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Abstract Affine covariant local image features are a

powerful tool for many applications, including match-

ing and calibrating wide baseline images. Local feature

extractors that use a saliency map to locate features

require adaptation processes in order to extract affine

covariant features. The most effective extractors make

use of the second moment matrix (SMM) to iteratively

estimate the affine shape of local image regions. This

paper shows that the Hessian matrix can be used to

estimate local affine shape in a similar fashion to the

SMM. The Hessian matrix requires significantly less

computation effort than the SMM, allowing more ef-

ficient affine adaptation. Experimental results indicate

that using the Hessian matrix in conjunction with a fea-

ture extractor that selects features in regions with high

second order gradients delivers equivalent quality cor-
respondences in less than 17% of the processing time,

compared to the same extractor using the SMM.
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1 Introduction

Local image features are patterns in an image that

are defined in limited image areas and are distinguish-

able from the surrounding image in some way. Such

features may be extracted from each view of a scene

independently and then matched to find sets of cor-

respondences between views. The correspondences are

commonly used for a large variety of tasks, including

automatic camera calibration [1], 3D reconstruction [2,

3], mosaicing [4], object recognition and classification

[5] and arranging image databases [6]. The various ap-

plications have different requirements in terms of fea-

ture robustness. In surveillance environments cameras

are almost invariably distributed very sparsely (wide

baseline). Calibrating cameras for intelligent surveil-

lance environments [7] therefore requires features that

are highly robust to view change. A comprehensive re-

view of local image feature extractors may be found in

[8].

This paper focuses on derivative-based feature ex-

tractors. These extractors make use of adaptation pro-

cesses to produce features that are robust to affine de-

formations. The most successful affine adaptation algo-

rithms make use of the second moment matrix (SMM)

to estimate local feature shape. The purpose of this

paper is to show theoretically and experimentally that

the Hessian of image intensities may also be used for

estimating local affine shape. The Hessian is simpler

to compute than the SMM and may enable a reduc-

tion in computation time. It may also be more con-

venient to compute, for example, when using the de-

terminant of Hessian extractor. Results indicate that a

blob detector with Hessian shape adaptation requires

on average 17% of the processing time of an equiva-

lent detector with SMM based adaptation, while achiev-
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ing marginally better repeatability and producing more

correspondences. Conditions where the Hessian does

not provide a useful shape measure have also been iden-

tified and are discussed in this paper.

2 Background and Notation

Among the various types of feature extractors is a class

of extractor that locates features in an image by com-

puting a saliency map of the image using partial deriva-

tives. The saliency map shows the regions of the im-

age that have high curvature. Feature points are se-

lected by finding maxima in the saliency map. The

partial derivative operators are inherently sensitive to

changes in view point and do not produce view co-

variant features directly. One possible approach to ex-

tracting affine covariant features is to expand the image

space to a five dimensional affine space by applying vari-

ous degrees of affine scaling. This is computationally in-

tractable for most applications, as demonstrated by the

salient region detector [9] and the performance figures

in [10]. Though the method of [9] uses entropy to eval-

uate saliency, the problem of complexity due to dimen-

sionality applies to partial derivative-based methods.

More efficient methods have been developed to adapt

salient features to be affine covariant, but this adapta-

tion process remains computationally expensive.

Other feature extractors have been demonstrated

that are less computationally demanding, however these

do not share the same strengths as the affine adapted

saliency based extractors. The MSER extractor [11] for

example produces affine covariant features using a pro-

cess similar to the watershed algorithm. It is less com-

putationally demanding, but it delivers far fewer fea-

tures than the saliency-based methods [10]. Saliency-

based methods have been shown to perform better than

MSER when scene objects do not consist of predomi-

nantly flat surfaces [12]. Even faster extractors exist,

such as SURF [13] and FAST [14]; however, these do

not generate affine covariant features and are ineffective

in wide baseline scenarios.

Local features may be defined in terms of an affine

transformation of x ∈ R2, expressed as,

H(k, θ, q, φ, tx, ty,x) = kR(θ) A(q, φ) x + t(tx, ty) ,

R (θ) =

[
cos(θ) −sin(θ)

sin(θ) cos(θ)

]
,

t (tx, ty) =
[
tx ty

]>
,

A (q, φ) = R (−φ)

[
q 0

0 q−1

]
R (φ) .

(1)

These components are referred to as the position, t,

scale, k, shape, A and orientation, R, of a feature. A

transformation of the above form may be interpreted

as a mapping from a unit circle centred at the origin to

an ellipse circumscribing a feature and can be used to

normalise a feature.

The saliency map approach can be used to extract

the position of features (t) at a given scale, but does

not provide a method for extracting regions that are

covariant with changes in viewpoint. Example saliency

operators include the Harris & Stephens operator [15],

the determinant of Hessian operator [16] and the Lapla-

cian of Gaussian and Difference of Gaussians operators

[17]. Methods have been developed to adapt saliency

features such that the resulting features are affine co-

variant. Many methods adapt different components or

parameters of the affine transformation separately (ex-

amples are given in the following discussion). The fol-

lowing subsections discuss the development of adapta-

tion methods for scale, shape and rotation adaptation.

2.1 Scale Adaptation

A saliency map only reveals features that are of the

scale or resolution at which the map is computed. In

order to find features with a wide range of sizes in an

image, a multi-scale analysis of the image is required.

This is achieved by defining a scale space for images

and applying the saliency operator and maxima extrac-

tion over a range of scales. In the feature extraction lit-

erature, the most commonly used definition for image

scale space is based on the Gaussian smoothing opera-

tor. Other definitions are also available. See [18] for a

detailed discussion on scale space theory.

