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1 Introduction

Intrusion Detection Systems (IDSs) have traditionally been used to detect security
policy violations or other attacks, either at a host or network level. Accordingly,
a host-based IDS (HIDS) operates within a host, monitoring access logs and system
calls for signs of potential abuse. On the other hand, a network-based IDS (NIDS)
typically operates at a higher level of granularity, analysing network traffic for
instances that are considered or assumed malicious.

If the audit data cannot be accessed due to corruption or encryption, the IDS
will not function properly. Our work focuses on the effects of end-to-end encrypted
networks on NIDS operations. We are motivated by the growing use of encrypted
networks that obfuscate all network traffic between any two hosts in the network.
Commonly used network encryption protocols like Secure Sockets Layer (SSL) and
various other Virtual Private Network (VPN) protocols can mask malicious traffic
and evade detection by perimeter security such as firewalls and NIDS. In these
conditions, a NIDS as such cannot function because network traffic is encrypted
and therefore cannot be analysed.

In this paper, we present the results of our work towards enabling a NIDS
to function normally and detect attacks propagated through encrypted networks.
To secure the detection loophole introduced by encrypted networks, network
administrators usually use a specific network setup. In this setup, the encrypted
network from an external host can be terminated at a network gateway that has
a NIDS co-located on it. Once decrypted by the gateway, the traffic is analysed
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by the NIDS before being sent as cleartext to the internal host. Wagner et al.
(2006) proposed such an approach for VPNs. However, this design is not suitable
when the encrypted network is established end-to-end, i.e., directly from an external
host to the internal host. Furthermore, this design cannot be used when internal
hosts establish VPN connections between themselves. Although not prevalent now,
we forsee the growth of such peer-to-peer encrypted networks in the future especially
with the adoption of IPv6 that has built-in encryption capabilities.

Our work thus focuses on developing a detection framework that integrates
a NIDS into an end-to-end encrypted network. Using our framework, a NIDS
can function within the encrypted infrastructure to detect intrusions. It does this
without compromising the network’s confidentiality or integrity. For most NIDSs,
such integration has never been directly addressed. There has always been an implicit
assumption that unencrypted network traffic is available and it has been up to the
network administrator to ensure this.

The paper is organised as follows. Section 2 presents relevant previous works
while in Section 3, we give an overview of the solution outlined in Goh et al.
(2009). We also discuss some of the implementation details in this section. Section 4
presents some performance evaluation of the current software prototype and the
paper concludes in Section 5.

2 Related works

Most NIDSs passively sniff the network for malicious traffic, but this is not
possible with encrypted networks. Although modifying the network architecture to
accommodate the NIDS does seem to address the problem (Wagner et al., 2006),
this solution is still limited. A NIDS co-located on a gateway is vulnerable and
susceptible to attacks if the gateway in which it resides is itself compromised.

Alternatively, active sniffing techniques can be used. A man-in-the-middle
approach is a technique where the sniffer makes independent connections with
two communicating peers and relays network packets between them, with each
peer believing that it is communicating directly with its counterpart. Yamada
et al. (2007) noted that with the NIDS-in-the-middle, all encrypted network traffic
can be decrypted with the private keys of both peers. This design involves the
use of a complicated Public Key Infrastructure (PKI) which implies heavy key
management overhead. Furthermore, the NIDS-in-the-middle is unusable with some
key exchange protocols such as Diffie-Hellman (Diffie and Hellman, 1976).

To the best of our knowledge, three other approaches that attempt to address
the problem of detecting intrusions or attacks over encrypted networks have been
proposed.

The first approach detects misuse of network encryption protocols such as SSL,
IP Security (IPsec), or Secure Shell (SSH). A misuse in this context is defined as a
case where the encryption protocols do not transition from one state to another in
an expected and predictable manner. Whenever such transition anomaly is detected,
the detection system assumes that the encryption protocol is being misused, i.e., an
attacker is attempting to exploit it.

To detect attack against such protocols, the detection systems by Md. Fadlullah
et al. (2007), Yasinsac and Childs (2001), and Joglekar and Tate (2004) require
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an accurate specification of a properly working network encryption protocol.
Any deviations from this specification are considered as attacks. For instance,
Joglekar and Tate (2004) defined specifications for the SSL protocol. When there
is a large number of failed SSL session negotiation attempts, the IDS raises
an alert. However, the task of defining the specification is not trivial. Every
possible and legitimate state must be modelled. Moreover, application-level attacks
(SQL Injection, Buffer Overflow, Cross-Site Request Forgery) function by delivering
malicious payload. As such, they are not detected by this technique, because the
payload is not decrypted and therefore not analysed.

