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Abstract: The manual segmentation of individual retinal layers within optical coherence 
tomography (OCT) images is a time consuming task and prone to errors. The investigation into 
automatic segmentation methods that are both efficient and accurate has seen a variety of 
methods proposed. In particular, recent machine learning approaches have focused on the use 
of convolutional neural networks (CNNs). Traditionally applied to sequential data, recurrent 
neural networks (RNNs) have recently demonstrated success in the area of image analysis, 
primarily due to their usefulness to extract temporal features from sequences of images or 
volumetric data. However, their potential use in OCT retinal layer segmentation has not 
previously been reported, and their direct application for extracting spatial features from 
individual 2D images has been limited. This paper proposes the use of a recurrent neural 
network trained as a patch-based image classifier (retinal boundary classifier) with a graph 
search (RNN-GS) to segment seven retinal layer boundaries in OCT images from healthy 
children and three retinal layer boundaries in OCT images from patients with age-related 
macular degeneration (AMD). The optimal architecture configuration to maximize 
classification performance is explored. The results demonstrate that a RNN is a viable 
alternative to a CNN for image classification tasks in the case where the images exhibit a clear 
sequential structure. Compared to a CNN, the RNN showed a slightly superior average 
generalization classification accuracy. Secondly, in terms of segmentation, the RNN-GS 
performed competitively against a previously proposed CNN based method (CNN-GS) with 
respect to both accuracy and consistency. These findings apply to both normal and AMD data.  
Overall, the RNN-GS method yielded superior mean absolute errors in terms of the boundary 
position with an average error of 0.53 pixels (normal) and 1.17 pixels (AMD). The methodology 
and results described in this paper may assist the future investigation of techniques within the 
area of OCT retinal segmentation and highlight the potential of RNN methods for OCT image 
analysis. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Optical coherence tomography (OCT) is a non-invasive imaging technique that allows high-
resolution cross-sectional imaging of ocular tissues such as the retina [1-3]. Retinal OCT 
imaging has been used extensively for characterizing the normal retina and its individual layers 
and in the detection and monitoring of ocular diseases such as age-related macular degeneration 
(AMD) [4-6], glaucoma [7], and diabetic retinopathy [8] which present changes in the normal 
retinal layer topology. However, the manual analysis of OCT images to extract the boundary 
position and subsequent structural characteristics of the retinal layers is time consuming, 
subjective, and prone to error, hence the need for efficient and automatic segmentation 
techniques. 



There has been extensive previous work in the area of automatic OCT image analysis, and 
the segmentation of retinal layers has been a significant focus, with a range of approaches 
presented including: Markov boundary models [9], sparse higher order potentials [10], diffusion 
filtering [11], diffusion maps [12], gradient maps [13], Chan-Vese (C-V) models [14], kernel 
regression (KR)-based classification [15], and graph-based methods [13,16,17]. The drawback 
with a number of these methods is their reliance on specific “ad-hoc” rules, resulting in poor 
performance in the presence of noise and/or artifacts. Recent work has attempted to address 
these issues by utilizing machine learning techniques for OCT image segmentation. These 
recent studies have used a number of approaches including support vector machines [18], neural 
networks [19-30] and random forests [31]. Fang et al [20] utilized a patch-based convolutional 
neural network and graph search based approach (CNN-GS) to segment nine retinal layers in 
OCT images of patients with non-exudative age-related macular degeneration. Extending upon 
this, Hamwood et al [21], investigated the effect of patch size and network complexity on the 
overall performance and proposed an improved CNN architecture for analysis of OCT images 
of healthy eyes. Loo et al [22], used a novel deep learning approach (DOCTAD) that combined 
convolutional neural networks and transfer learning to perform the segmentation of 
photoreceptor ellipsoid zone defects in OCT images. ReLayNet, proposed by Roy et al [23], 
utilized a fully-convolutional neural network architecture to perform semantic segmentation of 
retinal layers and intraretinal fluid in macular OCT images. Fully-convolutional networks were 
also utilized by Xu et al [24], in a dual-stage deep learning framework for retinal pigment 
epithelium detachment segmentation. 

The recurrent neural network (RNN) has been used for a variety of problems, particularly 
where sequential data is present. Some examples include language modelling [32], machine 
translation [33], handwriting recognition/generation [34], sequence generation [35], and speech 
recognition [36,37]. The effectiveness of RNNs when applied to image-based tasks has also 
been investigated. Visin et al. [38] compared the image classification ability of an RNN to that 
of a CNN and presented a novel architecture (ReNet) specifically designed to handle 2D images 
as the input. One layer of the ReNet architecture contained four RNNs, each of which was 
designed to sweep over the image in a different direction. Performance of the ReNet architecture 
for evaluating the MNIST (28x28 grayscale), CIFAR-10 (32x32 RGB), and SVHN (32x32 
RGB) image datasets was reported to be similar to some CNNs. However, their architecture did 
not outperform state-of-the-art CNNs on any of the datasets. In a more recent paper [39], the 
ReNet architecture was explored further and coupled with a CNN for use in end-to-end image 
segmentation, reporting state-of-the-art performance on the Weizmann Horse (variable sized 
grayscale and RGB), Oxford Flowers 17 (variable sized RGB), and CamVid (960x720 RGB) 
datasets. In particular, the authors cited the usefulness of RNNs to capture global dependencies. 
Earlier work by Graves et al [40], also explored the application of RNNs to images, presenting 
a multi-dimensional RNN (MD-RNN) in which they replaced the single recurrent connection 
with one for every dimension in the input. Likewise, another variant of the RNN, the 
convolutional LSTM (C-LSTM), was introduced by Shi et al [41], in their work with short-term 
precipitation forecasting. 

