u
0
h)t‖20 +

τ

2as0

‖fk−1/2‖20 −Qs,k. (54)

For the both side of the eq.(54), summing k from 1 to N , the equality (52) can
be estimated as

GN ≤G0 +

s0−1
∑

i=0

aiτ
2−αi

Γ (3− αi)

N
∑

k=1

bαi

k−1‖(u
0
h)t‖20 +

τ

2as0

N
∑

k=1

‖fk−1/2‖20 −
N
∑

k=1

Qs,k,

(55)

where

N
∑

k=1

Qs,k

=

s
∑

i=s0+1

aiτ
2−αi

Γ (2− αi)

N
∑

k=1

[

k
∑

j=1

aαi

k−j(δtu
j−1/2
h , δtu

k−1/2
h ) +

k−1
∑

j=1

aαi

k−1−j(δtu
j−1/2
h , δtu

k−1/2
h )

]

.

(56)
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By Lemma 7, the term
N
∑

k=1

Qs,k > 0, (57)

then

GN ≤ G0 +

s0−1
∑

i=0

aiτ
2−αi

Γ (3− αi)

N
∑

k=1

bαi

k−1‖(u
0
h)t‖20 +

τ

2as0

N
∑

k=1

‖fk−1/2‖20. (58)

Since
N
∑

k=1

bαi

k−1 = N2−αi , then (53) and (58) yield

B(uNh , u
N
h ) ≤ B(u0h, u

0
h)+

s0−1
∑

i=0

aiτ
2−αi

Γ (3− αi)
N2−αi‖(u0h)t‖20+

τN

2as0

max
1≤k≤N

‖fk−1/2‖20.

(59)
Based on Lemma 6 and τN ≤ T , the inequality (59) can be rewritten as

‖uNh ‖2(β1,β2) ≤ C1‖u0h‖2(β1,β2) + C2‖(u0h)t‖20 + C3 max
1≤k≤N

‖fk−1/2‖20. (60)

Hence the fully discrete scheme (31) is unconditionally stable.

5.2 Convergence

To proceed with the convergence analysis for the fully discrete scheme (31), we
suppose the interpolation operator

∐

h : H ŝ+1(Ω) → Vh satisfies (see [7])

‖u−∐hu‖Hν(Ω) ≤ Chµ−ν‖u‖Hµ(Ω), 0 ≤ ν < µ ≤ ŝ+ 1. (61)

For u ∈ V , we define a projection operator Ph : V → Vh characterized by

B(Phu, vh) = B(u, vh), ∀vh ∈ Vh. (62)

Then we can obtain the following lemma for the operator Ph.

Lemma 8 (see [4]) If u ∈ Hµ(Ω)∩V, λ < µ ≤ ŝ+1, then there exists a constant
C independent of h and u such that

|u− Phu|(β1,β2) ≤ Chµ−λ‖u‖Hµ(Ω), (63)

where λ = max{β1, β2}.

Theorem 2 (Convergence) Assume that uN = u(x, y, tN ) is the exact solution of
problem (1)-(5) with u, uttt,

C
0 D

αi

t u ∈ L∞(Hµ(Ω); 0, T ), λ < µ ≤ ŝ+ 1, then the
numerical solution uNh satisfies

‖uNh − uN‖2(β1,β2) ≤ Cτmin{2(3−α0),2(2−αs0+1),4}

+ Ch2(µ−λ)

(

‖uN‖2µ + ‖ψ0‖2µ + C1‖ψ1‖2µ + C2 max
1≤k≤N

‖C0 Dαi

t uk−
1
2 ‖2µ

)

+ Ch2(µ−λ)

(

as0 max
1≤k≤N

‖ ∂
∂t
uk−

1
2 ‖2µ + C3 max

1≤k≤N
‖C0 Dαi

t uk‖2µ
)

,

(64)
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where α0 = max{αi|1 < αi < 2}, αs0+1 = max{αi|0 < αi < 1}, λ = max{β1, β2},and
the constants C1, C2, C3 are related to the coefficients ai in the model (1)-(5), that

is C1 =
s0−1
∑

i=0

aiT
2−αi

Γ (3−αi)
, C2 =

s0−1
∑

i=0
2aiT

αiΓ (2− αi), C3 = 1
2Σ

′
ijT

2
s
∑

i=s0+1
ai.