The second technique uses statistical traffic analysis to infer information from
frequently observed patterns in the communication process. For example, patterns
derived from observation of frequency and size of network packets can reveal certain
trends. Yamada et al. (2007), Piccitto et al. (2007) and Foroushani et al. (2008)
used this technique to monitor patterns such as packet size and inter-arrival time of
SSL and VPN traffic to identify malicious traffic. Statistical analysis is nevertheless
limited in scope due to the few traffic patterns that can practically be deduced purely
from observing the network. Furthermore, a large volume of network traffic has to
be analysed before any obvious trends begin to emerge.

The two different approaches described are thus suitable for use as intrusion
detection systems in encrypted network because they do not directly analyse the
payload contained within the encrypted packet. Instead, these approaches extract
useful information by monitoring outwardly observable patterns and behaviours.
Nonetheless, application-level attacks are not detected because both these detection
methods do not analyse the payload of encrypted packets.

Although a HIDS could have been used to detect attacks over encrypted
networks, it has the added overhead of being intrinsically complex. A HIDS has
to monitor many distinct aspects of the host such as system calls and file statuses.
Besides, a traditional HIDS only has a local view of potentially malicious activity
and does not correlate events between different hosts that may be indicative of the
severity of the attack as a whole at the network level.

To address this problem Abimbola et al. (2006) developed a framework that
retrieves decrypted network traffic for deep packet inspection. They suggested that
IDS sensors be installed on every network hosts where decrypted network traffic
can be fed directly into a NIDS. Although their framework can retrieve decrypted
network traffic for analysis, it does not address the fact that sensors residing in the
targeted hosts can be defeated if the host is compromised.

Due to the limited scope of the traffic analysis approach and complexities of
specification-based IDS, we thus propose a detection framework based on deep
packet inspection techniques. The framework directly integrates a NIDS into an
encrypted network, allowing it to function as a passive sniffer for deep packet
inspection. We achieve this without the need for complicated key management
systems.

A key feature of the proposed framework is that it does not compromise
on confidentiality. Private network traffic will remain confidential and protected
from unauthorised network sniffers by the underlying VPN encryption protocol.
Besides the sender and receiver, the only other device with access to the network
traffic is the NIDS, hosted on a trusted device. In a high security environment,
if an organisation’s security policy dictates that all traffic be analysed for potential
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threats, the use of our framework to analyse encrypted network traffic by a NIDS
is ultimately not different from using HIDS or IDS sensors residing within hosts
themselves.

In this paper, we present the design of our framework, the implementation of a
prototype and its performance evaluation. As far as we are aware, this work is the
first research that attempts to integrate a NIDS together with an encrypted network
in such a way that deep packet inspection can be carried out without compromising
traffic confidentiality.

3 Overview of detection framework

3.1 General approach

At the core of the detection framework is a protocol that replicates network traffic
from a sender and makes that replicated traffic available to the NIDS as well
as to the receiver. This protocol uses the underlying VPN encrypted network to
guarantee that network traffic’s confidentiality remains protected by encryption
against third-party packet sniffer. It does this by adding another layer of protection
above the VPN protocols in the network layer of the OSI network model. Also,
the VPN network do not need to be modified in any way to accommodate our
framework.

In our work we propose that a Central IDS (CIDS) be used together with
forwarding proxies as in Figure 1. As shown, the CIDS operates from a separate
and dedicated host in the network. If a sender wishes to send network packets to
a receiver, it will do so via the forwarding proxies. This packet routing is achieved
using a custom network interface driver installed in the sender. The forwarding
proxies in turn ensure that the network packets are forwarded to the receiver and
CIDS. Our approach can thus be summarised by the following principle:

All traffic sent to a receiver by a sender must be replicated and forwarded also to
the CIDS, without the possibility of the sender withholding traffic from the CIDS
or forging fake traffic, and while maintaining the confidentiality and integrity of
the encrypted network.

Since the proposed approach works on top of the VPN encrypted network,
all outgoing network traffic will be encrypted. As a result, every connection between
network devices is encrypted, thus guaranteeing traffic confidentiality with respect to
unauthorised third-parties or network sniffers is ensured. For instance, in Figure 1,
the sender-to-proxies, proxies-to-receiver and proxies-to-CIDS connections are all
encrypted by a VPN protocol. This peer-to-peer encryption can be achieved using
Opportunistic Encryption in IPsec (Richardson and Redelmeier, 2005).

Although network layer encryption prevents unauthorised network sniffing,
proxies are still able to access network packets relayed through them. This would
expose the network packets to unwanted scrutiny and possible tampering while
transiting through a proxy. To ensure confidentiality with respect to the proxies,
we use secret-sharing. Each original packet is split into shares according to Shamir’s
scheme (Shamir, 1979), and it is the shares that are relayed through the proxies.
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Figure 1 Proposed transmission scheme (k = 2)

This design thus ensures the packets’ secrecy with respect to the proxies while
avoiding the need for a PKI. The underlying encryption mechanism afforded by the
VPN infrastructure ensures the packets’ secrecy with respect to a third-party packet
sniffer.

