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ABSTRACT 

 

This study investigated the effects of visual status, driver age and the presence of 

secondary distracter tasks on driving performance. Twenty young (M=26.8yrs) and 19 

old (M=70.2yrs) participants drove around a closed-road circuit under three visual 

(normal, simulated cataracts, blur) and three distracter conditions (none, visual, auditory). 

Simulated visual impairment, increased driver age and the presence of a distracter task 

detrimentally affected all measures of driving performance except gap judgments and 

lane keeping. Significant interaction effects were evident between visual status, age and 

distracters; simulated cataracts had the most negative impact on performance in the 

presence of visual distracters and a more negative impact for older drivers. The 

implications of these findings for driving behaviour and acquisition of driving-related 

information for people with common visual impairments are discussed. 

 

Keywords: driving, visual impairment, age, distracters,  
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INTRODUCTION 

 

Effectively interacting with the visual environment requires successful integration of 

complex information from a variety of sources. Age-related changes in sensory abilities, 

such as visual impairment, can potentially compound this process and influence not only 

the ability to undertake visual tasks, but also to complete simultaneous secondary tasks not 

directly related to vision, such as walking through the environment and driving. Evidence 

from the literature supports this assertion, where both simulated and true visual impairment 

have been shown to reduce postural stability (Anand, Buckley, Scally & Elliott, 2003; 

Schwartz, Segal, Barkana, Schwesig, Avni & Morad, 2005; Wood, Lacherez, Black, Cole, 

Boon & Kerr, 2009) and impair mobility and gait performance (Elliott, Patla, Furniss & 

Adkin, 2000; Patel, Turano, Broman, Bandeen-Roche, Munoz & West, 2006; Turano, 

Broman, Bandeen-Roche, Munoz, Rubin, West & Team, 2004). Visual impairment is also 

associated with increased falls risk among older adults (Coleman, Cummings, Yu, 

Kodjebacheva, Ensrud, Gutierrez, Stone, Cauley, Pedula, Hochberg & Mangione, 2007; 

Ivers, Cumming, Mitchell & Attebo, 1998; Klein, Moss, Klein, Lee & Cruickshanks, 

2003). 

 

Visual impairment has been shown to contribute to the driving difficulties of older adults. 

Indices of unsafe driving performance, including increased crash risk and impaired on-road 

driving performance, have been reported in older drivers with cataracts (Owsley, Stalvey, 

Wells & Sloane, 1999; Owsley, Stalvey, Wells, Sloane & McGwin, 2001; Wood & 

Carberry, 2006) and glaucoma (Haymes, Leblanc, Nicolela, Chiasson & Chauhan, 2007; 

Haymes, LeBlanc, Nicolela, Chiasson & Chauhan, 2008; McGwin, Xie, Mays, Joiner, 

DeCarlo, Hall & Owsley, 2005; Owsley, McGwin & Ball, 1998) and in those drivers with 
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reductions in specific visual functions including visual fields, motion sensitivity, contrast 

sensitivity and visual attention (Owsley & McGwin, 1999; Wood, 2002).  

 

Visual impairment is likely to exacerbate existing deteriorations in physical and cognitive 

ability and judgment. More specifically, for the visually impaired, the ability to perform 

concurrent tasks may be compromised because the processing and interpretation of visual 

input may represent a significant attention demanding task in itself. There is some evidence 

to suggest that this may be the case. Turano, Geruschat and Stahl (1998) reported that the 

mobility problems of visually impaired individuals were exacerbated compared to controls 

when participants were required to undertake a secondary auditory task.  

 

The driving situation and the in-vehicle environment are also becoming increasingly 

complex. Some vehicles are equipped with sophisticated in-vehicle navigation and 

information systems as well as entertainment systems, which, like mobile phones, add to 

the driver’s attentional burden potentially distracting them from their primary task. Recent 

laboratory-based studies demonstrated that the combination of visual and auditory 

distracters reduces the extent of the useful field of view (Wood, Chaparro, Hickson, Thyer, 

Carter, Hancock, Hoe, Le, Sahetapy & Ybarzabal, 2006), which has been shown to be 

linked to crash rates in older drivers (Owsley, Ball, McGwin, Sloane, Roenker, White & 

Overley, 1998).  