Recently, several papers have examined the use of RNNs for medical image analysis. Chen 
et al [42], combined a fully-convolutional network (FCN) approach with a recurrent neural 
network for 3D biomedical image segmentation in which the images were comprised of a 
sequence of 2D slices. The FCN was used to extract intra-slice contexts into feature maps, which 
were then passed to the RNN to extract the inter-slice contexts. In their work on automatic fetal 
ultrasound standard plane detection, Chen et al [43], used a knowledge transferred network that 
first extracted spatial features using a CNN which were then explored temporally using a RNN. 
A similar methodology was employed by Kong et al [44], using a temporal regression network 
(TempReg-Net) for end-systole and end-diastole frame identification in MRI cardiac sequences. 
Stollenga et al [45], introduced their PyraMid-LSTM and both highlighted the effectiveness of 
RNNs for spatiotemporal tasks and reported state-of-the-art performance on a dataset for brain 



MRI segmentation. Investigating dynamic cardiac MRI reconstruction, Qin et al [46], used a 
novel convolutional recurrent neural network which outperformed existing techniques in terms 
of both speed and accuracy and also required fewer hyper parameters. In another paper, Xie et 
al [47], attempted to use a clockwork recurrent neural network (CW-RNN) [48] based 
architecture to accurately segment muscle perimysium.  

While a RNN approach has proven successful in the analysis of a range of medical images, 
to the best of our knowledge, there is no previous work utilizing RNNs as an approach to 
segment retinal boundaries in OCT images. There is also little evidence of RNNs being applied 
directly to individual medical images to extract spatial features. Instead, they have been used 
predominantly to extract temporal features from sequences of feature maps, with convolutional 
neural networks (CNNs) preferred to operate spatially on each image as a prior step. In this 
work, a novel recurrent neural network combined with a graph search approach (RNN-GS) is 
presented. This combines patch-based boundary classification using RNNs with a subsequent 
graph search to delineate retinal layer boundaries. This approach is partly inspired by the work 
of Fang et al [20], but in the methodology presented here the CNN is replaced with a RNN. A 
detailed selection of the RNN architecture and configuration as well as the evaluation of the 
optimal RNN model is presented. 

The paper is structured as follows. In Section 2, the RNN-GS methodology and approach is 
outlined, including details about the datasets used as well as the RNN model and architecture 
selection. Section 3 presents experimental classification results for a range of RNN architectures 
which were used to inform the empirical selection of a suitable RNN design. Section 4 presents 
the segmentation results for the selected RNN design with performance evaluated against other 
CNN based methods. Discussion of the method and results are provided in Section 5. 
Concluding remarks are included in Section 6. 

2. Method 

2.1 Dataset 1 (normal OCT images) 

The first dataset (Dataset 1) used in this work consists of a range of OCT retinal images from a 
longitudinal study that has been described in detail in a number of previous publications [21,49-
51], The data comprises OCT retinal scans for 101 children taken at four different visits over 
an 18-month period. All subjects had normal vision in both eyes and no history of ocular 
pathology. The images were acquired using the Heidelberg Spectralis (Heidelberg Engineering, 
Heidelberg, Germany) SD-OCT instrument. At each visit, each subject had two sets of six 
foveal centered radial retinal scans taken. The instrument’s Enhanced Depth Imaging mode was 
used and automatic real time tracking was also utilized to improve the signal to noise ratio by 
averaging 30 frames for each image. The acquired images each measure 1536x496 pixels (width 
x height).  With a vertical scale of 3.9 µm per pixel and a horizontal scale of 5.7 µm per pixel, 
this corresponds to an approximate physical area of size 8.8x1.9 mm (width x height). These 
images were exported and analyzed using custom software where an automated graph based 
method [13,52], was used to segment seven retinal layer boundaries for each image. This 
segmented data was then assessed by an expert human observer who manually corrected any 
segmentation errors. Throughout this paper, “B-scan” refers to an individual full-size 
(1536x496) image while “A-scan” corresponds to a single column of a B-scan. 

The seven layer boundaries within the labelled data include the outer boundary of the retinal 
pigment epithelium (RPE), the inner boundary of the inner segment ellipsoid zone (ISe), the 
inner boundary of the external limiting membrane (ELM), the boundary between the outer 
plexiform layer and inner nuclear layer (OPL/INL), the boundary between the inner nuclear 
layer and the inner plexiform layer (INL/IPL), the boundary between the ganglion cell layer and 
the nerve fiber layer (GCL/NFL) and the inner boundary of the inner limiting membrane (ILM). 

For computational reasons, only a portion of all the described data was used throughout this 
work. Two subsets of data are defined here. For neural network training and validation, a set of 
images (labelled data A) was selected. For training, 842 B-scans were used consisting of all 



available scans from both sets from 39 randomly selected participants’ first two visits. For 
validation, 223 B-scans were used consisting of all available scans from both sets from 20 
different randomly selected participants’ third visit. A second set of images (labelled data B) 
was selected for evaluation of the method. This set consisted of 115 images comprised of all 
available scans from one set from 20 randomly selected participants’ fourth visit. There was no 
overlap of participants or visits between the training, validation and evaluation sets with the 
intention of obtaining an accurate representation of the network generalizability to unseen data. 

2.2 Dataset 2 (AMD OCT images) 

The second dataset (Dataset 2) [53] consists of a range of OCT retinal images from individuals 
with and without age-related macular degeneration (AMD). Within this, 100 B-scans each from 
269 AMD participants and 115 healthy participants are provided. For each B-scan, segmentation 
of  three retinal layer boundaries are provided (from an automated graph-search method that 
was manually corrected by expert image graders). The three layer boundaries within the labelled 
data include the inner aspect of the inner limiting membrane (ILM), the inner aspect of the 
retinal pigment epithelium drusen complex (RPEDC) and the outer aspect of Bruch’s membrane 
(BM). 

Like Dataset 1, not all available data was used in this work due to computational reasons. 
Two subsets of data are again defined here with ‘labelled data A’ for network training/validation 
and ‘labelled data B’ for evaluation. Only images from the AMD individuals were used from 
this dataset. Labelled data A comprised of 15 B-scans (scans 40-54) each from 160 participants 
(participants 1-160) (2,400 B-scans total). From this, the first 120 participants (participants 1-
120) were used for training (1,800 B-scans) and the final 40 participants (participants 121-160) 
were used for validation (600 B-scans). Labelled data B consisted of 15 scans (scans 40-54) 
each from the next 20 participants not used in labelled data A (participants 161-180) (300 B-
scans total). There was no overlap between data used in labelled data A and B or between the 
training and validation sets. 

