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Abstract

In this paper, we consider a modified anomalous subdiffusion equation with a non-
linear source term for describing processes that become less anomalous as time
progresses by the inclusion of a second fractional time derivative acting on the dif-
fusion term. A new implicit difference method is constructed. The stability and
convergence are discussed using a new energy method. Finally, some numerical ex-
amples are given. The numerical results demonstrate the effectiveness of theoretical
analysis.
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1 Introduction

In recent years, it has been reported that, in numerous physical and biological
systems many diffusion rates of species cannot be characterized by the single
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parameter of the diffusion constant [40]. Instead, the (anomalous) diffusion is
characterized by a scaling parameter v as well as a diffusion constant K, and
the mean square displacement of diffusing species (z?(t)) scales as a nonlinear
power-law in time, i.e.,

2 ~ 2K’Y y

(x=(1)) 7“1_’_7)15 , t— 00,

where v (with 0 < v < 1) is the anomalous diffusion exponent and K, is the
generalized diffusion coefficient. Ordinary (or Brownian) diffusion corresponds
to v = 1 with K7 = D (the ordinary diffusion coefficient). For example, single
particle tracking experiments and photo-bleaching recovery experiments have
revealed sub-diffusion (0 < 7 < 1) of proteins and lipids in a variety of cell
membranes [2,7-9,35,37,38]. Anomalous subdiffusion has also been observed
in neural cell adhesion molecules [36]. Indeed anomalous subdiffusion (the case
with 0 < v < 1) is generic in media with obstacles [24,25] or binding sites [26].
For anomalous subdiffusive random walks, the continuum description via the
ordinary diffusion equation is replaced by the fractional diffusion equation.
It has been suggested that the probability density function (pdf) u(z,t) that
describes anomalous subdiffusion particles follows the anomalous sub-diffusion
equation [21]:

0<z<a,0<t<T, (1)
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where u(x,t) is the probability density that the particle that started at 0 at
time 0 is at = at time ¢, 97 7u/0t' ™7 denotes the Riemann-Liouville fractional
derivative of order 1 — « defined by

9
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u(z,t) = ODtl—“fu(x,t) = F(ly)aat Ot Mdn, (2)

with 0 < v < 1. For v = 1 one recovers the identity operator, and for v = 0
the ordinary first-order derivative.

Yuste and Lindenberg considered a combination of these two phenomena and
proposed to solve the A+A reaction-subdiffusion problem in one dimension
[43]. Further, Yuste, Acedo and Lidenberg [44] proposed the A + B reaction-
subdiffusion equations:
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The reaction term has many different forms. Seki, Wojcik and Tachiya [34]



proposed a reaction-subdiffusion equation which at long times corresponds to
choosing a reaction term of the form R, (x,t) = koD; "a(z,t)b(x,1).

Tan et al. [41] and Chen et al. [5] considered Stokes’ first problem for a
heated generalized second grade fluid with fractional derivative with a non-
homogeneous forcing term:

Ju(x,t)
ot

+ f(z,t). (3)
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There are numerous approaches to modeling anomalous diffusive behaviour,
such as, continuous time random walks, Monte Carlo simulations [25], Langevin
equations and fractional diffusion equations [21]. The fractional diffusion equa-
tion is characterised by the presence of either a fractional temporal derivative
or fractional spatial derivative or both (time-fractional diffusion equations
were introduced by Zaslavsky [46], and also references [21,22] for a recent re-
view). Other fractional variants are the fractional Fokker-Planck equation for
anomalous diffusion due to an external force and fractional reaction-diffusion
equations [6,10,32,33,44] for reactions where the products and reactants dif-
fuse anomalously. These equations involve only a single temporal fractional
derivative acting on the diffusion term.

Recently a model has been proposed [3,12,39,40] for describing processes that
become less anomalous as time progresses by the inclusion of a secondary
fractional time derivative acting on a diffusion operator, .%, = K9%/0x? |
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where 0 < a < 8 < 1, K is diffusion coefficient, A and B are positive con-
stants. The subdiffusive motion is characterized by an asymptotic longtime
behavior of the mean square displacement of the form

24 . 2B
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A possible application of this equation is in econophysics where there is an
increasing interest in modelling using continuous time random walks [16,23,27—
31]. In particular the crossover between more and less anomalous behaviour
has been observed in the volatility of some share prices [17-19].

