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Abstract—There are some scenarios in which Unmmaned Aerial
Vehicle (UAV) navigation becomes a challenge due to the oc-
clusion of GPS systems signal, the presence of obstacles and
constraints in the space in which a UAV operates. An additional
challenge is presented when a target whose location is unknown
must be found within a confined space. In this paper we present
a UAV navigation and target finding mission, modelled as a
Partially Observable Markov Decision Process (POMDP) using
a state-of-the-art online solver in a real scenario using a low cost
commercial multi rotor UAV and a modular system architecture
running under the Robotic Operative System (ROS). Using
POMDP has several advantages to conventional approaches as
they take into account uncertainties in sensor information. We
present a framework for testing the mission with simulation tests
and real flight tests in which we model the system dynamics
and motion and perception uncertainties. The system uses a
quad-copter aircraft with an board downwards looking camera
without the need of GPS systems while avoiding obstacles within
a confined area. Results indicate that the system has 100%
success rate in simulation and 80% rate during flight test for
finding targets located at different locations.
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1. INTRODUCTION
The number of applications of Unmanned Aerial Vehicles
(UAV) is increasing every day in a variety of fields that
include surveillance, aerial photography and filming, envi-
ronmental sampling and remote sensing [1], [2], [3], crop
inspection and more [4], [5]. In order to increase the level
of autonomy, these type of vehicles have to rely on safe
and reliable navigation and guidance systems that are able to
overcome perturbations and uncertainties in the environment
in which these aircraft operate.

978-1-4673-7676-1/16/$31.00 ©2016 IEEE

There are several works involving target finding and tracking
using UAVs. Most of these works are based on simulated
scenarios [6], [7], [8], [9], [10], [11].

Other works present real flight solutions [15]. However
these type of systems rely on very precise and/or external
perception systems for localisation, which may not present
in real world scenarios. Flying in GPS-denied environments
and with only on-board sensors as the source of perception
presents a big challenge and remains an open problem. A
robust method for decision making with uncertainty in GPS
denied environments are Partially Observable Markov Deci-
sion Processes.

Some works propose a POMDP solution for target tracking
but only show results in a simulated environment [13], [15],
[14]. Other work models the uncertainty in target localisa-
tion using a belief, and plan series of actions to solve the
mission but relies on accurate localisation of the UAV in its
environment, [12]. A model and a system that incorporates
the uncertainty in the UAV state due to imperfect sensing,
besides the uncertainty in the target’s location is still under
exploited.

There are many algorithms for solving POMDPs including
[16], [17], [18], [19]. In recent years there has been some
progress in the performance of these solvers, specially in their
ability to cope with scenarios that have a large number of
states |S| > 2000 and observations |O| > 100 [20], [21].
These improvements and the increase on computing power
resources makes feasible to implement UAV motion planning
tasks as POMDPs.

In this paper we present a UAV navigation and target finding
problem in which the planned trajectory has to be recalculated
after every iteration in order to account for uncertainties in
motion and in low cost sensors in an indoor environment
with obstacles. The target is on the ground but its location
within the flying area is unknown and the UAV has to search
and find it. Calculations to account for a large number of
possible sequences of actions and states of the vehicle in the
scenario is desirable but they must be done within a limited
time depending on the system dynamics.

We develop a framework to test different POMDP solvers and
UAV missions and consider an online solver; Adaptive Belief
Tree (ABT) [21] for illustration purposes.

The framework uses a low cost quad-copter platform incor-
porated into a modular system running the Robotic Operating
System (ROS).

The main contributions of this paper are:
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1. A model of a UAV Navigation and Target Finding mission
as a POMDP in which the actions are a set of 13 predefined
controlled motions in 4 degrees of freedom, taking advantage
of the holonomic capabilities of the multirotor.
2. An online system that is able to accomplish the Target
Finding mission using an state of the art POMDP solver
and a modular architecture in real, cluttered and GPS-denied
scenarios.