   
Fig. 1. Overview of the RNN-GS method for segmentation of retinal layers, where red boxes 
represent training steps and blue are evaluation steps. For training (labelled data A) and 
evaluation (labelled data B) there was no overlap between participants. 

2.3 Overview 

An overview of the recurrent neural network and graph search method (RNN-GS) utilized in 
this paper is presented in Fig 1. This method is similar to that used by Fang et al [20] but here 
a RNN is used in place of the CNN.  

Further details of the recurrent neural network model are provided in Section 2.4. For the 
method, there are two main phases: training and evaluation. In the training phase, the labelled 



OCT data (labelled data A), is used to construct a dictionary of image patches for each class. 
The patches are centered upon the layer boundaries of interest. These patches are then used to 
train the RNN as a classifier as detailed in Section 2.5. In the second phase, evaluation of new 
data (labelled data B) is performed. The OCT images are split into patches for every single pixel 
of the image. The trained neural network is then used to predict the class of each patch and 
generate per class probability maps for the entire image. The layer boundaries are then 
delineated by performing a shortest-path graph search as outlined in Section 2.6. The methods 
and models used for comparison are described in Section 2.7. Finally, the overall evaluation of 
the method is described in Section 2.8. 

2.4 Recurrent neural network model 

Recurrent neural networks (RNNs) differ from other network configurations, such as CNNs, 
with the addition of feedback from the output to the input. This enables the network to utilize a 
past sequence of inputs to inform future outputs, which ultimately gives the network memory. 
RNNs may be trained using an extension of the backpropagation algorithm called 
backpropagation-through-time (BPTT) [54-56]. In their basic form, RNNs are comprised of 
recurrent units which pass a concatenation of the previous output and current input through an 
activation function. However, these simple recurrent units have issues in practice. Most notably 
are the problems of vanishing and exploding gradients [57-59]. More complex recurrent units 
have been designed and proposed to deal with this, namely the long-short term memory (LSTM) 
[57], and gated recurrent unit (GRU) [60].  

 
Fig. 2. Example of a model with three stacked RNN layers showing how the activation volume 
is manipulated as it passes through the network. Each grey volume corresponds to the volume 
(receptive field width x receptive field height x channels) processed at a particular step within 
the first sequence operated on by the RNN. The direction of this operation is indicated by the 
solid arrows. The dotted outline volumes belong to each step of the following sequence and the 
dashed arrows indicate the order the sequences are processed in. 1) Horizontal unidirectional 
RNN with a 2x2 receptive field and 8 filters. 2) Horizontal bidirectional RNN with a 1x1 
receptive field and 16 filters (8 / pass). 3) Vertical bidirectional RNN with a 2x2 receptive field 
and 24 filters (12 / pass). 

The layers within the ReNet architecture [38], use a set of four RNNs operating in different 
directions to perform the task of image classification. Each RNN layer can operate either 
horizontally or vertically over sequences of image pixels and this can be done with one pass 
(unidirectional), or two passes (bidirectional). A number of parameters are also associated with 
each layer including the receptive field size (width x height in pixels), number of filters, and 
type of recurrent unit. Each additional filter can give the network an opportunity to learn a 
different pattern. In terms of the recurrent unit types, both the LSTM and GRU are considered 
as options within each layer. The receptive field corresponds to the volume that is processed by 
the RNN at each step in each sequence. For each RNN, the spatial dimensions (width and height) 
of the output volume are equal to the respective sequence lengths in each direction. These 
sequence lengths are equal to the spatial dimensions of the input volume divided by the 



corresponding receptive field dimensions. Meanwhile, the depth (number of channels) of the 
output volume is simply equal to the number of filters.  

For example: an 8 filter horizontal unidirectional RNN operating with an input volume size 
of 16x16x3 (width x height x channels) and a receptive field size of 2x2, would mean that a 
volume of size 2x2x3 is processed by the RNN for each of 8 steps (horizontally), for each of 8 
sequences (vertically), with an overall output volume size of 8x8x8. A visualization of this 
example is illustrated in step 1 of Figure 2. For bidirectional layers, the output volumes of each 
pass are concatenated together along the depth dimension as depicted in steps 2 and 3.  

To avoid overfitting to the training data, the dropout regularization technique was utilized 
[61]. Here, each layer is equipped with a level of dropout which corresponds to the percentage 
of units in that layer which are randomly turned off (dropped) in each epoch. Batch 
normalization [62], at the input to each layer was also used. This ensures that the mean and 
variance of each mini-batch is scaled to 0 and 1 respectively, which can help to improve the 
performance and stability of the network during training. 
 

2.5 Training and patch classification 

The RNN model is trained as a classifier. This is done by constructing small overlapping patches 
from the OCT images and assigning each to a class based on the layer boundary that they are 
centered upon. These constitute the “positive” training examples. For patches not centered upon 
a layer boundary, Fang et al [20], utilized a single class for “negative” training examples, also 
called the “background” class. In this study, two background classes were used with the 
intention to better capture the different background features of the OCT image, particularly 
some of the features and image artefacts in the retina, vitreous (anterior to the retina) and in the 
choroid and scleral region (posterior to the retina). The first background class consists of patches 
centered within the retina (between the ILM and RPE for dataset 1 and between the ILM and 
BM for dataset 2) as well as in a small region of both the vitreous and choroid directly above 
and below the retina respectively. The height of these smaller regions is set to be equal to the 
patch height. All patches within the described area that are not centered on any boundary are 
considered part of this class. The second background class consists of patches centered in a 
region bounded between the bottom of the first background class region and the bottom of the 
image. Zero-padding is added to any patches at the edge of images where required. 

 Using the ‘labelled data A’ images  as described in Section 2.1 and 2.2, patches were created 
for both training and validation (for both dataset 1 and dataset 2). Patches were created for each 
class with background examples randomly selected within their corresponding ranges. To 
reduce computational burden, the total number of patches was restricted with patches only 
created for every eighth column of each image. For dataset 1, the training set was comprised of 
~1,450,000 patches with an additional ~380,000 for validation. This was a nine-class 
classification problem with equally weighted classes. Similarly, for dataset 2, the training set 
was comprised of ~980,000 patches with an additional ~320,000 for validation. This was a five-
class classification problem with equally weighted classes. In an effort to maximize training 
performance, all patches were normalized (0-1) before they were input to the network. However, 
unlike previous studies [13,20,21], intensity normalization and other image pre-processing steps 
were not used in this work for any of the datasets.  