 

The aims of this study were to investigate the effects of visual status, age and distracters on 

real world measures of daytime driving performance and to develop an understanding of 

the interactions between these factors. In particular, the interaction between simulated 

visual impairment and secondary tasks on visually guided behaviours such as driving is 
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unknown and is of particular interest given the increasing complexity of both the in-vehicle 

and driving environment.   

 

METHODS 

 

Participants 

Participants included 20 younger (mean age 26.8 ± 4.7 years; range 19 - 34 years; 7 

women and 13 men) and 19 older (mean age 70.21 ± 5.0 years; range 63 - 78 years; 9 

women and 10 men) individuals with normal corrected vision, who were free of ocular 

pathology and were in good general health. Participants were screened for visual, auditory 

and cognitive impairment. All participants had visual acuity within normal limits for their 

age, normal hearing sensitivity as defined by pure tone hearing threshold levels in both 

ears, lower than or equal to 20 dB at octave frequencies between 500 Hz and 4000 Hz and 

scored 24 or more on the Mini-Mental State Exam (Folstein, Robbins & Helzer, 1983). 

 

The study was conducted in accordance with the requirements of the Queensland 

University of Technology Human Research Ethics Committee. All participants were given 

a full explanation of the experimental procedures and written informed consent was 

obtained, with the option to withdraw from the study at any time. 

 

Procedure 

Driving performance was assessed under the baseline normal vision condition, where 

participants drove with their optimum distance refractive correction, and two simulated 

visual impairment conditions, one of which was designed to simulate the effects of 

cataracts and the other represented optically blurred vision. All of the visual conditions 
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were incorporated into full aperture lenses and were mounted in modified goggles together 

with each participant’s distance refractive correction normally worn for driving. The 

cataract goggles have been used in previous vision and driving studies and result in 

moderate reductions in visual acuity, to an average level of approximately 20/40 (the 

minimum level of visual acuity for driver licensure in Australia) and reductions in contrast 

sensitivity at both high and low spatial frequencies (Higgins & Wood, 2005; Wood & 

Troutbeck, 1994). The goggles do not restrict the binocular field of view below driver 

licensing standards in Australia of a horizontal extent of 120 degrees. For the blurred 

vision condition, binocular plus lens blur was used to reduce the distance visual acuity of 

each participant individually to match as closely as possible (in 0.25 dioptre steps) that 

obtained when they were wearing the cataract simulation goggles. This allowed us to 

explore the relative effects of simulated cataracts and blur on driving performance when 

visual acuity was matched and the interactions with age and distracters.  

 

For each visual condition, both visual acuity and contrast sensitivity were measured 

binocularly. Distance high contrast visual acuity was assessed under standard illumination 

conditions using a logMAR Bailey Lovie Chart, at a viewing distance of 3.0 meters and 

scored on a letter by letter basis. Contrast Sensitivity (CS) was measured using the Pelli-

Robson chart under the recommended viewing conditions. Participants were instructed to 

look at a line of letters and asked to guess the letter when they were not sure; each letter 

reported correctly was scored as 0.05 log units. 

 

Driving performance was assessed in a right hand drive, mid-size sedan (Nissan Maxima) 

which was instrumented and had automatic transmission and power steering. Performance 

was measured under daytime conditions on a 5.1 km bitumen driving circuit, which 
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consisted of hills, curves, straight sections, intersections and signage and was free of other 

vehicles and representative of rural roads (Wood & Troutbeck, 1994). A number of 

additional roadway objects were introduced to the circuit to obtain the following measures 

of driving performance (Wood, 2002). Sign recognition: Participants were instructed to 

report the identity of 42 standard signs containing 65 items of information as they drove 

around the circuit. Hazard avoidance: Participants were required to report and avoid hitting 

any of nine, large low contrast foam hazards (220cmx80cmx15cm) positioned along the 

roadway; the locations of which were randomized between trials. Gap judgment: Nine 

pairs of traffic cones of variable lateral separation were positioned throughout the course, 

with equal numbers being set to be wide enough, not wide enough and just wide enough 

for the car to pass through; the separation of cone pairs varied between trials. Participants 

were required to report whether the cone gap was wide enough to drive through and if so, 

to do so; if the gap was judged to be too narrow they were instructed to drive around the 

cones. Performance was scored in terms of whether the judgments were correct. Lane 

keeping: This was recorded by two video cameras mounted on the vehicle roof and scored 

post-testing as the percentage of time that the vehicle was outside of the lane. Lane 

crossings where the participant was responding to a hazard on the road were not included.  