3.2 Protocol description

A (k, n) secret-sharing scheme splits a secret S into n shares, where and k < n and
S = {s1, si, . . . , sn}. Knowledge of any k or more si recovers S while knowledge of
any k − 1 or less reveals nothing. If some of the shares are incorrect, the original
secret cannot be recovered; that is {s′

1, s
′
2, si, . . . , sn} �= S. Confidentiality is thus an

inherent feature of a secret-sharing scheme since each proxy receives no more than
one share of any given network packet, the relayed network traffic is essentially
masked from the proxies.

These different components ensure that the sender, receiver and CIDS are the
only parties in the network who can access a readable copy of the network traffic.
The general algorithm implementing our protocol is shown in Table 1.

The replicated packets recovered at the CIDS and receiver are identical to
the packet that was originally sent by the sender. This assured of because of the
underlying VPN network. VPN protocols such as IPsec provides data integrity
verification and host authentication (Kent and Atkinson, 1998a, 1998b). Both these
features ensure that no other parties except the authorised ones are allowed to
receive and modify data. Shares that have been tampered with either intentionally
or unintentionally while en route to the receiver can be detected by IPsec and
subsequently dropped.

The algorithm works at the network layer. As with most network layer protocols,
it only provides best-effort packet delivery. If reliable packet delivery is required,
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a suitable transport layer protocol such as TCP can be used. Besides the nominal
packet loss rates, our algorithm actually induces additional packet loss due to the
delivery uncertainties associated with the probabilities Pr, Pc, Pb and Pd. Despite
that, because of the inherent redundancy of the protocol (an additional n − k shares
are available), the induced packet loss rates can still be kept to a minimum level.
We discuss this further in Section 3.3.2.

Table 1 Algorithm for sending and receiving network packets using a secret-sharing
scheme

Algorithm

1. Sender splits packet M into corresponding shares of {m1, mi, . . . , mn} using a
(k, n) secret-sharing scheme;

2. Sender selects n proxies from a pool of N proxies where n < N ;

3. Each mi is sent to one of the n forwarding proxies, pi;

4. Proxy pi does one of the four predefined actions;

• Forward to receiver only with probability Pr;

• Forward to CIDS only with probability Pc;

• Forward to both CIDS and receiver with probability Pb; or

• Drop the share with probability Pd.

5. If the receiver receives k or more mi’s, it recovers the packet M ; and

6. If the CIDS receives k or more mi’s, it recovers packet M for analysis.

An attacker could evade detection if a malicious packet is sent to the receiver while
another forged but harmless packet is sent to the CIDS, or if the CIDS receives
less than k shares of a malicious packet. However, if the proxies comply with the
algorithm and their actions are a-priori unpredictable, the attacker will not know
beforehand which of the n proxies will forward to whom (CIDS, receiver or both).
It is therefore difficult for the attacker to reliably determine which proxies should
receive shares of the malicious packet and which should be omitted or receive
shares of a forged packet. It is more probable that the shares will arrive mixed up,
resulting in a corrupted packet. This is true if we assume that all the proxies are
uncompromised and not collaborating with the attacker.

Consequently, we envision two types of attacks that can be detected by our
proposed approach. They are as follows:

• Application-level attack. Our approach is essentially a tunnelling protocol.
Network packets, malicious or otherwise, that are received will always match
the original content. Therefore, attacks sent through the tunnel can be
detected by a standard NIDS like SNORT (Roesch, 1999) or Bro. In any case,
these attacks pose a traditional intrusion detection problem.

• Evasion attack. These attacks attempt to evade CIDS detection in our
context, by trying to forge false packets or withhold traffic from the CIDS.
This can be detected if a packet is corrupted upon recovery.
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Although the probability of detecting these attacks is high as we prove later
in Section 3.3.1, an attacker could possibly bypass the proxies and send
directly to the receiver. If we assume that the network is initially ‘clean’, it is
reasonable for a receiver to expect for packets from a sender via the proxies.
Consequently, if the receiver receives data directly from the sender, it will ignore
the non-compliant traffic. Source address spoofing is also not possible because of
the peer authentication mechanism of the underlying VPN. A malicious sender
will always be motivated to comply with the protocol if it wants its packets to be
properly delivered.