The Adam algorithm [63], a stochastic gradient-based optimizer, was used to train the 
network by minimizing log loss (cross-entropy) [64]. Empirically, Adam performs well in 
practice with little to no parameter adjustment and compares favorably to other stochastic 
optimization methods [63]. Due to Adam’s relatively quick convergence to good solutions in a 
small number of epochs, no early stopping was used for training. In addition, given the adaptive 
per-parameter learning rates that this optimizer possesses, no learning rate scheme was deemed 
to be necessary. The network was trained for 50 epochs with a batch size of 1024 and the model 
that yielded minimum validation loss was selected. This is similar to approaches described and 



used elsewhere [65,66]. The number of epochs and the batch size were chosen empirically, 
while the algorithm parameters were left at their recommended default values. The Keras API 
[67], with Tensorflow [68], backend in Python was the programming environment of choice. 

2.6 Probability maps and graph search 

For a single OCT test image, patches are generated for every pixel and passed to the trained 
neural network to be classified. From this, per class probability maps can be constructed and a 
graph search performed to delineate the layer boundaries. The idea was proposed by Chiu et al 
[13], for the segmentation of OCT images which has been adapted in a number of CNN studies 
[20,21]. However, in contrast to previous work, in this study the search path was not limited 
between the top and bottom layer boundaries. Each probability map can be used to construct a 
directed graph where the pixels in the map correspond to vertices in the graph. Each vertex is 
connected to its three rightmost neighbors (diagonally above, horizontally, diagonally below). 
The weights of these connections are given by the equation: 

 min ,2 ( )sd s dw P P w      (1) 

where Ps and Pd are the probabilities (0-1) of the source and destination vertices respectively, 
and wmin=1x10-5 is a small positive number added for system stability. 

To automate the start and end point initialization, a column of maximum intensity pixels is 
appended to both the left and right of the image. As well as being connected to their rightmost 
neighbors, vertices in these columns are also connected vertically from top to bottom. This 
allows for a graph search algorithm, like Dijkstra’s shortest-path algorithm [69], as used here, 
to start at the top-left corner and traverse the graph through to the bottom-right corner without 
any manual interaction. In this way, a graph cut is performed and this shortest path is used as 
the predicted location of the layer boundary. 

2.7 Comparison of methods 

A comparison between the RNN-based method and a patch-based CNN method is presented. 
The CNN method used is identical except that the RNN is replaced by a CNN. The CNN used 
here is the so-called “complex CNN” proposed by Hamwood et al [21]. This is trained 
identically to the RNN as described in Section 2.5. 

In addition, a comparison between the patch-based method and a full image-based method 
is also provided. The method for comparison is a fully-convolutional network and graph search 
method (FCN-GS). For this, the patch-based classifier network is replaced with a U-Net [70], 
style architecture similar to that used by Venhuizen et al [26]. The FCN used here consists of 
four down sampling blocks each with two 3x3 convolutional layers. The network was trained 
for 50 epochs with a batch size of three using Adam with default parameters in a similar way to 
the patch-based networks in Section 2.5. Cross-entropy loss is used here to classify each pixel 
of the image into one of eight area classes. These eight areas are constructed between adjacent 
layer boundaries and the top and bottom of the image as required to create an overall area mask. 
For A-scans where at least one layer boundary is not defined, the image is zeroed with the 
corresponding columns in the area mask set to be defined as the top-most region. The overall 
method is similar to that used by Ben-Cohen et al [25], where the FCN is used for semantic 
segmentation on whole OCT images. Instead of classifying patches to generate probability 
maps, the Sobel filter is applied to the area probability maps output from the FCN to extract the 
boundary probability maps. A shortest-path graph search is then performed using these 
boundary probability maps in the same way as the patch-based method. 

2.8 Evaluation 



As described in Section 2.1 for dataset 1 and Section 2.2 for dataset 2, the images contained in 
labelled data B were used to evaluate the whole method. By comparing the predicted boundary 
positions to the truth (the segmentation from the expert human observer), the mean error and 
mean absolute error with their associated standard deviations were calculated for each layer 
across the whole test set. For dataset 1, the full-width image was used for both patch creation 
and performing the graph search. However, due to the lack of consistency of the layers around 
the left and right extremities of the image (e.g. presence of optic nerve head and shadows), the 
first and last 100 pixels of each side were excluded from the final error calculations and 
comparisons. For dataset 2, the full-width image was used as input to the network with a full-
width probability map used for the graph search. However, as the true layer boundaries were 
not defined in every column, only those columns with all true boundary locations present were 
used for error calculations and comparisons.  

3. RNN design 

In order to design a suitable RNN architecture for patch classification, the impact of various 
network parameters on performance was examined. This section presents the results for a range 
of experiments including; the impact of patch size and direction of operation (Section 3.1), 
receptive field size (Section 3.2), number of filters (Section 3.3), stacking and ordering of layers 
(Section 3.4), and fully-connected layers (Section 3.5).  

Visin et al. [38], used dropout after each layer in their network while Srivastava et al. [61], 
show that 50% dropout is a sensible choice for a variety of tasks. As such, 50% dropout is added 
after each fully-connected layer in Section 3.5. However, due to the relatively small number of 
parameters in the RNN layers used here, this level of dropout was deemed to be unnecessary 
and a potential hindrance to performance. Instead, 25% dropout is used after each RNN layer 
to ensure sufficient network capacity. 

All networks were trained identically as described in Section 2.5. The experiments are 
performed only utilising dataset 1 to allow for a fair comparison with Hamwood et al. [21], and 
their CNN which was also tested and optimized using normal OCT images. The generalizability 
of each network is assessed by measuring the classification accuracy on the validation set 
(described as part of labelled data A in Section 2.1). This is computed by dividing the number 
of correctly classified patches by the total number of patches. Due to randomness associated 
with both the network weight initialization and batch ordering leading to possibly different 
solutions, each experiment was performed three times and the results were averaged. These 
experiments were used to inform the careful selection of the most suitable final RNN 
architecture that was employed, which is described in Section 3.6.  

