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Abstract

The cloud computing era has brought significant challenges in energy and op-
erational costs of data centers. As a result, green initiatives with regard to
energy-efficient management of data center infrastructure for cloud computing
have become essential. Addressing a big class of widely deployed data cen-
ters with relatively consistent workload and applications, this paper presents a
new profile-based application assignment approach for greener and more energy-
efficient data centers. It builds realistic profiles from the raw data measured
from data centers and then establishes a theoretical framework for profile-based
application assignment. A penalty-based profile matching algorithm (PPMA)
is further developed to obtain an assignment solution, which gives near-optimal
allocations whilst satisfying energy-efficiency, resource utilization efficiency and
application completion time constraints. Through experimental studies, the
profiling approach is demonstrated to be feasible, scalable and energy-efficient
when compared to the commonly used general and workload history based ap-
plication management approaches.
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1. Introduction1

In today’s economy, data centers and cloud computing are increasingly used2

everyday by the sky-rocketing number of Internet users. This is predictably3

escalating the energy and costs to power and maintain these systems at an4

alarming pace. Overall, data centers consume 1.1% to 1.5% of the world’s total5

electricity consumption [1]. They are responsible for 14% of the Information and6

Communication Technology (ICT) carbon footprint according to the Smart20207

analysis [2]. More than 35% of the current data center operational expenses are8

accounted for by energy consumption. This figure is projected to double in a9

few years. According to a report by the Natural Resources Defence Council10

(NRDC), data centers consumed 91 billion kWh of electrical energy in 2013.11

This statistics is projected to increase by 53% by year 2020 [3].12

With different purposes, various data centers contribute to the energy con-13

sumption and carbon footprint differently. Large-scale data centres are mainly14

used to host public clouds with dynamic workload. Typical hyper-scale large15

data centers are those from giant IT corporations like Microsoft, Google, Apple,16

Amazon, and Facebook. In comparison, medium- and small-scale data centers17

are typically run by business companies, universities and government agencies.18

They typically provide services via private clouds or clusters/grids with virtu-19

alized management. Therefore, they have relatively consistent workload. The20

NRDC reports that there is a distinct gap in energy-efficient initiatives when21

comparing well-managed hyper-scale large data centers and the numerous less-22

efficient small- to medium-scale data centers. The hyper-scale large data cen-23

ters only share 5% of the global data center energy usage, while the remaining24

95% is made up of small- to medium-scale data centers [3]. Therefore, energy25

management for small- to medium-scale data centers with relatively consistent26

workload is globally more significant than that for hyper-scale large data centers27

with very dynamic workload. This paper targets the widely deployed small- to28

medium-scale data centers.29

The necessity for green and energy-efficient measures to reduce carbon foot-30

print and the exorbitant energy costs has become very real and emerging. En-31

ergy and cost distribution studies, e.g., Le et al. [4], have confirmed that de-32

ploying green initiatives at data centers reduces the carbon footprint by 35%33

at only a 3% cost increase. However, energy-aware measures with simultaneous34

maximum performance efficiency and minimum energy consumption [5] are not35

easy to achieve. In most cases, deploying an energy-efficient solution inevitably36

degrades the performance efficiency of the data centers.37

To tackle this challenging issue, our preliminary work [6] introduced the38

concept of profiling for application assignment to Virtual Machines (VMs). It39

formulated the application assignment as a linear optimization with utilization40

of fully synthetic application and VM profiles. It also developed a simple profile41

matching algorithm to solve the optimization problem. The aim of the pre-42

liminary work was to introduce the profiling concept as a feasible and scalable43

application assignment method.44

Extending our preliminary work significantly for improved solutions, this45
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paper aims to develop a new profile-based application assignment framework46

for greener and more energy-efficient data centers. The new framework uses47

realistic profiles and also fulfils energy, resource and performance constraints or48

requirements. In comparison with our preliminary work [6], distinct contribu-49

tions of this paper include the following four aspects:50

• Physical Machine (PM) profiles: In addition to application and VM pro-51

files, PM profiles are integrated into the profile-based application assign-52

ment, enabling derivation of actual energy savings of the servers from the53

application assignment;54

• Profile building: Different from synthetic profiles, realistic application,55

VM and PM profiles are built from raw data of a real-world data center56

through systematic methods, allowing more realistic application assign-57

ment based on profiles;58

• Optimization framework: a penalty-based linear optimization framework59

is formulated for profile-based application assignment with consideration60

of memory constrains in addition to CPU resources; and61

• Solution algorithm: Refined from a simple profile matching algorithm, a62

penalty-based profile matching algorithm (PPMA) that uses some heuris-63

tics is presented to solve the new penalty-based optimization problem with64

considerations of memory, CPU and performance constraints.65

Moreover, new and comprehensive case studies are carried out in this paper66

to demonstrate the effectiveness of the Profiling approach. The experimental67

results are compared with those from the commonly used general approach and68

workload history based application management strategy.69

The energy management of a virturalized data center can be implemented70

at three layers: application, VM and PM layer, as shown in Figure 1. The71

application management at the top layer assigns applications to VMs. The VM72

management layer is responsible for VM placement to PMs, VM sizing and73

VM migration. The PM management layer at the bottom layer is in charge74

of ON/OFF operations of PMs, sleep cycles, cooling and DVFS. While each of75

the three layers contributes to the overall data center energy savings, this paper76

limits its scope to the application management layer. Applications requested77

by cloud consumers or data center users are assigned to VMs, thereby allow-78

ing access to data center resources such as CPU and memory. The application79

assignment strategies typically consider application runtime, server workload,80

resource requirements or availability, energy consumption and performance ef-81

ficiency. Thus, one of the key objectives of our research is to create such an82

energy-efficient application management strategy whilst maintaining the data83

center performance efficiency. Our investigation into the application assignment84

to VMs complements current research on the problem of VM placement to PMs.85

Among various data centers, a big class of widely deployed data centers86

with nearly consistent workload and applications is investigated in this paper.87

These data centers are generally managed by universities, government agencies,88
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Figure 1: Energy management architecture for data centers.

and small corporate businesses. According to our investigations into a real-89

world data center, such data centers typically have a well-defined workload90

characterized by an almost constant number of VMs. The number of VMs91

hosted in PMs is typically reviewed every three to six months during which no92

adjustment is made. From the raw data collected from the real data center and93

using a workload model, this paper generates load synthetically for profile-based94

application assignment to VMs.95

The paper is organized as follows. Section 2 reviews related work and moti-96

vates the research. Section 3 discusses the concept of profiles and the methodol-97

ogy of building profiles. A profile-based energy-efficient framework is presented98

in Section 4 with framework formulation and algorithmic solution. Experimen-99

tal studies are conducted in Section 5. Finally, Section 6 concludes the paper.100