The Gaussian scale space operator is defined as,

g (x, σ) =
1

σ22π
exp

(
−x>x

2σ2

)
, (2)

where σ is referred to as the scale parameter. The scale

space of image I (x) is generated by convolution with

this operator, yielding a three-dimensional space de-

noted I (x, σ), where the third dimension corresponds

to the scale parameter of the Gaussian operator.

A well established method of producing scale invari-

ant features is to select characteristic scale features. In

[19] it is proposed that some combination of gamma

normalised derivatives computed in the vicinity of an

image structure will assume a local maximum at the

scale corresponding to the structure size. Normalised

derivatives of a Gaussian scale space image are defined

as,

Iin (x, σ) = σγn
∂n

∂in
I (x, σ) ,

where i is any dimension of I (x).
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The simplest method of characteristic scale selection

is to locate scale-space maxima – points that represent

local maxima of the saliency map in the spatial and

scale dimensions. Example implementations have been

published describing scale-space non-maximum suppres-

sion using the Laplacian [19], Difference of Gaussians

[20] and determinant of Hessian [13] functions, for ex-

ample.

The scale space maxima approach was extended in

[21] by locating points that are local maxima of the

Harris function in the spatial dimensions and maxima of

the scale normalised Laplacian in the scale dimension.

While functions such as the Harris and determinant of

Hessian provide good spatial localisation, it was found

that the Laplacian is more effective for scale selection.

An iterative version of this algorithm is proposed in

[21], which offers higher accuracy scale selection than

simple 3D non-maximum suppression.

In [22,23] a method is presented for composing a

graph (termed the scale-space feature sketch) of multi-

scale features such that the graph is a discrete repre-

sentation of the loci of features in scale-space. Charac-

teristic scale features can be selected by evaluating a

scale response function (such as the normalised Lapla-

cian) at each feature and finding local maxima in the

graph. This method yields superior results to 3D non-

maximum suppression, while enabling greater compu-

tational efficiency compared to both 3D non-maximum

suppression and iterative scale selection.

2.2 Shape Adaptation

Extending the three parameter scale covariant feature

extraction problem to a five parameter affine problem

results in a parameter space that is too large to search

exhaustively. Affine adaptation is therefore initialised

either with a set of multi-scale features or a set of char-

acteristic scale features.

The majority of modern shape estimation methods

derive from [24], which uses the second moment ma-

trix (SMM) to iteratively measure local shape. In [24],

the Gaussian scale space is extended to affine Gaussian

scale space. The affine Gaussian operator is of the form,

g (x, Σ) =
1

2π |Σ|
e−

1
2x>Σ−1x, (3)

where Σ is the covariance matrix and |Σ| is the deter-

minant of Σ. Affine scale space is then constructed as,

I (x,Σ) = g (x, Σ) ∗ I (x). The second moment matrix

computed in affine scale space is defined as,

m2 (x,ΣD,ΣI) = |ΣD| g (x,ΣI) ∗DA,

DA =

[
I2x (x,ΣD) IxIy (x,ΣD)

IxIy (x,ΣD) I2y (x,ΣD)

]
,

with ΣD and ΣI differing only in scale. The SMM is

essentially a local estimate of the covariance matrix of

image gradients.

Affine adaptation is performed by iteratively com-

puting the SMM as,

Mi = m2 (x, kDMi−1, kIMi−1) ,

where i is the iteration number, kD is chosen to max-

imise the value of the Laplacian at x, kI is chosen so

that the minimum eigenvalue of kIM remains constant

during iterations and M0 = I (the identity matrix).

It is shown that if M is computed as above, then it

converges such that, for sufficiently large n,

m2 (x, kDMn, kIMn) ≈Mn,

and that the resulting matrix, M, is covariant under

affine transformations of the image. This method effec-

tively adapts the scale and shape components while the

feature position is kept fixed at its initial position.

The method presented in [25] applies a normalising

affine transformation to a local image region, instead

of adapting the parameters of affine scale space. The

integration scale and differentiation scale of the SMM

operator are set proportional to the scale at which the

feature is detected. At each iteration of the algorithm,

the local image region around the selected feature is

transformed using the inverse square root of the SMM

computed during the previous iteration (initially I).

The SMM is then computed again from the normalised

image region using radially symmetric Gaussian ker-

nels and is normalised to have a determinant of 1. This

continues until the measured normalised SMM is suf-

ficiently close to the identity matrix. The final shape

transformation is the composition of all the normali-

sation transformations applied during adaptation. The

method of [25] is more easily implemented and more

efficient than the method of [24], but only adapts the

shape component while leaving the scale and position

fixed. This method is also applied to both Harris and

Determinant of Hessian features in [10].

A more complete algorithm is presented in [21] that

updates the integration scale, differentiation scale and

feature location at each iteration, before computing the

SMM. A measure of local shape eccentricity is defined

as the ratio of the smallest eigenvalue, λmin and the

largest eigenvalue, λmax of the SMM,

Q (M) =
λmin (M)

λmax (M)
. (4)

Adaptation concludes when Q is sufficiently close to 1

(symmetric). This is a more computationally expensive

algorithm than the method of [25]. It is the only al-

gorithm that allows for a change in scale and position
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as the shape is adapted. In the evaluation presented in

[10], the authors chose to use a method most similar to

[25], and the method in [21] was not evaluated. The per-

formance of this algorithm is therefore unknown, how-

ever the preference for the method in [25] indicates that

perhaps the method in [21] does not produce superior

results. The authors’ own evaluations of a complete it-

erative scale, position and shape adaptation algorithm

show a great increase in computational cost and neg-

ligable change in repeatability performance. For this

reason, a shape adaptation only framework is used in

this paper.