3.1 Patch size and direction 

For the design of the RNN, it is of interest to investigate the effect of the patch size (height x 
width pixels) on the network performance. In their CNN-GS approach, Fang et al [20], used a 
33x33 patch size centered on the layer boundaries, while Hamwood et al [21], showed that 
increasing the size can improve network performance. With this in mind, 32x32, 64x32, 32x64 
and 64x64 patches are compared on a range of RNN architectures. Even-sized dimensions are 
chosen to facilitate the network model and to avoid additional zero padding. Because of the 
even-size, the patch cannot be truly centered, and therefore each is consistently placed with the 
layer boundary positioned on the pixel above and to the left of the central point. 

Table 1 outlines the results of the experiments undertaken. A small but significant 
improvement in classification accuracy was observed when using a vertically oriented 64x32 
patch (longer along the A-scan direction) compared to a 32x32 (about 1.1% mean 
improvement). However, this level of improvement is much less pronounced when comparing 
the 32x32 with the horizontally oriented 32x64 patch size (about 0.4% mean improvement). 
Despite possessing twice as many pixels, the 64x64 patch does not exhibit a clear performance 
benefit compared to the 64x32 patch (below 0.1% mean improvement). Thus, the 64x32 patch 



size appears to yield the best trade-off between accuracy and complexity for the tested sizes. It 
should be noted that other patch sizes were not tested for computational reasons. 

Table 1. Effect of patch size and direction on validation classification accuracy (%). The mean (standard 
deviation) of the accuracy for three training runs (GRU, 32 filters / pass, 2x2 receptive field, 25% dropout). 

 Patch Size (height x width pixels)  

Architecture 32x32 64x32 32x64 64x64 Mean 

Vertical Unidirectional 95.17 (0.05) 96.28 (0.02) 95.44 (0.06) 96.26 (0.07) 95.78 

Horizontal Unidirectional 94.48 (0.03) 95.77 (0.04) 95.13 (0.06) 96.10 (0.02) 95.37 

Vertical Bidirectional 95.33 (0.06) 96.18 (0.05) 95.51 (0.02) 96.01 (0.12) 95.75 

Horizontal Bidirectional 94.55 (0.08) 95.71 (0.09) 95.19 (0.06) 95.95 (0.15) 95.35 

Mean 94.88 95.98 95.31 96.08  

 
Within the ReNet layers [38], RNNs were used separately to process the input horizontally 

or vertically. To better understand the impact that the direction of operation has on network 
performance, these different options were considered. As shown in Table 1, the direction of 
operation appears to have a small impact on the classification accuracy, although it is worth 
noting that RNNs operating in the vertical direction outperform their horizontal counterparts by 
a small percentage. However, operating bi-directionally does not appear to yield improved 
performance. 

Table 2. Effect of receptive field size on validation classification accuracy (%). The mean (standard deviation) 
of the accuracy for three training runs are reported. (GRU, 32 filters, 64x32 patch size, single-layer vertical 

unidirectional RNN, 25% dropout).  

Square Rectangular 

Size Acc. (%) Size Acc. (%) Size Acc. (%) 

1x1 96.12 (0.05) 1x4 96.10 (0.12) 8x1 96.37 (0.03) 

2x2 96.28 (0.02) 4x1 96.28 (0.01) 2x8 96.08 (0.08) 

4x4 96.29 (0.06) 2x4 96.24 (0.05) 8x2 96.44 (0.02) 

8x8 96.13 (0.10) 4x2 96.35 (0.03) 4x8 96.13 (0.08) 

16x16 95.82 (0.06) 1x8 96.09 (0.05) 8x4 96.38 (0.03) 

3.2 Receptive field size 

The effect of the receptive field size on the network performance was also investigated. Visin 
et al [38], used a receptive field size of 2x2 between each of their ReNet layers. Here, a variety 
of square and rectangular receptive field sizes were compared on a single-layer vertical 
unidirectional RNN with the results outlined in Table 2. Similar to the effect of patch size 
described in Section 3.1, the vertical rectangular receptive fields provide a marginal 
improvement in performance compared to the equivalent horizontal variants, attributable to the 
vertical nature of the layer structure in the image. Overall, most of the tested sizes give similar 
performance indicating that the size of the receptive field does not have a significant impact on 
the accuracy for the tested dataset. 
 

3.3 Number of filters 

Increasing the number of filters gives the neural network more parameters and hence more 
opportunity to learn. The change in classification accuracy, as the number of filters in a single 
layer vertical unidirectional RNN is varied, was investigated to better estimate the optimal 



number of filters and the impact on performance. Table 3 shows that adding more filters yields 
a small increase in classification accuracy, albeit with diminishing returns. For this single layer 
network, choosing 32 filters gives a good trade-off between accuracy and complexity. 

Table 3. Effect of number of filters on validation classification accuracy (%). The mean (standard deviation) of 
the accuracy for three training runs are reported. (GRU, 2x2 receptive field, 64x32 patch size, single-layer 

vertical unidirectional RNN, 25% dropout).  

Filters Network parameters Acc. (%) 

8 37,273 95.62 (0.08) 

16 74,857 96.05 (0.04) 

32 151,177 96.28 (0.02) 

64 308,425 96.32 (0.02) 

3.4 Stacked layers and order 

The ReNet architecture [38], uses several layers of RNNs, each of which first operate on the 
input vertically before horizontally. Here, the effect of adding additional layers to the network 
as well as the order that these are stacked together was evaluated. The results presented in Table 
4 indicate that stacking layers improves the classification accuracy. Further, stacking both 
horizontal and vertical RNN layers yields greater performance than solely using vertical ones. 
There is no noticeable performance difference when changing the stacking order. This is also 
the case when using bi-directional RNNs, reinforcing the results presented in Section 3.1. 