In this paper, we consider the following modified anomalous subdiffusion equa-
tion with a nonlinear source term:

ou(z,t) (07 =P\ [0%u(x,t)
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+ f(z,t)| + g(u,z,t). (6)



Recently, many researchers have proposed various numerical methods to solve
the space or time fractional partial differential equations. Liu, Anh and Turner
[13] proposed a computationally effective method of lines for the space frac-
tional partial differential equation. They transformed the space fractional par-
tial differential equation into a system of ordinary differential equations that
was then solved using backward differentiation formulas. Meerschaert and Tad-
jeran [20] developed finite difference approximations for fractional advection-
dispersion flow equations. Roop [14] investigated the computational aspects
of the Galerkin approximation using continuous piecewise polynomial basis
functions on a regular triangulation of a bounded domain in R?. Liu et al. [15]
also investigated the stability and convergence of difference methods for the
space-time fractional advection-diffusion equation. Yu et al. [42] developed a
reliable algorithm of the Adomian decomposition method to solve the linear
and nonlinear space-time fractional reaction-diffusion equations in the form of
a rapidly convergent series with easily computable components.

Yuste and Acedo [45] proposed an explicit finite difference method and a new
Von Neumann-type stability analysis for the anomalous sub-diffusion equation
(1). However, they did not give a convergence analysis and pointed out the
difficulty of this task when implicit methods are considered. Langlands and
Henry [11] also investigated this problem and proposed an implicit numerical
scheme (L; approximation), and discussed the accuracy and stability of this
scheme. However, the global accuracy of the implicit numerical scheme has not
been derived and it seems that the unconditional stability for all v in the range
0 < v < 1 has not been established. Recently, Chen and Liu et al. [4] presented
a Fourier method for the anomalous sub-diffusion equation (1), and they gave
the stability analysis and the global accuracy analysis of the difference approx-
imation scheme. Zhuang and Liu et al. [47] also proposed new solution and
analytical techniques of implicit numerical methods for the anomalous sub-
diffusion equation (1). Chen and Liu et al. [5] proposed implicit and explicit
numerical approximation schemes for the Stokes’ first problem for a heated
generalized second grade fluid with fractional derivative (3). The stability and
convergence of the numerical schemes are discussed using a Fourier method.
A Richardson extrapolation technique for improving the order of convergence
of the implicit scheme is presented. However, effective numerical methods and
error analysis for the modified anomalous subdiffusion equation with a non-
linear source term are still in their infancy and are open problems. The main
purpose of this paper is to solve and analyze this problem by introducing an
implicit difference method and new analytical techniques.

The structure of the remainder of this paper as follows. In Section 2, an im-
plicit numerical method for the modified anomalous subdiffusion equation with
a nonlinear source term is proposed. In Sections 3 and 4, the stability and con-
vergence of the implicit numerical method are discussed, respectively. Finally,
some numerical results for the modified anomalous subdiffusion equation with



a nonlinear source term are given.

2 An implicit numerical method for the modified anomalous sub-
diffusion equation

In this paper, we consider the function describing processes that get less
anomalous in the course of time, namely

o \Tare 10 2 + f(z,t)| + g(u, z, 1),

0<az<L, 0<t<T, (7)

Ou(z,t) (A ol—« +Bal—5> [8%(3@,2&)

with initial and boundary conditions:

u(z,0)=¢(x), 0<z<IL, (8)
u(0,8) = pr(t), u(L,t) = @o(t), 0 <t < T, (9)

where 0 < o < 3 < 1, u(z,t) is the probability density of the particle that
started at time 0 is at = at time ¢. In Eq. (7), the operators 9'~*/9t'~* and
0177 /ot'=F denote the Riemann-Liouville fractional derivative operators.

Let Q = [0, L] x [0,T]. We define the function space

0*w ) O°w
G(Q) = {w(x,t)\w € C*(2) and 5107

e C(2)}.

