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Numerical analysis for the time distributed-order and Riesz space
fractional diffusions on bounded domains
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bSchool of Mathematical Sciences, Queensland University of Technology, Qld. 4001.

Australia
Sub-diffusion equations with distributed-order fractional derivatives describe some important physical
phenomena. In this paper, we consider the time distributed-order and Riesz space fractional diffusions
on bounded domains with Dirichlet boundary conditions. Here, the time derivative is defined as the
distributed-order fractional derivative in the Caputo sense, and the space derivative is defined as the
Riesz fractional derivative. Firstly, we discretize the integral term in the time distributed-order and Riesz
space fractional diffusions using numerical approximation. Then the given equation can be written as
a multi-term time-space fractional diffusion. Secondly, we propose an implicit difference method for
the multi-term time-space fractional diffusion. Thirdly,using mathematical induction, we prove the
implicit difference method is unconditionally stable and convergent. Also, the solvability for our method
is discussed. Finally, two numerical examples are given to show that the numerical results are in good
agreement with our theoretical analysis.

Keywords: fractional diffusion; distributed-order fractional derivative; multi-term time-space fractional
diffusion; Riesz fractional derivative; implicit difference method; stability and convergence.

1 Introduction

Time-fractional derivatives can be used to model time delays in a diffusion process. When the order of
the fractional derivative is distributed over the unit interval, it is useful for modeling a mixture of delay
sources (see Meerschaert et al. (2011)). Distributed-order diffusions are also used to model ultraslow
diffusion where a plume of particles spreads at a logarithmic rate (see Sinai (1982); Kochubei (2008)).
There were many very interesting developments concerning fractional diffusion equations, such as frac-
tional advection dispersion equation (see Benson et al. (2000a,b)), fractional Pearson diffusions (see
Leonenko et al. (2013)), fractional diffusion equations with random initial condition (see Anh and Leo-
nenko (2001)). A more extensive development on fractional diffusions presented in the monograph of
Meerschaert and Sikorskii (2012). Recently, with the applications arising in distributed-order diffu-
sions, some attention has been paid to the time-fractional equations with distributed-order (see Naber
(2004); Eab and Lim (2011); Jiao et al. (2012)). Chechkin et al. (2002) proposed diffusionlike equations
with time and space fractional derivatives of the distributed order for the kinetic description of anoma-
lous diffusion and relaxation phenomena and demonstrated that retarding subdiffusion and accelerating
superdiffusion were governed by distributed-order fractional diffusion equation. The fundamental solu-
tions for the one-dimensional time fractional diffusion equation and multi-dimensional diffusion-wave
equation of distributed order were obtained by Mainardi et al. (2007, 2008) and Atanackovic et al.
(2009b), respectively. Atanackovic et al. (2009a) also proved the existence of the solution to the Cauchy
problem for the time distributed order diffusion equation and calculated it by the use of Fourier and
Laplace transformations. Furthermore, they studied wavesin a viscoelastic rod of finite length, where
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viscoelastic material was described by a constitutive equation of fractional distributed-order type (see
Atanackovic et al. (2011)). Luchko (2009) proved the uniqueness and continuous dependence on ini-
tial conditions for the generalized time-fractional diffusion equation of distributed order on bounded
domains. Meerschaert et al. (2011) provided explicit strong solutions and stochastic analogues for
distributed-order time-fractional diffusion equations on bounded domains, with Dirichlet boundary con-
ditions.

On the other hand, many numerical methods for fractional partial differential equations have pro-
posed (see Liu et al. (2004, 2007, 2012); Zhuang et al. (2009)). There are also some papers discussing
numerical methods of the distributed-order equations. Forexample, Diethelm and Ford (2009) devel-
oped a numerical scheme for the solution of a distributed-order ordinary differential equation and gave a
convergence theory for their method. Based on the matrix form representation of discretized fractional
operators (see Podlubny (2000)), Podlubny et al. (2013) extended the range of applicability of the ma-
trix approach to discretization of distributed-order derivatives and integrals, and to numerical solution of
distributed-order differential equations (both ordinaryand partial). As to the multi-term fractional par-
tial differential equations, Liu et al. (2013) proposed some computationally effective numerical methods
for simulating the multi-term time-fractional wave-diffusion equations. Jiang et al. (2013) derived the
fundamental solutions for the multi-term modified power lawwave equations in a finite domain. But
there seemed to be little concern about multi-term time-space fractional wave-diffusion equations.