Driving time: Time to complete the road course was also recorded.  

 

Participants were given a practice run in order to familiarize themselves with the car, the 

road circuit and the driving performance tasks, with and without the secondary visual and 

auditory tasks. The practice lap was performed in the opposite direction to the recorded 

run. Participants were instructed that they would be required to perform a number of tasks 

whilst driving at what they felt was a safe speed, to drive in their own lane except when 

avoiding hazards and to obey all regulatory signs.  
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The distracter task required the participants to verbally report the sum of pairs of numbers 

(i.e., “2 + 5”) presented either via a dashboard mounted monitor (visually) or through a 

computer speaker (auditorally) while driving (Chaparro, Wood & Carberry, 2005). The 

monitor was positioned just left of the steering wheel on the dashboard. The visual 

distracters consisted of the simultaneous presentation of pairs of large single digit numbers 

subtending between 3.5 and 4.8 degrees of visual angle, which were well above the visual 

threshold of all participants for all of the viewing conditions included in this study. The 

auditory stimuli were presented at a comfortable listening level set by each participant 

using an adaptive technique. Pairs of numbers were presented approximately every 3.5 

seconds for a mean duration of between 3.5 and 4.0 seconds. Given that the time taken to 

complete each lap varied between testing conditions and individuals, the number of 

distracters presented also varied, that is, those who completed a lap more quickly were 

presented with less distracter tasks and vice versa. Performance measures for this 

secondary task were calculated as the percentage of distracters missed for each condition. 

The presentation of distracters was computer driven and because of their frequency 

coincided with participants avoiding road hazards, reporting signs and judging cone gaps. 

This is representative of commonly encountered in-vehicle distracters, such as mobile 

phones, which do not take account of what is happening in the driving environment.   

  

Each participant drove around the circuit wearing each of the three visual conditions 

(baseline, simulated cataracts or blur) three times, once for each of the three distracter 

conditions (no distraction, visual distraction or auditory distraction). These nine 

combinations were randomized and the driving runs were conducted over two visits to the 

driving track separated by at least a week to minimize learning and fatigue effects.  
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Data Analysis 

A composite driving score was derived to capture the overall driving performance of the 

individual participants compared to the whole group as has been used in previous studies 

(Wood, 2002; Chaparro et al., 2005). The composite score included performance for sign 

recognition, gap perception, course time and the number of hazards hit. Z scores for each 

of these four driving measures were determined and the mean Z score for each participant 

calculated to provide a composite score (the data were transformed where necessary to 

ensure that better performance was always represented by a more positive Z score)  

 

The data were analysed using a series of repeated measures ANOVAs with two within 

subjects factors (visual condition and distracter condition) and one between subjects factor 

(age). All possible interactions were considered in the analysis and all significant main 

effects or simple main effects were investigated using Fishers' Least Significant Difference 

(LSD) test. After a significant F test, the LSD test examines all pairwise comparisons 

between means, while maintaining the family-wise error at the nominal alpha level (.05) 

provided there are three or fewer conditions to be compared, as was always the case for the 

present study (Howell, 1997; Ramsey, 1993). For the sake of brevity, only significant 

differences are described. 

 

The hazards seen or avoided measure revealed a ceiling effect with several conditions, 

where all or almost all hazards were correctly seen and not hit. No separate component 

analyses were therefore performed for these measures. The time to complete the circuit 

data were significantly skewed, so a logarithmic transform was applied to achieve normal 

distribution; although the data are plotted in raw score form for simplicity of interpretation. 

The number of secondary task sums missed in each condition also showed some skew and 
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heterogenous variances since there were usually only a small proportion of sums missed in 

each condition (ranging from 12% to 30%). This measure was therefore arcsine 

transformed as recommended for proportion data (Howell, 1997), although again the data 

are plotted in raw score form for simplicity of interpretation. 

