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Abstract—Bearing faults are the most common cause of wind 
turbine failures. Availability and maintenance cost of wind 
turbines are becoming critically important, with their fast 
growing in electric networks. Early fault detection can reduce 
outage time and costs. This paper proposes Anomaly Detection 
(AD) machine learning algorithms for fault diagnosis of wind 
turbine bearings. The application of this method on a real data 
set was conducted and is presented in this paper. For validation 
and comparison purposes, a set of baseline results are produced 
using the popular one-class SVM methods to examine the ability 
of the proposed technique in detecting incipient faults. 

Keywords—wind turbine, bearing, fault diagnosis, machine 
learning, SVM, anomaly detection. 

I. Introduction 
Information technologies have made numerous progresses [1-
3; 24-26]. Several research have been conducted on various 
areas of information technology [27-31] including data mining 
[32-33]. 
Wind turbines, as part of renewable energy generation 
technology, are increasingly deployed throughout electricity 
networks around the world. Low speed rotating components, 
such as gearbox and bearing, play an important role in 
determining wind turbines’ efficiency. According to the 
Department of Trade and Industry (DTI) in the UK, Condition 
Based Maintenance (CBM) in wind turbine rotating elements 
has contributed to a saving of up to £1.3 billion per year [1]. 
Hence, Condition Monitoring (CM) of bearings has become a 
popular approach to increase performance and reduce costs [2-
4]. 

As wind turbines are prone to failure due to high stress on 
the gearbox and the bearing, application of appropriate fault 
diagnosis techniques, especially for bearings in wind turbine 
maintenance has been the topic of many studies in recent 
literature [2, 5]. Figure 1 displays the different components of 
a rolling element bearing, including the inner race, outer race, 
rolling element (ball) and cage, which despite their simplicity 

have a complex internal operation [6, 7]. In recent literature, 
several studies have been conducted on bearing fault analysis 
using vibration and Acoustic Emission (AE) techniques [8]. 

Tandon et al.[9] presented a comprehensive review of the 
vibration and AE techniques including vibration 
measurements in both time-and frequency-domains, the shock 
pulse methodology, sound measurements and AE for bearings 
CM. Kim et al.[10] presented techniques for vibration and 
wear debris analysis by studying railway freight cars that 
include vibration, spike energy, spectrographic oil analysis, 
shock pulse and chip detection. Watson et al.[11] used wavelet 
techniques for Doubly Fed Induction Generator (DFIG) 
bearing faults detection based on power output data. R. Sehgal 
et al.[12] presented different factors, that brought about faults 
and fatigues in bearings. These factors included excessive 
preloading during installation, overloading and stray electric 
currents. 

The majority of existing methods for bearing fault detection 
are focused on detecting the type of fault that has already 
occurred and for which data samples are available [36]. This is 
while collecting all possible types of faulty data is almost 
impossible. The existing methods are thus prone to erroneous 
behavior when presented with previously unseen data. 

 
Fig. 1. Rolling element bearing components 



 
On the contrary, data-mining methods, and machine 

learning techniques in particular, are able to predict defects 
and the existence of abnormal data without such conditions 
[35]. One of the more popular machine learning techniques, 
which has been widely applied across multiple disciplines  and 
has improved over the past decade, is Artificial Neural 
Network (ANN) [13]. This technique, however, has some 
drawbacks such as structure identification difficulty, 
identification ability difference, local convergence which owes 
to learning process, and poor generalization ability as it 
originally designed to apply Experience Risk Minimization 
(ERM) [14, 15]. Another popular classification technique is 
the use of Support Vector Machine (SVM), which has recently 
become a very popular learning method[16]. The use of SVM 
classifiers simplifies a classification task by reducing the 
problem to a binary classification. The drawback of using 
SVM however, lies in issues with computational density and 
massiveness that bring about limitations and difficulties. 

In this paper a fault diagnosis method based on supervised 
learning technique named anomaly detection (AD) is 
proposed. The training data set used for this method mostly 
includes normal data, which is easier to collect in practice. 
The AD algorithm is then able to capture any new types of 
intrusions or inconsistencies from normal data[17]. The point 
that needs to be taken into account is that if the training data 
does not contain normal variations of the data, the algorithm 
may not recognize future abnormalities and will assume they 
are normal. The training and application of this method 
provides the CM system with the ability to diagnose bearing 
fault in its early stages with a higher accuracy. The high 
sensitivity of this method means that it can provide a higher 
precision in fault detection, when compared to the previous 
state-of-the-art bearing fault detection algorithms. 