Our attention in this paper is focused on the numerical analysis for the time distributed-order and
Riesz space fractional diffusions on bounded domains. Here, the time derivative is defined as the
distributed-order fractional derivative in the Caputo sense, and the space derivative is defined as the
Riesz fractional derivative. Firstly, we approximate the integral term in the time distributed-order and
Riesz space fractional diffusions using numerical approximation. Then the time distributed-order and
Riesz space fractional diffusion can be written as a multi-term time-space fractional diffusion. Second-
ly, we propose an implicit difference method which is uniquely solvable for the multi-term time-space
fractional diffusion. Thirdly, using mathematical induction, we prove the implicit difference method
is unconditionally stable and convergent. Finally, two numerical examples are provided to show the
effectiveness of our method.

The rest of the paper is organized as follows. We present an implicit difference method in Section 2.
Section 3 gives some relevant lemmas. In Section 4, we derivethe solvability, stability and convergence
for the implicit difference method. Two examples are given in Section 5 and some conclusions are
drawn in Section 6.

2 Implicit difference method

Consider the following distributed-order diffusion equations

D
ϖ(α)
t u(x, t) = Kβ

∂ β u(x, t)

∂ |x|β
+ f (x, t) (2.1)

in an open bounded domain 0< x < L,0< t < T. HereKβ > 0, x andt are the space and time variables.

The time fractional derivativeDϖ(α)
t of distributed order is defined by (see Luchko (2009))

D
ϖ(α)
t u(x, t) =

∫ 1

0

c
0Dα

t u(x, t)ϖ(α)dα (2.2)
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with the left-side Caputo fractional derivativec
0Dα

t defined as (see Podlubny (1999))

c
0Dα

t u(x, t) =

{
1

Γ (1−α)

∫ t
0(t − τ)−α ∂u

∂τ (x,τ)dτ, 0< α < 1,
∂u
∂ t (x, t) , α = 1,

(2.3)

and with a continuous non-negative weight functionϖ : [0,1]→ R that is not identically equal to zero
on the interval[0,1], such that the conditions

06 ϖ(α),ϖ 6= 0,α ∈ [0,1],
∫ 1

0
ϖ(α)dα =W > 0 (2.4)

hold true, whereW is a positive constant. The space fractional derivative∂ β u(x,t)
∂ |x|β is the Riesz fractional

derivative operator for 1< β < 2 defined by (see Çelik and Duman (2012))

∂ β u(x, t)

∂ |x|β
=−

1

2cos(β π
2 )Γ (2−β )

d2

dx2

∫ L

0
|x− ξ |1−β u(ξ , t)dξ . (2.5)

Whenβ = 2, ∂ β u(x,t)
∂ |x|β = ∂ 2u(x,t)

∂x2 .

In this paper, the initial-boundary conditions

u(x,0) = φ(x), 06 x 6 L, (2.6)

u(0, t) = 0, u(L, t) = 0, 06 t 6 T (2.7)

for Eq. (2.1) is considered.
Now, we state our numerical method as follows.
Step 1: Discretize the integral term in the distributed-order equation.
Let us discretize the interval [0,1], in which the orderα is changing, using the grid 0= ξ0 < ξ1 <

ξ2 < · · ·< ξq = 1(q ∈ N ), with the steps∆ξs not necessarily equidistant. We obtain

D
ϖ(α)
t u(x, t) ≈

q

∑
s=1

ϖ(αs)
(c

0Dαs
t u(x, t)

)
∆ξs

=
q

∑
s=1

ds
c
0Dαs

t u(x, t), (2.8)

whereαs ∈ (ξs−1,ξs], ds = ϖ(αs)∆ξs, ∆ξs = ξs − ξs−1,s = 1,2, · · · ,q.
For the simplicity of the presentation, but without loss of the generality, we take∆ξs =

1
q = σ(q ∈

N ) andds =
ϖ(αs)

q . We can use the mid-point quadrature rule for approximating the integral (2.2). Let

αs =
ξs−1+ξs

2 = 2s−1
2q ,s = 1,2, · · · ,q. Consider the following multi-term fractional diffusion equation

q

∑
s=1

ds
(c

0Dαs
t u(x, t)

)
= Kβ

∂ β u(x, t)

∂ |x|β
+ f (x, t), (2.9)

with the initial-boundary conditions (2.6)-(2.7).
Step 2: Solve the multi-term equation.
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We assume that we are working on a uniform gridxi = ih, i = 0,1, · · · ,M; Mh = L; tk = kτ,k =
0,1, · · · ,N;Nτ = T. Let uk

i = u(xi, tk), f k
i = f (xi, tk),06 i 6 M,06 k 6 N.