From the algorithm, we know that n forwarding proxies are used whenever
a packet is sent. These n proxies are randomly chosen by the sender. Doing so
prevents malicious proxies from disrupting the communication process between
honest senders and receivers. If a corrupted and misbehaving proxy is selected to
forward a packet, it may not be selected again by an honest sender to forward
another packet, provided that a sufficiently large N/n ratio. As a result, it is difficult
for that malicious proxy to continuously disrupt the communicating peers.

3.3 Analysis

The mathematical model and results that were presented in Goh et al. (2009) did not
fully account for the effects of the practical implementations. Our initial calculations
assumed that the CIDS and receiver will wait for all n shares to arrive before packet
recovery is carried out. In our implementation, packet recovery is immediately
executed when the first k shares arrive. This minimises processing delay and reduces
packet latency.

Our analysis considers the presence of a sophisticated attacker capable of
creating and sending two types of packets to evade detection. They are the malicious
packet meant only for the receiver and the forged but harmless packet meant only
for the CIDS.

For the sake of clarity, we let M be the malicious packet while M ′ be the forged
but harmless packet. Each of them is represented as M = {m1, mi, . . . , mα} and
M ′ = {m′

1, m
′
j , . . . , m

′
β} where α + β ≤ n and α, β ≥ k. For a (k, n) secret-sharing

scheme used in the protocol, n is the number of forwarding proxies involved in
relaying the shares of a network packet and k is the minimum number of shares that
must be received for successful packet recovery.

According to the algorithm presented in Section 3.2, a proxy will randomly
choose where to forward the share that it receives. Specifically, it does one of the
following actions with fixed probabilities:

• Forward to receiver only with probability Pr.

• Forward to CIDS only with probability Pc.

• Forward to both CIDS and receiver with probability Pb.

• Drop the share with probability Pd.

These probabilities can be represented more concisely as marginal probabilities.
The marginal probability of a proxy forwarding anything at all to the receiver is PΓ.
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We also let the marginal probability of forwarding anything at all to the CIDS
be PΣ. They are shown as equations (1) and (2) respectively.

PΓ = Pr + Pb (1)

PΣ = Pc + Pb. (2)

3.3.1 Probability of evasion attacks

We can now determine the probability of an evasion attack (or false negative) by
first analysing the outcomes occurring at the receiver. The probability of the receiver
receiving a out of α malicious shares, where 0 ≤ a ≤ α is,

Precv(a) = αCa (PΓ)a (P ′
Γ)α−a (3)

where PΓ
′ = 1 − PΓ. The notation σCϕ is the binomial coefficient

(
σ
ϕ

)
. Likewise, the

probability of the receiver receiving b out of β harmless but forged shares, where
0 ≤ b ≤ β is,

Precv(b) = βCb (PΓ)b (P ′
Γ)β−b. (4)

The receiver can therefore receive any combination of a and b shares, each
arriving in different order. However, for a successful attack, the receiver must have
had received x shares of the a malicious shares first. This is due to the packet
recovery process that is immediately carried out on the first x shares that arrives.
The probability of this happening is given as,

P (x|a) =




β∑
b=0

a!
(a−x)! · (a + b − x)!

(a + b)!
· Precv(a) · Precv(b) x ≤ a

0 x > a

. (5)

Similarly, equation (6) follows from equation (5) for the first y shares of the
b harmless shares that are received by the CIDS.

P (y|b) =




α∑
a=0

b!
(b−y)! · (a + b − y)!

(a + b)!
· Pcids(a) · Pcids(b) y ≤ b

0 y > b

. (6)

where

Pcids(a) = αCa (PΣ)a (P ′
Σ)α−a (7)

Pcids(b) = βCb (PΣ)b (P ′
Σ)β−b. (8)

An evasion attack is successful if the receiver receives at least k malicious shares first
and the CIDS receives at least k forged but harmless shares first in equations (5)
and (6), respectively. Subsequently, the probability of false negative is given as,

P (FN) =
α∑

a=k

P (x = k|a) ·
β∑

b=k

P (y = k|b). (9)
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We have the conditions α + β ≤ n and α, β ≥ k. If the attacker uses the minimum
number of shares for both α and β which is k, the total number of shares is 2k.
Evasion attacks thus becomes strictly impossible if 2k ≥ n.

3.3.2 Minimising packet loss

Our protocol is lossy by design because the proxies randomly drop shares with
the probability Pd. If shares are dropped too often, the receiver or CIDS may not
receive at least k shares to recover the network packet and network performance
deteriorates as a result.

