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Abstract— Blind and semiblind adaptive schemes are proposed
for joint maximum likelihood (ML) channel estimation and data
detection for multiple-input multiple-output (MIMO) systems.
The joint ML optimisation over channel and data is decom-
posed into an iterative two-level optimisation loop. An efficient
global optimisation search algorithm called the repeated weighted
boosting search is employed at the upper level to identify the
unknown MIMO channel model while an enhanced ML sphere
detector called the optimised hierarchy reduced search algorithm
aided ML detector is used at the lower level to perform the
ML detection of the transmitted data. A simulation example is
included to demonstrate the effectiveness of these two schemes.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) technology has
emerged recently as one of the most significant technologies
in modern communication. By using MIMO technology an
increase in the system capacity and/or an improvement in the
quality of service can be achieved [1]-[4]. The key to fully
utilise the MIMO capacity relies heavily on the requirement
of accurate channel estimation. MIMO channel estimation
methods can be classified into three categories: training-based
methods, blind methods and semi-blind methods. For pure
training-based schemes, a long training is necessary in order
to obtain a reliable MIMO channel estimate which reduces
the system bandwidth efficiency considerably. Blind methods
which do not require any training symbols achieve high system
throughput at the expense of high computational complexity.
Semi-blind schemes on the other hand require less compu-
tational complexity than blind methods and fewer training
symbols than training-based methods, making them attractive
for practical implementation.
Many blind channel identification techniques can be found
in the literature, and a good overview is given in [5]. The
blind channel identification methods can be classified into
higher-order statistics based techniques [6]-[8] and second-
order statistics based techniques [9],[10]. Joint blind channel
estimation and data estimation detection has been proposed
based on the iterative least squares with projection [11]-[13].
This scheme estimate the channel and data iteratively but the
convergence of the scheme depends on the initialisation of the
channel model. In the context of MIMO systems, semi-blind
schemes have been developed [14]-[17]. These schemes use
a few training symbols to provide the initial MIMO channel
estimation and exchange the information between the channel

estimator and the data detector iteratively. In this paper we
propose blind and semi-blind joint maximum likelihood (ML)
channel and data estimation schemes for MIMO channels.
Our work extends the approach developed in [18]-[21], in
which the joint ML optimisation process for channel and data
estimation is decomposed into two levels. At the upper level a
global optimisation algorithm searches for an optimal channel
estimate, while at the lower level an ML data detector decodes
the transmitted data. The joint ML channel estimation and data
detection is achieved by exchanging the information between
the channel estimator and the data detector iteratively. More
specifically, we use the optimised hierarchy reduced search
algorithm aided ML (OHRSA-aided ML) detector [22],[23],
which is an advanced extension of the complex sphere decoder
[24], as the data detector and the repeated weighted boosting
search (RWBS) algorithm [20], which is a simple yet efficient
global optimisation search routine, as the MIMO channel
estimator. Our proposed blind MIMO scheme is formed by it-
erating between the RWBS channel estimator and the OHRSA-
aided ML data detector. In blind joint MIMO channel and data
estimation, permutation ambiguity corresponding to reordering
the detected transmitted data and estimation channel matrix
columns cannot be resolved by the blind scheme itself. One
way of solving this permutation ambiguity is to employ a
few pilot training symbols. Further exploiting these training
symbols to initialise the search in the RWBS channel estimator
yields our proposed semi-blind scheme.
Throughout the paper we adopt the following notational con-
ventions. Boldface capital and small letters stand for matrices
and vectors, respectively. IK denotes the K × K identity
matrix, and ()T and ()H are the transpose and hermitian op-
erators, respectively. | | denotes the magnitude of a complex
value, while ‖ ‖2 is the norm operator. For arbitrary matrix
A, its (i, j) entry is written as A(i, j) = ai,j .

II. SYSTEM MODEL

We consider the MIMO system with M transmit antennas and
P receive antennas. It is assumed that the channel coherence
bandwidth is larger than the transmitted signal bandwidth so
that the channel can be considered as narrowband or flat
fading. Furthermore, the channel is assumed to be stationary
during the communication process of N symbols. The baud
rate sampled received signal at receive antenna p can be
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written as

yp(k) =
M∑

m=1

hp,msm(k) + np(k), (1)

where k is the symbol index, hp,m is the complex-valued
narrowband channel coefficient connecting transmit antenna
m to receive antenna p, sm(k) is the kth transmitted symbol
from transmit antenna m that takes value from the binary phase
shift keying (BPSK) symbol set {−1,+1}, and np(k) is the
complex-valued additive white Gaussian noise (AWGN) with
E[|np(k)|2] = 2σ2

n.
The overall system can be described by the well-known MIMO
channel equation as

y(k) = H s(k) + n(k), (2)

where n(k) = [n1(k) n2(k) · · ·nP (k)]T , s(k) =
[s1(k) s2(k) · · · sM (k)]T is the transmitted symbols vector,
y(k) = [y1(k) y2(k) · · · yP (k)]T is the received signal vector
and H is the P × M channel matrix with H(p,m) = hp,m.