The contents in the rest of this paper are organized as 
explained in the followings. Section II gives the details on 
SVM method (most commonly applied machine learning 
approaches), and explains Anomaly Detection technique used 
in this paper. Real data from the dataset of rolling element 
bearings is used in Section III to evaluate the proposed 
approach results as compared with SVM the baseline method. 
The comparison is carried out to illustrate the robustness and 
efficiency of the proposed technique. Conclusions are 
provided in Section IV.    

II. Machine Learning Approaches 
A. One-Class Support Vector Machine  

Among various learning approaches, SVM is extensively 
used for different classification purposes and has been 
established as a popular machine learning method. SVMs are 
employed in numerous diagnosis applications like bearing 
faults, induction motor, rotating machines, etc. [18].  
Traditionally, many classification techniques try to categorize 
two or multi-class situations. The aim of applying machine 
learning techniques is to identify test data between a number 
of classes, using training data. In the case where only one class 
of data is available, new data needs to be tested to determine 

whether or not it contains faulty data. To overcome this 
problem, researchers have proposed the use of the One-Class 
Support Vector Machine [34]. 

Training data samples need to be injected to the one-class 
SVM model to train the classifier. After that, the model has 
the ability to classify new data and distinguish whether it 
inconsistent with the trained model or not. Typically in fault 
diagnostics the combination of one-class SVMs with other 
techniques, like kernel functions, are used [19]. In this paper, 
AD and SVM are applied on a real bearing data set for 
comparing the techniques and to examine the application of 
learning techniques in fault diagnosis. 

B. Anomaly Detection (AD) 
AD is a machine learning approach based on classification 

techniques, which provides the user with the ability to classify 
data, where generally only a single class of data is available or 
a second class of data is under-represented. This method 
typically consists of two phases, the first is the training phase 
and the second is the testing phase. In the former phase, the 
algorithm is trained using a labeled dataset, which consists of 
mostly   normal data. In the latter, the learned algorithm is 
applied to new and unseen data or a cross validation dataset. 
To put it more formally, the classifier learns a functional 
mapping  
𝑓 ∶  ℝ𝑁 → {𝐶0 , 𝐶1}of the training dataset to an unknown 
probability distribution p(x,y), where the normal samples are 
(𝑥,𝑦) ∈ 𝐶0 and the abnormal samples are (𝑥,𝑦) ∈ 𝐶1. This 
can be represented in the following manner: 

 
(𝑥1,𝑦1), … , (𝑥𝑛 ,𝑦𝑛) ∈ ℝ𝑁 × 𝑌,            𝑌 = {𝐶0,𝐶1} 

 
The AD algorithm is trained based on the presumption that 

anomalous data are not generated by the source of normal data 
and that the training set contains a huge percentage of normal 
data, the algorithm then detects any other data which is not 
normal and displays intrusive behavior[20]. The main 
procedure of algorithm is based on the use of Gaussian 
distributions and it contains three phases: 1.Gaussian 
distribution, 2.Estimating parameters, and 3.Selecting 
threshold, ε. In phase 1 and 2, all data are modeled and the 
Gaussian parameters are defined. In phase 3, the algorithm 
selects a threshold to recognize anomaly cases by using the F1 
score. This can be expressed using the following equations: 

 
𝐹1 =  2.𝑝𝑝𝑝𝑝.𝑟𝑒𝑐

𝑝𝑝𝑝𝑝+𝑟𝑟𝑟
          (1) 

 
while, the prec and rec are obtained from:  
 
𝑝𝑝𝑝𝑝 =  𝑡𝑡

𝑡𝑡+𝑓𝑓
                 (2) 

 
and, 
𝑟𝑟𝑟 = 𝑡𝑡

𝑡𝑡+𝑓𝑓
               (3) 

where tp is the number of true positives, and refers to the 
ground truth dataset labels that reflect anomaly and are also 



correctly classified by our algorithm. The complementary 
measure fp, is the number of false positives. This is when 
anomaly does not exist in the ground truth labels, but the data 
is incorrectly classified as containing anomaly. Finally, fn is 
the number of false negatives and reflects the cases of the data 
that are labeled as anomalies in the ground truth labels but are 
incorrectly classified as not being anomalous by our 
algorithm. The algorithm will try several values of ε to find 
the best value based on the F1 score, using only the training 
data. Once the best ε is selected, the algorithm then applies 
this threshold to the evaluation data in order to find the data 
that fall beyond the threshold boundaries and classifies them 
as anomalies of the data. 