For 0< αs < 1, adopting the L1 discrete scheme in Oldham and Spanier (1974), we discretize the
Caputo time fractional derivative as

c
0Dαs

t uk+1
i ≈

1
µs

[
uk+1

i −
k

∑
j=1

(
aαs

k− j − aαs
k− j+1

)
u j

i − aαs
k u0

i

]
, (2.10)

where

aαs
k = (k+1)1−αs − k1−αs, µs = ταsΓ (2−αs), s = 1,2, · · · ,q.

Using the fractional centered difference (see Çelik and Duman (2012); Ortigueira (2006)) and noticing
the boundary-value condition (2.7), we can obtain the following numerical discretization scheme for
space-fractional derivative:

∂ β

∂ |x|β
uk+1

i ≈−h−β
M−1

∑
ρ=1

gi−ρuk+1
ρ , (2.11)

where

gρ =
(−1)ρΓ (β +1)

Γ (β
2 −ρ +1)Γ (β

2 +ρ +1)
, 1< β < 2. (2.12)

Let Uk
i be the numerical approximation tou(xi, tk). We can derive the implicit numerical scheme

q

∑
s=1

ds

µs

[
Uk+1

i −
k

∑
j=1

(
aαs

k− j − aαs
k− j+1

)
U j

i − aαs
k U0

i

]
(2.13)

= −Kβ h−β
M−1

∑
ρ=1

gi−ρUk+1
ρ + f k+1

i , 16 i 6 M−1, 06 k 6 N −1.

Denote

D =
Kβ h−β

∑q
r=1

dr
µr

, D =
1

∑q
r=1

dr
µr

, Ds =
ds

µs ∑q
r=1

dr
µr

, s = 1,2, · · · ,q. (2.14)

Thus we have the following implicit difference approximation

Uk+1
i +D

M−1

∑
ρ=1

gi−ρUk+1
ρ

=
k

∑
j=1

[
q

∑
s=1

Ds

(
aαs

k− j − aαs
k− j+1

)]
U j

i +
q

∑
s=1

Dsa
αs
k U0

i +D f k+1
i ,

i = 1,2, · · · ,M−1, k = 0,1, · · · ,N −1, (2.15)

U0
i = φ0

i = φ(xi), 06 i 6 M, (2.16)

Uk
0 =Uk

M = 0, 06 k 6 N. (2.17)
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3 Some lemmas

To analyze the difference scheme, we need the following lemmas.

LEMMA 3.1 (See Çelik and Duman (2012).) Letgk = (−1)kΓ (β+1)

Γ ( β
2 −k+1)Γ ( β

2 +k+1)
be the coefficients of the

centered finite difference approximation (2.11) fork = 0,±1,±2, · · · , and 1< β < 2. Then
(1) g0 > 0; (2)g−k = gk 6 0, for all |k|> 1;
(3) ∑∞

k=−∞ gk = 0; (4) g0 = ∑∞
k=−∞,k 6=0 |gk|.

LEMMA 3.2 (See Gao and Sun (2011).) Suppose 0< α < 1, u is absolutely continuous int on [0,T ]

and ∂ 2u
∂ t2

∈C([0,L]× [0, tk]). Then

c
0Dα

t uk
i =

1
µ

[
uk

i −
k−1

∑
j=1

(
aα

k− j−1− aα
k− j

)
u j

i − aα
k−1u0

i

]
+O(τ2−α), (3.1)

whereaα
k = (k+1)1−α − k1−α , µ = ταΓ (2−α), 06 tk 6 T

LEMMA 3.3 (See Çelik and Duman (2012).) Let∂ 5u
∂x5 ∈ C([0,L]× [0,T ]) andu satisfies the boundary

condition (2.7). Then
∂ β

∂ |x|β
uk

i =−h−β
M−1

∑
ρ=1

gi−ρuk
ρ +O(h2), (3.2)

whenh → 0, ∂ β

∂ |x|β uk
i is the Riesz fractional derivative for 1< β < 2 andgρ is as in the expression (2.12).