Therefore, to minimise frequent packet loss and maintain the reliability of the
network, the parameters PΓ, PΣ as well as n and k have to be carefully selected and
tuned. We begin by first determining the probability of a receiver receiving exactly
x shares from any of the n proxies. This is expressed as follows:

P (x) = nCx (PΓ)x (PΓ
′)n−x (10)

where PΓ
′ = 1 − PΓ. To properly recover a network packet, the receiver must receive

at least k shares. The probability of this is:

P (X ≥ k) =
n∑

x=k

P (x). (11)

In order to minimise packet loss, we require that the receiver receives at least
k shares from the proxies with very high probability. Ideally, this should be
P (X ≥ k) ≈ 1. The parameters PΓ, n and k have to be adjusted accordingly to
achieve this.

To better visualise the relationship between these parameters and simplify the
selection process, we plot equation (11) against PΓ for various values of n and k.
An example of this can be seen in Figure 2 for n = 10. In Figure 2, if we had chosen
n = 10 and k = 3, any value of PΓ ≥ 0.7 is suitable because P (X ≥ k) ≈ 1.

Figure 2 The probability of the receiver receiving at least k shares for proper packet
recovery when n = 10
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We can verify the results in Figure 2 by measuring the packet acceptance rate.
This is suitable because every successfully recovered packet implies that at least k
shares have been sent by the proxies to the receiver. We use the publicly available
tool mtr to measure the packet acceptance rates of our implementation. The
experimental results are shown as solid lines in the figure. As it can be seen, the
experimental results confirm equation (11).

The same line of reasoning follows for P (y) and P (Y ≥ k) from equations (10)
and (11) but with respect to the CIDS instead.

3.4 Summary of implementation

We have implemented a Linux-based prototype of the proposed approach. It has
been developed using the Python programming language, together with the
Python/C API and the Twisted (2009) networking engine. This language and tools
allowed for shorter development time while maintaining application reliability.
The overall design of the prototype can be seen in Figure 3.

Figure 3 Design of prototype with tun/tap network interface

The implementation exposes a tun/tap virtual network interface to applications
requiring network access. This ensures that application layer protocols such as
HTTP, FTP or SMTP continue to function normally without requiring any patches
or modifications.

From Figure 3, we see that outgoing network traffic is handed off to our userland
application for processing (packet splitting and encapsulation) via the tun/tap
network interface. The packet’s corresponding shares are then sent to the receiver
through the sender’s VPN network interface. The process is reversed at the receiver’s
side for incoming traffic. Whenever k or more shares have been received by the CIDS
or receiver, the packet is immediately recovered and verified. The cryptographic hash
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function MD5 is used to quickly and accurately determine whether the packet is
corrupted.

As mentioned earlier, our approach is a tunnelling protocol that routes network
packets between two hosts in a network. Like many other tunnelling protocols, our
prototype has been designed to be connectionless. This means that message delivery
and packet ordering are not guaranteed. All network traffic are tunnelled using UDP
over IP. A connectionless tunnel is easier to set up and manage because it does not
need to manage flow control, acknowledgements or timers that may conflict with the
inner tunnelled protocol. Since the exposed tun/tap interface provides applications
simply with a virtual IP interface, TCP can evidently be used over our protocol
if a connection-oriented link is required.

Forwarding proxies are not separate or standalone devices. Rather, all hosts in
the network can assume the role of a proxy as well as being normal communicating
peers. Each host has the forwarding capability integrated into the installed tun/tap
network interface. The number of available proxies (N ) therefore grows together
with increasing number of hosts in the network.

4 Evaluation

A VPN with 12 hosts and one CIDS running a standard SNORT installation is used
as the experimental network. The hosts consists of Virtual Machines running Linux
Ubuntu 8.04. The network uses a 10/100 Mbps ethernet switch to connect all the
hosts together. The VPN uses IPsec where Security Associations (SA) are established
between all connected hosts.

We begin our evaluation by ensuring that our proposed approach can accurately
detect application-level attacks and does not introduce any additional false positives.
We apply a dataset of synthetic traffic against SNORT in a network with
and without our implementation. The dataset consists of both malicious and
non-malicious traffic. Throughout the experiment, we observe no differences in the
number of SNORT alerts when our implementation is in use, compared to a network
without it.

We do not evaluate the detection accuracy of SNORT by itself as this
measurement is better carried out by its developers. Instead, we are only interested
in determining the effects and responses that a new network environment has on
the NIDS. As expected, the number of SNORT alerts remained consistent for both
network setups. Our implementation does indeed function as a tunnelling protocol
as far as legitimate traffic is concerned.

The following sections focuses on measuring the performance of our approach
and its implementation on detecting attacks in encrypted networks.

4.1 Overhead and complexity

One concern in using our proposed approach is the implied network overhead.
If a sender sends one packet of data to a receiver with our proposed approach,
the data will be splitted into n shares. If each share is sent as one network packet,
approximately n packets are needed. In addition, for the same packet of data,
at most another n packets are sent by the proxies to the CIDS, as required by
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our approach. Generally, for every t packets sent, the total network overhead
is 2tn packets.