Proof Let ek = ukh − uk, based on the equalities (1) and (29), ek−
1
2 satisfies

s0−1
∑

i=0

ai(∇αi

t ek−
1
2 −Rαi

k−1/2, vh) + as0(δte
k− 1

2 −R0, vh)

+

s
∑

i=s0+1

ai
2
(D

αi

t ek +D
αi

t ek−1 −R
αi

k −R
αi

k−1, vh) +B(ek−
1
2 , vh) = 0.

(65)

Denote ek−
1
2 = θk−

1
2 + ρk−

1
2 , where ρk−

1
2 = Phu

k− 1
2 − uk−

1
2 , θk−

1
2 = u

k− 1
2

h −
Phu

k− 1
2 . Noting that B(ρk−

1
2 , vh) = 0, then

s0−1
∑

i=0

ai(∇αi

t θk−
1
2 , vh) + as0(δtθ

k− 1
2 , vh) +

s
∑

i=s0+1

ai
2
(D

αi

t θk +D
αi

t θk−1, vh)

+B(θk−
1
2 , vh)

=

s0−1
∑

i=0

ai(R
αi

k−1/2, vh) + as0(R0 − δtρ
k− 1

2 , vh) +

s
∑

i=s0+1

ai
2
(R

αi

k +R
αi

k−1, vh)

−
s0−1
∑

i=0

ai(∇αi

t ρk−
1
2 , vh)−

s
∑

i=s0+1

ai
2
(D

αi

t ρk +D
αi

t ρk−1, vh)

(66)

Based on (24) and (26), taking vh = δtθ
k− 1

2 , then we have

s0−1
∑

i=0

aiτ
1−αi

Γ (3− αi)

[

bαi

0 ‖δtθk−
1
2 ‖20 −

k−1
∑

j=1

(bαi

k−1−j − bαi

k−j)(δtθ
j− 1

2 , δtθ
k− 1

2 )

− bαi

k−1(θ
0
t , δtθ

k− 1
2 )
]

+ as0‖δtθk−
1
2 ‖20

+

s
∑

i=s0+1

aiτ
1−αi

2Γ (2− αi)

[

k
∑

j=1

aαi

k−j(δtθ
j− 1

2 , δtθ
k− 1

2 ) +

k−1
∑

j=1

aαi

k−1−j(δtθ
j− 1

2 , δtθ
k− 1

2 )
]

+B(θk−
1
2 , δtθ

k− 1
2 )

=

s0−1
∑

i=0

ai(R
αi

k− 1
2

−∇αi

t ρk−
1
2 , δtθ

k− 1
2 ) + as0(R0 − δtρ

k− 1
2 , δtθ

k− 1
2 )

+
s
∑

i=s0+1

ai
2
(R

αi

k +R
αi

k−1 −D
αi

t ρk −D
αi

t ρk−1, δtθ
k− 1

2 ).

(67)
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Note that B(θk−
1
2 , δtθ

k− 1
2 ) = B(θk,θk)−B(θk−1,θk−1)

2τ , denoting

Q̃s,k =

s
∑

i=s0+1

aiτ
2−αi

Γ (2− αi)

[

k
∑

j=1

aαi

k−j(δtθ
j− 1

2 , δtθ
k− 1

2 )+

k−1
∑

j=1

aαi

k−1−j(δtθ
j− 1

2 , δtθ
k− 1

2 )
]

,

(68)
then we have

s0−1
∑

i=0

2aiτ
2−αi

Γ (3− αi)
bαi

0 ‖δtθk−
1
2 ‖20 + 2τas0‖δtθk−

1
2 ‖20 +B(θk, θk)

= B(θk−1, θk−1) +

s0−1
∑

i=0

2aiτ
2−αi

Γ (3− αi)

[

k−1
∑

j=1

(bαi

k−1−j − bαi

k−j)(δtθ
j− 1

2 , δtθ
k− 1

2 )

+ bαi

k−1(θ
0
t , δtθ

k− 1
2 )
]

− 2τQ̃s,k

+

s0−1
∑

i=0

2τai(R
αi

k− 1
2

−∇αi

t ρk−
1
2 , δtθ

k− 1
2 ) + 2τas0(R0 − δtρ

k− 1
2 , δtθ

k− 1
2 )

+

s
∑

i=s0+1

τai(R
αi

k +R
αi

k−1 −D
αi

t ρk −D
αi

t ρk−1, δtθ
k− 1

2 ).