2. Related Work and Motivations101

Energy-efficiency of data centers has been a focus of many studies from102

various perspectives. In the work [7], energy consumption was minimized for103

fattree data center networks. The issue of colocation demand response was104

investigated by Ren and Islam [8]. Yoon et al. [9] presented techniques of efficient105

data mapping and buffering for multilevel cell phase-change memories. The106

work by Kumar et al. [10] studied cloud data management through workload-107

aware data placement and replica strategies. Energy-aware management of data108

centers for cloud computing was also investigated through heuristic resource109

allocation [11]. Leon and Navarro [12] built a quantitative model to describe110

the problem of minimizing energy consumption for resource allocation in data111

centers. All those studies used different methods to achieve energy savings, but112

none of them used the profiling concept on which our work in this paper is113

based.114

Other investigations were also reported on energy-efficient data center man-115

agement. The work in [13] focused on the topic of energy proportional data116

center networks. Liu and He [14] discussed the fairness of replica resource shar-117

ing in IaaS clouds. Combs et al. [15] investigated the energy management with118

high-performance computing workloads. In the work by Yeo et al. [16], an am-119

bient temperature-aware capping approach was developed for power savings in120
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data centers. Autonomous virtual resource management in data centers is dis-121

cussed by Chen, Shen and Sapra [17] through a Markov decision process. A122

fractal framework is presented by Ghorbani et al. for effective management of123

burst cloud workloads. Our work presented in this paper is different from those124

recent reports in the sense that the concept of profiles is utilized for efficient125

energy management of application assignment to VMs in data centers.126

The static profiling technique was discussed in [18, 19] to predict perfor-127

mance degradation in relation to multiple application assignment to a single128

machine. The method of Bubble-Up and Bubble-Flux [20] was developed to129

accurately predict the performance degradation incurred on allocating multiple130

workloads to servers for maximum utilization. Bubble-Up maintains a trade-off131

between machine utilization and Quality-of-Service (QoS) degradation by set-132

ting a degradation threshold for each application. However, it has limitations133

such as the requirement of workload knowledge, prediction inflexibility in terms134

of load changes, and the incapability of predicting more than two co-running135

applications. Those limitations are overcome with the Bubble-Flux manage-136

ment strategy. The Bubble-Flux accurately manages the QoS to provide max-137

imum utilization of servers. Servers are monitored to observe shared resource138

fluctuations in real-time to predict the effect on the QoS of latency-sensitive139

applications.140

Energy-Efficient Workload Aware (EEWA) task scheduler [21] has been de-141

veloped to use online profiling to collect workload information of tasks for CPU-142

bound parallel applications. A workload-aware frequency adjuster tunes the core143

frequencies using this information. The tasks are allocated to the cores by the144

preference-based scheduler. EEWA task scheduler maintains a trade-off between145

energy consumption and performance for CPU-bound applications in multi-core146

architectures.147

Nguyen et al. [22] have proposed an elastic distributed resource scaling frame-148

work called AGILE. AGILE is capable of handling dynamic workloads with149

minimum penalty incurred. It uses online profiling to model the violation rate150

and carry out wavelet-based resource demand prediction. It further employs151

this prediction to handle variations in workloads. In comparison with online152

profiling, offline profiling is used in an overdriver framework [23] to analyse the153

memory overload probability of VMs.154

Behavioural and performance profiles have been used in some existing ap-155

proaches for resource allocation. Vu Do et al. [24] have investigated the rela-156

tionship between resource demands and application performance metrics. An157

application profiling technique is proposed using a Canonical Correlation Anal-158

ysis (CCA) method. The CCA analyzes and builds the performance efficiency159

profile of the applications in terms of their resource usage. Then, the result-160

ing performance profiles are used to build a performance prediction model. Al-161

though profiling has been previously discussed as a means of evaluation in terms162

of performance and behaviour analysis, the designing of profiles in the decision163

making process of initial and continued application assignment has not been164

discussed. The present paper will implement an energy-efficient application165

assignment strategy based on profiling.166
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Most recently, Ye et al. [25] have proposed an energy-efficient server consol-167

idation framework. It reduces the number of active physical servers and VM168

migrations in data centers whilst maintaining workload performance. Profiles169

are used as a key concept in the framework. They consist of performance losses170

of workloads during colocation and migration of VMs.171

Shi et al. [26] have presented an application placement framework (EAPAC).172

The objective is to assign a certain number of mixed data-intensive applications173

to physical nodes and to resolve resource conflicts which arise due to the in-174

crease in the application processing time. The framework overcomes this issue175

by ensuring that a mixture of applications with different resource requests are176

assigned to individual servers. The EAPAC consists of an application level load177

balancer and an application server manager. The load balancer assigns applica-178

tions to server hosts while the server manager monitors the resource provisioning179

amongst servers. The EAPAC is claimed to be able to improve the task response180

time by 4 times as compared to Tang’s method presented in [27] for dynamic181

application placement in data centers. However, the EAPAC is intended for182

deployment in non-virtualized environments.183

After study of the numerous energy-efficient measures for application as-184

signment, the following technological gaps are identified, which motivate the185

research of this paper:186

• Matching application to VMs based on the number of cores/memory speci-187

fied at submission time does not implement any energy-efficient measures.188

Implementation of such measures requires application processing before189

assignment. For data centers with relatively consistent workload and ap-190

plications, the presented profile-based assignment strategy collects and191

reuses data such as resource demands to reduce the application process-192

ing time.193

• Profiling has been previously considered for resource consumption pattern194

identification, behavioural and performance analysis. This paper presents195

a novel approach of using profiles in the decision making stage of mapping196

applications to VMs for data centers with consistent workloads.197

These technical gaps motivate the research of this paper.198

In our previously presented conference paper [6], an energy-efficient applica-199

tion management approach was introduced by using the concept of Profiles. The200

classic assignment problem was described by employing a commonly accepted201

linear programming model. It was then solved using the standard Hungarian al-202

gorithm and a new profile matching algorithm. While giving optimal solutions,203

the Hungarian algorithm was severely limited in terms of scalability. Thus, the204

profile matching algorithm showed its advantage in sub-optimal solution and205

good scalability for large-scale problems of modern data centers.206

However, this preliminary work had limited scopes in profiles, problem for-207

mulation, and problem solving. 1) On profiles, PM profiles were not considered208

at all. The application and VM profiles used in the approach were not built209

from real data of data centers. They were fully synthetic with consideration of210
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CPU resources as the only resource parameter. 2) On problem formulation, the211

simple linear programming model did not capture all performance and resource212

requirements. 3) On problem solving, the profile matching algorithm only con-213

sidered stnthetic application and VM profiles to make application assignment214

decisions. Nevertheless, the preliminary work derived theoretical VM energy215

savings and well demonstrated the feasibility and scalability of the Profiling216

concept in application assignment.217

The work of the present paper extends our preliminary work significantly218

through the following five distinct features. 1) PM profiles are integrated into219

our profile-based application assignment problem; 2) Application, VM and PM220

profiles are built from the raw data logs of a real-world data center; and appli-221

cation profiles are built from a well-established workload model; 3) a penalty-222

based optimization is formulated for profile-based application assignment with223

consideration of energy, resource and performance constrains or requirements;224

4) the new optimization problem is solved using a new penalty-based profile225

matching algorithm; and 5) new and more comprehensive experimental stud-226

ies are undertaken to demonstrate the new profile-based application assignment227