In this paper, we suppose the continuous problem (7-9) has a smooth solution

u(z,t) € G(Q).

Now we construct an implicit difference method using a new solution tech-
nique. We define t, = k7,k = 0,1,...,n;2; = th,t = 0,1,...,m, where
7 =T/n and h = L/m are space and time step sizes, respectively. We intro-
duce the following notations:

Lu(z,t) = ag(;’t), (10)
S2u(z,t) = u(w + h,t) — 2u(x,t) + u(z — h,t), (11)
Lyv(z,t) = (%uf(:zv,t) (12)

Integrating both sides of Eq. (7) from ¢; to t;.1, we have



(i, tey1) — u(wg, ty,)

B A terr Lu(x;,n) + f(:EZ, n) A e Lu(xy,n) + f(zi,m)
/O dn — / dn

B ['(a) (tpyr — M)t K () Jo (tp —m)t—@

B e Lu(win) + f(win) Bt Lu(zin) + f(xin)
ST S ovemrn = it v M e
+/t:+lg(u(x,, n),xi,n)dn

Hence
U($i,tk+1)
:u(q:i,tk)
U(IL‘Z, 77) + f(xm ) A b ,C’U(:L‘i, 77) +p(l‘iv 77)
+F(Oé) /0 (thyr — M)t~ an I'(a) /0 (te — n)i-e dn
Lu(z;,n) + f(xi,n) Bt Lo(xi,n) + p(ei,n)
I'(B) /0 (tisr — )0 -+ NG /0 (ty — )5 dn
+/ " glu(wm), i, m)dn, (13)
where

v(z,t) =u(x, t+7) —u(x,t), plx,t)=flx,t+71)— f(z,1).

Let

]1:
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A e Lo(xg,n) + plag,n) Btk Lo(zs,n) + p(zs, 1)
['(a) /0 (ty —m)t— -+ L(B) /0 (ty — )10

Tt
Iy= [ glulws,n). zim)dn,
k

Iy =

dn,

Eq. (13) can be written as

w(xi, tegr) = w(wg, ty) + 11 + I + 1.

For I; , we can get approximation as below:
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((k+1)7 — KP] [Cu(ws, 7) + f(2:,7)] + Rnn

5 U(Q?Z, ) + f(th) + R12:| + Rll

] [h252 (@i, T) + f(xZ,T)} + Ry, (14)

where
ap = (k+1)% — k% by = (k+1)° — kP,

At%y B1P,

Ri= R+ <% Ry +
1 11 F(O[+1) 12 F(ﬁ‘i‘l)

Rys.

A T Lu(zy,n) — Lu(z, 7) + f(z,n) — fa,T)
() /0 (s —1)1e dn
o B Luln) - Lulnr)  Slown) = o)
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Given that

Lu(wi,n) + f (i n)

82 (i, 7 )—l—f(a:i,T)—l—

83u(xi,§1) af(x27§2)
Ox? i

92201 o | (=7

where 0 <7 <& <n;0 <71 <& <1, we obtain
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b.. 15
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Again, it is apparent that |Rys| < C3h?. So, we have

ACiT BCyrite AT® BrP

R b Csh? + ————b,C3h?

| ”_|(%4Jk [E+D T ™" TIEe
<Cayt® (7’ + hz) + COby? (T + h2)
<C (am'a + kaﬁ) (7’ + h2) : (16)

For I, , we get the following approximation

Iy =

Q

A L ot Lo(xg,n) + p(a,
S Loten) +aten),
I'(a) 4 (te — 1)
/tf“ Lo(zi,n) + pleiyn)
—0 7t (tk - 77)1_6
/tj“ Lo(xi,tj1) +P(95ia7fj+1)dn
t (tr — )t
) kl/“l Lo(wi,ti) +p (i, tj41)
tj (ty —m)t=P

tj
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L, B
o) ;

dn + Roy

=——— > ap_j1 [Lrv(z,tj41) +p (24, tj41) + R
Z br—j—1 [Lhv(s, 1) + (@5, tj41) + Roo] + Ry
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X [Lpo(wi, ti) + p (2, tj+1)] + R% (17)