(69)

By the Cauchy-Schwartz inequality, that is (u, v) ≤ 1
2(‖u‖

2
0 + ‖v‖20), and bαi

0 = 1,
k−1
∑

j=1
(bαi

k−1−j − bαi

k−j) + bαi

k−1 = 1, we have

s0−1
∑

i=0

aiτ
2−αi

Γ (3− αi)

k
∑

j=1

bαi

k−j‖δtθ
j− 1

2 ‖20 + 2τas0‖δtθk−
1
2 ‖20 +B(θk, θk)

≤ B(θk−1, θk−1) +

s0−1
∑

i=0

aiτ
2−αi

Γ (3− αi)

k−1
∑

j=1

bαi

k−1−j‖δtθ
j− 1

2 ‖20

+

s0−1
∑

i=0

aiτ
2−αi

Γ (3− αi)
bαi

k−1‖θ
0
t ‖20 − 2τQ̃s,k

+

s0−1
∑

i=0

2τai(R
αi

k− 1
2

−∇αi

t ρk−
1
2 , δtθ

k− 1
2 ) + 2τas0‖δtθk−

1
2 ‖20 +

τas0

2
‖R0 − δtρ

k− 1
2 ‖20

+
s
∑

i=s0+1

τai(R
αi

k +R
αi

k−1 −D
αi

t ρk −D
αi

t ρk−1, δtθ
k− 1

2 ).

(70)

Denote

Ek = B(θk, θk) +

s0−1
∑

i=0

aiτ
2−αi

Γ (3− αi)

k
∑

j=1

bαi

k−j‖δtθ
j−1/2‖20, (71)
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then we have

Ek − Ek−1 ≤
s0−1
∑

i=0

aiτ
2−αi

Γ (3− αi)
bαi

k−1‖θ
0
t ‖20 − 2τQ̃s,k +

s0−1
∑

i=0

2τai(J
αi

k− 1
2

, δtθ
k− 1

2 )

+
τas0

2
‖Zk− 1

2
‖20 +

s
∑

i=s0+1

τai(L
αi

k , δtθ
k− 1

2 ).

(72)

where Jαi

k− 1
2

= Rαi

k− 1
2

−∇αi

t ρk−
1
2 , Zk− 1

2
= R0 − δtρ

k− 1
2 and Lαi

k = R
αi

k +R
αi

k−1 −
D

αi

t ρk −D
αi

t ρk−1.
For the both side of the Eq.(72), summing k from 1 to N , then we have then

we have

EN ≤ E0 +

s0−1
∑

i=0

aiτ
2−αi

Γ (3− αi)

N
∑

k=1

bαi

k−1‖θ
0
t ‖20 − 2τ

N
∑

k=1

Q̃s,k +
τas0

2

N
∑

k=1

‖Zk− 1
2
‖20

+

s0−1
∑

i=0

2τai

N
∑

k=1

(Jαi

k− 1
2

, δtθ
k− 1

2 ) +

s
∑

i=s0+1

τai

N
∑

k=1

(Lαi

k , δtθ
k− 1

2 ).

(73)

For the last two terms of Eq.(73), using the Cauchy-Schwartz inequality again, we
have

s0−1
∑

i=0

2τai

N
∑

k=1

(Jαi

k− 1
2

, δtθ
k− 1

2 )

=

s0−1
∑

i=0

2τai

N
∑

k=1

(
1

√

τ1−αi

2Γ (3−αi)
bαi

N−k

Jαi

k− 1
2

,

√

τ1−αi

2Γ (3− αi)
bαi

N−kδtθ
k− 1

2 )

≤
s0−1
∑

i=0

2aiτ
αiΓ (3− αi)

N
∑

k=1

1

bαi

N−k

‖Jαi

k− 1
2

‖20 +
s0−1
∑

i=0

aiτ
2−αi

2Γ (3− αi)

N
∑

k=1

bαi

N−k‖δtθ
k− 1

2 ‖20.