Other methods for measuring the affine shape of

each feature include Edge-Based Regions (EBR) and

Intensity-Based Regions (IBR) [26–28]. EBR is designed

for corner features extracted using the Harris detector

and uses the edges emanating from the corner to fit

a parallelogram feature. IBR is designed for features

selected at the local image intensity extrema. It finds

the edges of the feature region by finding the max-

ima of a cost function evaluated along rays emanating

from the feature centre and fits an ellipse to these edge

points. The salient region detector [9] evaluates the en-

tropy of a three parameter family of ellipses at each

pixel (essentially generating a 5D saliency map) and

selects maxima of this map as candidates. The top P

regions with highest magnitude of the derivative of the

pdf with respect to scale are retained. This method is

computationally impractical and performs poorly. The

evaluations in [29,12] show that SMM adapted Hessian

features and MSER features most consistently achieve

good performance.

2.3 Orientation Selection

The affine covariant extractors found in the literature

do not assign an orientation to features and the evalu-

ations [29,12] do not include orientation in computing

feature error. The most popular method for selecting

feature orientation is included in the Scale Invariant

Feature Transform (SIFT) descriptor [17]. This method

selects orientations corresponding to the dominant first

order gradient directions in the feature area.

3 Hessian-based Affine Adaptation

The SMM has to date been the most effective affine

shape estimator used in affine adaptation of local image

features. This section explores the novel approach of

using the Hessian matrix as an affine shape measure for

affine adaptation. The Hessian of an image is defined

as the matrix of second order partial derivatives of the

image intensity with respect to coordinates,

∂2I (x)

∂x∂x>
=

[
∂2

∂x2
∂2

∂xy
∂2

∂xy
∂2

∂y2

]
I (x) .

The main motivations for using the Hessian matrix, in-

stead of the SMM, is that the Hessian is simpler to

implement and requires less computational effort (see

Section 3.3). The Hessian is already used to compute

the Determinant of Hessian saliency operator and the

trace of the Hessian matrix is the Laplacian, which is

used for scale selection. Using the Hessian for shape

adaptation as well can therefore result in an affine co-

variant feature extractor that employs a single operator

at its core. There are, however, some limitations to how

the Hessian matrix can be used.

3.1 Symmetric Local Hessian

The following discussion considers continuous signals.

Section 3.2 discusses the implications of working with

discrete images.

Let the property of second-order symmetry be de-

fined as follows:

Definition 1 A function f (x) is symmetric in terms

of the Hessian, around coordinates xi, if the eigenvalues

of the Hessian of f (x), evaluated at x = xi, are equal

and hence the Hessian (always a symmetric matrix) is

a scalar matrix.

Symmetry, by this definition, has several properties:

1. Symmetry is a local property, defined at a particular

set of coordinates.

2. Symmetry is shift covariant due to the shift covari-

ance of the Hessian matrix – if f (x) is symmet-

ric around xi, then f (x + d) is symmetric around

xi − d.

3. Symmetry is rotation covariant due to the rotation

covariance of the Hessian matrix – if f (x) is sym-

metric around xi, then f (Rx) is symmetric around

R>xi.

4. Symmetry is invariant to a scalar transformation of

coordinates – if f (x) is symmetric around xi, then

f (kx) is symmetric around k−1xi. Isotropic scaling

of a scalar matrix yields a scalar matrix.

5. Symmetry is ill-defined when the magnitude of the

eigenvalues of the Hessian approach zero.

In the following it will be shown that the Hessian

is affine covariant, that it can be used to measure the

shape of a function at a point and to compute a trans-

formation mapping a function to a Hessian symmet-

ric function. Let function i (x) be an arbitrary function
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that is symmetric around x = xi. Let f (x) be related

to i (x) by an affine transformation,

f (x) = i (Ux + t) ,

where U is of the form, U = kRA (components defined

in equation 1). The Hessian of f (x) is,

∂2f (x)

∂x∂x>
=
∂2i (Ux + t)

∂x∂x>

= U>
[
ixx (Ux + t) iyx (Ux + t)

ixy (Ux + t) iyy (Ux + t)

]
U.

Evaluating this equation at x = x′i = U−1 (xi − t) (the

new location of the symmetric point in i (x)) gives,

∂2f (x)

∂x∂x>

∣∣∣∣
x=x′i

= U>
[
ixx (xi) iyx (xi)

ixy (xi) iyy (xi)

]
U.

Since i (x) is defined to be symmetric around x = xi,

the derivative matrix in the above equation is a scalar

matrix of unknown scalar a, simplifying the equation

to,

∂2f (x)

∂x∂x>

∣∣∣∣
x=x′i

= aU>U

= ak2A>R (−θ) R (θ) A

= ak2A2. (5)

The Hessian therefore measures ak2A2 and is covari-

ant with A. A may be computed by normalising the

Hessian such that it has determinant one and positive

diagonal elements and then taking the square root. The

centre point, x′i, of the function must be known in order

to measure its shape. The angle of rotation, θ, is not

measured and the scale, k, of the original U cannot be

recovered from the Hessian due to the presence of un-

known scale factor, a (an unknown parameter of i (x)).

Applying the inverse of A to f (x) gives,

f
(
A−1x

)
= i

(
UA−1x + t

)
= i

(
kR (θ) AA−1x + t

)
= i (kR (θ) x + t) ,

which is symmetric around x = k−1R>(θ) (xi − t), be-

cause i (x) is symmetric around x = xi and symmetry

is scale, rotation and translation covariant.