approach. The first four have been claimed as new contributions in Section 1.228

The use of realistic profiles built from the raw data logs facilitates derivation229

of near-optimal application assignment solutions without unduly increasing the230

computational effort. The theory of utilising application, VM and PM pro-231

files in terms of energy-efficient application management is novel and as yet has232

remained unexplored.233

The following sections will describe the concept of profiles and the methodol-234

ogy to build realistic application VM and PM profiles from the raw data center235

logs. Then, a profile-based energy-efficient application assignment framework236

is presented. The assignment solution is derived in the form of a profile-based237

matching algorithm with constraints of resource utilization efficiency and appli-238

cation completion time.239

3. Profiles and Profile Building240

This section first expands the concept of profiling that was initially intro-241

duced in our preliminary work [6]. Then, it develops a methodology to build242

off-line profiles for applications, VMs and PMs. In previous work, a completely243

synthetic workload has been used to build all those three types of profiles.244

However, realistic VM and PM profiles are built in this paper directly from245

the workload trace of a real data center. The application profiles are still built246

synthetically by using a commonly used workload model.247

3.1. The Concept of Profiles248

Profiling has been previously considered for behavioural and performance249

analysis. However, to the best of our knowledge, applying profiles in the decision250

making stage of applications assignment has not been investigated, and thus251

is a novel concept. Considering a big class of widely deployed data centers252
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with relatively consistent workload and applications, this paper describes the253

relevance and effectiveness of Profiling for a deterministic application assignment254

problem. This will produce off-line optimization solutions.255

A nearly consistent workload trace from a real data center is collected over a256

period of 14 days to build the VM and PM profiles offline. It is further observed257

that the pre-set VM and PM parameters like CPU, VCPU, and memory are re-258

viewed every 6-12 months and seldom changed in small to medium density data259

centers. Therefore, the VM and PM profiles are stable for application alloca-260

tion. Applications are habitually processed over time with varying instructions261

per cycle and memory. This is incorporated by the profiles on regular update,262

thereby validating the application profiles for allocation. From our continuous263

monitoring of a real data center over 14 days, only a very small number of new264

applications have been observed, for which the profiles built offline have not265

captured. In other words, data centers managed by universities, government266

agencies and corporate businesses have relatively consistent applications with267

varying parameters.268

In our study of the workload, applications are categorized as web requests,269

data analysis, media streaming, e-commerce, social network and others. Some270

applications are executed in a single task whereas others like data analysis with271

MapReduce may consist of multiple tasks. Each of the single-task applications272

has a single profile. For applications with multiple tasks, each of the tasks in273

an application is treated as a sub-application with a profile. All profiles of the274

sub-applications in the application share the same application ID.275

Occasional new applications whose profiles have not been captured previ-276

ously will be handled differently. When such an application arrives, it will be277

allocated randomly. Then, its profile is recorded and appended to existing ap-278

plication profiles. If an application is the same as a previous one but has a279

different dataset for all the parameters, it is considered as a new application in280

the profiling approach of this paper. Conversely, if only some of the parameters281

are different, then the profiles are updated immediately and the allocation pro-282

ceeds. To maintain the performance efficiency of the application assignment,283

the profiles are updated regularly.284

Profiles are a set of well-organized information about specific data center285

components and their impact on energy consumptions. In this paper, a profile286

is created initially for each of the applications, VMs and PMs of the data center.287

Application profiles include those data related to CPU, memory requirements,288

actual arrival and execution times of individual applications. VM profiles in-289

clude the data related to CPU processing and memory availability of each node290

corresponding to interval hours. PM profiles represent the workload and energy291

consumption of the data center. Other performance metrics can also be easily292

integrated into the profiles. After these profiles are created, they are used to293

create an energy cost matrix to identify the best possible application to VM294

assignment.295

Typically, an extensive amount of data is readily available from the raw data296

logs of a data center to build these profiles off-line. Once the profiles are built,297

regular updates take considerably less processing time. As a result the over-298
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head of creating profiles is insubstantial. Application and VM profiles enhance299

the functions of the allocation manager through 1) retrieval of resource require-300

ments and availability information, and 2) prediction of application arrival and301

VM workload. This enhancement helps make prompt decisions of application302

assignment. Applications with profiles are mapped to VMs incurring the least303

possible energy cost whilst maintaining a trade-off with CPU utilization effi-304

ciency, memory and application completion time requirements.305

The initial step of building profiles involves the accumulation of a large306

amount of specific data such as energy, CPU, memory, execution times and307

frequency, standard deviation and interval time. The following subsections will308

discuss the process of building profiles for PMs, VMs and Applications.309

3.2. Building PM Profiles310

PM profiles are directly derived from the raw data collected from a data311

center. In industrial practice, every data center keeps logs of their usage and312

performance measures for various purposes. This paper has used the raw data313

of servers over a period of 24 hours for 14 days (the 5th to 19th of May, 2014)314

from a real data center. The name of the data center is omitted here due to the315

commercial confidentiality.316

Some of the raw data that have been collected include:317

1. CPU utilization (%) every 60 minutes from multiple measurements during318

this time duration;319

2. Memory used (%) every 60 minutes from multiple measurements during320

this time duration; and321

3. Energy consumption every 5 minutes.322

We conducted an analysis of server behaviour for the PMs in the data center.323

For a randomly chosen physical server (server ID: PH015), Figure 2 displays the324

behaviour pattern with respect to CPU utilization over a 24-hour period for four325

days. The standard deviation of CPU utilization over 24 hours for PH015 is326

determined as low as 2.36. Similar analysis is carried out for all servers with327

respect to minimum, maximum and average CPU utilizations per hour interval.328

The results demonstrate low variance, therefore justifying the assumption of329

a near consistent workload to build and utilise the PM and VM profiles for a330

reasonably realistic allocation strategy. Appendix A shows an example of CPU331

utilization attributes in physical server profiles over a period of 24 hours.332

3.3. Building VM Profiles333

VM Profiles basically encapsulate the workload history of each of the VMs.334

In this paper, the CPU and memory statistics of virtualized physical servers are335

collected from a real data center over a period of 14 days. For test purposes, it336

is assumed that each PM is capable of hosting up to 10 VMs. The VMs have337

varying sizes in terms of the CPU and memory allocated to them. The number338

of VMs per server and their sizes are pre-set during configuration.339

A VM profile consists of the following parameters:340
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Figure 2: The behaviour pattern of physical server PH015.