 

RESULTS 

Table 1 shows the mean visual acuity and contrast sensitivity of each age group under the 

different visual conditions. Visual acuity was reduced in both the blur and cataract 

conditions relative to the normal vision condition, with the younger participants showing a 

mean impairment in visual acuity of 0.28 logMAR for blur and 0.32 logMAR for cataract 

relative to baseline, and the older participants showing a mean impairment of 0.33 

logMAR for blur and 0.36 logMAR for cataract relative to baseline. The reduction in 

visual acuity as a result of the goggles did not differ significantly between age groups (t37 = 

-1.48, p = 0.148 for blur, and t37 = -1.53, p = 0.134 for cataract). While the blurring lenses 

were selected to match the visual acuity degradation of the simulated cataracts, they 

resulted in only a modest reduction in contrast sensitivity, with a mean reduction in 

contrast sensitivity of -0.09 for the younger group and -0.12 for the older group. 

Conversely, the cataract simulation lenses markedly impaired contrast sensitivity with a 

mean difference of -0.68 for the younger group and -0.67 for the older group. Again, the 

change in contrast sensitivity as a result of the lenses did not differ significantly between 

age groups (t37 = 0.84, p = 0.406 for blur, and t37 = -0.048, p = 0.962 for cataract). 

 

Overall Driving Score 

There was a significant main effect of vision condition (F2,74  = 135.67, p < 0.001) such 

that, the composite driving score was significantly worse when participants drove with the 
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blur or cataract simulations, and was significantly worse for the cataract compared to the 

blur condition. There was also a significant main effect of distracter condition (F2,74 = 

22.75, p < 0.001), such that the overall driving score was significantly better for the no 

distracter condition compared to either the visual or auditory distracter conditions. The two 

distracter conditions were not significantly different from one another. There was also a 

significant interaction between vision condition and distracters (F4,148 = 8.66, p < 0.001). 

As shown in Figure 1A, in both the normal and blur conditions there was a significant 

difference between the auditory distracter and single task condition and between the visual 

distracter and single task condition, but no significant difference between the auditory and 

visual distracter conditions.  With the cataract simulation, there was a uniform drop in 

driving performance and the visual distracter condition resulted in significantly poorer 

performance than either the single task or auditory distracter. 

 

There was a significant main effect of age for the composite driving score, in which the 

younger drivers performed significantly better than the older drivers (F1,37 = 43.72, p < 

0.001) (Figure 1B). There was also a significant vision by group interaction (F2,74 = 9.35, p 

< 0.001), such that the cataract simulation impaired driving performance to a greater extent 

for the older compared to the younger participants.  

 

Component Driving Performance Measures 

When the data were considered as a function of the individual components of driving it 

was apparent that not all aspects of driving performance were affected in the same way by 

visual status and distracter tasks; the effects of age group also varied across different 

driving performance measures (Figures 2A-2D).  
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A significant main effect of vision condition was apparent for sign detection (F2,74 = 140.7, 

p < 0.001) and time to complete the course (F2,74 = 164.21, p < 0.001) but not for correct 

gap judgments (F2,74 = 2.11, p = 0.129) or total percentage of time outside of the lane (F2,74 

= 1.31, p = 0.28). Post-hoc comparisons indicated that, where significant differences 

existed, they were between all visual conditions, where performance was worse for the 

cataract condition, followed by blur, with best performance for the normal visual condition. 

  

There was a significant main effect of distracters for sign detection (F2,74 = 29.39, p < 

0.001), time to complete the course (F2,74 = 15.19, p < 0.001), and correct gap judgments 

(F2,74 = 8.72, p = 0.001), but not for total percentage of time outside of the lane (F2,74 = 

0.56, p = 0.57). Post-hoc comparisons demonstrated that under the distracter conditions 

participants saw fewer signs, made fewer correct gap judgments and took longer to 

complete the course than they did for the no distracter condition. Only time to complete the 

course was significantly different between the two distracter conditions, such that 

participants drove more slowly when driving under the visual distracter compared to the 

auditory distracter condition. 