3.2 Application to Image Data in Scale-Space

The above method of measuring the affine shape of a

function using the Hessian effectively fits a second order

surface to f (x) at the shape centre point (and ignores

the lower order components). Fitting a second order

surface to a real image by evaluating the Hessian at a

single point is not of practical use. The image features of

interest are rarely smooth, second order functions and

are contaminated by noise. The Hessian response will be

dominated by noise and the finer scale frequency com-

ponents of the feature. It is necessary to first isolate the

feature of interest by removing finer scale information

and noise. Furthermore the feature centre point must

be known and must be chosen such that the shape is

well defined (the eigenvalues of the Hessian must be sig-

nificantly large). Characteristic scale feature selection

in Gaussian scale space (Section 2.1) addresses these

issues. Scale selection provides the feature size infor-

mation and a feature detector such as the Determinant

of Hessian detector automatically selects features with

significant second order curvature. Note a possible con-

fusion of terms: second order symmetry is invariant to

scaling of the coordinate system (see the preceding sec-

tion), but is not invariant to the application of the scale

space operator, i.e. convolution with a Gaussian.

Let a scale-space function, i (x, σ) = g (x, σ) ∗ i (x),

be symmetric at coordinates (0, σi). Translation, scal-

ing and rotation are omitted from this argument, since

it is assumed that the point of interest can be located

by means of feature extraction. While seeking to recover

the affine shape, it is not practical to model a distorted

version of this function as,

fa (x, σ) = i (Ax, σ) = g (Ax, σ) ∗ i (Ax) . (6)

because the distorted Gaussian, g (Ax, σ), cannot be

produced without knowing A. Instead, a distorted ver-

sion of i (x) may be observed in scale-space as,

fi (x, σ) = g (x, σ) ∗ i (Ax) . (7)

Convolving the function of interest with a Gaussian

results in a function that is smoother. A good local

approximation of fi (x, σ) can be obtained by fitting

a second order function, as is illustrated in Figure 1.

The second order parameters of the approximation can

be obtained using the Hessian and the shape may be

normalised as shown in Section 3.1. How this approach

to shape estimation relates to the true shape of fi (x, σ)

is determined by how the Gaussian convolution affects

the shape measurement using the Hessian.

The Hessian can be used to measure the covariance

matrix of an affine Gaussian as shown briefly here and

in more detail in [30,31]. Given a 2D affine Gaussian

function with arbitrary gain k,

kg (x, Σ) =
k

2πdet(Σ)
e
−x>Σ−1x

2 ,

the covariance matrix may be expressed as,

Σ = σαΣ
′

= σα

[
σxx σxy
σxy σyy

]
,
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(a) (b)

(c) (d)

Fig. 1 Second order function approximation of an image fea-
ture in Gaussian scale space. (a) An example feature. (b)
Characteristic scale image of (a). (c) A second order func-
tion approximating (b). (d) The difference between (b) and
(c) (black equals zero). The approximation is a good local fit
to the characteristic scale image of the feature.

with det(Σ
′
) = 1. The second order partial derivatives,

the Hessian, of this function are,

∂2kg(x,Σ)
∂x2 = kg (x,Σ)

(
−σyy

σ2
α

+ 1
σ4
α

(
x2σ2

yy − 2xyσyyσxy + y2σ2
xy

))
,

∂2kg(x,Σ)
∂y2 = kg (x,Σ)

(
−σxx

σ2
α

+ 1
σ4
α

(
x2σ2

xy − 2xyσxyσxx + y2σ2
xx

))
,

∂2kg(x,Σ)
∂x∂y = kg (x,Σ)

(
1
σ4
α

(
−x2σxyσyy

+xy
(
σxxσyy + σ2

xy

)
− y2σxxσxy

)
+
σxy

σ2
α

)
.

Evaluating the Hessian at the origin gives,[
∂2

∂x2
∂2

∂xy
∂2

∂xy
∂2

∂y2

]
kg (x, Σ)

∣∣∣∣∣
x=0

= kσ−2α

[
−σyy σxy
σxy −σxx

]
,

which is the negative inverse of the covariance matrix

multiplied by an unknown scalar. This derivation is con-

sistent with that in Section 3.1, since the Hessian eval-

uated at the centre of an isotropic Gaussian is a scalar

matrix. Note that the scalar may be negative if the im-

age intensity is negated. The sign of the eigenvalues do

not have geometrical meaning and the measured Hes-

sian should be normalised to have positive eigenvalues

by multiplying the matrix with −1. The eccentricity

measure defined in equation 4 can be redefined to ig-

nore sign:

Q (M) =
|λ0|
|λ1|

, (8)

where |λ0| is the smallest magnitude eigenvalue of 2×2

matrix M and |λ1| is the largest magnitude eigenvalue.

An approximation to the characteristic scale obser-

vation, fi (x, σ), of function i (Ax) may therefore be

computed by setting the covariance matrix of an affine

Gaussian to Σa = σ2H0
−1, where H0 is the Hessian

evaluated at x = 0 with determinant normalised to 1.

Since fi (x, σ) was produced from i (Ax) by convolving

with an isotropic Gaussian, the shape measured using

the Hessian is due to A. However, convolution with a

Gaussian has a significant effect on the shape measure-

ment, which must be accounted for. The second central

moment of fi (x, σ) is the sum of that of i (Ax) and

g (x, σ),

µ2 (fi (x, σ)) = µ2 (i (Ax)) + σI.

The second central moment (and the covariance matrix,

Σa) of the affine Gaussian approximation computed us-

ing the Hessian is affected in the same way. Comparing

the eccentricities of A and the Hessian of fi (x, σ), it is

clear that,

Q (Σa) > Q (A) for Q (i (Ax)) < 1,

Q (Σa) = Q (A) = 1 for A = I.

The combination of the Gaussian operator and the Hes-

sian may therefore be seen as a local estimator of the

covariance of the image intensity function (not the in-

tensity distribution) that consistently underestimates

the eccentricity of the covariance. The amount by which

the eccentricity is underestimated decreases as the true

eccentricity approaches symmetry.

