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Comments on ‘On the equivalence of causal LTI iterative learning
control and feedback control’

The area of iterative learning control (ILC) now has
a large and increasing body of research with an increas-
ing number of applications (supported by a sizable num-
ber of actual experimental veri.cation studies). The paper
(Goldsmith, 2002) contains a number of assumptions and
technical errors that invalidate its conclusion that normal
feedback control is preferable to causal ILC, and the pur-
pose of this note is to state the problems with this paper and
clearly articulate the technical and practical validity of the
ILC concept.
Of course, causal ILC (in the sense of Goldsmith (2002))

is not the only option for the community and, implicitly,
non-causal control structures may improve performance and
other desirable closed-loop properties. Indeed, see, for ex-
ample, Amann, Owens, and Rogers (1998), there is already
much published work which (as one possible choice) uses
optimal control concepts to produce convergent ILC algo-
rithms that use current trial feedback plus previous trial
(non-causal in the classical sense) feedforward actions. The
central issue that we wish to challenge is that the proposed
equivalence between causal ILC and feedback control in-
validates the former and in what follows we give the details
for the 4 main areas we challenge.

1. The use of [0; T ] versus [0;∞]—two very di�erent
cases

The analysis in Goldsmith (2002) is in L2(0;∞) rather
than the ILC situation of L2(0; T ) where T is .nite. At
a simple theoretical level, the second choice is more re-
alistic as it re3ects the fact that the iterations are un-
dertaken on a .nite interval [0; T ] and it does not su6er
from the technical di7culty (in L2(0;∞)) that it is nec-
essary that all signals tend to zero as time t tends to
in.nity. At a deeper level, there are very serious techni-
cal issues that separate these two situations as articulated
in the literature on repetitive processes, such as Rogers
and Owens (1992) (from which the following analysis is
extracted).
The theory required is based on the analysis of recursive

structures of the form

yk+1 = LTyk + dT ; (1)

with signals yk in some Banach space (say, ST = Lmp(0; T ))
and LT a bounded linear operator from ST into itself. The
parameter T is called the pass length and normally repre-
sents a time or spatial interval of interest and is .nite and
.xed. The key results are follows: for a .xed value of T , the
recursive system is asymptotically stable if, and only if, the
recursive equation has a limit for any choice of initial point
y0 and su7ciently small perturbations to the operator LT .
It is in e6ect a form of robust stability that guarantees that
the stable set is open (in the operator norm topology). The
condition for asymptotic stability is that r(LT )¡ 1; where
r(·) is the spectral radius of the argument. Under these con-
ditions, the recursion converges with a limit

y∞ = (I − LT )−1dT : (2)

A concept of stability that applies to the case where T →
∞ is called “stability along the pass” and can be stated as
the requirement that, for some �¡ 1

sup
|�|¿�;T¿0

‖(�I − LT )−1‖¡∞: (3)

In essence, it is required that the limit be uniformly bounded
over T even in the presence of perturbations of LT (Rogers &
Owens, 1992). A simple summary of the issue is that the
stability condition for a repetitive or iterative system is not
continuous as T → ∞. As a consequence, conclusions based
upon an [0;∞] analysis generally do not apply to the .-
nite interval case! Consider now the simple iterative system
in Rn:

ẋk+1(t) = Axk+1(t) + B0yk(t) + d;

yk+1(t) = Cxk+1 + Dyk(t);

xk+1(0) = x(0): (4)

Using the concepts of asymptotic stability reported in Rogers
and Owens (1992), the iterative system is asymptotically
stable when T is .nite if, and only if, r(D)¡ 1: In con-
trast the iterative system is stable when T is in.nite if, and
only if,

sup
!¿0

r(G0(i!))¡ 1; G0(s) = C(sIn − A)−1B0 + D: (5)

For single-input, single-output (SISO) systems, this condi-
tion reduces to the requirement that ‖G0‖¡ 1; where ‖ · ‖
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denotes the H∞ norm, which relates to, but predates, the
work in Goldsmith (2002). In particular, a central part of the
claimed new insight in Goldsmith (2002) has been known
for a decade (Rogers & Owens, 1992) and more (Padieu &
Su, 1990) (see also below where other results/ideas from
Padieu and Su (1990) are also employed).
As D=G0(∞), stability on .nite intervals is a necessary

but not su7cient condition for stability on in.nite intervals.
The very di6erent nature of the stability condition for .nite
and in.nite intervals is very clear in both mathematical and
dynamics terms. In particular, the stability conditions under-
line the insensitivity of stability on .nite intervals to the de-
tails of systems dynamics and clearly state the dependence
of stability on an in.nite interval on the details of plants
dynamics. In both cases, the iterative system converges to a
limit so both satisfy the main requirement for application to
ILC. The absolutely critical issue is that the most appropri-
ate case is used—in Goldsmith (2002) it is the inappropriate
one that is used.
One major di6erence arising from the two cases needs

detailed analysis and is illustrated by the following example
—set A=−1, B0=1+�, C=1 and D=0 in (4) and note the
iterative system is stable on any .nite time T . Also sequence
{yk} converges in L2(0; T ) to a limit y∞ satisfying