where



ATe k—1 BTB k—1

Ry = Ry + m 2_: ag—j—1122 + 711(5 1 Jz(:) bi—j—1 R,
A k= 1/g+1 Lo(xi,n) — Lo(x;, tjgq) + p(xs,n) — p(@i, tiz1)
1— dr
(thpr — )t
B k_l tivr Lo(x;,n) — Lo(z, tiwr) + plai,n) — p(zi, tjs)
+ — d d 7 : d77>
N@%%A (bt — 1)1
RQQ = EU(LCZ', tj+1> — EhU(Ii, f}j+1). (18)
Because
E'U(l’i, 77) + p(ajlu 77)
0?v(xs, tiy) Pv(zi,m)  Op(wi,n2)
=g TPEt) Tt Tt T | (1)
(921)(301-, t ~+1) 84@(%;, 771) 8217(%‘7 772)
— TQJ +p(zi, tjp) + GIEY o T(n —tj41)

where n < <tj11, MM <m+7, <<ty nIMpInp+T,
we have

| Ra1| <

2 J+1 2 /‘ j+1
Z /t tk - O‘ Z t; tk — _5 i

A N B 9
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And, using Taylor’s formula, we can obtain

h2 (.t
EU(QZ'Z‘? tj+1) = Eh'U(ZL‘Z‘, tj+1) + M

12 ox*
W [0%u(ba, tjva) 0wl tj)
== ,Chv(xi, tj+1) + E [ ax4 J _ ax4 yi
h27_ a5u(§27 ﬁ3)
:ﬁh’U(ZL‘i?tj_;,_l) + 12 8354875 .

Hence, we have

| Raz| < [Lo(wi, tja1) = Lyv(wi, )| < CTR



AT k—1 BT,B k-1
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For I3, we can get the approximation as below:

tet1
Is= [ glulws,n), @i, m)d
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[9(u@i, ti), @i trgn) + g(ul@i, t), zi, t)] + O(). (21)

From the above result, we obtain

xza tk+1

=u xzatk

[ ATe ak BTﬁbk 1 {

i S2ulai,7) + f (2:,7)

h?*
Oé

* F(a—l—l Z Wi 1+ g+ Zbk J= 1] |:h2 20(Ti tin) +p(wi )

[9(u(@s, tisr), @iy tigr) + g(ulzi, ty), 2, t)] + RET!
A’/’aCLk i B’Tﬁbk {
I(a+1) T(B+1)

+

NN

Sulas, ) + f (wi,7)

k

1 - b, 5
Ok is irt
+ Olfoz—i—l)ak j—1+ TG+ 1) k—j 11 {hg 2o(; tiv1) + 0 (25,t541)

g(u(@i, tesr), Ty tis) + glu(ws, t), 2, ty)] + REFL (22)

T
2

Let
ATe Brf

Tla+1) “T@E+1) *

We have
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u(i, tey1)
=u(wi, t) + (riak + rabe) [62u(s, 7) /B + f (@i, 7)]
k—1

+ 3 (rax o1+ rabi 1) % |(Su(ws, ty4o) — 2ulai, 1)) /0
=0
+f (@i tje2) — f (25, t551)]
+g 9 (W@, tig)s s tir) + gl tr), @, t)] + RET, (23)

where
[RE < C (arr™ + byr?) (7 + B2) + Cr (7 + 1?)
<C (am’a + b7’ + 7') (7’ + h2) . (24)
From [47] we have following lemma.

Lemma 1: In (24), the coefficient ax, b, (kK =0,1,2...) satisfy:

(1) ap=1,ap > 0,bp = 1,bp > 0,k =0,1,2,...;
(2) ay >ak+labk >bk+1ak:071727"';

(3) there exists a positive constant C' > 0, such that

7 < Capt®, 7 < Cht? k=1,2,....