Table 4. Effect of stacked layers and order on validation classification accuracy (%). The mean (standard 
deviation) of the accuracy for three training runs are reported. (GRU, 2x2 receptive field, 32 filters / pass, 

64x32 patch size, 25% dropout each layer). 

Architecture Acc. (%) Architecture Acc. (%) 

Vertical Unidirectional 96.28 (0.02) Horizontal Unidirectional + 
Vertical Unidirectional 

96.69 (0.02) 

2 x Vertical Unidirectional 96.59 (0.02) Vertical Unidirectional + 
Horizontal Unidirectional 

96.69 (0.02) 

3 x Vertical Unidirectional 96.67 (0.01) Horizontal Bidirectional + 
Vertical Bidirectional 

96.70 (0.01) 

  Vertical Bidirectional + 
Horizontal Bidirectional 

96.73 (0.02) 

3.5 Fully-connected layers 

Visin et al. [38], used one or more fully-connected (FC) output layers of size 4096 in their ReNet 
architecture. The effect of including a fully-connected layer in our network design was also 
evaluated. The results presented in Table 5 show that adding a fully-connected layer has little 
benefit given the corresponding drastic increase in network parameters. 

Table 5. Effect of fully-connected output layer size on validation classification accuracy (%). The mean 
(standard deviation) of the accuracy for three training runs are reported. (GRU, 2x2 receptive field, 32 filters, 

64x32 patch size, single-layer vertical unidirectional RNN, 25% dropout for RNN layer, 50% dropout for fully-
connected layer) 

FC layer size Network parameters Acc. (%) 

0 151,177 96.28 (0.02) 

32 528,329 96.37 (0.04) 

64 1,052,937 96.39 (0.04) 



128 2,102,153 96.32 (0.03) 

 

3.6 RNN architecture selection 

Based on the experimental findings presented in Sections 3.1-3.5, a RNN architecture was 
selected. An overview of this architecture is provided in Table 6. As discussed in Section 3.5, 
no fully-connected layers are used due to their seemingly negligible performance benefit. Two 
sets of vertical and horizontal bi-directional layers are used, each with a size of 32 filters (16 
per direction) and 25% dropout. Because the classification is based on pixel level accuracy, the 
first two layers are equipped with a 1x1 receptive field to enable the network to initially process 
the full-sized image on a pixel by pixel basis. The subsequent layers utilize a 2x2 receptive field 
with the intention of allowing the network to learn context at different levels. As described in 
Sections 3.1-3.5, the network operates with gated recurrent units (GRUs) which were found to 
perform comparably to LSTMs for this problem. 

Table 6. The selected RNN architecture. 4 bidirectional layers are utilized with two operating vertically and 
two horizontally. Each layer contains 16 filters per pass for a total of 32 filters each. 

Layer Architecture Receptive Field Filters (/ pass) 

Vertical Bidirectional 1x1 16 

Horizontal Bidirectional 1x1 16 

Vertical Bidirectional 2x2 16 

Horizontal Bidirectional 2x2 16 

4. Results 

4.1 Normal OCT data (Dataset 1) 

Using normal OCT images (dataset 1) as described in Section 2.1, the RNN-GS method was 
evaluated as described in Section 2 using the RNN architecture selected and trained as outlined 
in Section 3. Utilizing a 64x32 patch size, the network yielded a validation classification 
accuracy of 96.84% (0.05) taken as the average over three training runs. The mean accuracy of 
the seven boundary classes (excluding the background) was 98.25% (0.06) with the individual 
per-class accuracies ranging between 96.52% (0.08) (the IPL) and 99.24% (0.08) (the ILM).  
With the chosen patch size, the RNN architecture consisted of ~70,000 total parameters. Using 
an Nvidia GeForce GTX 1080Ti + Intel Xeon W-2125 the average evaluation time per B-scan 
was ~145 seconds. Here, the time to generate the probability maps was ~105 seconds on average 
with an average of ~40 seconds to perform the graph search for all seven boundaries. 

The segmentation results for each layer boundary are presented below in terms of the mean 
error and the mean absolute error as well as their standard deviations. The patch-based approach 
was also evaluated using the Complex CNN architecture as described in Section 2.7 using the 
same set of 64x32 patches. To support the patch dimensionality, a 13x5 fully-connected output 
layer was used. Averaged over three training runs, the CNN provided a validation classification 
accuracy of 96.36% (0.04), 0.48% lower than the RNN. The per-class accuracies ranged 
between 95.65% (0.85) (the IPL) and 99.17% (0.11) (the ILM) with a mean accuracy for the 
seven boundary classes of 97.94% (0.08), 0.58% lower than the RNN. This CNN architecture 
consisted of ~1,200,000 total parameters, approximately 17 times as many as the RNN. Using 
the same hardware, the average evaluation time per B-scan was approximately 65 seconds, 
about 2.2 times faster than the RNN. Given the same time for the graph search (~40 seconds), 
this corresponds to ~25 seconds on average to generate the probability maps which is about 4.2 
times faster than the RNN. 



The segmentation errors in terms of boundary positions (in pixels) are presented in Table 7. 
The mean errors (and mean absolute errors) between methods are of similar magnitude, which 
suggests that the two networks give a similar level of performance with the RNN based 
approach performing marginally better on each boundary with a 0.02 to 0.05 pixels mean 
absolute error improvement with the exception of the GCL/NFL (0.12 pixels improvement in 
mean absolute error). This corresponds to an average improvement of 0.05 pixels (mean 
absolute error) with the RNN-GS yielding an average of 0.53 pixels mean absolute error on 
each boundary compared to the CNN-GS with 0.58. Both RNN-GS and CNN-GS performed 
the best on the ISe boundary with 0.33 and 0.35 pixels mean absolute error respectively, whereas 
both performed the poorest on the GCL/NFL with respective mean absolute errors of 0.84 and 
0.96 pixels. The standard deviations of the errors are also consistently smaller for the RNN-GS 
method for each of the considered layers, indicating a greater level of consistency in the 
segmentation compared to the CNN-GS approach.  

Table 7. Dataset 1 (normal OCT images) position error (in pixels) of each layer boundary for each of the tested 
methods. The results are reported in mean values and (per A-scan standard deviation). The best results 

(smallest error) for each boundary are highlighted in bold text. 