These properties lend the problem to an iterative so-

lution. The property that the error in the eccentricity

measure decreases as eccentricity decreases guarantees

convergence; The property that the eccentricity is con-

sistently underestimated results in stability.

It is assumed that the coordinate frame is translated

so that the point of interest is at the coordinate origin

and scale, σ, has been selected. The proposed iterative
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Fig. 2 Four iterations of the Hessian-based affine adaptation process applied to simple shapes. The left column displays
the original asymmetric shapes. Each following column shows the shapes after another iteration of shape measurement and
normalisation. These simple shapes approach a symmetric form after only three iterations

algorithm repeats the following steps at each iteration,

fj (x)← g (x, σ) ∗ i
(
AÂjx

)
, (9)

H← ∂2fj
∂x∂x>

∣∣∣∣
x=0

, (10)

V

[
λ0 0

0 λ1

]
V> ← eig (H) , (11)

q ← |λ0|
|λ1|

, (12)

d←
√
|λ0 ∗ λ1|, (13)

λ1 ←
(
|λ0|
d

) 1
4

, (14)

λ0 ← λ−11 , (15)

Au ← V

[
λ0 0

0 λ1

]
V>, (16)

Âj+1 ← AuÂjAu. (17)

Here i (Ax) is the given image function, A is the un-

known affine shape (distortion) of symmetric function

i (x, σ) and Âj is the estimated inverse shape or nor-

malisation transformation at iteration j (initially the

identity matrix). Equation 9 transforms i (Ax) by Âj

and applies the scale space operator. Equation 10 mea-

sures the Hessian at the point of interest, which gives

an estimate of the inverse shape squared. The Hessian

is decomposed into a symmetric eigensystem in equa-

tion 11. The eccentricity of the measurement is com-

puted in equation 12. The process is completed when q

is sufficiently close to 1. Equations 13 to 15 normalise

the eigenvalues to be positive, the determinant to be

1 and computes the inverse fourth order root (the in-

verse square root of the Hessian is the shape estimate

and the square root of the resulting matrix is required

for equation 17). The update matrix is recomposed in

equation 16. Equation 17 updates the shape estimate

by composing it with the measured shape in the form

of a quadric transformation.

Figure 2 shows the Hessian affine adaptation pro-

cess applied to simple example shapes (left). The shape

centre and scale were found automatically using a De-

terminant of Hessian feature extractor. After only a few

iterations the shapes are normalised to be symmetric

(right).

3.3 Comparison of the Complexity of the Hessian and

Second Moment Operators

Both the Hessian matrix and the Second Moment ma-

trix can be computed from an image by applying a se-

ries of filters to the image. The scale space operator and

windowed integration operation can be implemented as

rotationally symmetric Gaussian filters. These are most

efficiently realised as separable recursive filters [32,33].

The separable recursive filter complexity is linear in the

number of image pixels and independent of the Gaus-

sian scale. The differentiation operations can be imple-

mented as 3× 3 finite difference kernel filters shown in
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Figure 3. Although it is possible to simplify the deriva-

tive kernels to 1×3 kernels, this would result in the rota-

tional invariance of the operators being lost. The com-

plexity of the derivative filters is linear in the number of

image pixels. The main difference between computing

the Hessian matrix and the Second Moment matrix is

the arrangement of the filters.

1
8

-1 0 1
-2 0 2
-1 0 1

1
8

1 2 1
0 0 0

-1 -2 -1
∂
∂x

∂
∂y

1
4

1 -2 1
2 -4 2
1 -2 1

1
4

1 2 1
-2 -4 -2
1 2 1

1
4

1 0 -1
0 0 0

-1 0 1

∂2

∂x∂x
∂2

∂y∂y
∂2

∂x∂y

Fig. 3 Image derivative kernels

The Hessian operator consists of the following pro-

cessing steps:

1. Filter to the feature scale, σ, with a Gaussian filter.

2. Compute second order partial derivatives (three fi-

nite difference filters).

The Second Moment operator consists of the follow-

ing processing steps:

1. Filter to differentiation scale σD with a Gaussian

filter.

2. Compute the first order partial derivative images,

Lx and Ly, using finite difference filters.

3. Multiply the derivative images to produce images

L2
x, L2

y and LxLy.

4. Filter each derivative product image with a Gaus-

sian with scale σI to compute windowed integration.

The SMM requires four applications of a Gaussian

filter in two stages, where the Hessian only requires one

application. The other differences in computational cost

are relatively insignificant. The Hessian is therefore ex-

pected to require no more than a quarter of the com-

putation cost of the SMM, given similar convergence

characteristics.

4 Experimental Evaluation

In this section the Hessian and SMM are compared in

terms of their effectiveness and efficiency in affine adap-

tation of local image features. Results for the MSER

feature extractor are included for reference, since MSER

is the most attractive alternative affine feature extrac-

tor.

4.1 Feature Extraction Framework

A modular affine feature extraction algorithm was im-

plemented with interchangeable modules for computing

the saliency map, feature scale response, affine shape

adaptation and orientation selection. The algorithm is

presented in Algorithm 1. Subroutines are labelled us-

ing Roman capital letters. The algorithm follows the

common approach of multi-scale feature extraction, fol-

lowed by scale selection and finally affine adaptation.

This framework allows comparing alternative methods

for affine shape estimation in a common feature extrac-

tion algorithm.

The first stage of the algorithm, in lines 1.3 - 1.8,

extracts a set of multi-scale features by applying the

saliency operator, T, to a discrete scale-space pyramid.