The 2tn increase in network overhead may not be considered efficient when large
volumes of data are sent. For this reason, we believe that the approach should be
used selectively. For instance, some traffic intensive applications like Voice over
Internet Protocol (VoIP) and media streaming can be deemed safe and do not
require our approach. On the other hand, applications such as e-mail, authentication
or even web browsing can use our approach because of the bursty nature of such
traffic.

The computational complexity involved in splitting and recovering the shares
can be estimated. In a (k, n) secret-sharing scheme, a polynomial of degree
k − 1 is evaluated at n points. Readers are referred to Shamir (1979) for further
details. Using the Horner algorithm, the polynomial can be expressed as multiple
linear operations. This reduces the splitting process to a complexity of O(n).
Conversely, the packet recovery process uses a Lagrange interpolation polynomial.
This operation is known to be quadratic, that is, a complexity of O(k2).

4.2 Experiment results

In the following experiment, we assume the presence of a sophisticated attacker,
capable of launching evasion attacks. An evasion attack requires the attacker forge
harmless network traffic in addition to the intended malicious traffic.

The harmless network traffic could be a trivial “GET /index.html HTTP/1.1”
while the malicious traffic is “GET /x90x90x90x90...”. A single x90 represents
the No Operation (NOOP) instruction and is usually harmless individually but
when repeated as a sequence (NOOP sledge), it is often symptomatic of a
buffer overflow-based malicious shellcode injection attack. Consequently, most
misuse-based IDS such as SNORT use x90 as a detection signature.

The goal of an attacker is to send the harmless traffic to the CIDS and the
malicious traffic to the intended target host. According to the protocol, both the
harmless and malicious traffic are routed through the forwarding proxies before
arriving at the CIDS and target host. However, due to the random nature of the
proxies, the two different types of traffic usually do not arrive at their intended
destination.

In most cases, a mixture of shares will occur, resulting in corrupted network
packets. These corrupted packets are easily detected and their presence indicate that
there has been some malicious activities. We consider this as a true positive detection
of a malicious sender. In our experiments, we attempt to evade detection by sending
both the harmless and malicious network traffic. We repeat this 6000 times and
measure the frequency of successfully detecting evasion attacks.

The probability of detecting an attack when PΣ = 0.8 and PΓ = 0.8 can be seen
in Figure 4(a) while the probability of an attacker successfully evading detection
and causing a false negative detection outcome is shown in Figure 4(b). Each figure
shows plots for results obtained from the theoretical model that is equation (9),
MATLAB simulations and our experiments. These plots match up very closely,
indicating that the implementation behaved as expected. If the attack consists of t
multiple successive packets, the probability of evading detection drops further at an
exponential rate of P (false negative)t.
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Figure 4 Probabilities of detector’s outcome when PΣ = 0.8 and PΓ = 0.8 and n = 10:
(a) probability of detection and (b) probability of evading detection

4.2.1 Single point-to-point link

We establish a single point-to-point connection between a pair of hosts and measure
its achievable data rates. Figure 5(a) shows the data throughput (Mbits/s) of our
prototype in our experimental network. We measure the results on the receiver using
iperf. The different plots in Figure 5(b) are obtained when the parameter PΓ is
varied, thus changing the probability of the proxies forwarding a particular share to
the receiver.

Figure 5 Data throughput and packet loss rates for different PΓ: (a) data throughput
and (b) packet loss

There is a general decline in throughput as k increases. Network latency depends
on the parameter k because the receiver must have received at least k shares
before the original packet can be recovered. Due to the unpredictable nature of the
proxies, there exist situations when less than k shares are actually forwarded to the
receiver. This is more prevalent with larger values of k. Since all proxies operate
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independently and do not coordinate their actions among themselves, there is no
guarantee that at least k shares will be delivered. As such, packet loss will occur
and the overall latency increases. This is evident in Figure 5(b) which shows the
corresponding packet loss rates.

Additionally, with larger values of k, the receiver will have to wait longer for all
k shares to arrive before the packet can be recovered. The increased latency results in
lower throughput as can be seen in Figure 5(a). If we observe the plot for PΓ = 1.0
in Figure 5(a), the throughput drops by about 31% for k = 6 compared to k = 2
even though the corresponding packet loss rate is 0% in Figure 5(b). This means that
the increased latency is caused exclusively by the larger value of k and not because
of packet loss.

4.2.2 Multiple point-to-point links

Following that, we measure both the throughput and data loss rates of the receiver
under heavy network load conditions. To simulate a busy network, we carry out
simultaneous point-to-point connections between different pairs of hosts in the
network while measuring the data rates on a single host. All the point-to-point
connections use our protocol.