LEMMA 3.4 (See Diethelm and Ford (2009).) Supposeu is absolutely continuous int on [0,T ] and
∂u
∂ t ∈ C([0,L]× [0,T ]). For every fixed(x, t) ∈ [0,L]× (0,T ], considerc0Dα

t u(x, t) =: z(α) as a function
of α. Thenz is aC∞ function on(0,1].

LEMMA 3.5 (See Faires and Burden (2013).) Ifz(α) ∈C2[0,1],△α = 1
q = σ (q ∈ N ), then

∫ 1

0
z(α)dα =

q

∑
s=1

z

(
2s−1

2q

)
1
q
+O(σ2). (3.3)

4 Analysis of the implicit difference scheme

4.1 Solvability

The difference scheme (2.15)-(2.17) can be written in the following matrix form:

AU1 = b0IU0+D f 1, (4.1)

AUk+1 =
k

∑
j=1

ck, jIU
j + bkIU0+D f k+1, k = 1,2, · · · ,N −1, (4.2)

where

A =




1+Dg0 Dg−1 · · · Dg−M+2

Dg1 1+Dg0 · · · Dg−M+3

· · · · · · · · · · · ·
DgM−2 DgM−3 · · · 1+Dg0




(M−1)×(M−1)

, (4.3)
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Uk = (Uk
1 ,U

k
2 , · · · ,U

k
M−1)

T , f k = ( f k
1 , f k

2 , · · · , f k
M−1)

T , bk = ∑q
s=1Dsa

αs
k , ck, j = ∑q

s=1Ds(a
αs
k− j −aαs

k− j+1).

Lemma 3.1 implies that matrixA is strictly diagonally dominant; thusU1 can be obtained from (4.1)
andU2,U3, · · · ,UN can be obtained from (4.2). This can be written as the following result.

THEOREM 4.1 The difference scheme (2.15)-(2.17) is uniquely solvable.

4.2 Stability

In this subsection, we consider the stability of the implicit difference approximation (2.15)-(2.17). We
assume that the initial data have errorsε0

i (i = 1,2, · · · ,M − 1). Let φ̃0
i = φ0

i + ε0
i , Uk

i and Ũk
i (i =

1,2, · · · ,M − 1) be the numerical solutions of Eq. (2.15) corresponding to the initial dataφ0
i and

φ̃0
i (i = 1,2, · · · ,M−1), respectively. Thenεk

i =Uk
i −Ũk

i satisfies

ε1
i +D

M−1

∑
ρ=1

gi−ρε1
ρ =

q

∑
s=1

Dsa
αs
0 ε0

i = ε0
i (4.4)

εk+1
i +D

M−1

∑
ρ=1

gi−ρεk+1
ρ =

k

∑
j=1

[
q

∑
s=1

Ds

(
aαs

k− j − aαs
k− j+1

)]
ε j

i +
q

∑
s=1

Dsa
αs
k ε0

i ,

k = 1,2, · · · ,N −1. (4.5)

In the following theorem, we denoteEk = [εk
1,ε

k
2, · · · ,ε

k
M−1]

T .

THEOREM 4.2 The implicit difference approximation defined by (2.15)-(2.17) for distributed-order
fractional diffusions is unconditionally stable, where 1< β < 2.

Proof. The stability condition is equivalent to

‖Ek+1‖∞ 6 ‖E0‖∞, k = 0,1,2, · · · . (4.6)

We will use the mathematical induction to get the above result. For k = 0, let |ε1
l | = max16i6M−1 |ε1

i |.

Noticing that∑M−1
ρ=1 gl−ρ > 0 and Lemma 3.1, we have

‖E1‖∞ = |ε1
l |6 |ε1

l |+D
M−1

∑
ρ=1

gl−ρ |ε1
l |

= |ε1
l |+Dg0|ε1

l |+D
M−1

∑
ρ=1,ρ 6=l

gl−ρ |ε1
l |

6 |ε1
l |+Dg0|ε1

l |−D
M−1

∑
ρ=1,ρ 6=l

|gl−ρ ε1
ρ |

6 |ε1
l +Dg0ε1

l +D
M−1

∑
ρ=1,ρ 6=l

gl−ρ ε1
ρ |

= |ε1
l +D

M−1

∑
ρ=1

gl−ρ ε1
ρ |= |ε0

l |= ‖E0‖∞.