III. Experimental Results 
The vibration data employed in this paper was collected 

from the dataset of rolling element bearings from the NSF 
I/UCR Centre for Intelligent Maintenance Systems (IMS – 
imscenter.net) with support from Rexnord Corp. in 
Milwaukee, WI [21]. As Figure 2 illustrates, four bearings 
were installed on a shaft. An AC motor is coupled to the shaft 
via rub belts to keep the rotation speed at a constant 2000 
RPM and a radial load of 6000 lbs is added to the shaft and the 
bearings by a spring mechanism. All bearings are force 
lubricated. Vibration data was collected every 10 min for 164h 
with a sampling rate of 20 kHz. An outer race defect occurred 
at the end of this experiment on bearing 1. 

The data of the horizontal accelerometer of bearing 1 have 
been applied, in which the bearing consists of 16 rollers in 
each row, with a pitch diameter of 2.815 in., a roller diameter 
of 0.331 in., and a tapered contact angle of 15.17. The 
majority of past studies on bearing fault diagnostics have been 
conducted using simulated or seeded damage. The 
experiments employing these types of faults are not 
appropriate for detecting natural early defects. As the main 
objective of this paper is to present a method with the ability 
to detect bearing faults at early stages, this dataset is 
completely appropriate for our purpose. 
A. Model description: 

In order to test this technique and compare it to the previous 
applied method for the same bearing, as used in [22], We 
carried out extensive evaluations. In this experiment 100 
normal operating conditions were captured and used as the 
training dataset (16hr), and then time-domain parameters 
(kurtosis and NGS [23]) were extracted for each sub-band of 
the raw data. These parameters are independent of the energy 
of the signal and have a proper distribution for machine 
learning data analysis. The sub-bands are selected with 50 ms 
length and 25 ms shift. The shift is employed to provide 
overlapping of the sub-bands of the dataset. 

 

 
Fig. 2.Bearing test rig and sensor placement [21] 

The obtained data, gathered using feature extraction, is 
then applied as an input to the algorithm. These features are 
processed by the three AD steps of Gaussian distribution, 
estimating parameters for a Gaussian, and selecting the 
threshold. In step 1 a Gaussian model is applied to the 
distribution of the data. The Gaussian distribution is obtained 
by equation (4) where μ is the mean, σ2 is variance, and p is 
the probability density function:  
 

𝑝(𝑥;  𝜇 ,𝜎2) =  1
�2𝜋𝜎2

𝑒
(𝑥−𝜇)2

2𝜎2         (4) 

 
In the next step, Gaussian parameters are calculated by 

utilizing the training dataset. The algorithm then examines 
several values of ε to find the best value based on the F1 score. 
Once the best ε is selected, the algorithm finds the data that 
fall beyond the threshold boundaries, which are then marked 
as anomalies in the dataset. The F1 score represents the 
accuracy of the algorithm, in which a score of 1 means 100% 
accuracy. It can be seen that the algorithm can identify all 
anomalies in the dataset. 



 
Fig.3. Anomaly Detection result visualizing schematic 

Figure 3 depicts a schematic of the anomaly visualizing for 
fault diagnostic when the defect is occurred, and as can be 
seen in the zoom out section the anomaly detector has the 
ability to recognize bad data from the incipient stage, and all 
anomalies are detected, shown in a red circle in the visualizing 
schematic. Figure 4 depicts the SVM clustering schematic for 
the same data set through a similar algorithm which can 
determine the best Kernel parameters for the data set. 

 

 
Fig.4. SVM result visualizing schematic 

 

Incipient fault detection is one of the most important 
aspects of this method. Figure 5 and Figure 6 display the exact 
time that each technique has detected the first anomaly point. 
Figure 5 has been adopted from the results of past research of 
Kaewkongka et al. that has been conducted on the same 
dataset [22]. In this figure the Y axis is the output of SVM 

system and the red dots show the points where the methods 
detect a change in behavior for the first time, for the one-class 
SVM. This is 75h before the crack makes the machine stop 
working. Using AD method, in figure 6, the first anomaly was 
detected in 100h before the major defect occurs, causing the 
bearing breakdown. 

 
Fig 5. SVM output [22] 

 
Fig.6. Anomaly Detection output 

IV. Conclusions 
Bearing condition monitoring and incipient fault detections 

are very important for wind turbine generating units to cut 
maintenance costs and increase availability. There are a 
variety of condition monitoring and fault diagnosis techniques 
that are used to detect incipient faults and failures in wind 
turbine bearings. However, the majority of these techniques 
need huge samples of faulty data for the development/training 
phase of the algorithm. In practice, these kinds of datasets are 
not easily available. In order to overcome this problem, this 
paper proposed anomaly detection as part of a machine 
learning approach for fault diagnosing, applied to bearings in 
wind turbines. The results obtained from this method were 
compared with that of a SVM based state-of-the-art approach. 
The results indicated that the proposed AD learning technique 
provides a higher accuracy, as well as the ability to detect 
incipient faults earlier. 
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