The subroutine, f ← MAXIMA (I (x, σ) , σ), finds lo-

cal maxima in image I (x, σ) and produces feature vec-

tor, f = {σ, x1, y1, σ, x2, y2, . . . , σ, xn, yn}. The scale re-

sponse of each feature is computed in lines 1.9 - 1.12 by

evaluating the scale response operator, S, at the coor-

dinates of each feature.

Line 1.13 applies the scale selection method of [22,

23], by means of the subroutine, fA ← SSFSS (fm). The

resulting set of features, fA, is the subset of fm that are

characteristic scale features.

Affine adaptation is performed in lines 1.14 -1.30.

Line 1.19 implements the loop termination conditions.

The threshold Qh is the convergence threshold, Ql is

used to reject excessively eccentric features (like those

mistakenly detected on straight edges) and the num-

ber of iterations is limited to na. The inner loop is

essentially the algorithm in equations 9 to 17, with

equations 10 to 16 replaced by the generic affine up-

date function, A. A normalised image is computed in

lines 1.21 and 1.22 (H is defined in equation 1). The

shape is measured and the update transformation com-

puted in line 1.22. The update is applied to the nor-

malisation transformation in line 1.23. {e1, e2, φ} ←
EIG(M) computes the eigenvalues, e1 and e2, and the

angle, φ, of the first eigenvector of 2 × 2 matrix M .

Because Â has determinant one, its eigenvalues are re-

ciprocally related.

4.2 Evaluation Method

Four feature extractors were implemented using the

framework defined in Section 4.1, each using a differ-

ent combination of estimation functions. These extrac-

tors are listed in Table 1. Figure 4 shows the output of

the four extractors on corresponding sections of a pair

of images. Note that the Hessian and second moment

matrices produce different shapes for the same feature,



Hessian-based Affine Adaptation of Salient Local Image Features 9

fA ← EXTRACT (Ii (x) ,T, S, A, R, na, Ql, Qh)1.1

Input:
Ii (x) – An image.
It (x)← T (Ii (x)) – The saliency operator.
s← S

(
Iσf (x) ,xf , σf

)
– The scale response operator.

{Au, q} ← A (In (x)) – The affine shape estimator,
producing the update transformation, Au, and the
eccentricity measure, q, according to equation 8.
θ ← R (In (x)) – The orientation selector.
na – Affine adaptation iteration limit.
Ql – Affine adaptation eccentricity lower limit.
Qh – Affine adaptation eccentricity convergence limit.
Output:
fA = {p0,p1, . . . ,po} – A vector of o features with
p = {k, θ, q, φ, x, y}.
begin1.2

σp ← 2k, where k is a linear series with smallest1.3

value greater than 1.
foreach σ ∈ σp do1.4

Iσ (x, σ)← g (x, σ) ∗ Ii (x).1.5

It (x, σ)← T (Iσ (x, σ)).1.6

fm ← {fm,MAXIMA (It (x, σ) , σ)}.1.7

end1.8

foreach f = {σf , xf , yf} ∈ fm do1.9

sf ← S (Ip (x, σf ) ,xf , σf ).1.10

f ← {σf , xf , yf , sf}.1.11

end1.12

fA ← SSFSS (fm).1.13

foreach f = {σf , xf , yf , sf} ∈ fA do1.14

q̂ ← 1.1.15

Â← I.1.16

qu ← 0.5.1.17

j ← 0.1.18

while (j < na) · (qu < Qh) · (q̂ > Ql) do1.19

j ← j + 1.1.20

In (x)← Ii
(
H
(

1, 0, q̂, φ̂, xf , yf ,x
))

.1.21

In (x)← g (x, σf ) ∗ In (x).1.22

{Au, qu} ← A (In (x)).1.23

Â← AuÂAu.1.24 {
q̂, q̂−1, φ̂

}
← EIG

(
Â
)

.1.25

end1.26

In (x)← Ii
(
H
(

1, 0, q̂, φ̂, xf , yf ,x
))

.1.27

θ ← R (In (x)).1.28

f ← {3σf , θ, qm, φm, xf , yf}.1.29

end1.30

end1.31

Algorithm 1: Generalised Feature Extraction Algorithm.

but that the shape is none the less covariant between

images. The MSER extractor [11] was also included in

the evaluation. All extractors used the orientation selec-

tion method (R) and SIFT descriptor described in [20].

The adaptation iteration limit was set to na = 8, since

it was found that a higher value does not significantly

improve repeatability, but increased computation time.

The eccentricity thresholds were set to Ql = 0.97 and

Qh = 0.05.

Two evaluation methods are employed to compare

the above extractors. The first is the affine covariant

Label T S A
Heh Det. Hessian Det. Hessian Hessian
Hes Det. Hessian Det. Hessian SMM
Hah Harris Laplacian Hessian
Has Harris Laplacian SMM

Table 1 Test Feature Extractor Configurations.

regions performance evaluation and data described in

[10]. The second evaluation method is the epipolar ge-

ometry computation task described in [34].

4.2.1 Affine Covariant Regions Performance

Evaluation

The data and software for this evaluation are available

from http://www.robots.ox.ac.uk/~vgg/research/

affine/. The following metrics are measured:

1. Repeatability.

2. Correspondence count.

3. Match score.

4. Number of correct matches.

5. Efficiency.

The repeatability test functions by projecting features

detected in a set of test image to a base image using

ground truth homographies. If the overlap error be-

tween the projected feature and a feature in the base

image is below 40%, the feature is considered repeated.

The correspondence count is the number of features

with overlap error below 40% and the repeatability score

is the ratio of correspondences to the total number

of features in the common image area. Features are

matched using their descriptors and one-to-one nearest
neighbour matching. Matches are deemed correct if the

overlap error of a given match is below 40%. The match-

ing score is the number of correct matches divided by

the minimum number of features in the common part of

the two images. The efficiency metric (not included in

[10]) is expressed in terms of the rate at which matches

are produced, r = ci/ (ti + t0), where ci is the number

of correct matches between image 0 and test image i,

and ti and t0 are the times taken to extract features

from image i and 0, respectively.