(74)

and

s
∑

i=s0+1

τai

N
∑

k=1

(Lαi

k , δtθ
k− 1

2 )

=

s
∑

i=s0+1

τai

N
∑

k=1

(
1

√

∑s0−1
j=0

ajτ
2−αj

Γ (3−αj)
b
αj
N−k

∑
s
i=s0+1 τai

Lαi

k ,

√

√

√

√

∑s0−1
j=0

ajτ
2−αj

Γ (3−αj)
b
αj

N−k
∑s

i=s0+1 τai
δtθ

k− 1
2 )

≤
(
∑s

i=s0+1 τai)
2

2
∑s0−1

j=0
ajτ

2−αj

Γ (3−αj)

N
∑

k=1

1

b
αj

N−k

‖Lαi

k ‖20 +
s0−1
∑

j=0

ajτ
2−αj

2Γ (3− αj)

N
∑

k=1

b
αj

N−k‖δtθ
k− 1

2 ‖20.

(75)
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Besides, by Lemma 7, the term

2τ
N
∑

k=1

Q̃s,k > 0. (76)

Then by Eqs.(5.2.9)-(5.2.12), we have

B(θN , θN ) ≤ B(θ0, θ0) +

s0−1
∑

i=0

aiτ
2−αi

Γ (3− αi)

N
∑

k=1

bαi

k−1‖θ
0
t ‖20 +

τas0

2

N
∑

k=1

‖Zk− 1
2
‖20

+

s0−1
∑

i=0

2aiτ
αiΓ (3− αi)

N
∑

k=1

1

bαi

N−k

‖Jαi

k− 1
2

‖20 +
1

2
Σij

s
∑

i=s0+1

aiτ
αj

N
∑

k=1

1

b
αj

N−k

‖Lαi

k ‖20.

(77)

where

Σij =

s
∑

i=s0+1
ai

s0−1
∑

j=0

aj

Γ (3−αj)

, Σ′
ij =

s
∑

i=s0+1
ai

s0−1
∑

j=0

aj

Γ (2−αj)

. (78)

Note that
N
∑

k=1

b
αj

k−1 = N2−αj and b
αj

N−k ≥ (2 − αj)N
1−αj ,

N
∑

k=1

1

b
αj
N−k

≤ Nαj

2−αj
,

(j = 0, 1, ..., s0 − 1), the Eq.(77) can be rewritten as

B(θN , θN ) ≤ B(θ0, θ0) +

s0−1
∑

i=0

aiT
2−αi

Γ (3− αi)
‖θ0t ‖20 +

Tas0

2
max

1≤k≤N
‖Zk− 1

2
‖20

+

s0−1
∑

i=0

2aiT
αiΓ (2− αi) max

1≤k≤N
‖Jαi

k− 1
2

‖20 +
1

2
Σ′

ijT
2

s
∑

i=s0+1

ai max
1≤k≤N

‖Lαi

k ‖20.

(79)

As for the terms in Eq.(79), we also have the following approximation.

‖Jαi

k− 1
2

‖20 ≤ ‖Rαi

k− 1
2

‖20 + ‖∇αi

t ρk−
1
2 ‖20

≤ Cτ2(3−αi) max
1≤k≤N

‖uk−
1
2

ttt ‖20 + ‖∇αi

t ρk−
1
2 − C

0 D
αi

t ρk−
1
2 +C

0 Dαi

t ρk−
1
2 ‖20

≤ Cτ2(3−αi) + Ch2(µ−λ)‖C0 Dαi

t uk−
1
2 ‖2µ,

(80)