For this round of experiments, we set PΓ = 0.8 and vary the number of
simultaneous point-to-point connections. Figure 6(a) shows the different data
throughput plots while Figure 6(b) show the corresponding packet loss rates.
Consistent with our earlier results, the data throughput generally decreases with
increasing values of k because of increasing packet loss.

Figure 6 Data throughput and packet loss rates when protocol is used under heavy
network load conditions while PΓ = 0.8: (a) data throughput and (b) packet loss

Unlike Figure 5(a), the different plots in Figure 6(a) do not tend to overlap
but instead have lower average throughputs with increasing network load. This
could be attributed to our prototype that was implemented as a Python userland
application. The practice of processing incoming network packets through a
userland application before sending it as outgoing network packets is usually
inefficient. Doing so requires that network packets be constantly passed between the
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kernel and userspace, taking up valuable resources and computing time. It would
have been more efficient if the prototype had been implemented as a kernel module
instead.

As a compromise, we refactored our codes and also applied (Psyco, 2009) which
is a Just-In-Time (JIT) compiler on our prototype to improve its performance.
By doing so, the prototype’s performance improved by a factor of about 200 times.
This is significant improvement compared to the results obtained in Goh et al.
(2009). The figures in this paper reflect the latest results.

4.3 Discussions

Higher throughput can be obtained by using smaller values of k, as indicated
by Figure 5(a). Although this increases network performance, it also increases an
attacker’s chance of evading detection as shown in Figure 4(b). Therefore, it is
important to select a reasonable value of k such that throughput can be maximised
while minimising the probability of a successful attack.

A suitable value of k can be identified using Figure 2. For any given value of
PΓ (or PΣ on an equivalent plot), we choose the greatest value of k that results
in P (X ≥ k) ≈ 1. This gives us a minimum packet loss rate which in turn ensures
high throughput. Besides that, the greatest value of k implies lower probability of a
successful attack.

For instance, if we let PΓ = 0.7, we can actually use k = 2, 3 or 4 because each of
them results in P (X ≥ k) ≈ 1 as shown in Figure 2. However, of these three values,
we use only k = 4 because this gives the lowest probability of a successful attack as
shown in Figure 4(b). According to Figure 5(a), this still produces a relatively high
throughput and is only a 14% reduction in throughput compared to the throughput
when k = 3.

From Figure 6(a), we see that network throughput tends to decrease with
increasing traffic in the network. This seems to indicate the high overhead of the
protocol. We believe that these results are due in part to the bottleneck at the
proxies. In the experiment, the forwarding proxies are not only forwarding shares
between a sender and receiver, but they are themselves sending and receiving traffic.
This strains both the Python userland application as well as the limited computing
resources.

There are two approaches in addressing this bottleneck. Firstly, the
implementation could be further improved upon. A kernel module may work
reasonably well towards this end. Secondly, if the total number of hosts is increased,
we can expect better network performance. As the number of hosts grows, so does
the availability of proxies. This is because the forwarding capabilities are simply
built-in features of the application running on each host. With a larger network, the
load is spread more evenly across all proxies and does not overload any particular
proxy.

Our approach thus far does not consider cases of multi-node conspiracy.
A conspiracy in our context is a scenario where an attacker collaborates with already
compromised proxies to further propagate its malicious activities without being
detected by the CIDS. Rather than being unpredictable to the attacker, a conspiring
proxy can actually dictate which share (malicious or harmless) be forwarded to
whom (CIDS or receiver).



188 V.T. Goh et al.

An important pre-condition to the multi-node conspiracy problem is the presence
of already compromised hosts in the network. These hosts can be added one at a
time into the network until the minimum threshold of k hosts is reached before any
consipracy attempts are made. The addition of already compromised hosts occurs
if mobile devices such as notebooks are permitted to join the network without any
prior authorisation. With sufficient conspirators, attacks can be carried out without
alerting the CIDS.

On the contrary, if the network is initially ‘clean’ and no compromised hosts
are added, we believe that the conspiracy problem cannot happen unless k or more
conspiring hosts are introduced simultaneously to the network. Assuming that there
is a “single attacker in a clean network” only, the attacker will first have to ‘recruit’
sufficient conspirators. While doing so, our proposed approach should be able to
detect the ‘recruitment’ activity. We intend to study this conspiracy problem in
greater detail in our subsequent work.

4.4 Comparison with previous works

Md. Fadlullah et al. (2007), Joglekar and Tate (2004) use specification-based
detection systems to detect attacks that specifically target encryption protocols.
For example, many failed SSL session negotiations may imply repeated brute-force
password-guessing attempts. This detection method is suitable for use in encrypted
networks because it does not require the payload contained within the encrypted
packet for analysis. Similarly, Yamada et al. (2007) and Piccitto et al. (2007)
only monitor outwardly observable features of encrypted packets for indications of
potential attacks.