ẏ∞(t) = �y∞(t) + 1; yk+1 = 0: (6)

This limit exists on all .nite intervals and, in that sense, ex-
ists on [0;∞]. It is, however, always bounded in L2(0; T )
but potentially unbounded on L2(0;∞) as its classical sta-
bility depends on �. More precisely, (6) is stable if, and only
if, �¡ 0 which is precisely the condition for the H∞ norm
of G0(s) to be less than one.
The outcome of the above discussion is that great care

must be taken when discussing ILC to clearly identify and
justify the use of .nite or in.nite interval analysis. The two
cases are entirely di6erent in terms of stability and there are
very clear di6erences in the interpretation of the limits of
an iterative or repetitive process—the analysis in Goldsmith
(2002) ignores this completely.
To demonstrate some of the major problems that can arise

in ILC analysis, consider Goldsmith (2002, Section 2) which
proceeds as follows:

(1) Characterizes the process by the equation y=Pu in
L2(0;∞) which implicitly assumes and requires zero
initial conditions and a stable-process model. In con-
trast, analysis in L2(0; T ) does not require open loop
stability for functional analytic consistency.

(2) Characterizes the limit of his iteration by ud ∈L2(0;∞).
This is a serious limitation in his analysis as the sym-
bolic solution of the problem ud = P−1yd indicates
that it is generically necessary that the plant is min-
imum phase for ud ∈L2(0;∞) to be true. His analy-
sis therefore excludes the case of non-minimum phase
systems.

Similar comments hold true for the assumption in
Goldsmith (2002) that u∞ ∈L2(0;∞).

The e6ect of these observations is, at very best, to
severely constrain the analysis of Goldsmith (2002) and
completely invalidate the interpretation placed on the results
obtained.

2. Equivalent feedback control—is the idea meaningful?

It is trivially true that any convergent iterative process
described by a (continuous) recursion

uk+1 = g(uk ; ek+1; ek); u0 speci.ed (7)

converges to a limit satisfying

u∞ = g(u∞; e∞; e∞): (8)

If this implicit equation can be solved for a causal (in what-
ever sense) solution, u∞=f(e∞) a causal feedback is poten-
tially created that, in principle, can be applied directly. This
control input will generate the limit dynamics e∞ directly
without iteration. The observation that there may exist a
causal equivalent feedback control that generates the $nal
error immediately is hence essentially trivial and, in e&ect,
has been known for a long time in repetitive process theory
—the step from there to ILC (which, in turn, motivates the
whole approach of Goldsmith (2002)) is therefore nothing
new. The real issues are (i) the convergence of the process
and any constraints that this might place on ILC algorithm
and/or plant dynamics, (ii) the nature and acceptability of
the limit dynamics, and (iii) if feedback control is to be con-
sidered as an alternative, the practical acceptability of the
equivalent feedback algorithm. Situations also exist where
the map f does not exist (e.g. when F = I in Goldsmith
(2002) and, consequently, an equivalent control does
not exist.

3. The “Lemma 2” stability condition in Goldsmith (2002)

We note .rst that the concept of internal stability pre-
sented by Goldsmith (2002) has little meaning, particu-
larly when T is .nite as boundedness in .nite time is
always guaranteed trivially. In in.nite time, the assumption
of the existence of an input ud ∈L2(0;∞) also excludes
application to non-minimum-phase systems as discussed
above.
In addition, De.nition 2 and Lemma 2 of Goldsmith

(2002) clearly demonstrate the limitations of this work. The
conclusion that a su,cient condition for convergence is that
PH is stable and ‖H‖¡ 1 is indeed valid but the following
points are relevant.
(a) The convergence condition ‖H‖¡ 1 is exactly the

requirement that theH∞ norm of the transfer function matrix
of H is less than unity. On .nite time (T ¡∞) results
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from Rogers and Owens (1992) can be used leading to the
conclusion that this condition is replaced by the requirement
that the “D” matrix in a proper realization of H should
have spectral radius strictly less than unity. This is a simpler
condition with the added advantage that the spectral radius
condition is both necessary and su7cient if stability is to be
retained under su7ciently small perturbations of the plant
model.
(b) More seriously, Lemma 2 in Goldsmith (2002) claims