This paper is organised as follows; section 2 covers a de-
scription of POMDP and an online solver ABT. Section 3
describes the system architecture. Section 4 describes the
method used for calculating the update frequency of the
POMDP solver. Section 5 describes the Navigation and
Target Finding problem formulation as a POMDP. Results are
discussed in section 6 and section 7 provides conclusions and
future areas of research.

2. BACKGROUND
MDP and POMDP

Markov Decision Processes are a means to model the sequen-
tial decision problem under uncertainties using a mathemati-
cal framework[22]. When MDP is used for robotic missions
the objective is to generate a policy that allows the robot to
decide what sequence of actions should be taken by a robot
(agent) in order to maximise a return or cost function, taking
into account the uncertainties in motion. Plain MDPs assume
that the states are completely observable which is not the case
for a robot that has limitations in perception.

In real situations the robot perception is limited by the type
of sensors and the environment in which the robot is moving.
The perception of the robot is not completely accurate or is
insufficient and consequently, knowledge of its current state
would have errors or deviations from the real state. This
limitation in the sensory systems of robots is also known as
partial observability [23], [19], [20].

Partially Observable Markov Decision Processes (POMDPs)
can incorporate the uncertainties in sensing and the partial
observability of the agent in the environment [17].

Formally a Partially Observable Markov Decision Pro-
cess is a tuple that consists of the following elements
(S,A,O, T, Z,R, γ) where S represents the set of states in
the environment, A stands for set of possible action the
agent can execute, O is the set of observations, T is the
transition function for the state after taking an action, Z is the
distribution function describing the probability of observing
o from state s after taking action a, R is the set of rewards
for every state and γ is the discount factor. POMDPs rely
on the concept of belief or belief-state which is a probability
distribution of the system over all the possible states in its
state-space representation at a particular time. It is denoted
by belief b.

In a POMDP the state of the agent can not be observed
exactly, instead the agent receives an observation o ∈ O
determined by the probability distribution Z. A policy π :
B → A allocates an action a to each belief-state b ∈ B,
which is the set of possible belief-states. Given the current
belief − state b, the objective of a POMDP algorithm is
to find an optimal policy that maximizes the accumulated
return when following a sequence of actions suggested by
the policy π. The accumulated discounted return is the
sum of the discounted rewards after executing every action

in the sequence from time t onwards Rt =
∑∞
k=t γ

k−trk,
where rk is the immediate reward received at particular
time step t for taking action at. The Value function is the
expected return from belief-state b when following policy
π, V π(b) = E [

∑∞
k=t γ

k−trk|b, π]. An optimal policy for
the POMDP is the one that maximizes the value function
π∗(b) = arg maxπ V

π(b).

ABT

In order to test the framework and target detection and nav-
igation scenario we use one of the fastest on-line POMDP
algorithms to the authors knowledge, ABT.

ABT [21] is an online algorithm that uses the MCTS algo-
rithm [24] to produce a search tree of possible subsequent
belief-states and has proved to be successful in problems with
large domains. The algorithm reduces the search domain
by concentrating only on the states that can be reached by
the agent from its initial belief-state. In order to calculate
the transition to the next states the algorithm uses a black
box simulator that has the transition functions for the agent.
In this black box all the uncertainties in motion and in the
environment are modelled. Using this simulator the dynamics
of the system can be modelled using a continuous state space.
The algorithm uses Monte-Carlo simulations to sample states
from an initial belief-state and builds a search tree according
to the observations received after performing actions.

ABT runs first a planning stage, then selects an action for the
robot to execute based on the calculated policy and performs
an update of the belief-state based on the observation received
by the robot. The algorithm creates the search tree by doing
Monte-Carlo simulations for a number of steps in the future
until a planning horizon is reached. The longer the planning
horizon, the more time the algorithm will take to build the
search tree. The root of tree is a node containing the state
particles representing the initial belief-state of the environ-
ment. The tree branches out according to the probability of
selecting actions and receiving observations.

ABT updates after receiving an observation and improves
the policy based on the observation received. Moreover,
ABT provides a mechanism for accepting changes in the
environment and adapts its policy accordingly.