Numerical analysis for fractional diffusions 7 of 14

Suppose that‖E j‖∞ 6 ‖E0‖∞, j = 1,2, · · · ,k. Let |εk+1
l |= max16i6M−1 |εk+1

i |. It follows that

‖Ek+1‖∞ = |εk+1
l |6 |εk+1

l |

[
1+D

M−1

∑
ρ=1

gl−ρ

]

= |εk+1
l |+Dg0|εk+1

l |+D
M−1

∑
ρ=1,ρ 6=l

gl−ρ |εk+1
l |

6 |εk+1
l |+Dg0|εk+1

l |−D
M−1

∑
ρ=1,ρ 6=l

|gl−ρεk+1
ρ |

6 |εk+1
l +Dg0εk+1

l +D
M−1

∑
ρ=1,ρ 6=l

gl−ρ εk+1
ρ |

6

k

∑
j=1

[
q

∑
s=1

Ds

(
aαs

k− j − aαs
k− j+1

)]
|ε j

l |+
q

∑
s=1

Dsa
αs
k |ε0

l |

6

{
k

∑
j=1

[
q

∑
s=1

Ds

(
aαs

k− j − aαs
k− j+1

)]
+

q

∑
s=1

Dsa
αs
k

}
‖E0‖∞

=

{
q

∑
s=1

Ds

[
k

∑
j=1

(
aαs

k− j − aαs
k− j+1

)]
+

q

∑
s=1

Dsa
αs
k

}
‖E0‖∞

=
q

∑
s=1

Ds‖E0‖∞ = ‖E0‖∞.

Hence, the proof is completed. �

4.3 Convergence

Suppose that the continuous problem (2.1), (2.6)-(2.7) hasa smooth solutionu(x, t) ∈ C5,2
x,t (Ω), where

Ω = [0,L]× [0,T ], and

C5,2
x,t (Ω) =

{
u(x, t)

∣∣∣∣
∂ 5u(x, t)

∂x5 ,
∂ 2u(x, t)

∂ t2 ∈C(Ω)

}
.

We now consider the convergence of the implicit difference approximation. Letu be the exact solution
of the system (2.1), (2.6)-(2.7), andU be the numerical solution of the implicit difference approximation
(2.15)-(2.17). Let the errore = u−U, and at the mesh points(xi, tk) be defined byek

i = uk
i −Uk

i (i =
1,2, · · · ,M−1; k = 0,1,2, · · · ,N). We denoteRk = [ek

1,e
k
2, · · · ,e

k
M−1]

T . ThenR0 = [e0
1,e

0
2, · · · ,e

0
M−1]

T =
0.

SubstitutingUk
i = uk

i − ek
i into Eq. (2.15) leads to the following two cases. Whenk = 0,

e1
i +D

M−1

∑
ρ=1

gi−ρ e1
ρ = u1

i +D
M−1

∑
ρ=1

gi−ρu1
ρ −

q

∑
s=1

Dsa
αs
0 u0

i −D f 1
i . (4.7)
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Based on (2.14), Lemma 3.2-Lemma 3.5 and (2.1), we have

e1
i +D

M−1

∑
ρ=1

gi−ρe1
ρ

= D

[
q

∑
s=1

ds
c
0Dαs

t u1
i −Kβ

∂ β

∂ |x|β
u1

i − f 1
i +O(τ2−αq)+O(h2)

]

= D
[
O(h2)+O(τ1+ σ

2 )+O(σ2)
]
. (4.8)

Whenk > 1,

ek+1
i + D

M−1

∑
ρ=1

gi−ρek+1
ρ −

k

∑
j=1

[
q

∑
s=1

Ds

(
aαs

k− j − aαs
k− j+1

)]
e j

i −
q

∑
s=1

Dsa
αs
k e0

i

= uk+1
i +D

M−1

∑
ρ=1

gi−ρuk+1
ρ −

k

∑
j=1

[
q

∑
s=1

Ds

(
aαs

k− j − aαs
k− j+1

)]
u j

i

−
q

∑
s=1

Dsa
αs
k u0

i −D f k+1
i . (4.9)