a necessary (“only if”) convergence condition based on a
requirement thatM (s)= I−H (s) be positive real. Although
there may be situations where this result (or some similar
result (see below)) is correct for SISO systems on an in.nite
time interval T = ∞, the case for a .nite interval T ¡∞
is more complex. Again, using the results from Rogers and
Owens (1992), the recursion vi+1 = Hvi is asymptotically
stable in L2(0; T ) if, and only if, the scalar “D matrix” satis-
.es |D|¡ 1: As there are examples where this condition is
satis.ed but the condition ‖H‖¡ 1 in Goldsmith (2002) is
not satis$ed, it follows that the Lemma stated in this paper
is incorrect. A correct alternative version is given in Lemma
1 below. The necessary and su7cient condition for (robust)
stability stated above can be extended (in part) to the situ-
ation where D = 1 (see also Padieu and Su (1990)) where
[0;∞] is considered to give su,cient conditions for conver-
gence as ‖H‖6 1 and all frequencies where |H (i!)| = 1
are isolated. The ideas are clearly related to the claimed
results in Goldsmith (2002) but they are not the same—
again we see that this work ignores previous and correct
contributions to the .eld. Also if D = 1, then H−1 = I +
M0 where M0 is strictly proper and hence the following
result.

Lemma 1. A su,cient condition for ILC convergence
in L2(0;∞) is that ‖H‖6 1 which is achieved (a su,-
cient condition) if M0 = H−1 − I ∈& (i.e. M0 is positive
real).

This result has a structural similarity to that of Goldsmith
(2002), but di6ers in the use of the inverse and the replace-
ment of a necessary condition from the work under discus-
sion here by a su7cient condition (derived from Padieu and
Su (1990)). It is our belief that this is the true result based
on a combination of a norm condition with a positive real
condition.
(c) The condition that M0 is strictly proper and positive

real requires it to have a relative degree of unity and to be
minimum phase and stable is not true for a strictly proper
plant P, where C and D are proper and P has relative de-
gree 2 or more and/or it is non-minimum phase. Any conse-
quent conclusions based on this result therefore only apply
to plants from this (restrictive) class.
The conclusion reached from the above discussion is that

the results in Goldsmith (2002) are incorrect and that bet-
ter results have been available in the literature for some
time.

4. The nature of the limit and the validity of the feedback
equivalence claims

The existence of a limit error is most certainly neces-
sary for acceptability of an ILC algorithm but an absolutely
essential requirement is that this limit error e∞ has an ac-
ceptable form. The paper (Goldsmith, 2002) is correct in
stating that (Lemma 3) e∞=0 if F= I , but fails to note that
the existence of a limit error e∞ does not imply that this er-
ror will be acceptable—see the simple example given above
with �¿ 0: A more compelling example can be found in an
ILC context. If D = 0 and F is a scalar, then

ek+1 = (I + (PC)−1)(Fek + (1− F)yd): (9)

If PC is strictly proper, then the relevant “D-matrix” is
just FI and hence a limit error exists on any L2(0; T )
(with T .nite but arbitrary) if, and only if, |F |¡ 1 and
also

e∞ = (I + PCe6 )−1yd; Ce6 =
C

1− F
; (10)

i.e. the limit error is generated from an equivalent unity
negative feedback control Ce6 : Hence a necessary condi-
tion for the limit error to be small is that Ce6 is very high
gain! Root-locus analysis also shows that this condition
is not su7cient. In particular, if PCe6 has relative degree
greater than or equal to two and/or it is non-minimum phase,
e∞ is a potentially unstable and/or highly oscillatory sig-
nal. Again the existence of a limit and its acceptability
are unrelated and are only related in a satisfactory way
if the plant satis.es some structural requirements—again
these correct results/interpretations are consistent with long
known repetitive process stability theory (Rogers & Owens,
1992).
Turning again now to Goldsmith (2002), Section 2 of this

paper centers on the main result stated in Theorem 2. The
problems with this result are twofold
(a) It is based on the validity of Lemma 2 as a necessary

condition for the existence of a limit which has been shown
here to be incorrect.
(b) The result is based on the assumption that for each

v0 ∈L, limk→∞ek = 0. This requires that F = I (which
presents no practical di7culties) but there are no known
necessary and su7cient conditions for ILC stability in this
case! Hence this main result is based on an assumption that
cannot be checked in general. It can be checked in special
cases, e.g. in the special case where D= 0 (for simplicity),
when H = (I +PC)−1 which satis.es (Padieu & Su, 1990)
condition that ‖H‖6 1 if PC is positive real (a su7cient
condition). This also shows (by a simple calculation) that
the feedback K =C + kC will lead to the desired high gain
equivalence, limk→∞ek =0. Some reformulations of this re-
sult in Goldsmith (2002) therefore can be proved but, as in
the above example, there will be constraints placed on the
form and structure of the plant. The simplest form of con-
straint is that of being positive real excluding many situa-
tions of practical interest.
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