3. SYSTEM ARCHITECTURE
In order to test the navigation and target finding mission in
a real scenario, a modular system was created. The system
is composed of four main modules, shown in Fig. 1. The
four nodes run in parallel using the Robotic Operating System
(ROS), they communicate with each other by publishing
to standard ROS topics and requesting and providing ROS
services.

The four modules are: a POMDP online solver node for
motion planning, a motion controller node for performing
actions in four degrees of freedom, a perception node that
receives data from the UAV sensors and processes them
to produce the observations for the POMDP model and an
existing driver [25] for using the Parrot AR Drone multirotor
in ROS. All nodes running in parallel in different threads
allows the system to have different update rates for each of
the nodes.
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On-line POMDP Module

This module runs an online POMDP solver algorithm, it
contains the formulation of the POMDP, i.e. the transition
function with system dynamics and uncertainty in motion
model, the observation model, the set of actions, the re-
ward/cost function and the state representation.

The POMDP ROS module initialises the belief-state B ac-
cording to the initial state representation in POMDP formu-
lation (section 5). This module is a ROS node that runs at a
constant rate of τsolver. It first produces a policy based on
the initial belief-state b0, using a POMDP algorithm and then
outputs an action a that maximises a return, to be executed by
the motion control ROS node.

An observation o is obtained with data from perception mod-
ule that calculates a pose estimation Pr = (xr, yr, zr,Ψr)
using the on-board sensed velocity and signs whether a target
has been detected with the downward looking camera.

A prediction of the observation is conducted in order to allow
for the calculation time of the online POMDP solver. This
prediction is based on the current pose Pr obtained from the
perception module and the action execution time τaction and
the action a being executed.

Once the observation is received, the POMDP node updates
the belief-state b by matching the observation received with
a node in the tree search and replenishes particles until a
timeout τreplenish is reached. Based on the current belief-
state b the POMDP solver updates the policy in its tree search
and outputs the subsequent action based on the updated
policy.

  

Online POMDP module Motion control module

Perception module AR Drone ROS Driver

PIDV rf

PIDV rl

PIDΨ

ARDrone

PIDΨ

PIDZ

Odometry

Target detection

Setpoint
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Observation

Prediction

a

o
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Ψ s

Z s
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Figure 1. POMDP ROS System architecture

Motion Control Module

This is a ROS node developed to execute 4 PID controllers
with an update rate of 100Hz. We use decoupled PID
controllers in each degree of freedom: Forward velocity Vf ,
lateral velocity Vl, yaw angle Ψa and altitude za. Each PID
controller is tuned to obtain a fast response, i.e. reach a
steady state within the action execution time τaction and the

reference for each DOF are set by the commanded action
from the planner(see table 1).

The input is a setpoint action given by the POMDP ROS node.
The output of the PID controllers are pitch θ̇, roll φ̇ and yaw ψ̇
rates and z rate ż that are sent to the AR Drone Autonomy lab
driver, that executes them. The motion control node runs in a
continuous loop and updates the references for PID controller
every time the POMDP node outputs a new action.

Step responses of every PID controller to setpoints com-
manded by all the actions in the set A were acquired in order
to characterise the PID performances and to approximate the
system dynamics. These characteristic responses are included
in the transition function in order to approximate the real
behaviour of the system after a commanded action.

Perception module

The perception module runs at a 100Hz rate. It calculates an
estimation of the current pose based on the sensed forward
and lateral velocities, UAV orientation and action execution
time τaction. It converts the forward and lateral velocities in
the quadrocopter’s frame to the scenario frame, and calculates
xr and yr coordinates of the UAV position in the world frame.
It also reads the altitude or zr position from the on-board
sensors.