 RNN-GS CNN-GS FCN-GS 

Layer Boundary Mean error Mean abs. 
error 

Mean error Mean abs. 
error 

Mean error Mean abs. 
error 

ILM 0.01 (0.97) 0.46 (0.85) -0.02 (1.01) 0.48 (0.89) -0.16 (0.87) 0.53 (0.71)
GCL/NFL 0.11 (2.22) 0.84 (2.06) -0.06 (2.90) 0.96 (2.74) -0.10 (1.54) 0.79 (1.33)
INL/IPL -0.13 (1.10) 0.56 (0.95) -0.16 (1.17) 0.60 (1.02) -0.26 (1.07) 0.61 (0.92)
OPL/INL -0.10 (1.31) 0.69 (1.12) -0.11 (1.41) 0.73 (1.21) -0.16 (0.96) 0.63 (0.75)
ELM 0.02 (0.75) 0.35 (0.67) 0.09 (0.91) 0.38 (0.83) -0.20 (0.88) 0.42 (0.80)
ISe 0.02 (1.02) 0.33 (0.96) 0.06 (1.03) 0.35 (0.98) -0.05 (0.78) 0.38 (0.68)
RPE -0.13 (1.10) 0.48 (1.00) -0.16 (1.15) 0.53 (1.03) -0.12 (0.90) 0.47 (0.78)

 
The error profiles in Figure 3 also demonstrate consistently small errors across the central 6 

mm of the B-scan for each layer, and also shows a high level of similarity between the two 
considered methods, with the exception of the GCL/NFL where RNN-GS performed noticeably 
better across the entire boundary. Observing these profiles also shows that both networks exhibit 
a noticeable central error spike for the OPL/INL boundary attributable to the merging of the 
layer boundaries at the fovea. Also, all the layer boundaries showed a spike in error on the far 
right side of the profile, which corresponds to the location of the optic nerve head for a number 
of scans, where retinal boundaries disappear in this region. Some example segmentation plots 
for dataset 1 using the RNN-GS method are displayed in Figure 4. 

The patch-based method employed here is also compared with a fully-convolutional based 
approach (FCN-GS) as described in Section 2.7. In terms of the boundary position error (Table 
7), the FCN-GS method is comparable in accuracy to RNN-GS and CNN-GS with an average 
mean absolute error of 0.55 pixels compared to 0.53 and 0.58 for RNN-GS and CNN-GS 
respectively. However, FCN-GS shows a greater level of consistency for the segmentations with 
smaller standard deviations on all boundaries with the exception of the ELM. Similar to the two 
patch-based methods, FCN-GS showed the lowest error on the ISe and highest error on the 
GCL/NFL. In addition, Figure 3 shows the error profiles of FCN-GS to be somewhat similar to 
the two patch-based methods. The FCN contained ~490,000 parameters, approximately 7 times 
more than the RNN. However, the FCN was much faster in general with  a per-image probability 
map creation requiring about one second, approximately 100 times faster than the RNN. For 
per-image evaluation overall, FCN-GS was ~3.5 times faster than RNN-GS when taking the 
graph search into consideration. 



 

Fig 3. Dataset 1 (normal OCT images) mean absolute error profiles of each boundary for each of 
the tested methods. 

 

Fig 4. Example RNN-GS segmentation plots of two different participants from dataset 1 (normal 
OCT images) with the locations of the true (solid lines) and predicted (dotted lines) boundaries 
marked showing the close level of agreement between them. 

4.2 AMD OCT data (Dataset 2) 

Given the importance of applying automatic image segmentation to pathological data, the RNN-
GS, CNN-GS and FCN-GS methods were also evaluated using only AMD OCT images (dataset 
2), as described in Section 2.2. Again, 64x32 size patches are employed for the patch-based 
methods. Table 8 lists the results for the boundary position errors for the three layer boundaries 
present in this data. For RNN-GS, the ILM was relatively simple to segment with a mean 
absolute error of 0.38 pixels and standard deviation of 0.92 pixels showing a similar level of 
performance to that for the normal OCT images in dataset 1 (Table 7). However, CNN-GS and 
FCN-GS performed significantly worse than RNN-GS on this boundary in terms of both 
accuracy and consistency, attributable to a small number of major failure cases not evident for 
RNN-GS. For the RPEDC boundary, the three methods performed comparably in terms of both 
accuracy and consistency, while FCN-GS clearly provided the best overall performance on the 
BM boundary. Overall, the RNN-GS and FCN-GS performed comparably overall in terms of 
mean absolute error with an average of 1.17 and 1.07 pixels respectively while CNN-GS was 



lower with an average of 1.53 pixels. Figure 5 shows some example segmentation plots from 
dataset 2 using the RNN-GS method. 

Table 8. Dataset 2 (AMD OCT images) position error (in pixels) of each layer boundary for each of the tested 
methods. The results are reported in mean values and (per A-scan standard deviation). The best results 

(smallest error) for each boundary are highlighted in bold text. 

 RNN-GS CNN-GS FCN-GS 

Layer Boundary Mean error Mean abs. 
error 

Mean error Mean abs. 
error 

Mean error Mean abs. 
error 

ILM -0.03 (0.99) 0.38 (0.92) -0.68 (7.26) 1.10 (7.21) 0.14 (4.29) 0.65 (4.24)
RPEDC -0.52 (3.05) 1.05 (2.91) -0.64 (3.30) 1.17 (3.15) -0.43 (3.12) 1.03 (2.97) 
BM 0.91 (4.69) 2.07 (4.31) 1.19 (5.01) 2.31 (4.60) 0.46 (3.79) 1.53 (3.50)

 

 

  

Fig 5. Example RNN-GS segmentation plots of two different participants from dataset 2 (AMD 
OCT images) with the locations of the true (solid lines) and predicted (dotted lines) boundaries 
marked. The top image shows close agreement between the predictions and truths while the 
bottom image shows an example of a failure case for the BM boundary with a relatively high 
level of disagreement between the true and predicted boundaries. 