4.2.2 Epipolar Geometry Computation Task

Computing the epipolar geometry is the first stage in

many calibration algorithms. It can be used to constrain

the search for further correspondences and can be used

to generate a reconstruction of the scene and cameras

with projective ambiguity [1]. The epipolar geometry

computation task evaluates how likely it is that a par-

ticular correspondence extraction technique will gener-
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Heh Hes Hah Has

Fig. 4 Image sections showing the output of the evaluated extractors. Each ellipse indicates a feature. The feature normali-
sation transformation maps a unit circle to this ellipse

ate an epipolar geometry estimate that is sufficiently

accurate to be used for practical applications.

Test data was acquired using a pair of digital cam-

eras arranged to view a scene from widely separated

views. Each set consists of images taken with the cam-

eras in fixed position. The camera positions were varied

between sets. The contents of the scene were altered

for each pair of test images. Images were captured at

high resolution (4.1 and 10 million pixel cameras were

used) to compute the ground truth geometry. Test im-

ages were generated by scaling the original images to

640 × 480 pixel resolution. Scale factors were recorded

for relating the test image geometry back to ground

truth geometry. Scaling images to a low resolution re-

moves a large proportion of the features from the im-

ages, ensuring that the task of computing the geometry

of these test images is challenging.

The ground truth data consists of a large set of

accurate point correspondences for each dataset. The

error in a given estimate of the epipolar geometry is

measured by computing the error of the set of ground

truth correspondences when compared against the esti-

mated geometry. The ground truth data was generated

automatically from the high resolution images in the

dataset and then mapped to the coordinates of the test

images. The following procedure was used to generate

the ground truth data for each dataset:

1. Extract and match features across each high resolu-

tion image pair using the MSER feature extractor.

The correspondences for all the image pairs in a

dataset are collected into one large set of correspon-

dences.

2. Compute an initial estimate of the epipolar geom-

etry using RANSAC [35] and the normalised eight

point algorithm [1,36].

3. Match features again, this time using the initial ge-

ometry estimate to constrain matching so that all

correspondences are inliers.

4. Apply the correspondence extraction algorithms de-

fined in [34] to expand the inlier correspondences to

a large number of dense, highly accurate correspon-

dences and few outliers.

5. Compute a more accurate estimate of the epipo-

lar geometry using RANSAC. The dense correspon-

dences collected from the entire dataset are used.

6. The set of 10000 inlier correspondences with the

lowest reprojection error are scaled to match the

resolution of the test images and are kept as ground

truth data.

The test procedure is designed to measure the suc-

cess rates of different correspondence extraction sys-

tems when applied to the task of estimating the epipo-

lar geometry. Each test trial proceeds as follows:

1. Extract correspondences between one pair of images

from the dataset using a particular extraction sys-

tem.

2. Estimate the epipolar geometry of the image pair

from the correspondences, using RANSAC and the

normalised eight point method.
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HeH HeS HeH/HeS p
repeatability (%) 58.67 57.99 1.01 0.0680
correspondences 1711.93 1564.13 1.12 0.0000
matching score (%) 20.90 21.94 0.95 0.0295
correct matches 492.67 467.80 1.05 0.0002
efficiency (n/s) 95.93 16.34 5.92 0.0000

Table 2 Mean repeatability results of HeH, HeS, the mean
ratio and the Paired T-test result.

3. Compute the error of the epipolar geometry esti-

mate as the Sampson distance [1] and the ground

truth correspondences.

4. Compare the error to three thresholds, t1 = 4, t2 =

16, t3 = 64 pixels squared. If the error is below a

threshold, the model is considered sufficiently ac-

curate for that threshold category and the trial is

considered a success. The three thresholds are used

to represent the precision requirements of three hy-

pothetical users of the geometry estimate.

One hundred trials are run for each extractor and image

pair combination and the average success rate is com-

puted to compensate for the variability in the RANSAC

method. Results are presented in terms of the average

success rate for each dataset and for all datasets com-

bined. Only the two datasets from [34] with the simplest

geometry (no. 3 and 4) were used for this test, because

the other datasets are so challenging that they do not

give useful results for the set of extractors tested here.

4.3 Results

Results of the affine covariant regions performance eval-

uation are presented in Figures 5 to 10. Note that the

efficiency plots have been scaled to highlight the rela-

tive performance of the gradient-based feature extrac-

tors that use affine adaptation. The efficiency of the

MSER extractor is often out of scale as a result. Previ-

ous evaluations have shown that the MSER extractor

can be more efficient than gradient-based extractors by

as much as an order of magnitude.

A pair-wise comparison of the performance of the

Hessian and SMM as shape estimators is presented in

Tables 2 (using the determinant of Hessian extractors)

and 3 (using Harris extractors). Each table lists four

columns of data. The first two list the mean scores for

each extractor; The third lists the mean of the ratio

between paired scores; The last column lists the results

of a paired T-test.

Table 4 lists the results for the epipolar geome-

try computation task with the error threshold set to

t = 16 pixels squared. The table lists the average num-

ber of successful epipolar geometry computation trials

HaH HaS HaH/HaS p

repeatability (%) 38.30 47.53 0.79 0.0000
correspondences 528.83 937.13 0.53 0.0000
matching score (%) 14.98 17.33 0.87 0.0001
correct matches 178.03 293.30 0.58 0.0000
efficiency (n/s) 27.10 12.93 2.08 0.0000

Table 3 Mean repeatability results of HaH, HaS, the mean
ratio and the Paired T-test result.

set nf HaS HaH HeS HeH MSER
5 46 16.14 5.26 10.09 14.61 12.31
6 41 12.52 4.38 12.1 18.76 16.89

total 87 28.66 9.64 22.19 33.37 29.30
% 32.94 11.08 25.51 38.36 33.56

Table 4 Results for the epipolar geometry computation task.
The average number of successful epipolar geometry compu-
tation trials with error threshold t = 16 are listed.