Equation 1 is used to estimate the xr and yr positions, based
on the onboard velocities measured at ∆t = 0.01s

[
xrt+1

yrt+1

]
=

[
xrt

yrt

]
+

[
cos(Ψrt) − sin(Ψrt)

sin(Ψrt) cos(Ψrt)

] [
Vrft
Vrlt

]
∆t (1)

4. NAVIGATION AND TARGET FINDING
PROBLEM DESCRIPTION AND

FORMULATION
Problem Description and Formulation

We illustrate the use of the framework for target finding
and tracking mission with a scenario in which a multi-rotor
unmanned aerial vehicle (UAV) flying in a 3D confined
space without access to external GPS localisation and in the
presence of obstacles must search and find a ground target
which location is unknown. The aircraft is flying within a
limited region of the airspace of size (x = 6, y = 7, z = 4)m.
An example setup and this confined flying space is shown in
Fig. 2. In the figure there are 5 obstacles inside the flying
space that must be avoided.

The multi-rotor starts the mission from the ground. After take
off, it hovers for a few seconds to initialise its orientation with
readings from its on-board sensors. There is some initial drift
produced in this initial hovering position. We use a gaussian
probability distribution, Eq.2 ,with mean value µ around the
take off position for the xr and yr UAV coordinates to model
this initial uncertainty.

P (x) =
1

σ
√

2π
e−(x−µ)

2/2σ2

(2)

The problem is formulated as a POMDP that has the fol-
lowing elements: the state of the aircraft in the environment
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UAV

Target

Obstacles

Constraints

Figure 2. Example of real scenario for Navigation and
Target Finding

(S), the set of actions that the multi-rotor can execute (A),
the transition function describing the state transition after
applying a specific action (T ), the observation model that
represents the sensed state of the aircraft after taking an action
(O), and the reward and cost function (R).

State Variables (S)

The state variables considered in the POMDP formulation
are the quad-rotor pose Pr = (xr, yr, zr,Ψr), the target
pose Pt = (xt, yt, zt,Ψt) and the aircraft’s velocity Vr,
all measured in the world frame. The aircraft velocity can
be decomposed into two components in the aircraft’s frame,
forward velocity Vrf and lateral velocity Vrl .

Actions (A)

The quad-copter can actuate in 4 degrees of freedom. By
changing its pitch angle, it moves forward or backward;
changing its roll angle allows it to move to left or right; its
heading is controlled by its yaw angle and it can change its
altitude by varying the thrust to its motors at the same time.

The set of actions was created to account for movements in all
four degrees of freedom and consists of 13 actions. An action
to keep the aircraft static, i.e. Vr = 0 m/s; two actions to go
forward and backward, with current heading angle Ψr, lateral
velocity Vrl = 0 m/s, and forward velocity, Vrf = 0.6 m/s
and Vrf = −0.6 m/s, respectively. Six actions to change
the heading angle to turn the multi-rotor to left or right with
increments of 15◦, at a constant forward speed of 0.6 m/s.
Actions Up and Down, increase or decrease altitude in 0.3
m, respectively, with aircraft’s velocity fixed at 0 m/s, and
two actions to roll left and right with with current heading
angle Ψr and Vrf = 0 m/s, at constant speed, of Vrl = 0.6
m/s and Vrf = −0.6 m/s, respectively. The set of actions is
summarised in table 1.

Transition Function (T)

The motion of the quad-rotor is based on the set of actions
described in table 1. These actions are in fact, step inputs
or references to a controller in each of the four DOF. This
allows to incorporate step responses, that are acquired ex-
perimentally, into the kinematic model of the aircraft using
a decoupled model.

The kinematic model is described in equations (3) to (4). The
next aircraft position is calculated by obtaining the change in

Table 1. Summary of UAV actions for Target Finding
and Tracking mission

Action a Forward
velocity
Vrf

(m/s)

Lateral
velocity
Vrl

(m/s)

Heading
change
∆Ψa
(◦)

Altitude
change

∆za
(m)

Forward 0.6 0 0 0

Steer 15 0.6 0 15 0

Steer 30 0.6 0 30 0

Steer 45 0.6 0 45 0

Steer -15 0.6 0 −15 0

Steer -30 0.6 0 −30 0

Steer -45 0.6 0 −45 0

Up 0 0 0 0.3

Down 0 0 0 −0.3

Hover 0 0 0 0

Roll left 0 0.6 0 0

Roll right −0.6 0 0 0

position taking into account the system step responses, the
initial and requested values for state variables and the action
execution step time. A transformation from the aircraft’s
frame to the world frame is also calculated in these equations.