5. Discussion 

This study has proposed the novel use of recurrent neural networks to segment the retinal layers 
in macular OCT images of healthy and pathological datasets. The RNN-GS approach presented 
combines a recurrent neural network operating as a patch-based classifier with a subsequent 
graph search over the corresponding probability maps. This work was partly inspired by the 
previously proposed CNN-GS method for retinal image segmentation [20], as well as the RNN-
based ReNet architecture [38], proposed as an alternative to CNNs for image classification. 
Despite the extensive work in the area of OCT retinal layer segmentation, to the best of our 
knowledge, RNNs have not previously been applied to OCT image analysis. 

The careful selection of the final RNN architecture was informed using insights gained from 
a range of experiments. Of the tested patch sizes, the vertically oriented 64x32 rectangular patch 
(longer along the A-scan) yielded the best trade-off between accuracy and complexity. In 
particular, its superior performance compared to the horizontally oriented 32x64 variant , which 
is consistent with the vertical gradient change observed along the transition between adjacent 
layers.  A similar result was obtained when observing the effect of the RNN operating direction, 
with vertical RNNs outperforming horizontal ones. On the other hand, varying the size of the 
receptive field had negligible effects on performance. For a single layer RNN, diminishing 
returns were observed with respect to the number of filters. This informed an appropriate trade-
off between accuracy and complexity of 32 filters which was used for each layer in the final 
RNN architecture. With regards to the operating direction, stacking both horizontal and vertical 



layers outperformed unidirectional stacked layers. This informed the decision to utilize layers 
of both directions within the final network. Fully-connected output layers did not provide a 
sufficient accuracy/complexity trade-off and were therefore not included in the chosen RNN 
design. Like Visin et al [38], there was no observed performance difference between the LSTM 
and GRU recurrent units. 

Using a dataset comprising normal OCT images (dataset 1), the segmentation results showed 
the RNN based approach performed competitively in comparison to a CNN approach using the 
same patch-size. RNN-GS showed marginally smaller mean absolute errors for all seven layer 
boundaries and a greater consistency (i.e. smaller standard deviations) in the segmentation than 
CNN-GS. Overall, mean absolute errors of less than one pixel for all seven layer boundaries 
were observed, with less than half a pixel for four of those boundaries, indicating close 
agreement to the truth. Despite possessing 17 times fewer parameters, the evaluation time of 
RNN-GS was longer than that of CNN-GS. This can be attributed to the relatively high number 
of operations required to process an image sequentially as is the case with the RNN. 

To gauge the performance on pathological data, RNN-GS and CNN-GS were also evaluated 
using a dataset comprising OCT images from patients exhibiting age-related macular 
degeneration (dataset 2). The RNN showed competitive performance with smaller mean 
absolute errors for all three layer boundaries corresponding to a mean improvement of 0.36 
pixels. In particular, CNN-GS exhibited a small number of major failure cases for the ILM 
boundary. These failure cases were the result of the relatively high level of noise within some 
B-scans where the ILM was less well defined. These failures were not evident for RNN-GS 
possibly indicating a greater robustness of the method in the presence of noise. Segmentation 
of the RPEDC and BM boundaries proved more challenging in the presence of pathological 
features. However, for both of these boundaries, RNN-GS exhibited marginally superior mean 
absolute errors and standard deviations compared to CNN-GS continuing the trend evident 
within the results from the normal OCT images. 

It should be noted that this work did not focus on the performance of the method with regards 
to different ocular pathologies with only one type of pathological data (AMD) investigated here. 
In addition, the RNN network architecture here was optimized using data from normal OCT 
images. Future work should attempt to further explore the application of this method to 
pathological data by extending the types of pathologies present within the data as well as 
investigating an optimal network architecture for such. 

In the past, RNNs have proven useful for tasks involving sequential data whereas CNNs 
have had considerable success when applied to image data. Consequently, RNNs have received 
less attention for image classification problems. Here, the ability of an RNN to perform 
competitively against a CNN on such a task was investigated. RNNs are suited to sequential 
data, so the good performance relative to the CNN may be attributed to the sequential nature of 
the retinal layer structure and features. In all, RNNs provide a viable alternative to CNNs for 
this particular problem even with retinal pathology and poor image quality conditions (AMD 
data). 

It should be noted that the 64x32 patch size used here is not necessarily the most optimal, 
with a number of alternative patch sizes not tested for computational reasons. Nonetheless, these 
are promising results and the performance here is encouraging. Future work may investigate 
other patch sizes and, in particular, larger vertically-oriented rectangular patches as these appear 
to give the best tradeoff between performance and speed. 

The patch-based approach presented here (RNN-GS) was compared to a full image-based 
approach utilizing a fully-convolutional network (FCN-GS). For normal OCT images (dataset 
1), the accuracy was comparable with RNN-GS. However, FCN-GS was more consistent in the 
segmentation with lower standard deviations for most boundaries. FCN-GS was also much 
faster in terms of evaluation highlighting this as a possible drawback of the patch-based method 
especially when time is critical (e.g. for many clinical applications where rapid segmentation 



performance is required). However, it should be noted that optimizing the speed of the RNN 
was not a focus here and should be investigated in future work.  

For AMD OCT images (dataset 2), the overall accuracy between RNN-GS and FCN-GS 
was again comparable. Like CNN-GS, FCN-GS exhibited a number of major failure cases, 
which were responsible for the relatively high mean absolute error and standard deviation on 
the ILM. On the other hand, FCN-GS was more accurate and consistent on the BM boundary. 
It is possible that the superior performance is a result of the greater amount of context available 
to the FCN while processing the whole image at once. Future work in the area may further 
investigate the relative performance of the patch-based method compared to full-image based 
methods. 

6. Conclusions 

In this paper, the RNN-GS method exhibited promising results for the segmentation of retinal 
layers in healthy individuals and AMD patients. In addition, RNNs have been identified as a 
sensible alternative to CNNs for tasks with images involving a sequence as is the case with the 
layer structure observed in the OCT retinal images used in this work. The results and the RNN-
GS methodology presented here may assist future work in the domain of OCT retinal 
segmentation and highlight the potential of RNN-based methods for OCT image analysis. 
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