Fig. 11 Average success rates for the epipolar geometry com-
putation task

for each extractor in each dataset, as well as the aver-

age success rate over all datasets. Figure 11 shows the

average success rate over all datasets at each of the tree

error thresholds t = 4, t = 16 and t = 64.

4.4 Discussion

In terms of repeatability, matching score and the num-

ber of correct matches, the two determinant of Hes-

sian extractors differ by 5% or less on average. Though

the difference is statistically significant, it is practi-

cally small. The extractor using the Hessian to esti-

mate affine shape (HeH) produces approximately 10%

more correspondences on average than the extractor us-

ing the SMM (HeS). This is likely due to the fact that

the SMM is not necessarily well defined wherever the

Hessian is well defined, so that the SMM-based adap-

tation of Hessian features fails to converge more often

than Hessian-based adaptation of Hessian features. In
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Fig. 5 Affine covariant regions performance evaluation results for dataset bark (varying scale)
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Fig. 6 Affine covariant regions performance evaluation results for dataset boat (varying scale)
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Fig. 7 Affine covariant regions performance evaluation results for dataset graf (varying view angle)
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Fig. 8 Affine covariant regions performance evaluation results for dataset leuven (varying lighting)



16 Ruan Lakemond et al.

Fig. 9 Affine covariant regions performance evaluation results for dataset trees (varying focus or blur)



Hessian-based Affine Adaptation of Salient Local Image Features 17

Fig. 10 Affine covariant regions performance evaluation results for dataset wall (varying view angle)
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terms of efficiency, HeH consistently outperforms HeS
by a factor as high as 6.6 times and 5.9 times on aver-

age. The improvement in efficiency is higher than what

is predicted by the operator complexity alone, and in-

dicate that Hessian based adaptation converges more

quickly than SMM based adaptation. The difference in

performance between the two extractors is consistent

across all types of tests. In the epipolar geometry esti-

mation task, correspondences generated using HeH are

successfully used to compute the epipolar geometry in

approximately one and a half as many cases as cor-

respondences generated using HeS. This indicates that

the Hessian based shape adaptation is more likely to

produce useful results in practical problems than the

SMM based method.

These two Harris-based extractors produced signifi-

cantly different results. The extractor using the Hessian

to estimate affine shape (HaH) consistently achieved

lower repeatability scores (19% reduction), matching

scores (14% reduction) and produced approximately

half the number of correspondences and correct matches

on average. Despite lagging in the other metrics, the

HaH extractor is on average twice as efficient at pro-

ducing correct matches as the HaS extractor. In the

epipolar geometry estimation task, using HaH produces

useful results in only a third as many cases as HaS.

This poor performance of Hessian-based affine adap-

tation applied to Harris features may be attributed to

the fact that the Harris operator is based on first order

gradients – it does not guarantee that the second order

gradients at the feature location are sufficiently strong

for the Hessian based shape measure to be well defined

(see property 5 in Section 3.1). The determinant of Hes-

sian extractor, on the other hand, only selects points

where the second order gradients (and hence the deter-

minant of the Hessian) are large. The results indicate

that the Hessian matrix is very effective and efficient

in affine adaptation of determinant of Hessian features,

but is much less effective for extractors that do not en-

sure high second order gradients.

The combination of the Hessian shape measure and

Determinant of Hessian extractor produces an extractor

superior to other gradient-based extractors, especially

in terms of efficiency. The MSER extractor is still signif-

icantly more efficient than the Hessian-based extractor

and is the better choice for very wide baseline matching

problems. The Hessian-based extractor is a good choice

when large numbers of correspondences are required.

5 Conclusion

In this paper it is shown theoretically and experimen-

tally that the Hessian matrix can be used to estimate

the affine shape of local image features using an itera-

tive approach, similar to how the second moment ma-

trix is commonly used. The Hessian is much more ef-

ficient in terms of processing time, compared to the

SMM, and can lead to marginally improved feature

quality and correspondence counts in combination with

a suitable feature extractor.

A determinant of Hessian extractor that makes use

of the Hessian matrix to estimate feature shape re-

quires on average 5.9 times less processing time than

the same extractor using the SMM, while exhibiting the

equal or marginally superior performance in terms of

repeatability, matching score and the number of corre-

spondences and correct matches. The reduction in com-

putation time is primarily attributed to the fact that

fewer filter stages are required to compute the Hessian

matrix. The Hessian matrix based method also leads

to useful epipolar geometry estimates in 1.5 times the

number of cases, compared to the SMM based method.

Using the Hessian for affine adaptation in combi-

nation with the Harris corner extractor resulted in a

19% reduction in repeatability, 47% fewer correspon-

dences, 14% fewer correct matches and 22% fewer use-

ful epipolar geometry estimates compared to the SMM.

Despite the reduction in correspondence counts, using

the Hessian matrix still produced correspondences ap-

proximately twice as efficiently as the SMM.

It was found that the Hessian matrix provides is a

useful and efficient method for measuring affine shape

as long as it is applied to regions where high second

order gradients are found, such as Determinant of Hes-

sian features. Where second order gradients are not sig-

nificantly strong, the Hessian cannot measure a well

defined shape. The Harris corner detector, for exam-

ple, selects points with high first order gradients, but

does not ensure high second order gradients. Using the

Hessian shape measure with this detector yields poor

results.
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