The orientation of the aircraft is determined by its heading
angle Ψr. The uncertainty in motion is included in the system
by adding a small deviation to the heading angle σa using a
normal probability distribution with mean value equal to the
desired heading and restricted to the range −2.0◦ < σa <
2.0◦, which represents the uncertainty in the yaw angle when
executed by the control system.

∆xrt

∆yrt

∆zrt

 =

cos(Ψrt + σrt) − sin(Ψrt + σrt) 0

sin(Ψrt + σrt) cos(Ψrt + σrt) 0

0 0 1


Vrft ∆t

Vrlt ∆t

∆zr


(3)

∆xrt+1

∆yrt+1

∆zrt+1

 =

xrtyrt

zrt

+

∆xrt

∆yrt

∆zrt

 (4)

Where xrt , yrt and zrt are the x, y and z aircraft coordinates
at time t, Vrft and Vrlt are forward and lateral velocities in
the quad-rotor’s frame at time t, and Ψrt and σrt are heading
and heading deviation at time t.

Observation Model (O)

An observation for the POMDP model is composed of a)
the estimated quad-rotor position in the world frame and b)
the target’s pose if it is detected by the downward looking
camera. The UAV odometry reading whose uncertainty is
approximated by generating a position for the quadrotor to
be inside a cell of size (xB , yB , zB). A typical cell size
is (1, 1, 1)m. The size of this box, i.e. the amount of
uncertainty in the measurement, can be changed and it is set
as a parameter in the framework.
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If the target is detected by the onboard downward looking
camera, the AR Drone ROS driver provides the target position
within the image. This position is transformed to a position
in the world frame.

Downward Camera Field of View

The field of view (FOV) of the downward looking camera,
shown in Fig.3 is modelled experimentally by repeated test-
ing. This model is included in the observation model by
equations 5, 7 and 6. The area covered by the UAV and
camera field of view is proportional to the altitude, the UAV
is flying at.

hc = zr ∗ αh (5)

wc = zr ∗ αw (6)

shift = zr ∗ αs (7)

Where αh = 0.56, αw = 0.96 and αs = 0.2256, values are
obtained by real flight tests.
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Figure 3. Field of view and frames

The downward looking camera is positioned towards the rear
of the quad-copter, causing a shift in the FOV in the −x
direction in the UAV frame. When the target is detected the
AR Drone ROS driver provides the position of target in the
image frame, shown in black in Fig. 3. The target coordinates
in the image are Txc, T yc.

Rewards and Cost Function (R)

The values of the reward and cost functions were selected as a
result of tuning the system to resemble existing test cases for
state of the art POMDP problems. This values had to be tuned
by experimentation in simulated environments. The aircraft
receives a high reward of 300 if it detects the target within the
downwards looking camera field of view. Hitting an obstacle
or going out of the scenario incur a penalty of 70 and every
other movement will carry a cost of 5. A summary of the
reward and cost function is shown in table 2.

5. RESULTS
Simulation

We conducted simulation results in order to explore the
influence that the planning horizon length has in the quality

Table 2. Summary of the reward and cost function for
the Target finding and tracking mission.

Reward/Cost Value
Detecting the target 300

Hitting an obstacle (−)70

Out of region (−)70

Movement (−)5

Table 3. Simulation results for target finding problem

UCB Planning
horizon

Flight time
to target (s)
(Number of

steps)

Discounted
return

300 25 65 −53

300 35 65 −49

300 45 64 −46

300 55 62 −36

of the solution. We ran 100 simulations for each case. Results
indicate that the system spends in average slightly more than
60s to find a target within the confined space described. The
results also indicate that for this particular problem the ob-
tained accumulated discounted return, in average, increases
for longer planning horizons. These results are important
because they indicate that there is an optimal planning hori-
zon for a specific POMDP formulated problem. The selected
planning horizon affects the quality of the solution and this is
a parameter can be tuned in order to increase the performance
of the POMDP solver according to a specific problem.