1. VM ID;341

2. Physical Host;342

3. Total CPU capacity;343

4. Interval;344

5. Used CPU (%); and345

6. Used Memory (%).346

These six parameters of the VM profiles are explained as follows. Each347

VM has a unique identifier and the ID of the server hosting the VM is given348

by the PM host. The host determines the total resource capacity available to349

the VM. These parameters can be modified during configuration. The interval350

represents the time period under consideration. Each VM has a CPU and351

memory utilization associated with the corresponding time interval. The values352

of these parameters are derived directly from the real data center logs and the353

PM profiles. Figure 3 presents the profile data structure of 5 random VMs during354

the interval of 10.00 to 11.00. The pointer directs to a linked list consisting of355

all the applications allocated to the VM under consideration. A 24-hour profile356

of a VM (VM ID: 23) residing in server PH031 is displayed in Appendix A.357

Figure 3: Profile data structure of randomly chosen five VMs in interval 10.00-11.00.
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3.4. Building Application Profiles358

A data center hosts hundreds of thousands of applications. Each application359

consists of a configuration file, which specifies the CPU, memory and disk space360

requirements for task execution. In this research, the generated application361

profiles consider CPU, memory, actual arrival time and run-time parameters.362

While the PM and VM profiles are generated directly from the data logs of the363

data center, the data logs from the data center do not include all information364

for building application profiles directly. Therefore, a commonly used synthetic365

workload model designed by Lublin and Feitelson [28] is adopted in this paper366

to build application profiles through some distributions. This is particularly367

for creating application parameters such as arrival time, run-time and resource368

requirements. For example, the workload generation model uses gamma distri-369

bution to generate wait times.370

The application profile parameters are generated as follows. Initially, the371

number of applications is calculated for every hour using a cumulative distribu-372

tion function. The arrival time, which is a random variable, is modelled with373

gamma distribution for each application (Algorithm 1) and is an input vari-374

able for our simulation experiments. The approximate CPU percentage and375

memory required to run the application is calculated using a two-stage uni-376

form distribution. The application run-time is calculated using a hyper-gamma377

distribution [28] (Algorithm 2).378

Algorithm 1: Application Arrival Time

1 Calculate number of applications per hour using Cumulative Distribution
Function;

2 for Each Application do
3 Generate random variable from gamma distribution;

4 Set arrival time to generated random variable;

Algorithm 2: Application Run-Time

1 Define parameters for gamma distributions 1 and 2, respectively;
2 Define relation probability between the two gamma distributions;
3 Generate a uniformly distributed random number between the range of

0.0 to 1.0;
4 if (Generated a random number ≤ Relation probability) then
5 Gamma distribution 1 is active;
6 else
7 Gamma distribution 2 is active;

8 Generate a random variable from the active gamma distribution;
9 Set run-time to the generated random variable;

It is worth mentioning that the run-time of workloads can be measured and379
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it has been actually measured in our paper after an application is completed on380

a VM. But allocating an application to different VMs leads to different com-381

pletion times [T11, T12, · · · , T1M ]. However, before the run-time can be actually382

measured, the application must be allocated to one of the VMs in terms of some383

criteria determined by a number of parameters including an estimated run-time384

to maximize the optimization function. Therefore, an initial run-time of work-385

loads is derived using a distribution and is included in the application profiles386

initially. In general, the VM where the completion time is closest to the initially387

generated run-time θ1 is preferred.388

Nearly 50,000 application profiles are generated using the workload model389

in C programming language. Figure 4 shows the data structure of randomly390

chosen five application profiles with the following five parameters:391

1. Application ID;392

2. Arrival Time (s);393

3. Run-Time (s);394

4. Requested CPU (%); and395

5. Requested Memory (Bytes)396

Figure 4: Profile data structure of randomly chosen five applications.

The parameters of the application profiles are explained below. The applica-397

tion ID is a unique identifier associated with each application. In our studies for398

a real data center, the identifiers range from 0 to 49,999. The arrival time rep-399

resents the time instant in seconds at which the application arrives at the data400

center. During application allocation, this time instant is compared with the401

interval time to select the VM hosts. The run-time represents the time duration402

(in seconds) in which the application is active. The requested CPU and memory403

represent the resource requirements to successfully execute the application.404

After the application profiles are generated, a parser code is written in C++405

programming language to process and incorporate the Profile data into our406

heuristic algorithm for application assignment. This will be discussed later in407

Section 4.408

4. Profile-based Application Assignment Framework409

With various profiles built in the last section, this section presents a profile-410

based and energy-efficient framework for application assignment in data centers.411
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Preliminary studies on profile-based application assignment model and algo-412

rithm have been recently presented at a conference [6]. They are substantially413

extended with the use of more realistic profiles, addition of memory constraints414

and a penalty-based assignment optimization model. In addition to energy sav-415

ing, other objectives of the framework include effective performance levels in416

terms of execution time and CPU utilization efficiency. In essence, the frame-417

work aims to minimise the CPU energy of the physical node, which hosts the418

VMs for the timely and successful execution of applications.419

For model development, some notations are defined below. Let us denote:420

• I , {1, ..., N} is a set of Applications421

• J , {1, ...,M} is a set of VMs; and422

• K , {1, ..., L} is a set of PMs.423

A binary decision variable xij , i ∈ I, j ∈ J represents the assignment of an
application ai, i ∈ I, onto a VM Vj , j ∈ J :

xij =

{
1 if ai is allocated to Vj ; i ∈ I, j ∈ J,
0 otherwise.

(1)

Furthermore, for an application ai, i ∈ I, CPU and memory requirements are424

denoted by µi and ωi, respectively. If the application ai, i ∈ I, is hosted by the425

VM Vj , j ∈ J , the actual memory allocated from the Vj to the ai is represented426

by ωij . The CPU capacity of Vj , j ∈ J , is denoted by µvj .427

A profile-based linear programming model has been designed to identify428

and carry out near-optimal placement of applications on VMs. The objectives429

include resource utilization efficiency, application completion time within its430

deadline and minimised energy cost. This will be discussed in more detail below.431

4.1. CPU Utilization Efficiency432

The CPU utilization efficiency of a VM Vj , j ∈ J , is a ratio of the total CPU
percentage in use by the applications to the total CPU capacity of the VM. It is
represented by ηcpu(j) ∈ [0, 1] and derived at a time instance before application
assignment as follows:

ηcpu(j) =

∑N
i=0 µixij
µvj

; i ∈ I, j ∈ J (2)

where µi represents the CPU requirement of the application ai, i ∈ I; and µvj433

is the total CPU capacity of VM Vj , j ∈ J , as defined previously.434

A penalty function is introduced to encourage applications to be packed
onto active VMs such that the maximum CPU capacity is utilized. A higher
the CPU utilization is given a lower the penalty. If the CPU utilization efficiency
falls below 0.5, then a penalty equal to the capacity of the VM µvj is applied.
When the utilization efficiency increases, the penalty decreases by half µvj/2.
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The maximum CPU utilization efficiency incurs 0 penalty. The CPU utilization
efficiency constraint restricts overloading the VMs by considering any solution
with ηcpu(j) > 1 as infeasible by assigning a high penalty of ∞. Therefore, the
penalty pcpu(j) for the different values of ηcpu(j) is set as follows:

pcpu(j) =


µvj , ηcpu(j) 6 0.5
µvj/2, 0.5 < ηcpu(j) < 1
0, ηcpu(j) = 1
∞, ηcpu(j) > 1

(3)