 

There was a significant interaction between vision condition and distracter for sign 

detection (F4,148 = 4.58, p = 0.013) and time to complete the course (F4,148 = 4.25, p = 

0.003), but not correct gap judgments (F4,148 = 0.882, p = 0.418) or lane keeping (F4,148 = 

0.16, p = 0.957). For signs read the interaction was the same as that observed in the overall 

performance scores. For time to complete the course, in the normal vision condition the 

single task condition resulted in shorter times than either of the distracter conditions, but 

the distracter conditions did not differ. For the blur condition, the three distracter 

conditions did not differ significantly. However, in the cataract condition, the auditory and 
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single task conditions did not differ significantly, but the visual distracter produced 

significantly longer total times than the auditory distracter. Again, the worst performance 

overall was in the cataract condition, and particularly so in the presence of visual 

distracters. 

 

There was a significant main effect of age, such that the younger drivers performed 

significantly better than did the older drivers for sign detection (F1,37 = 18.4, p < 0.001), 

and time to complete the course (F1,37 = 12.28, p = 0.001), but not correct gap judgments 

(F1,37 = 1.81, p = 0.186) or lane keeping (F1,38 = 0.73, p = 0.40). 

 

Significant interaction effects were found between vision condition and age group for sign 

detection (F2,74 = 4.58, p = 0.013) and time to complete the course (F2,74 = 6.41, p = 0.003), 

but not correct gap judgments (F2,74 = 0.88, p = 0.418) or lane keeping (F2,74 = 2.24, p = 

0.11). In both cases, the interactions demonstrate that the cataract simulation impaired 

driving performance to the greatest extent in the older subjects.  

 

There were no significant two-way interactions between distracter and group, and no 

significant three-way interaction between distracter, vision and group.  

 

Secondary Task Performance 

An analysis was also conducted of performance on the secondary task for each distracter 

and visual condition. There was a significant main effect of visual condition (F2,74 = 29.96, 

p < 0.001), such that overall there were significantly more sums missed in the blur and 

cataract conditions than in the normal vision condition, and more sums missed in the 

cataract than in the blur condition (Figure 3). There was also a significant main effect of 
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group, such that older participants missed significantly more sums than did the younger 

participants (F1,37 = 8.39, p = 0.006). There was a significant two-way interaction between 

distracter and age group (F1,37 = 5.25, p = 0.028), and also a three-way interaction between 

vision condition, distracter condition and age group (F2,74 = 3.79, p = 0.027). For the 

younger participants, in all visual conditions there were more sums missed in the auditory 

than visual presentation. For the older participants, similarly, there were more auditory 

sums missed than visual sums in the normal and blur conditions, but in the cataract 

condition, there were more visual than auditory sums missed. 

 

DISCUSSION 

 

The findings of this study demonstrate that the presence of simulated visual impairment 

and distracter tasks degraded driving performance and there was a significant interaction 

between the two. Older participants generally performed worse than the younger 

participants and there was a significant interaction between visual status and age, such that 

the simulated cataract condition resulted in a greater impairment in driving performance 

for the older compared to the younger participants.  

 

Simulated visual impairment significantly reduced overall driving scores, reducing the 

number of road signs participants were able to read and slowing their performance on the 

course, as indicated by a longer mean time to complete the circuit. These findings are 

supported by previous studies that have shown that both simulated and true cataracts have 

a detrimental effect on a range of indices of driving performance (Owsley et al., 1999; 

Owsley et al., 2001; Wood & Carberry, 2006) and refractive blur significantly impaired all 

aspects of driving performance in agreement with previous closed road studies (Higgins, 
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Wood & Tait, 1998; Higgins & Wood, 2005). Importantly, the simulated cataracts resulted 

in the greatest decrement to driving performance, despite the fact that the visual acuity for 

the cataract and blur conditions was matched as closely as possible (within a 0.25 dioptre 

step) for each participant individually. Thus the changes in driving performance are likely 

to result from the decrease in contrast sensitivity (and to some extent increase in glare) 

induced by the cataract goggles and not differences in visual acuity. This concurs with 

other studies which have highlighted that changes in contrast sensitivity rather than 

changes in resolution, are responsible for impairments in other functional outcome 

measures such as postural stability (Anand et al., 2003), and face recognition and mobility 

under low luminance conditions (Elliott, Bullimore, Patla & Whitaker, 1996). 

Alternatively, it may be that participants are better able to adapt to blur than to simulated 

contrast sensitivity loss, given that optical blur is more commonly encountered in everyday 

activities when individuals fail to wear an appropriate spectacle correction, whereas loss of 

contrast sensitivity is encountered less commonly. The issue of adaptation is also important 

given that uncorrected refractive error is the main cause of visual impairment in older 

populations (VanNewkirk, Weih, McCarty & Taylor, 2001) and underscores the 

importance of further research in this area.  