Based on (2.14), Lemma 3.2-Lemma 3.5 and (2.1),

1

D

{
uk+1

i +D
M−1

∑
ρ=1

gi−ρuk+1
ρ −

k

∑
j=1

[
q

∑
s=1

Ds

(
aαs

k− j − aαs
k− j+1

)]
u j

i

−
q

∑
s=1

Dsa
αs
k u0

i − D̄ f k+1
i

}

=
q

∑
s=1

ds
c
0Dαs

t uk+1
i −Kβ

∂ β

∂ |x|β
uk+1

i − f k+1
i +O(τ2−αq)+O(h2)

= O(τ1+ σ
2 )+O(h2)+O(σ2). (4.10)

Thus,

ek+1
i +D

M−1

∑
ρ=1

gi−ρek+1
ρ

=
k

∑
j=1

[
q

∑
s=1

Ds

(
aαs

k− j − aαs
k− j+1

)]
e j

i +
q

∑
s=1

Dsa
αs
k e0

i

+D
[
O(τ1+ σ

2 )+O(h2)+O(σ2)
]
. (4.11)

Now we can derive the following result by mathematical induction.

THEOREM 4.3 Suppose that the continuous problem (2.1), (2.6)-(2.7)has a smooth solutionu(x, t) ∈
C5,2

x,t (Ω), and letU be the solution of the difference scheme (2.15)-(2.17) for 1< β < 2. Then there is a
positive constantC such that the error satisfies

‖Rk‖∞ 6C(h2+ τ1+ σ
2 +σ2)

/ q

∑
s=1

dsa
αs
k−1

µs
, k = 1,2, · · · ,N. (4.12)



Numerical analysis for fractional diffusions 9 of 14

Proof. For k = 1, let ‖R1‖∞ = |e1
l | = max16i6M−1 |e1

i |. According to Lemma 3.1, (2.14) and (4.8), we
have

‖R1‖∞ = |e1
l |6 |e1

l |+D
M−1

∑
ρ=1

gl−ρ |e
1
l |

6 |e1
l |+Dg0|e

1
l |−D

M−1

∑
ρ=1,ρ 6=l

|gl−ρ e1
ρ |

6 |e1
l +D

M−1

∑
ρ=1

gl−ρe1
ρ |

6 CD[h2+ τ1+ σ
2 +σ2] =C(h2+ τ1+ σ

2 +σ2)

/ q

∑
s=1

dsa
αs
0

µs
.

Suppose that‖R j‖∞ 6C(h2+τ1+ σ
2 +σ2)

/
∑q

s=1
dsaαs

j−1
µs

, j = 1,2, · · · ,k and let|ek+1
l |=max16i6M−1 |e

k+1
i |.

Based on Lemma 3.1, (2.14), (4.11) and noticing that the coefficients aαs
j are decreasing forj =

0,1,2, · · · , we obtain

‖Rk+1‖∞ = |ek+1
l |6 |ek+1

l +D
M−1

∑
ρ=1

gl−ρ ek+1
ρ |

6

k

∑
j=1

[
q

∑
s=1

Ds

(
aαs

k− j − aαs
k− j+1

)]
|e j

i |+CD[h2+ τ1+ σ
2 +σ2]

6

q

∑
s=1

Ds

[
k

∑
j=1

(
aαs

k− j − aαs
k− j+1

)
C(h2+ τ1+ σ

2 +σ2)

/ q

∑
s=1

dsa
αs
j−1

µs

]

+CD[h2+ τ1+ σ
2 +σ2]

6

q

∑
s=1

Ds

[
k

∑
j=1

(
aαs

k− j − aαs
k− j+1

)
C(h2+ τ1+ σ

2 +σ2)

/ q

∑
s=1

dsa
αs
k

µs

]

+CD[h2+ τ1+ σ
2 +σ2]

= C(h2+ τ1+ σ
2 +σ2)

/ q

∑
s=1

dsa
αs
k

µs
.

Thus, the theorem is proved. �

Since

lim
k→∞

k−αs

aαs
k

= lim
k→∞

1

k
[
(1+ 1

k )
1−αs −1

] = 1
1−αs

, (4.13)

there is a constantC1 such thataαs
k >C1k−αs(1−αs). It follows that

q

∑
s=1

dsa
αs
k

µs
>C1

q

∑
s=1

ds

(kτ)αsΓ (1−αs)

> C1

q

∑
s=1

ds

T αsΓ (1−αs)
→C1

∫ 1

0

ϖ(α)

T αΓ (1−α)
dα =C2.
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Theorem 4.3 implies that there is a constantC̃ such that

‖Rk‖∞ 6 C̃(h2+ τ1+ σ
2 +σ2).