similarly,

‖Lαi

k ‖20 ≤ ‖Rαi

k ‖20 + ‖Rαi

k−1‖20 + ‖Dαi

t ρk‖20 + ‖Dαi

t ρk−1‖20
≤ Cτ2(2−αi) max

1≤k≤N
‖uktt‖20 + Cτ2(2−αi) max

1≤k≤N
‖uk−1

tt ‖20 + Ch2(µ−λ)‖C0 Dαi

t uk‖2µ

+ Ch2(µ−λ)‖C0 Dαi

t uk−1‖2µ
≤ Cτ2(2−αi) + Ch2(µ−λ)‖C0 Dαi

t uk‖2µ + Ch2(µ−λ)‖C0 Dαi

t uk−1‖2µ.
(81)
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Also,

‖Zk− 1
2
‖20 = ‖R0 − δtρ

k− 1
2 ‖20 ≤ ‖R0‖20 + ‖δtρk−

1
2 ‖20

≤ Cτ4 + ‖δtρk−
1
2 − ∂ρk−

1
2

∂t
+
∂ρk−

1
2

∂t
‖20

≤ Cτ4 + Ch2(µ−λ)‖ ∂
∂t
uk−

1
2 ‖2µ.

(82)

Then by the Lemma 6 of the bilinear form B(u, v), and combining the Eqs.(79)-
(82), we get

‖θN‖2(β1,β2) ≤ C‖θ0‖2(β1,β2) + C

s0−1
∑

i=0

aiT
2−αi

Γ (3− αi)
‖θ0t ‖20

+ C

s0−1
∑

i=0

2aiT
αiΓ (2− αi)(τ

2(3−αi) + h2(µ−λ) max
1≤k≤N

‖C0 Dαi

t uk−
1
2 ‖2µ)

+ C
Tas0

2
(τ4 + h2(µ−λ) max

1≤k≤N
‖ ∂
∂t
uk−

1
2 ‖2µ)

+ C
1

2
Σ′

ijT
2

s
∑

i=s0+1

ai(τ
2(2−αi) + h2(µ−λ) max

1≤k≤N
‖C0 Dαi

t uk‖2µ)

(83)

By the Minkowski inequality,

‖θ0‖2(β1,β2) = ‖u0h − u0 + u0 − Phu
0‖2(β1,β2)

≤ C
(

‖u0h − u0‖2(β1,β2) + ‖u0 − Phu
0‖2(β1,β2)

)

≤ C‖u0h − ψ0‖2(β1,β2) + Ch2µ−2λ‖ψ0‖2µ.

(84)

Note that ‖ · ‖0 ≤ C‖ · ‖(α,β), then

‖θ0t ‖0 = ‖(u0h − u0 + u0 − Phu
0)t‖20

≤ C
(

‖(u0h)t − u0t‖20 + ‖u0t − Phu
0
t )‖20

)

≤ C‖(u0h)t − ψ1‖20 + Ch2µ−2λ‖ψ1‖2µ.

(85)

Then the estimation (83) can be written as

‖θN‖2(β1,β2) ≤C‖u0h − ψ0‖2(β1,β2) + Ch2(µ−λ)‖ψ0‖2µ

+ C

s0−1
∑

i=0

aiT
2−αi

Γ (3− αi)
(‖(u0h)t − ψ1‖20 + h2(µ−λ)‖ψ1‖2µ)

+ C

s0−1
∑

i=0

2aiT
αiΓ (2− αi)(τ

2(3−α0) + h2(µ−λ) max
1≤k≤N

‖C0 Dαi

t uk−
1
2 ‖2µ)

+ C
Tas0

2
(τ4 + h2(µ−λ) max

1≤k≤N
‖ ∂
∂t
uk−

1
2 ‖2µ)

+ C
1

2
Σ′

ijT
2

s
∑

i=s0+1

ai(τ
2(2−αs0+1) + h2(µ−λ) max

1≤k≤N
‖C0 Dαi

t uk‖2µ).

(86)
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By Lemma 8, we have

‖uNh − uN‖2(β1,β2) ≤ ‖θN‖2(β1,β2) + ‖ρN‖2(β1,β2)

≤ Ch2(µ−λ)‖uN‖2µ + C‖u0h − ψ0‖2(β1,β2) + Ch2(µ−λ)‖ψ0‖2µ

+ C

s0−1
∑

i=0

aiT
2−αi

Γ (3− αi)
(‖(u0h)t − ψ1‖20 + h2(µ−λ)‖ψ1‖2µ)

+ C

s0−1
∑

i=0

2aiT
αiΓ (2− αi)(τ

2(3−α0) + h2(µ−λ) max
1≤k≤N

‖C0 Dαi

t uk−
1
2 ‖2µ)

+ C
Tas0

2
(τ4 + h2(µ−λ) max

1≤k≤N
‖ ∂
∂t
uk−

1
2 ‖2µ)

+ C
1

2
Σ′

ijT
2

s
∑

i=s0+1

ai(τ
2(2−αs0+1) + h2(µ−λ) max

1≤k≤N
‖C0 Dαi

t uk‖2µ).