4.2. Memory Allocation435

When application ai, i ∈ I, with memory requirement ωi is hosted by VM436

Vj , j ∈ J , the memory assigned from Vj to ai is given by ωij , as notationally437

defined previously. The memory allocation efficiency ηmem(j) is the ratio of ωij438

to ωi as per the application profiles:439

ηmem(j) = ωij/ωi, i ∈ I, j ∈ J (4)

Because ωij > ωi, it follows from Equation (4) that ηmem(j) ≥ 1. The memory440

allocation constraint ensures that the application has the required memory to441

successfully execute.442

4.3. Application Completion Time443

The application profiles include approximate average run-time θi for appli-
cation ai,∀i ∈ I. In order to ensure application assignment efficiency, the actual
completion time Tij taken by the individual VM Vj , j ∈ J , to successfully ex-
ecute the application ai, i ∈ I, must fall within a threshold value set at α · θi,
i.e.,

Tij 6 α · θi; i ∈ I, j ∈ J. (5)

If the scope of Tij is expected to fall within 50% more than θi, we set α =444

1.5. This constraint is put in place to ensure that the execution efficiency of445

the application is not compromised when producing energy-efficient assignment446

solutions. Every application has discrete completion times corresponding to447

different VM hosts. The completion times depend on the CPU availability,448

speed and memory available to a VM.449

For example, an application allocated to VM V1 may have the smallest energy450

cost and a long completion time. However, the same application executed in451

VM V2 results in a slightly higher energy cost but shorter completion time. The452

latter provides a better solution in terms of computing performance efficiency.453

4.4. Energy Cost454

Energy efficiency of the presented profile-based application assignment ap-
proach for data centers is the main objective of this paper. It is modelled by
minimizing the total energy cost of the application assignment. Energy cost is
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directly proportional to the approximate power required to carry out an appli-
cation in a VM. Approximate power consumed by a physical node is calculated
from the power model defined by Blackburn [29]. From this linear model, the
Energy Cost Cij of executing application ai, i ∈ I, on VM Vj , j ∈ J , is cal-
culated as the product of the CPU requirement µi of the application ai and a
coefficient βij :

Cij = βij · µi (6)

where the coefficient βij characterizes how energy-efficient the VM Vj is to host455

the application ai, and it is the difference in power between the maximum and456

idle utilizations.457

4.5. Profile-based Application Assignment Model458

This subsection formally presents our profile-based application assignment459

model for data centers under consideration. The research problem of near-460

optimal allocation of applications to VMs is formulated using a penalty-based461

linear programming approach. The profile-based application assignment model462

seeks to make the best possible use of the available resources for greener and463

more energy-efficient assignment solutions.464

The Profile-based Energy-Efficient Application Assignment Model is math-465

ematically defined as follows:466

min z =

M∑
j=1

N∑
i=1

Cijxij +

M∑
j=1

pcpu(j) (7)

s.t. ηmem(j) > 1, ∀j ∈ J ;

Tij ≤ α · θi, ∀i ∈ I, j ∈ J ;

N∑
i=1

µixij ≤ µvj , ∀j ∈ J ;

M∑
j=1

xij = 1, ∀i ∈ I;

xij = 0 or 1, ∀i ∈ I, j ∈ J.

Apart from the CPU utilization efficiency, memory allocation efficiency, ap-467

plication completion time and binary constraints, the model also ensures that468

each application must be assigned to one and only one VM. This will avoid469

redundancy in the form of multiple VMs attempting to execute the same appli-470

cation. The resources assigned to the applications hosted on a VM should not471

exceed the total resource capacity of the VM. This ensures that the VM is not472

overloaded and thus can continue to perform efficiently.473

Figure 5 gives a flowchart for the working of the profile-based application474

assignment framework. The model is solved with the help of the proposed475

assignment solution in the form of a Profile-based Matching Algorithm discussed476

in the following subsection.477
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Figure 5: Profile-based linear programming model.

4.6. Penalty-based Profile Matching Algorithm478

The Penalty-based Profile Matching Algorithm (PPMA) is designed to solve479

the profile-based application assignment model defined in Equation (7). The480

primary objective of PPMA is to improve energy efficiency with respect to481

application assignment problem in data centers. The side constraints include482

CPU utilization efficiency, memory and application completion time as discussed483

in the previous section.484

To address the issues of low computing efficiency and scalability in deriv-485

ing optimal solutions, PPMA aims to obtain near-optimal assignment solutions486

with high computing efficiency and scalability. Therefore, PPMA makes use487
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of some heuristics to derive solutions. Developing heuristics rather than em-488

ploying conventional solution techniques simplifies the problem-solving process,489

thus improve the scalability of the problem-solving. This is advantageous to con-490

ventional assignment algorithms such as Hungarian Algorithm, which obtains491

optimal solutions but has low scalability [30].492

The initial algorithm (PMA) [6] is significantly improved in this paper as a493

Penalty-based Profile Matching Algorithm (PPMA). The new problem solution494

considers all three components of a data center; application, VM and PM. En-495

ergy consumption of servers were derived to demonstrate actual energy savings.496

Assignment of an application to a VM effectively considers the physical host497

of the VM. Each PM has varying values for power consumption at maximum498

and idle utilizations. This in turn affects the cost of assigning applications to499

VMs. The PPMA imposes a penalty to ensure CPU utilization efficiency as the500

aim of this research is to maintain a trade-off between energy consumption and501

resource utilization.502

Being self-explained, Algorithm 3 presents the pseudo-code for PPMA. The503

Algorithm 3: Penalty-based Profile Matching Algorithm (PPMA)

1 Read energy cost [Cij ]N×M data from profiles;

2 Read application CPU and memory requirements from profiles;
3 Set scope to number of applications to be allocated;
4 while Within Scope do
5 Initialise [xij ]N×M and [Temp[i][j]]N×M as null matrices;

6 Copy matrix Eij to a temporary matrix Temp[i][j];
7 for Every Application do
8 Set Temp[i][1] as the minimum value;
9 for Every VM do

10 if Temp[i][j] is minimum then
11 Update Temp[i][j] as the minimum value;

12 Subtract minimum value from each value;

13 for Each matrix Temp value do
14 if Zero then
15 Calculate penalty;
16 Check memory allocation constraint;
17 Check application completion time constraint;

18 if Constraints are satisfied then
19 Confirm allocation as xij = 1;
20 break;

21 else
22 Set value Temp[i][j] to a large number;
23 goto step 7;
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initial and most crucial element of the algorithm is the deciphering of the Pro-504

files. Once the necessary data have been retrieved, the energy cost matrix505

[Cij ]N×M is built. As the profiles are updated periodically, the energy cost of506

allocation is also updated regularly. This allows real-time events to be taken507

into consideration, thus improving the efficiency of the allocation manager.508

The assignment solution is verified in the algorithm by determining the CPU509

utilization, memory efficiency and application completion time achieved. If all510

the conditions are satisfied, the algorithm moves on to the next assignment.511

In case of assignment unsuitability, the next best assignment is considered and512

the same process follows until a suitable assignment is achieved and the matrix513