These methods can only detect a subset of a broad range of possible attacks
because they do not analyse the payload. In such case, application-level attacks
such as buffer overflow or SQL injection attacks can escape undetected. On the
other hand, our protocol ensures that the NIDS will always have application layer
payload to analyse, increasing the likelihood of detecting application-level attacks.
This is achieved without the need of a NIDS-in-the-middle network topology where
all network traffic are routed through a single NIDS for analysis. Such a topology
may inadvertently increase the risk of network downtime should the NIDS fail.

In Abimbola et al. (2006), IDS sensors that are capable of accessing already
decrypted payload are installed on network hosts. These sensors channel the payload
into a local NIDS for analysis. As with a HIDS, maintaining a local IDS in each
host is difficult to deploy and maintain. Furthermore, the local IDS is susceptible
to attacks if the host itself is compromised. Our protocol consists of only a custom
network interface driver and a centrally managed CIDS. The driver only needs to be
installed once and does not need to be further maintained. Any necessary updates
such as installing the latest attack signatures need only be carried out on the CIDS,
thus simplifying update procedures. In addition to being easier to manage, a CIDS
can be better secured against attacks instead of redistributing resources to secure
every host in the network that has a local IDS installed.

An important feature of our proposed protocol is the use of secret-sharing to
send network packets via the proxies. Secret-sharing ensures that the proxies do not
gain any insight about the content of the packet. This guarantees that the protocol
does not compromise on confidentiality while trying to maintain network security.
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Most importantly, by using secret-sharing instead of classical encryption algorithms
such as AES and RSA, we avoid the need for a complicated PKI infrastructure to
manage the keys.

The development of our approach has been motivated by the need to be able
to monitor encrypted networks for malicious activities. Despite that, we believe that
it can be adapted for applications where nodes of a multi-node network cannot be
trusted.

Such is the case with mobile ad-hoc networks (MANETs). A MANET is
formed when a group of mobile nodes cooperatively communicate with each other
without a pre-established infrastructure. According to Tseng et al. (2006), a MANET
is inherently trust-all-peers by design and therein lies its problem. A malicious
node can corrupt other trusting nodes by forging incorrect data packets to evade
detection. This problem bears similarities with our work, specifically the fact that
not all nodes can be fully trusted to be truthful or follow the protocol. We will
further examine this in the later phases of our work.

5 Conclusion

In this paper, we present a protocol that addresses the problem of analysing network
traffic in encrypted networks. To the best of our knowledge, our protocol is the first
work at directly integrating a NIDS into an encrypted network in such a way that
deep packet inspection can be carried out. The protocol achieves this by ensuring
that all network traffic bound for the receiver is also sent to a NIDS for inspection,
while keeping data confidential.

Although the idea of performing deep packet inspection into encrypted networks
seems to be counterproductive because it violates the basic premise that encrypted
tunnels are completely confidential, it is still a logical defence mechanism. This is
motivated by the notion that confidentiality can be misused by attackers as a covert
channel to bypass perimeter security and evade detection.

Despite the growing need to secure this security gap, there has still been little
research into this problem. As it is, most network administrators assume that this
problem can be reasonably dealt with using host-based defences such as anti-virus or
HIDS. These solutions do not scale very well and are oftentimes resource intensive.
Statistical traffic analysis methods also do not provide sufficient scope for an
accurate identification of malicious traffic.

The main contribution of this protocol is its ability in maintaining the integrity
and privacy of the network traffic while making it difficult for an attacker to subvert
detection. We do this by using a combination of encrypted network protocols such
as IPsec together with the forwarding proxies to provide traffic confidentiality.
Furthermore, our protocol avoids the need for a PKI entirely.

Our evaluations show that the protocol is able to detect both application-level
and evasion attacks. The protocol does not cause additional false positives on top
of the ones already generated by the NIDS. The results that we obtained through
our evaluations also indicate that the protocol performs reasonably well.

In spite of that, our protocol does introduce some overhead and implementation
challenges. Firstly, there is the communication overhead in the form of multiple
shares of the same network packet. Additionally, the splitting and recovery of
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shares using a (k, n) secret-sharing scheme is computationally expensive. As such,
we believe it is best suited for applications such as e-mail and authentication, which
is not traffic intensive but more bursty in nature.

One of the implementation challenges that had to be overcame is maintaining
low packet loss rates even though our protocol is lossy by design. We have shown
that this is possible by the proper selection of the parameters k, PΓ, and PΣ. Our
recent research focuses on addressing the multi-node conspiracy problem. We aim
to use the methods developed there to further enhance our ability to quickly identify
and isolate malicious hosts.
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