Let
u = (uy,us, . .. ,um_l)T, v = (v1,v9,... ,vm_l)T.
We define
m—1 m—1 %
(u,v) = Z u;v;h, luz|| = /(u,u) = (Z ufh) )
i=1 i=1
We have
m—1
R = (R}, RS, ... RE_) IR 2= \|h Y |RF.
i=1
We obtain

HRkHQ <C (akﬂ'a + kaﬁ) (T + h2> )

We denote u¥ for the numerical approximation to u(w;,ty), fF = f (x4, t1),
gF = (u(wi,ty), xi, ) and write 02uf = uf ; — 2u¥ + uf ;. We obtain the
following implicit difference scheme:

11



uf+1 - uf + (riag + roby) [éiu}/hg + le]
k . . . .
+ (7’1%7]'71 + 7’2bk7j71) [(5§ug+2 - 532;"“{“)/}12 + fij+2 - fiﬁl]

|
—

.
I

+= (g8 +gt). (25)

I\J\\]

The implicit numerical method can be rewritten as the following form:

k—1
W =l + riag(G2uE TR 4 ) Y (a0 — ag) (02w R+ fF)
=0
k—1
+rabo (G2l B2 + 5 4y S (bja — b)) (62w /B + f177)
=0
+2(gf+1 +9)
:ui _'_(7,1+7.2>(52 k+1/h2+fk+1)
k—1
+ 3 (a1 — ag) + ra(bjer — b)) (02ul 7 /B2 + 1)

7=0

F2 g ) (26)

The initial and boundary conditions are

U;

o(ih), 1=0,1,2,...,m; (27)
o1(kT), uf = @o(kT), k=1,2,...,n. (28)

0
)
k
0 m

u

We simplify the equation as

ulf ™ —ulf = (ry +my) ((fcuf*l/hz + ff“)

k—1
+ 3 [l — aj) + ra(bje = b)) (82ug ™ /0> + f17)
7=0
7_
+5 (9 (g5 +gF). (29)
We sum from u} — Y to u'Cle — u¥, and use the definition of a;, b; to obtain

12



k—1

it =l =Y (majen +rabi) (52 IR J)
=1
k+1
T j—1
P> (¢! +47")

k k
= Z (r1a; + robj) ((ﬁufﬂ_j/m + ffﬂ_j) +T Z gzj

0 j=1
T k+1
+5 (60 + o).
(30)
So that, we have:
k—1

uf:u?+2(r1aj+r2bj) ((52 = ]/h2—|—fk ])+ngz

J=0

3 Z?+gb), (31)

where
AT® Br?

Fla+1) " T(E+1)
= (k+D)* =k by=k+1° -kl i=12... . m-1,k=12 ... n.
The initial and boundary conditions are (27),(28).

2k _ k k k _
opu; = Uiy — 2u; +u;_q, 11 =

3 Stability of the implicit numerical method

We give a stability analysis as follows.

We suppose that a¥,i =0,1,...,m;k=0,1,...,n is the approximate solution
of Eq.(7), g denotes g (u(x;, tk) z;,11,), the error ef = uf — aF, satisfies ek =

0,5%20,]6—1,2,...,71 and

eftl=el + (r1 +12) ¥ ((512;5?“/h2>

k—1
+ 3 [r1(ajen — a5) + ra(bj — b)) x (826577 /n?)
j 0
k4l skl k <k
+2 (g =g +gr - gF) . (32)

We also suppose that the function g(u(z,t),z,t) satisfies the Lipschitz condi-
tion,
lg(ur, z,t) — g(ug, x, )| < Lluy — ual, Vuy, uz,
so that
< L|eF

9F —gr

13



We can easily prove the following result:

Lemma 2: Let Av; = v —v;, Aw; = Wi —w;, 6205 = Vi1 —20;+0;_1, 0%w; =

Wiy1 — 2w; +w;—1. If vg = w,, =0, then

(52v,w) = —vywh — (Av, Aw)

where .
5% = (5201,(5202, e ,521)m_1) ,
Av = (Avy, Avg, - - - ,Avm_l)T ,
Aw = (Awl, AU}Q, cee ,A’U}mfl)T .
Proof:
m—1
(521), w) = 8%v;wih
=1
m—1 m—1
:hZ(viﬂ hz _Uzl
=1 =1
m—1 m—1
=h Z (Vip, — —h Z Vit1 — Vi) Wig1
=1 =1

+h (VU — V1) Wey — h(v1 — vg)wy
= —vwih — (Av, Aw).