 

Interestingly, gap judgment and lane keeping ability were not affected by visual status. The 

lack of effect of visual impairment on the gap judgment task is in support of our previous 

studies (Higgins et al., 1998; Higgins & Wood, 2005), and may potentially be explained by 

the high contrast nature of the cones used for this task, which may provide adequate visual 

cues to gap size even in the presence of visual impairment. Alternatively, the cues required 

for gap judgment may not be affected by the level of blur and cataracts included in this 

study. The findings for lane-keeping are in support of driving simulator studies which have 
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shown that lane keeping ability is robust to even extreme amounts of blur of up to 8-10 

dioptres (Brooks, Tyrrell & Frank, 2005; Owens & Tyrrell, 1999). Indeed, the findings of 

our study are consistent with the so-called “selective degradation” theory which suggests 

that increased optical blur (and decreased luminance) produce reductions in acuity-

mediated recognition vision, while leaving peripheral field guidance vision relatively 

unaffected (Leibowitz, Rodemer & Dichgans, 1979). Thus, while blur and simulated 

cataracts resulted in significant decrements in sign recognition, other tasks such as steering 

through cones and maintaining lane position were relatively unaffected, presumably 

because they can be performed using ambient (peripheral field) visual functions.   

 

The findings also demonstrate that overall, driving performance was worse in the presence 

of a distracter task in accord with previous driving simulator studies (Strayer & Johnston, 

2001). The distracter tasks appear to cause interference affecting detection of signs and 

changes in the driving scene which is in support of previous studies (Recarte & Nunes, 

2003). The visual and auditory distracter tasks had similar effects on all measures of 

driving performance, with the exception of time to complete the course, wherein the visual 

distracter task increased driving time to a greater extent than did the auditory. Engström, 

Johansson and Östlund (2005) also showed that visual distracters had more effect on 

driving speed than did auditory distracters, but they also found that lane keeping was 

impaired by visual but not auditory distracters, whereas our results failed to reveal any 

effect of distracters on lane keeping.  

 

The worst performance overall was found with the combination of simulated cataracts, and 

visual distracters, which is highly relevant to the problems of increased visual impairment 

in older drivers. One side effect of simulated cataracts is that they may increase the 
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attentional demands of driving. The ability to perform concurrent tasks may be 

compromised because the processing and interpretation of visual input may represent a 

significant attention demanding task in itself (Turano et al., 1998). The reduced stimulus 

contrast caused by the simulated cataracts can slow or impair the recognition and 

processing of visual environmental cues (Harley, Dillon, & Loftus, 2004; Pashler, 1984), 

resulting in a strategic slowing of driving speed, potentially exacerbating the effects of age-

related cognitive slowing (Salthouse, 1996).  

 

Cataracts might also compromise older drivers’ effectiveness in multitasking. This is 

evidenced by the finding that the number of sums missed was highest in the cataract 

condition for both the visual and auditory presentations, where older participants missed 

almost half of the distracter presentations when driving with simulated cataracts in the 

presence of visual distracters. Indeed, older participants commented that they often felt 

uncomfortable when taking their eyes off the road to look at the visual display, especially 

under the cataract condition. They appear to have responded by emphasizing vehicle 

control over the other tasks, particularly as the secondary visual task required them to take 

their eyes off the road. The finding that the secondary task performance of the older 

participants varied both with the mode of presentation and the visual status of the drivers, 

while that of the younger drivers was always worse for auditory presentation is novel. Task 

coordination is potentially more difficult when a summing problem is presented in the 

auditory modality, because attending to the problem requires listening to the auditory 

stream, requiring ongoing attention, and also occupies phonological working memory 

while the problem is deliberated. This is likely to be more engaging than the visual task, 

wherein the driver can scan the display more quickly, and at their own pace. The visual 

dual task provides some level of flexibility because the sums are continuously available on 
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the dashboard-mounted display (for an average of 3.5 seconds) until the next number pair 

was presented. The participants could potentially coordinate the multiple task demands, 

attend to the visual sums task, and report the result when it was convenient. We would 

anticipate that the effect of visual distracters on driving performance would have been even 

greater had the participants attempted all of the sums.  