We use 3d environment RVIZ to visualise the scenario, we
model the obstacle as bounding boxes with increased size to
account for the quad-copter size. We also use point clouds to
visualise the particles in the POMDP model while it runs in
simulation and in real flight. Fig 4(a) shows the belief-state
after the UAV has explored the scenario, the knowledge that
the system has of the target location (red particles) improves
after exploration. Notice how the uncertainty is reduced in the
areas that were already covered by the camera FOV. Fig. 4(b)
shows the belief-state after the mission is accomplished by
finding the target and its location is extracted from the image
by transforming its position to world frame. See Appendix 1.

(a) Exploring scenario (b) Target Found

Figure 4. Example of a trajectory for UAV (black) in
simulation. Red particles represent Knowledge of Target

location and white particles represent UAV location.
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Real Flight

We conducted experiments to analyse the performance of the
system flying in a real scenario. We tested a mission in which
the quad-copter has to take off from an initial position and
hover for 4 seconds to initialise its on-board sensors. The
forward (pitch) and lateral (roll) velocity controllers start to
actuate when taking off and the altitude controller sets an
initial value of 0.7m above ground.

Fig. 5 shows the evolution of the belief-state in the POMDP
model with the particles represented by point clouds. Fig.
5(a) shows the initial belief-state where the target location
(red particles) is unknown and the particles are distributed all
over the ground in the flying area. A uniform distribution
for x and y coordinates and z = 0.15m is used to generate
the target initial location in the model. The UAV location
is represented by the white particles around coordinates
(3.0, 0.5, 0.7) and using a gaussian distribution for x and y
coordinates as described in Eq. 2. Once the UAV starts
moving searching the target, the belief-state in the POMDP
model updates according to the observations received. It can
be seen that once the UAV flies over a region where it does not
detect the target by the downward looking camera, the belief-
state is updated and the uncertainty is reduced (Fig. 5(b)).
Places with no red particles indicate that UAV has searched,
and the target is not there, the update takes into account the
field of view model of the downward looking camera, so that
flying at higher altitudes increases the field of view.

Once target detected, the belief-state is updated and the
target’s position is obtained based on its position within the
image. A typical image of the target detected by the UAV is
shown in Fig. 5(d).

(a) Target (red part.), UAV (white part.) (b) Uncertainty reduced (red particles)

(c) Target found (Final belief-state) (d) View of Target from UAV camera

Figure 5. Belief-state in UAV and target represented by
particles for UAV (white) and target (red) location.

Uncertainty in the belief-state is reduced once the UAV starts
its exploration.

In order to have comprehensive test results, we placed the
target at four different location for the UAV to search and find
it. Figures 6, 7, 8 and 9 show the trajectories that the UAV
flew in order to detect the target by its downward looking

Table 4. Real flight results for Target finding problem

Target’s
location
(x, y, z)

Success
rate
(%)

Flight time
to target (s)
(Number of

steps)

Discounted
return

(5.0, 1.0, 0.15) 90 78 −95

(5.0, 6.0, 0.15) 60 124 −148

(1.0, 6.5, 0.15) 70 146 −157

(1.0, 3.0, 0.15) 100 40 60

camera. The paths indicate the policy taken by the UAV,
and shows that the system takes paths that are safe, avoiding
hitting and obstacle by flying above them which also allows
to have a bigger FOV. The system is also avoiding the space
boundaries and prefers to fly closer to the center of the flying
area.

The paths also illustrates the capabilities of the holonomic
set of actions in the problem formulation. In all the paths
shown in Figs. 6 to 9 the UAV ascends to have a bigger field
of view, but keeps itself below the maximum altitude limit
(4m). It also takes advantage of the hover action in order
to allow some settling time hovering in a position without
moving. This might make paths look long and complex but
allows the UAV to have some time at zero speed for acquiring
better quality images with its downward looking camera.