Now let EF = (b &k ... ek )T. Multiplying Eq.(32) by hef*!, summing for

» “m—1
1 from 1 to m — 1, we obtain:

HEkHH (Ek-i-l Ek) 7,1 +r2) % [<5§Ek+l’Ek+1> /hﬂ

i (11 (aj41 — aj) + 72 (bjr1 — bj)] X [(5§Ek_j’ EkH) /hg}
7=0

SIS (g = g gt )
=1

_ (Ek;’ Ek:) — (r1 +79) K<g’f+1) h + HA Ek+1H )/hg}

k—1

=D i@ —aj) + 12 (bj1 — b))
=0

X [ ey I 4 (A;,;Ek_j,AzEk“)) /h2]
T m—1

+5 ] (gf“ G 4 gf = gF) .

14



According to the Schwarz inequality, we have:

2|5lf j€k+1| < (slf—j)Q n (5’f+1> ‘
Because
kil (@1 —ag)] =ar—ao=a; =1 and a; >0,
=0
we have
HEk—l—1H2
1o TRl (O e W
1 kz:l [r1(aj41 — a;) +r2(bj1 — bj)]
: (@f Vo ) ol s fas ) ]

Sl (e + 12
2 2

i(HEk“H HE‘“H)

A tag)n + A +b)rs K(gm) h+HAEk+1H >/h2]

2
—lkzln 4= a) + 7 (b — b)) x |((17)" o 2B ) /o]
3 L
e e e N

(HE’““H JB,) = =5 () s Jame ) me

—lkzl (1 (aj41 — @) + 72 (bjs1 — b})] X <(5’f N’ h+HAE’H’H§) /hﬂ
BTL e+ T (34

Thus

15



o+ Sl (5042 o )
j=0

< &lI12 k-1 e 2 2
<[+ X oy + v [( (&) 0 [t ) 107
+3T2L [+, + TQL |, (35)

We define the energy norm
k|2 B2, k—j)2 k—j|? 2
|41 = [0 + 3 v v | (7)o ) ]
]:

2
Suppose that 7 < 57, then we have

(=) < (e ) 12

Thus, we have

IR A 1+ 1r0\"
121, < (F55) 12 < (535) 1=

Note that n = T'/7, and

1+ 1L7 1+ LT es T

li = | _ — LT

Hence, there is a positive constant C; > 0, such that

1—|—%L7’ "
<C
(i) <o

thereby
|24, < 2, < a2
We have

T

= el () x (822L/m%) + 0 (] = 3!+ of - &)

N}

£, < [[£°], = s+

() n+ [ar[) /p2]
+§TL |2+ ;TL [ (36)
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Therefore,
1+ i7L
|22, < (7557 ) 1=l
Hence, we have
2], < ef#],.

thus giving a stability result, i.e.,

k
B S = B3 + 1 > b {ler PR+ [AE|3) < B3, (37)

=0
so that [EM3 < ||E%|3.
Hence, the following theorem of stability is obtained.

Theorem 1. Assuming 7 < the fractional implicit numerical method

defined by (25) is stable.

2
3L’

4 Convergence of the implicit numerical method

We let u(x;,tg),i =0,1,...,m,k =0,1,...,n be the exact solution of equa-
tion (7) at mesh point (z;, ;). Define nf = u(x;,tp) —uf,i =0,1,...,m,k =

0,1,...,n,YF = (n’f, . ,7],’;71>T. We get

= () X (5925775+1/h2)
k—1
+ 3" [riajen — aj) + ra(bjen — b)) x (9207 /1)
j=0
;
+3 [9 ( (i, thr) s 2o tirn) — 95+ g (u (i, te) 2, ti) — gﬂ

+RF (38)

k+1

where ) =nf =nF =0,i=0,1,...,m. Multiplying by hn*™!, and summing

for ¢ from 1 to m — 1, we obtain:

17



v,
2

= (YEYR) 4 (4 72) x [(2Y 50, YRHY) /2]
k-1
+ 20 [ (e = ag) + 72 (byer = by)] x [(BY*, Y4 /2]