(87)

Choosing the interpolations as initial values of u and ut at time t0, i.e. u
0
h =

∐hψ0, (u
0
h)t = ∐hψ1, we have

‖uNh − uN‖2(β1,β2) ≤ Ch2(µ−λ)(‖uN‖2µ + ‖ψ0‖2µ +

s0−1
∑

i=0

aiT
2−αi

Γ (3− αi)
‖ψ1‖2µ)

+ C

s0−1
∑

i=0

2aiT
αiΓ (2− αi)(τ

2(3−α0) + h2(µ−λ) max
1≤k≤N

‖C0 Dαi

t uk−
1
2 ‖2µ)

+ C
Tas0

2
(τ4 + h2(µ−λ) max

1≤k≤N
‖ ∂
∂t
uk−

1
2 ‖2µ)

+ C
1

2
Σ′

ijT
2

s
∑

i=s0+1

ai(τ
2(2−αs0+1) + h2(µ−λ) max

1≤k≤N
‖C0 Dαi

t uk‖2µ).

(88)

That is,

‖uNh − uN‖2(β1,β2) ≤ Cτmin{2(3−α0),2(2−αs0+1),4}

+ Ch2(µ−λ)

(

‖uN‖2µ + ‖ψ0‖2µ + C1‖ψ1‖2µ + C2 max
1≤k≤N

‖C0 Dαi

t uk−
1
2 ‖2µ

)

+ Ch2(µ−λ)

(

as0 max
1≤k≤N

‖ ∂
∂t
uk−

1
2 ‖2µ + C3 max

1≤k≤N
‖C0 Dαi

t uk‖2µ
)

,

(89)

where α0 = max{αi|1 < αi < 2}, αs0+1 = max{αi|0 < αi < 1}, λ = max{β1, β2},
and the constants C1, C2, C3 are related to the coefficients ai in the model (1)-(5),

that is C1 =
s0−1
∑

i=0

aiT
2−αi

Γ (3−αi)
, C2 =

s0−1
∑

i=0
2aiT

αiΓ (2− αi), C3 = 1
2Σ

′
ijT

2
s
∑

i=s0+1
ai.
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6 Numerical examples

In this section, we use the linear triangular elements to construct a numerical exam-
ple to testify the theoretical analysis. Based on Theorem 2, the convergence order in
space should be O(h2) in the ‖·‖0 norm, and O(h2−λ) in the ‖·‖(β1,β2) norm. As for

time, the convergence order in the ‖ · ‖0 norm should be O(τmin{3−α0,2−αs0+1,2}),
where α0 = max{αi|1 < αi < 2}, and αs0+1 = max{αi|0 < αi < 1}. The conver-
gence order can be calculated by the following formulation:

Order =

{

log(‖error(h1)‖ǫ/‖error(h2)‖ǫ)
log(h1/h2)

, in space,
log(‖error(τ1)‖0/‖error(τ2)‖0)

log(τ1/τ2)
, in time,

where ‖error(h1)‖ǫ denotes the error in the ‖ · ‖0 norm or in the ‖ · ‖(β1,β2) norm
with space step being h1.