[Eij ]N×M and penalty functions are modified accordingly.514

4.7. Dealing with Varied Workload515

The focus of this paper is on profile-based application assignment with rela-516

tively consistent workload, which is a reasonable assumption for a large class of517

data centers. However, there are occasions of varied workload. The approach518

presented in this paper are not directly applicable in these occasions without519

extension and further development. Nevertheless, the concepts and principles520

presented in this paper are useful for future development of a dynamic version521

of the profile-based application assignment to deal with varied workload.522

There are typical scenarios of varied workload. One example is the same523

application with different parameters and/or resource requirements. Another524

example is a new and periodic application. A further example is a new and525

sporadic application. For any such an application coming to the system, it526

undergoes profiling before its assignment to a VM. Then, it is assigned to a VM527

in a way that minimizes the energy consumption while meeting the resource528

constraints and performance requirements. How to design dynamic strategies529

to assignment applications to VMs for varied workload is beyond the scope of530

this paper, and will be investigated in our future work.531

5. Experimental Studies532

This section conducts experimental studies to demonstrate the profile-based533

application assignment approach presented in this paper. The effectiveness of534

the approach is evaluated from the following four aspects: feasibility, scalability,535

CPU utilization, and energy efficiency. The section begins with experimental536

setups followed by detailed experimental studies.537

5.1. Experimental Setup538

The experimental studies are conducted using two different test setups: Test539

Setup 1 and Test Setup 2. Originally investigated in our preliminary work [6],540

Test Setup 1 is used to determine the feasibility and scalability of our approach.541

Test Setup 2 is used to determine the efficiency of the profiling application542

management approach over general and workload history approaches. Shown in543

Table 1, the two setups are described below:544
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Table 1: Two test setups with different scenarios.

Test Setup 1 (100 PMs)

Scenario 1 2 3 4 5

VMs 400 400 800 800 1000

Applications 500 1500 2000 2500 4000

Test Setup 2 (150 PMs)

Scenario 6 7 8 9 10 11

VMs 100 400 800 1200 1600 2000

Applications 500 1000 2000 3000 4000 5000

• Test Setup 1: A data center consisting of 100 PMs with an average of545

four to ten VMs each is considered. The total number of VMs ranges from546

400 to 1000. The total number of applications varies from 500 to 4000.547

The scenarios of Test Setup 1 are presented in the first half of Table 1.548

• Test Setup 2: A data center consisting of 150 PMs is considered. Each549

server is capable of hosting up to 15 VMs. For our evaluation, six different550

scenarios are considered where the number of applications ranges from 500551

to 5000 with corresponding number of VMs as shown in the second half552

of Table 1.553

In our experiments, the logs from a real data center are used to create real-554

istic VM and PM profiles. The application profiles are synthetically generated555

as in our preliminary work [6]. The application and VM profiles generated from556

Test Setup 2 are enclosed in Appendix A. All evaluations are carried out on a557

Windows platform of Intel(R) Core(TM) i7-2640M CPU at 2.80GHz using C558

and Python programming.559

The results derived from PPMA will be compared with those obtained from560

Hungarian Algorithm. A high-level description of Hungarian Algorithm is de-561

picted in Algorithm 4, which is self-explained. For more detailed information562

about Hungarian Algorithm, please refer to references [6] and [30].563

5.2. Feasibility564

Test Setup 1 is used to validate the feasibility of the profile-based application565

assignment framework. The application assignment results for Scenario 2 are566

presented in Figure 6. Analysing the results shows that an average number of567

15 applications are hosted by each server through VMs, with a maximum of 32568

applications hosted by a server. More than 25 applications are hosted by 15%569

of the servers individually. 11% of the total servers are idle and can be switched570

off by the allocation manager. The proposed approach successfully solves the571

penalty-based linear optimization model (Equation 7) and satisfies the resource572

constraints, thereby supporting the feasibility of the presented Profile-based573

Assignment Model.574
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Algorithm 4: Hungarian Algorithm (HA).

1 Convert [Cij ]N×M into square energy cost matrix using dummy values ;

2 for Each Row do
3 Identify and subtract minimum value from all elements;

4 for Each Column do
5 Identify and subtract minimum value from all elements;

6 while Solution matrix not complete do
7 if Column contains more than one ’0’ element then
8 Repeat step 2 forall columns ;

9 for Each Column do
10 Identify columns with negative elements ;
11 Select minimum value and add to each element ;

12 Flag rows and columns with ’0’ elements ;
13 Identify and subtract minimum value from unflagged elements ;
14 Add minimum value from unflagged elements to twice flagged

elements ;

Figure 6: Application assignment for Scenario 2 of Test Setup 1.

5.3. Scalability575

The scalability of the Penalty-based Profile Matching Algorithm (PPMA) is576

compared with that of the Hungarian Algorithm (HA) described in Algorithm 4.577

Both algorithms are applied to the five scenarios of Test Setup 1 (Table 1). The578

solution time in seconds for each of the two algorithms is obtained and tabulated579

in Table 2. The results demonstrate that as the numbers of applications and580

VMs increase, the PPMA is capable of finding near-optimal solutions in much581

lesser time than the HA. The Hungarian Algorithm gives optimal assignment582

solutions but compromises heavily on the time taken to obtain the solution due583

to the large problem size. This demonstrates that the presented PPMA scales584

20



well.585

Table 2: Comparisons of solution time (sec) from the two algorithms for Test Setup 1.

Scenario 1 2 3 4 5

The Hungarian algorithm 4 27 41 72 248

PPMA of this work 5 22 26 31 52

5.4. CPU Utilization Efficiency586

This subsection aims to demonstrate that the presented profile-based assign-587

ment framework makes the best possible use of available resources such as the588

CPU of the server nodes. The scenarios from Test Setup 1 (Table 1) are consid-589

ered in this case study. There is a high variance in the results from the PPMA590

of this work and the Hungarian Algorithm for problems of smaller sizes. This is591

demonstrated in Figure 7 for the CPU utilization efficiency variation graph over592

a 24 hour period for Scenario 1. However, as the ratio of applications assigned593

to VMs increases with the problem size, the CPU utilization efficiency also in-594

creases. The average CPU utilization efficiency of the PPMA of this work and595

the Hungarian Algorithmfor all scenarios of Test Setup 1 (in the first half of596

Table 1) is compared in Table 3. The PPMA of this work achieves results that597

are close in utilization efficiency to the Hungarian Algorithm with the increase598

in the problem size as evidenced by a decrease in variation from 19% to 1.1%.599

Figure 7: Average CPU utilization efficiency derived from the PPMA of this work (solid line)
and the Hungarian algorithm (dashed line) over 24 hours for Scenario 1 of Test Setup 1.

Table 3: Average CPU utilization efficiency (ηcpu) for Test Setup 1.