Table 4 shows that when the target is located further from the
initial UAV location, the number of steps to find it increases
more than double, than when it is near the take off position.
This is due to the fact that the UAV knowledge of the target’s
location has less uncertainty in regions near the initial UAV
location due to the initial exploration.

Success rate was obtained for each of the target’s locations
by running the tests for 10 times (Table 4). The results
indicate that success rate is proportional to the number of
steps the UAV takes to find the target. For longer missions
the uncertainty in the UAV localisation increases over time,
increasing the difficulty to find the target and decreases the
success rate. Overall, the system was able to find the target in
average in 80% of the attempts.

6. CONCLUSIONS
The paper presents and approach and a framework for UAV
navigation and target finding in GPS denied environments.
The proposed POMDP model and system architecture is
able to perform a full navigation and target finding mission
using a low cost platform with only on-board sensors in a
GPS-denied environment. The proposed system architecture
incorporates a state-of-the-art on-line POMDP solver as an
element of the system, separating the execution of actions and
the perception computations from the solver. This means that
the architecture is versatile and allows other types of planners,
controllers and observers to be easily used in the system. A
prediction of the observations based on the current and next
states must be done in order to compensate for the time spent
by the POMDP algorithm, updating the policy and calculating
the next action.

The duration of each action depends on the system dynamics
and overall, all the actions are modelled as step inputs to
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Figure 6. *Target located at (1.0, 3.0, 0.15). -UAV
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Figure 7. *Target located at (1.0, 6.5, 0.15). -UAV
trajectory from take off until target is found. *Target

position.

PID controllers acting separately on each of the 4 degrees
of freedom of the quad-copter used. This fact is taking into
account to coordinate the timing for the calculation of the
policy of the online POMDP solver, the execution of actions
and the update of the belief-state in the POMDP solver in
the system. Allowing the POMDP solver to calculate for
longer times improves the quality of the policy, on the other
hand, it increases the uncertainty in motion as the prediction
time is longer. On the other hand, having shorter action
execution time lowers the uncertainty in motion but increases
the horizon search, i.e. the system will take more steps to
accomplish the mission, thus making the solution more diffi-
cult to compute. Results in simulation and flight test show the
robustness of the framework. Our system balances between
allowing a sufficient time for the online POMDP solver to
generate a good quality of the solution and not having a
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Figure 8. *Target located at (5.0, 1.0, 0.15). -UAV
trajectory from take off until target is found.
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Figure 9. *Target located at (5.0, 6.0, 0.15). -UAV
trajectory from take off until target is found.

long horizon problem by allowing actions that execute for 1
second.

Current ongoing work focuses on introducing a source for
localisation based on image processing in order to reduce the
uncertainty and on extending the capabilities of the system
to be able to track a moving target. Ongoing work also
focuses in outdoor testing and exploration of the response of
the system in an environment in windy conditions.
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APPENDIX

1. FRAME TRANSFORMATIONS
In order to model the Field of View of the downward looking
camera and for checking whether the Target is within it, some
frame transformation must be done, as in Eqs. 8 and 9. xT/R
and yT/R are x and y target coordinates seen from the quad-
copter position.

xT/R = {xT ∗ cos(Ψr) + yT ∗ sin(Ψr)

− xr ∗ cos(Ψr)− yr ∗ sin(Ψr)}
(8)

yT/R = {−xT ∗ sin(Ψr) + yT ∗ cos(Ψr)

− yr ∗ cos(Ψr) + xr ∗ sin(Ψr)}
(9)

The target is within the FOV of the camera if it is inside the
limits calculated in eqs. 5, 6.

When the target is detected we use equations for calculating
the target position from its position in the image. First the
target position in the quad-copter frame is calculated as in
Eqs. 10 and 11. Then theses coordinates are transformed into
the world frame by Eqs. 12 and 13.

xT/R = shift− hc ∗ yc/1000; (10)

yT/R = wc/2− wc ∗ xc/1000; (11)

xT = xT/R ∗ cos(Ψr)− yT/R ∗ sin(Ψr) + xr (12)

yT = xT/R ∗ sin(Ψr) + yT/R ∗ cos(Ψr) + yr (13)
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