6.1 Example 1

To verify the theoretical analysis, we consider a two-dimensional multi-term time-
space fractional diffusion-wave equation defined on an elliptical domain Ω, where

Ω = {(x, y)|x2

a2 + y2

b2 < 1}:














C
0 D

α0
t u+ ∂u

∂t +C
0 Dα

t u = kx
∂2β1u
∂|x|2β1

+ ky
∂2β2u
∂|y|2β2

+ f(x, y, t),

u(x, y, 0) = φ(x, y), (x, y) ∈ Ω,
ut(x, y, 0) = 0, (x, y) ∈ Ω,
u(x, y, t) = 0, (x, y, t) ∈ ∂Ω × (0, T ],

(90)

where (x, y, t) ∈ Ω × (0, T ], 0 < α < 1 < α0 < 2, 1/2 < β1, β2 < 1, φ(x, y) =

(x
2

a2 + y2

b2 − 1)2, and

f(x, y, t)

=
2t2−α0

Γ (3− α0)
(
x2

a2
+
y2

b2
− 1)2 +

2t2−α

Γ (3− α)
(
x2

a2
+
y2

b2
− 1)2 + 2t(

x2

a2
+
y2

b2
− 1)2

+ Cx
Γ (5)(x− xl)

4−2β1

a4Γ (5− 2β1)
+ Cx

4xlΓ (4)(x− xl)
3−2β1

a4Γ (4− 2β1)

+ Cx(
6x2l
a4

+
2y2

a2b2
− 2

a2
)
Γ (3)(x− xl)

2−2β1

Γ (3− 2β1)
+ Cx

Γ (5)(xr − x)4−2β1

a4Γ (5− 2β1)

− Cx
4xrΓ (4)(xr − x)3−2β1

a4Γ (4− 2β1)
+ Cx(

6x2r
a4

+
2y2

a2b2
− 2

a2
)
Γ (3)(xr − x)2−2β1

Γ (3− 2β1)

+ Cy
Γ (5)(y− yl)

4−2β2

b4Γ (5− 2β2)
+ Cy

4ylΓ (4)(y − yl)
3−2β2

b4Γ (4− 2β2)

+ Cy(
6y2l
b4

+
2x2

a2b2
− 2

b2
)
Γ (3)(y − yl)

2−2β2

Γ (3− 2β2)
+ Cy

Γ (5)(yr − y)4−2β2

b4Γ (5− 2β2)

− Cy
4yrΓ (4)(yr − y)3−2β2

b4Γ (4− 2β2)
+ Cy(

6y2r
b4

+
2x2

a2b2
− 2

b2
)
Γ (3)(yr − y)2−2β2

Γ (3− 2β2)
,

(91)
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Table 1 The convergence orders in space with τ = 1/3200.

h ‖uN
h − u(tN )‖0 order ‖uN

h − u(tN )‖(α,β) order

1/8 4.293e-2 7.6203e-1
α0 = 1.3 1/16 1.0931e-2 1.9736 3.4203e-1 1.1557
α = 0.8 1/22 5.7303e-3 2.0279 2.2957e-1 1.2517
β1 = 0.65 1/32 2.6862e-3 2.0221 1.4716e-1 1.1868
β2 = 0.8 1/48 1.1844e-3 2.0182 9.0292e-2 1.2020

Table 2 The convergence orders in space with τ = 1/3200.

h ‖uN
h − u(tN )‖0 order ‖uN

h − u(tN )‖(α,β) order

1/8 4.2943e-2 5.4253e-1
α0 = 1.5 1/16 1.0983e-2 1.9661 2.2428e-1 1.2744
α = 0.6 1/22 5.7967e-3 2.0067 1.4507e-1 1.3681
β1 = 0.6 1/32 2.7901e-3 1.9516 9.0448e-2 1.2609
β2 = 0.7 1/48 1.2799e-3 1.9220 5.4908e-2 1.2310

Table 3 The convergence orders in time with τmin{3−α0,2−α,2} ≈ h2.

τ ‖uN
h − u(tN )‖0 order

1/32 4.6567e-2
α0 = 1.6 1/101 1.3182e-2 1.0981
α = 0.8 1/173 7.3492e-3 1.0856
β1 = 0.8 1/322 3.8381e-3 1.0456
β2 = 0.6 1/634 1.7508e-3 1.1585

Table 4 The convergence orders in time with τmin{3−α0,2−α,2} ≈ h2.