Scenario 1 2 3 4 5

The Hungarian algorithm 0.486 0.531 0.545 0.578 0.702

PPMA of this work 0.394 0.499 0.526 0.569 0.694
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Although the Hungarian Algorithm is more efficient than PPMA, it com-600

promises on the consistency and scalability of the assignment solutions. The601

PPMA maintains consistent CPU utilization efficiency with the increase in the602

scale of the assignment problems.603

5.5. Energy Efficiency604

This subsection demonstrates the energy efficiency of the profile-based ap-605

plication assignment approach for Test Setups 1 and 2 implementations. Test606

Setup 1 (discussed in our previous work [6]) is used to compare the energy re-607

sults derived by the PPMA of this work and the optimal Hungarian algorithm.608

Test Setup 2 is used to validate the energy-efficiency of the Profiling application609

management approach when compared with the commonly used General and610

Workload application management approach.611

5.5.1. Energy Efficiency in Test Setup 1612

The Hungarian algorithm provides a high quality of solution at the cost of613

a high solution time and poor scalability [31]. Therefore, the energy-efficient614

solutions provided by the PPMA of this work is compared with that of the615

optimal results provided by the Hungarian algorithm. In order to evaluate the616

energy-efficiency, the average CPU utilization is deduced after the application617

assignment using both algorithms. The energy consumption E for the Test618

Setup 1 scenarios (shown in the first half of Table 1) is then calculated using619

the following equations [29].620

Pk =
(Pmax

k − P idle
k ) ∗ ηcpu(k)
100

+ P idle
k , (8)

E =

∫ t1

t0

Pk(t)dt (9)

Power consumed for machine k at maximum utilization and idle state is given621

by Pmax
k and P idle

k , respectively. For calculation purposes, it is assumed that622

Pmax
k = 350W and P idle

k = 200W. Total CPU utilization of the server is repre-623

sented by ηcpu(k).624

Figure 8 demonstrates the energy consumption graph of a server in a 24625

hour period for both the PPMA and Hungarian Algorithm. The average energy626

consumptions for the PPMA and Hungarian Algorithm are 286.5 Wh and 269.75627

Wh, respectively. The results confirm that the PPMA is only 5.85% worse in628

energy-efficiency than the ideal Hungarian Algorithm. In order to demonstrate629

the decrease in variation of energy consumption results as the problem size630

increases, a bar graph displaying the total energy consumption for all scenarios631

of Test Setup 1 is presented in Figure 9. The PPMA results show a 11.8% to632

0.4% variation from the Hungarian Algorithm solutions. This proves that the633

proposed PPMA is sufficiently energy-efficient.634
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Figure 8: Energy consumption of a server using the PPMA of this work (solid line) and the
Hungarian algorithm (dashed line).

Figure 9: Total energy consumption derived from the PPMA of this work (filled bars) and
the Hungarian algorithm (unfilled bars) for Test Setup 1 scenarios.

5.5.2. Energy-Efficiency in Test Setup 2635

The effectiveness of the Profile-based application assignment approach in636

terms of execution time and energy-efficiency is evaluated with comparison with637

other assignment approaches. Test Setup 2, as seen in the second half of Table 1,638

is used to compare the results obtained by the following three approaches:639

• General Application Assignment;640

• Workload History based Application Assignment; and641

• Profile-based Application Assignment642
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The general application assignment is the simplest form of allocation and643

does not implement any efficiency strategy. The applications are allocated at the644

time of their arrival to the first available VM that fits the execution requirements645

in CPU, memory and run-time.646

Workload History based application assignment utilizes the recorded logs of647

CPU cycles with corresponding time of the VMs to make allocation decisions.648

This approach functions on the assumption that workload behaviour of a data649

center varies little during day-to-day operations. However, it only considers the650

VM information, whereas our Profiles are built for applications, VMs and PMs.651

Moreover, workload history approach does not have the option of updating data652

unlike the profiling approach.653

All three approaches: General, Workload History and Profiling are imple-654

mented with a simple First-Fit Decreasing (FFD) assignment algorithm in the655

three-layer energy management (Figure 1). Our assignment problem resembles656

a bin-packing problem:657

1. General Assignment - The applications arrive at the data center. The658

CPU requirement is determined. Applications are arranged in terms of659

decreasing CPU requirement. The FFD is invoked and the application660

assigned to the first VM that can accommodate the requirements. Algo-661

rithm 5 gives the process of this approach.662

2. Workload History Assignment - During time interval T − 1, the VMs663

are arranged in decreasing order of CPU availability as per the workload664

logs. Applications arriving at the data center during time interval T are665

assigned to the first suitable VM with the help of FFD algorithm. Algo-666

rithm 6 represents the process of this approach.667

Algorithm 5: General Assignment Approach

1 for Each Application do
2 Determine CPU and memory requirement;
3 if Requirement satisfied then
4 Invoke FFD Algorithm (Allocate to first available VM);

Algorithm 6: Workload History Approach

1 for Interval Time T-1 do
2 Workload Logs: VM arranged in decreasing order of CPU

availability at Time T;

3 for Interval Time T do
4 for Each Application do
5 if Requirement satisfied then
6 Invoke FFD Algorithm (Allocate to first available VM);
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3. Profile-based Assignment - During time interval T −1, the energy cost668

of allocation of each predicted application to a VM is retrieved. A VM669

yielding lowest cost is selected. At interval time T , the FFD allocates670

the application to the pre-selected VM with the minimum energy cost671

incurred. Algorithm 7 describes the process of this approach.672

The results of energy-efficiency and execution time for the six different test673

scenarios in Test Setup 2 are presented in Table 4 for the general, workload674

history and profiling approaches.675

Consider the execution time behaviour as seen in Figure 10. The General676

allocation initially has the lowest execution time upto 1500 applications. How-677

ever, as the number of applications increases, there is a corresponding increase678

in the execution time. Both workload history and profiling approaches have679

a steady, consistent, and linear increase with the number of applications. On680

examination, the profiling approach presented in this paper is 5% more efficient681

than the workload history approach in execution time.682

Figure 11 shows the total energy consumption of the data center with re-683

Algorithm 7: Profiling Approach of This Work

1 for Interval Time T-1 do
2 Profiles: Determine applications arriving at Time T;
3 Profiles: Retrieve associated energy cost of allocation of each

application;
4 Profiles: Select best possible VM hosts SelectedVM =

{VM1, V M2, ...};
5 for Interval Time T do
6 for Each Application do
7 if Requirement satisfied then
8 Invoke FFD Algorithm (Allocate to first available VM);

Table 4: Energy efficiency and execution time performance from Test Setup 2 for General,
Workload History and our Profiling approaches.

Our Profiling Workload History General

Scenario
Energy

(Wh)

Time

(s)

Energy

(Wh)

Time

(s)

Energy

(Wh)

Time

(s)

6 25623 1.2 26186 1 27015 1

7 25948 1.9 26748 2.2 28975 1.5

8 26782 4.4 27493 4.8 32675 4.1

9 27835 5.7 30759 7.1 33402 8.3

10 28940 6.9 32472 7.9 37238 12.4

11 32752 8.6 35871 9.2 39478 14.7
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Figure 10: Comparisons of execution time for our Profiling approach of this work (solid line),
Workload History approach (dashed line) and General approach (dash-dotted line).