7=0
+ Z ( k+1 _ k+1+g — g ) k+1h+ (Rk+1 Yk+1)
= (Yk:+1’ Yk> — (r + 1) X ((77716+1) AxYk+1H2> /h2]
k—1
=D [r(aj41 — aj) + 2 (bjsa — b))

Jj=0

[(n'f_jn’f“h + (AYHT A YR /0]

(39)

+ Z ( k+1 _ k+1 +g — gk ) l<:+1h+ (Rk+1 Yk+1)
We have
(s < g [+ ).
ki, g o L[| ke
™ 771§2[ \+\77”
k+1 v k+l (Tlak—i_r?bk)hQ k1|2 L? k1|2
(G e [P L WY ) R
Thus,
v,

<) - v

() n o) w]
1 k-1

—5 Z 1 ajJrl — aj) + T2(bj+1 — b, )]

(62 v ko [avaoo o favess ) o]

o T (e ) + (o)

18



<o [l ivie]

B (14 ag)r; —2|— (14 by)re y K(U’f“)

Yk+1H > /h2]

_; kzl [r1(aj1 — aj) + ra(bjer — bj)] ¥ [((nlf_j)Q ht HAYk_sz) /hﬂ

7=0

3L

’ HY’““H %kuz

s L O [ — ]

L2 4(r1ak + Tgbk)hg 2
<o [l ivie]
_rm;rz o [((n'f“) b Hz) /hz}
S e — )+l — )] [ ok AV
=0
T B L e (1)’ RIG

+ 7oby) L?
+(T1ak L;”2 k) Hyk+1H2 I T e HRkJrlH . (40)

Lemma 3: Suppose

m—1
Hka2 - \ h ; |77£€|27 ‘Yk‘oo - 15%2}7)1(_1 ‘mk‘ !
1)

then

[+, < 2V < g [t +

Proof: The first inequality is apparent.

For the second inequality, let

| = | max [t
io—1
My =y + Jzzl Amﬁj Z A;ﬂ]f.
Thus 1
2k | < It +"i1 N
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Using the Cauchy-Schwartz inequality, we have

MWSMV}+ZMM2§fWW+Mﬂ}
Therefore,
L?
Y4, < g [k + ]

The lemma is proved.

Applying Lemma 3, we obtain

HYk+1Hz + zk:(rlaj + 72b;) mnkﬂ J‘ h+ HAgjka—jHD /h2]
=0

< HYkHz n zk:(rlaj + 79b;) [(’n/’f—jr h HA”CYk_sz> /hﬂ
=0

j=
3rd
el S+ m Ll (41)
Let
2 kL 12 12
— Hka2 + Z(rlaj + 7r3b;) KM”‘ h + HAg;ij"Q) /hz} (42)
5=0
and using Lemma 1
At“ Br?P
B, < 0 (o™ 0ur) (7 ) v = 5y = S 1y
then
(1 — 27’L) Prr1 < (1 + ;TL) o +C’ (akro‘ + bm’ﬁ) (7’ + h2)2 )
Therefore, we obtain
Pri1 < i;i [pk +C" (™ + b7 (7 + hﬂ . (43)
k41
Pl < (1—1—%:2) po—sz:C/ (ajTa—FbjTﬂ) (T+h2)2 (44)
2 §=0
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Note that py = 0, We can therefore conclude that there exists a positive
constant C', such that

Pri1 < C’Xk: (akT"‘ + kaﬂ> (7‘ + h2)2 ,
=0

and

M-

apr® = (k +1)°r® < T°.

7=0

Thus R )
pri1 < C (Ta —l—TB) (7’+ h2) )

2

K+1H2 < Prt1 , we have

Because Hy

v,

A e 8 2\ 2
LS C(T+T%) (r+17)
Consequently, the following theorem of convergence is obtained.

Theorem 2: Let u(x,t) € G(2) be the solution of (7-9) and assuming 7 < .
Then the fractional implicit difference method defined by (25) is convergent,
and there exists a positive constant C' > 0 such that

e, < ot 0

5 Numerical Results

In this Section we illustrate some of the theory through numerical simulations.