In fact, we can obtain the following result.

THEOREM 4.4 Suppose that the continuous problem (2.1), (2.6)-(2.7)has a smooth solutionu(x, t) ∈
C5,2

x,t (Ω), and letU be the solution of the difference scheme (2.15)-(2.17). Then the solutionU uncon-
ditionally converges tou ash,τ andσ tend to zero. Furthermore, there is a positive constantC such
that

|uk
i −Uk

i |6C(h2+ τ1+ σ
2 +σ2), i = 1,2, · · · ,M −1;k = 1,2, · · · ,N.

5 Numerical results

In order to illustrate the behaviour of our numerical methodand demonstrate the effectiveness of our
theoretical analysis, two examples are now presented.

EXAMPLE 5.1 Consider the following time distributed order and Rieszspace fractional diffusion equa-
tion:

∫ 1

0
να−1 c

0Dα
t u(x, t)dα = K

∂ β u(x, t)

∂ |x|β
, 0< x < 1,0< t < T, (5.1)

whereν is a positive constant that can be physically interpreted asthe relaxation time,K is also a positive
constant representing the diffusion coefficient, 1< β 6 2. Whenβ = 2, Chechkin et al. (2002) showed
that the distributed-order time fractional diffusion equation describes the subdiffusion random process
that is subordinated to the Wiener process and whose diffusion exponent decreases in time (retarding
subdiffusion). This process may lead to ultraslow diffusion, with the mean square displacement growing
logarithmically in time.

Here, the initial-boundary conditions

u(x,0) = x2(1− x2), 06 x 6 1, (5.2)

u(0, t) = 0, u(1, t) = 0, 06 t 6 T (5.3)

for Eq. (5.1) are considered.

Using the numerical method described in Sec. 2, we obtain thenumerical solutions (Fig.1) of
the fractional diffusion equation forν = 0.5,K = 1, β = 1.6,1.8,2, respectively, withh = 0.02,τ =
0.015,σ = 0.1.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

x

u(
x,

 t=
1.

5)

β=1.6

β=1.8

β=2

Fig.1.  The numerical approximation of u(x,t) for the system (5.1)−(5.3) when t=1.5, ν=0.5 and K=1.

EXAMPLE 5.2 Consider the following time distributed-order and Riesz space fractional diffusion equa-
tion: 





∫ 1
0 Γ (3−α)c

0Dα
t u(x, t)dα = ∂ β u(x,t)

∂ |x|β + f (x, t),

0< x < 1,0< t 6 T,
u(x,0) = x2(1− x)2, 06 x 6 1,
u(0, t) = u(1, t) = 0, 06 t 6 T,

(5.4)

where 1< β 6 2,

f (x, t) =
1

2cos(β π
2 )

(1− t2)

[
Γ (3)

Γ (3−β )

(
x2−β +(1− x)2−β

)

− 2
Γ (4)

Γ (4−β )

(
x3−β +(1− x)3−β

)
+

Γ (5)
Γ (5−β )

(
x4−β +(1− x)4−β

)]

− 2x2(1− x)2(t2− t)/lnt.

The exact solution of the above problem isu(x, t) = x2(1− x)2(1− t2).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

x

u(
x,

t)

 

 

Fig. 2.  Exact solutions (lines) and numerical solutions (symbols) with β=1.8 at t=o.3 (triangles), t=0.75 (stars)
             and t=1.5 (squares).
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A comparison of the exact solution and the numerical solution for β = 1.8 with h= 0.02,τ = 0.015,σ =
0.1 at t = 0.3 (triangles),t = 0.75 (stars) andt = 1.5 (squares) is shown in Fig. 2. From Fig. 2, it can
be seen that the numerical solution is in good agreement withthe exact solution.

6 Conclusion

In this paper, an implicit difference scheme for the time distributed-order and Riesz space fractional
diffusions on bounded domains has been described. We prove that the implicit difference scheme is un-
conditionally stable and convergent. Two numerical examples demonstrate the effectiveness theoretical
results.
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