τ ‖uN
h − u(tN )‖0 order

1/25 4.4414e-2
α0 = 1.7 1/71 1.1425e-2 1.3026
α = 0.2 1/116 6.1114e-3 1.2745
β1 = 0.8 1/207 2.9466e-3 1.2604
β2 = 0.8 1/386 1.2888e-3 1.3271

where Cx = kx(t
2+1)

2 cos(β1π) , Cy =
ky(t

2+1)
2 cos(β2π) , xl = −a

b

√

b2 − y2, xr = a
b

√

b2 − y2,

yl = − b
a

√
a2 − x2, yr = b

a

√
a2 − x2. The exact solution is u(x, y, t) = (t2+1)(x

2

a2 +
y2

b2 − 1)2.
Suppose that a = 1/2, b = 1/4, T = 1, and kx = 2, ky = 1. The convergence

orders both in time and in space are given in Tables 6.1-6.4.
For space, the convergence orders in the ‖·‖0 norm and the ‖·‖(β1,β2) norm are

shown in Table 1 and Table 2 respectively. As is shown in the tables, the order in
the ‖·‖0 norm is about 2, and in the ‖·‖(β1,β2) norm is about 2−max{β1, β2}, which
agree with the theoretical results. With different choices of the fractional orders,
the numerical results are in agreement with the theoretical analysis, indicating the
validity of the proposed method.

For time, based on the theoretical analysis, the convergence order should be
O(τmin{3−α0,2−α,2}). As is shown in Table 3 and Table 4, with different fractional
orders, the numerical results coincide with the theoretical analysis. They demon-
strate that the proposed unstructured mesh finite element method is efficient in
dealing with two-dimensional multi-term time-space fractional diffusion-wave e-
quations defined on a convex domain.
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Fig. 4 The profile of u(x, y, t) with different time fractional orders αi.

6.2 Example 2

Next, we try to explore the role of the time fractional orders played in the two-
dimensional multi-term time-space fractional partial differential equation. As an
example, we consider the following 3-term case on a convex domain:























3
∑

i=1

ai
C
0 D

αi

t u = kx
∂2β1u
∂|x|2β1

+ ky
∂2β2u
∂|y|2β2

+ f(x, y, t), (x, y, t) ∈ Ω × (0, T ],

u(x, y, 0) = e−100((x−0.5)2+(y−0.5)2), (x, y) ∈ Ω,
ut(x, y, 0) = 0, (x, y) ∈ Ω,
u(x, y, t) = 0, (x, y, t) ∈ ∂Ω × (0, T ],

(92)
where f(x, y, t) = t2x(x− 1)y(y − 1).

For the sake of simplicity, the domain is supposed to be Ω = [0, 1] × [0, 1],
the space fractional orders are fixed as β1 = β2 = 0.8, kx = 5 × 10−4, ky =
1.6 × 10−4, T = 3, and αi ∈ (0, 2). Since it is hard to obtain the exact solution
for this problem, we main pay attention to the numerical solution under different
cases of time fractional orders.

Taking h = 0.03125, τ = 0.01, the profile of u(x, y, t) with different time
fractional orders αi are shown in Fig.4, with ai = 0 or 1, i = 1, 2, 3. That is, for
the case α1 = 0.6, the coefficients are given as a1 = 1, a2 = a3 = 0. It can be
seen that, with different time fractional orders, the fractional partial differential
equation shows different profile, especially when αi belongs to different regions. In
practical problems, the number of the time fractional term and the corresponding
values of the fractional order can be determined based on the relevant physical
backgrounds.
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7 Conclusions

In this paper, the two-dimensional multi-term time-space fractional diffusion-wave
equation defined on an irregular convex domain in considered, which is a much
more general case that has wide applications in fluid mechanics. A novel unstruc-
tured mesh finite element method is proposed to deal with the considered equation.
Taking into account the Caputo time fractional orders belonging to the whole in-
terval (0, 2), a mixed difference scheme is used in time. Given the irregular convex
domain, which is difficult to be subdivided well using a structured mesh, a novel
finite element scheme using unstructured mesh is proposed in space. Implemen-
tation of the numerical scheme is detailed, and its stability and convergence are
established. To verify the validity of the proposed numerical method, two nu-
merical examples are constructed. Numerical results show consistency with the
theoretical analysis. The work demonstrates that the proposed unstructured mesh
finite element method is efficient and valid in dealing with two-dimensional multi-
term time-space fractional diffusion-wave equations defined on an irregular convex
domain, allowing for the time fractional orders belonging to the whole interval
(0, 2).
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