Figure 11: Comparisons of energy-efficiency for our Profiling approach of this work (filled
bars), Workload History approach (unfilled bars) and General approach (patterned bars),
respectively.

spect to the increasing number of applications for all three approaches. The684

General approach consumes the most energy as application-VM allocations are685

not optimal due to the absence of energy cost constraints. The Workload History686

approach is efficient upto 2000 applications, however increases significantly with687

the increase in the number of applications. The Profiling approach presented in688

this paper outperforms the other two approaches in energy consumption due to689

energy cost based allocations derived from the profiles.690

Table 5 provides an overview of the three different approaches considered in691

the experimental evaluations. The standard deviations in terms of energy and692

execution time demonstrate that our Profiling approach is consistent and more693

efficient than the other approaches.694

5.6. Summary of Experimental Studies695

Experimental studies have been conducted on the feasibility, scalability,696

effectiveness, CPU utilization efficiency and energy-efficiency of the proposed697
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Table 5: Overview of the three approaches (
√

: known; ×: unknown).

Data/Strategy
General Workload History Profiling

approach approach (this work)

Virtual Machine ×
√ √

Application × ×
√

Std Deviation: Energy 4, 735.38 3, 808.49 2, 639.53

Std Deviation: Exec Time 5.74 3.27 2.87

Profile-based Application Assignment approach. The experimental results are698

summarized as follows:699

• The PPMA is feasible and scalable within the tested range of 100 to 2000700

VM nodes;701

• There is a trade-off between scalability and CPU utilization efficiency for702

increasing problem sizes;703

• The profile-based application assignment approach is more energy-efficient704

with steady execution times in comparison with commonly used General705

and Workload History assignment approaches; and706

• The energy efficiency achieved is close to that of the optimal Hungarian707

Algorithm solution.708

It is worth mentioning that the overhead of the profile-based application709

assignment is minimal for data centers with relatively consistent workloads con-710

sidered in this paper. The profiles of the data centers can be established offline.711

The un-profiled workload that requires online processing is insubstantial. With712

the established profiles, static assignment of applications to virtual machines713

can be scheduled in advance. Efficient dynamic scheduling of application as-714

signment for data centers with uncertain and variable workloads is beyond of715

the scope of this paper and will be investigated in our future work.716

The case studies presented in this paper have been carried out by using717

the raw data collected from a real-world data center. The data sets are not718

available to the public. One may asks for verifiability and reproducibility of our719

results if the data are not available to the public. Keep in mind that the main720

theme of the paper is the profile-based approach, which includes the concepts of721

profiles, profile building, formulation of the application assignment problem as722

a penalty-based optimization subject to a number of constraints, and a penalty-723

based profile matching algorithm to solve the optimization problem. To verify724

the approach, any data sets collected from a similar type of data center are fine725

as long as they are used by following our approach presented in the paper. For726

example, one may collect data from a data center of his/her own institution. In727

this sense, our work presented in this paper does not have the problem of the728

lack of verifiability and reproducibility.729
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6. Conclusion730

One of the significant research problems concerning data centers and cloud731

computing is how to reduce the energy consumption whilst maintaining high732

performance efficiency. A novel concept of energy-efficient application assign-733

ment using Profiles has been presented in this paper. From this concept, re-734

alistic Application, VM and PM Profiles have been built from the raw data735

center logs. A profile-based application assignment framework has also been736

established, and an assignment solution has further been derived in the from of737

a Penalty-based Profile Matching Algorithm. Experimental studies have shown738

that the profile-based application assignment approach is feasible, scalable and739

effective in comparison with other existing approaches, implying greener and740

more energy-efficient assignment solutions with acceptable CPU utilization ef-741

ficiency and execution times within their deadlines.742

Our future work will consider varied workload. This requires dynamic strate-743

gies for profile-based application assignment. The development of a dynamic744

version of the approach presented in this paper will enable implementation of745

the profile-based application assignment in a wider class of data centers.746
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Appendix A. Test Setups in Experimental Studies866

Setups of VMs and applications for the experimental studies carried out in867

this paper are summarized in this appendix. Fig. A.12 shows the test setup for868

VM profiles. Setup for applications in depicted in Fig. A.13.869
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Table A.6: Profile for a physical machine (PH015) over 24 hours.

Interval Min CPU (%) Max CPU (%) Avg CPU (%)

0.00 - 1.00 9.575 10.24 9.908

1.00 - 2.00 9.649 10.24 9.943

2.00 - 3.00 8.298 8.298 8.298

3.00 - 4.00 8.559 8.559 8.559

4.00 - 5.00 12.61 12.61 12.61

5.00 - 6.00 12.04 12.04 12.04

6.00 - 7.00 10.61 23.66 16.01

7.00 - 8.00 9.863 11.5 10.68

8.00 - 9.00 9.863 10.21 10.04

9.00 - 10.00 10.21 23.04 15.55

10.00 - 11.00 10.48 10.48 10.48

11.00 - 12.00 9.625 9.625 9.625

12.00 - 13.00 10.48 10.48 10.48

13.00 - 14.00 10.65 10.65 10.65

14.00 - 15.00 9.674 9.674 9.674

15.00 - 16.00 9.467 29.14 17.52

16.00 - 17.00 10.38 10.64 10.51

17.00 - 18.00 10.64 10.94 10.79

18.00 - 19.00 9.949 10.94 10.45

19.00 - 20.00 9.052 9.949 9.5

20.00 - 21.00 9.052 9.429 9.24

21.00 - 22.00 9.429 10.7 10.27

22.00 - 23.00 11.66 18.23 13.85

23.00 - 24.00 10.1 10.26 10.21

Mean 11.12

Standard Deviation 2.36
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Table A.7: Profile of a VM (VM ID: 23) over 24 hours.

Interval Used CPU (%) Used Mem (%)

0.00 - 1.00 13.15 21.18

1.00 - 2.00 10.61 16.6

2.00 - 3.00 13.4 15.06

3.00 - 4.00 10.18 16.42

4.00 - 5.00 11.93 16.93

5.00 - 6.00 10.2 17.18

6.00 - 7.00 9.345 17.37

7.00 - 8.00 7.501 18.25

8.00 - 9.00 13.27 19.07

9.00 - 10.00 20.38 19.94

10.00 - 11.00 26.07 19.95

11.00 - 12.00 11.76 20.41

12.00 -13.00 18.97 20.62

13.00 - 14.00 24.58 21.1

14.00 - 15.00 16.11 20.95

15.00 - 16.00 15.37 21.06

16.00 - 17.00 22 21.15

17.00 - 18.00 15.36 21.22

18.00 - 19.00 9.096 21.27

19.00 - 20.00 10.67 21.4

20.00 - 21.00 10.16 21.69

21.00 - 22.00 9.254 21.47

22.00 - 23.00 8.65 21.41

23.00 - 24.00 10.35 21.51

Mean 13.68 19.72

Standard Deviation 5.20 2.04
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Figure A.12: Test setup: VM profiles
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Figure A.13: Test setup: application profiles
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