Example 1.We consider the following modified anomalous subdiffusion equa-
tion with a nonlinear source term:

ou(z,t) ot O8N [0%u(x,t)
o (Aatl—a +Bgig | | T T (@) +glule )z ), (45)

where A = B = 0.5, f(u,t) =0,

gu(z,t), z,t)=€"[(1 + a)t* — m 201
+er[(1+ B — mtw], (46)

with boundary condition and initial conditions
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0.4

SNSRI 0 0
Time-t (0-1) Space-x (0-1)

Fig. 1. Numerical solution of problem (45)-(47), when o = 0.5, 5 = 0.2
u(z,0)=0, 0<az<1,

u(0,t) = t'T 4 10
u(1,t) = et + et' P, (47)

The exact solution of Equations (45)-(47) is

We take « = 0.5, =02, 0<t<1, 0<z<]I.

The simulation results with a = 0.5, =02, 0 <t <1,0 <z <1 are shown
in Figure 1. The system exhibits behaviors of the solution and its derivatives
of order a = 0.5, 3 = 0.2. We can also see that the u(z,t) increases with time.

The comparisons of the numerical solution and exact solution are shown in
Figure 2 when t = 0.2, 1, respectively. From Figure 2, it can be seen that the
numerical solution is in good agreement with the exact solution.

We take 7 = 0.01,h = 0.1. The errors between the numerical solution and
exact solution are shown in Table 1, when ¢ = 1. From Table 1, we can see
that the errors satisfy the relation Error < C (1 + h?).

Example 2. We consider the following modified anomalous subdiffusion equa-
tion with a nonlinear source term:

Ou(x,t) <A ot~ 615> l@%(x,t)

o \“on—e TP s oz T/@ 0] tolu,z,t),  (48)
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Table 1

The error, numerical solution and exact solution, when t =1, 7 = 0.01,h = 0.1

Space Numerical solution FExact solution Error %
0.10 2.212387 2.210342 0.002045 0.10225
0.20 2.446536 2.442806 0.003730 0.18650
0.30 2.704757 2.699718 0.005039 0.25195
0.40 2.989597 2.983649 0.005947 0.29735
0.50 3.303859 3.297442 0.006417  0.32085
0.60 3.650636 3.644238 0.006398  0.31990
0.70 4.033338 4.027505 0.005833 0.29165
0.80 4.455724 4.451082 0.004642 0.23210
0.90 4.921941 4.919207 0.002734 0.13670

|

Fig. 2. Numerical solution of problem (45)-(47), when oo = 0.5, 3 = 0.2

1
0.5 0.6
Space-x (0-1)

with initial and boundary conditions:

u(z,0) =

8z,

0<x<0.5

—47% + %x—i— %, 0.5 <x <2,

u(0,t) = u(2,t) =0,A= B = 1.0,
f(xvt) = ex,g(u,x,t) = p,(u - UQ/K)a
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1

o 1 0
Time-t (0-1) Space-x (0-1)

Fig. 3. Numerical solution of (48),(49), when o = 0.5, =0.9,t =0~ 1,

=0.1)

u(x,t:

Order-p (0-1) 0 o

Space-x (0-1)

Fig. 4. Numerical solution of (48),(49), when o = 0.5,0 < < 1,¢t = 0.1,

where g(u,z,t) is a Fisher nonlinear source term [1]. Here, we take p =
0.5, K =1.

Figure 3 shows solution behaviors when o« = 0.5, = 0.9,t = 0 ~ 1, while
Figure 4 shows the response of the diffusion system for different real numbers

0<pA<1,a=0.5att=04 and for different x.

Figures 3-4 show that the system exhibits sub-diffusive behaviors and that the
solution continuously depends on the time fractional derivative.
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6 Conclusions

In this paper, a new implicit numerical method for a modified anomalous subd-
iffusion equation with a nonlinear source term in a bounded domain has been
described and demonstrated. We prove that the inplicit numerical method
is stable and convergent using a new energy method. The implicit numeri-
cal method and analytical technique provide computationally effective tools
for simulating the behavior of the solution of the modified anomalous subd-
iffusion equation with a nonlinear source term. This method and analytical
technique can also be extended to any fractional integro-differential equations
and higher-dimensional problems.
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