 

Overall, the driving performance of the older drivers was significantly worse than that of 

the younger participants, which concurs with previous reports of higher crash rates for 

older drivers compared to their younger counterparts (McGwin & Brown, 1999). The lack 

of interaction between driver age and distracter type is in accord with recent studies on 

driving simulators, which have shown that the impact of secondary tasks on driving 

performance is not significantly affected by driver age (Strayer & Drews, 2004). The 

interaction between driver age and visual condition arises because the driving performance 

of the older participants was affected to a greater extent by the simulated cataract condition 

than were the younger participants. This could be a result of the reduction in attentional 

capacity for older compared to younger individuals (Strayer & Drews, 2004). It is also 

possible that the younger participants were able to adapt more easily to the simulated 

visual impairment than the older participants. Importantly, the effects of the simulating 

goggles on clinical measures of visual acuity or contrast sensitivity did not differ according 

to age, indicating that under laboratory-based conditions at least, the cataract goggles did 

not impair these measures of visual function to a greater extent for the older compared to 

the younger participants. However, it is not known whether this would have been the case 

had these measures of visual function been recorded under the open road conditions of the 

driving track where the effects of glare and light scatter are clearly evident; this 
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underscores the limitations that many clinical tests have in reflecting real-world 

performance.  

 

In summary, the results suggest that the performance of both young and older drivers was 

affected by the presence of simulated visual impairment and also by the presence of a 

distracter task, such that simulated cataracts caused the greatest decrement in performance 

under the visual distracter condition, and simulated cataracts reduced performance more 

for older drivers. Importantly, while the level of visual acuity for the blur and cataract 

conditions was matched, the impact of impairment from the cataract condition on driving 

performance far exceeded that of blur, indicating that contrast sensitivity may be a more 

important mediator of the detrimental effects of cataracts on driving performance.  

 

While the use of simulated visual impairments allowed us to partial out the effects of 

vision alone, without introducing variations in experience or personality type, it is 

recognised that the effects observed in this study may be greater than for people with true 

vision impairment. These individuals potentially have the opportunity to visually adapt to 

their impairment and over time may learn compensatory strategies that mitigate some of 

the effects observed here. Previous data from our laboratory, however, indicates that even 

among those with true cataracts the same kinds of driving deficits are observed (Wood & 

Carberry, 2006). Future studies are currently being undertaken to address this question by 

investigating the impact of multi-tasking for older drivers with a range of true visual 

impairments. The findings from this study provide a basis for future investigations that 

further determine the interactions between the visual perception, attention and cognitive 

load in visually guided behaviours. Such research will also lead to a better understanding 
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of the effects of commonly occurring visual impairments, such as cataracts, on driving 

behaviour and the acquisition of driving-related information. 
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Table 1. Mean visual acuity and contrast sensitivity

 

 of each age group under the different 

visual conditions. Standard deviations shown in parentheses. 

        

 Measure 
Visual 
Condition  

Younger Group 
Mean (SD) 

Older Group 
Mean (SD) 

Visual Acuity    
 Normal -0.14 (0.02) 0.00 (0.02) 
 Blur 0.14 (0.03) 0.33 (0.03) 
 Cataract 0.18 (0.02) 0.36 (0.02) 
    
Contrast 

 Sensitivity   
 Normal 1.88 (0.03) 1.73 (0.03) 
 Blur 1.79 (0.03) 1.61 (0.03) 
  Cataract 1.20 (0.06) 1.06 (0.06) 
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FIGURE LEGENDS 

 

Figure 1:  A. Group mean Z scores for all participants as a function of vision and 

distracter condition  

B. Group mean Z scores as a function of vision condition for the young and 

older participants  

 

Figure 2:  Driving performance as a function of vision condition, distracter condition 

and driver age for component measures of driving performance: 

A. Road sign recognition – interaction of vision condition and distracter 

condition 

B. Road sign recognition – interaction of age and vision condition 

C. Time to complete the course – interaction of vision condition and 

distracter condition 

D. Time to complete the course – interaction of age and vision condition 

 

Figure 3:   Percentage of sums missed in each combination of vision and distracter 

condition
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