III. THE PROPOSED BLIND SCHEME

The proposed blind scheme depends only on the observation
vector y(k) over a relatively short length N of the transmitted
data sequence to perform the joint data and channel estimation.
Let us define the P × N matrix of received data and the
corresponding M × N matrix of transmitted data as

Y = [y(1) y(2) · · ·y(N)] (3)

and
S = [s(1) s(2) · · · s(N)] , (4)

respectively. Then the probability density function of the
received signal matrix Y conditioned on the MIMO channel
matrix H and the transmitted data matrix S can be written as

p(Y|H,S) =
1

(2πσ2
n)NP

e
− 1

2σ2
n

∑N

k=1
‖y(k)−H s(k)‖2

. (5)

The ML estimation of the transmitted symbols S and the
MIMO channel matrix H can be obtained by maximising
p(Y|H,S) over S and H jointly. Equivalently, the joint ML
estimation can be obtained by minimsing the following cost
function

JML(Š, Ȟ) =
1

P × N

N∑
k=1

∥∥y(k) − Ȟ š(k)
∥∥2

, (6)

namely, the joint ML channel and data estimation is obtained
as

(Ŝ, Ĥ) = arg
{

min
Š,Ȟ

JML(Š, Ȟ)
}

. (7)

From equation (7) it can be seen that the search for the optimal
joint ML solution is over the discrete space of the transmitted
symbols and the continuous space of the MIMO channel
matrix jointly. This search is computationally prohibitive. The
complexity of this optimisation process can be reduced to a
tractable level if it is decomposed using an iterative loop first

over all the possible data symbols and then over all the possible
channel matrices as

(Ŝ, Ĥ) = arg
{

min
Ȟ

[
min
Š

JML(Š, Ȟ)
]}

. (8)

At the inner or lower-level optimisation we use the OHRSA-
aided ML detector to find the ML data estimate for the given
channel. The OHRSA-aided ML detector was proposed in
[22],[23] where the detailed implementation of this detector
can be found. In order to guarantee a joint ML estimate, the
search algorithm used at the outer or upper-level optimisation
should be capable of finding a global optimal channel estimate
efficiently, and we employ the RWBS algorithm to perform the
upper-level optimisation. The detailed implementation of this
search algorithm can be found in [20].
The proposed blind scheme for MIMO ML channel estimation
and data detection is summarised as follows.
Outer-level Optimisation: The RWBS algorithm searches the
MIMO channel parameter space to find a global optimal
estimate Ĥ by minimising the mean square error (MSE)

JMSE(Ȟ) = JML(Ŝ(Ȟ), Ȟ), (9)

where Ŝ(Ȟ) denotes the ML estimate of the transmitted data
for the given channel Ȟ.
Inner-level Optimisation: Given the MIMO channel matrix Ȟ
the OHRSA-aided ML detector finds the ML estimate of the
transmitted data and feeds back the corresponding ML metric
JMSE(Ȟ) to the upper level.
The channel gain at each receive antanne can always be
normalised to unity

∑M
m=1 |hp,m|2 = 1. This is realistic as the

channel energy at each receive antenna σ2
s

∑M
m=1 |hp,m|2 can

always be estimated, where σ2
s is the known symbol energy.

With this normalisation, the RWBS algorithm can set the
search range for the real and imaginary parts of each channel
coefficient to (−1, 1).
Scaling and permutation ambiguity. Blind joint data and
channel estimation for MIMO channels has an inherent permu-
tation and scaling ambiguity problem. Scaling ambiguity refers
to the fact that the detected data and the estimated channel
matrix columns can only be resolved with a complex-valued
factor. This scaling factor depends on the modulation scheme,
and in the case of BPSK modulation, it takes the values
from {+1,−1}. In the permutation ambiguity, the detected
data and the estimated channel matrix columns are reordered.
The reason for this is clear from the cost function defined in
equation (6). This cost function is invariant with respect to
a reordering and scaling of the channel matrix and the data
matrix. More specifically, let a joint ML estimation of the
transmitted data and MIMO channel be Ŝ and Ĥ. Next define
Ĥ∗ and Ŝ∗ as [25]:

Ĥ∗ = Ĥ T and Ŝ∗ = TH Ŝ, (10)

where T is the unitary M×M permutation and scaling matrix
with only one nonzero element in each column and row. Then

JML(Ĥ, Ŝ) = JML(Ĥ∗, Ŝ∗). (11)
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The nonzero entries of T depend on the modulation scheme
used, and in the BPSK case they take the values from
{+1,−1}.
The scaling ambiguity can be resolved easily by using a differ-
ential encoding of data. The permutation ambiguity however
cannot be resolved easily. In practice this ambiguity is resolved
by other means. For example, in CDMA based systems, unique
user signiture sequences can be exploited at the receiver to
distinguish each user correctly. The scaling and permutation
ambiguity can be solved simultaneously if a few pilot training
symbols are available. By sending a short training sequence
from each transmit antenna, the receiver can identify the
correct unitary matrix T from all the possible realizations of
this matrix based on the following ML criterion

T = arg min
Ť

{∥∥∥Yt − Ĥ Ť St

∥∥∥2
}

, (12)

where Yt and St are the received and transmitted data
matrices, having NT columns and similar to the ones defined
in equations (3) and (4), respectively, during the training, and
NT is the length of training.
Computational complexity. Let COHRSA−ML(N) denote
the complexity of the OHRSA-aided ML algorithm to decode
the N -sample data matrix S and NOHRSA−ML be the number
of calls for the OHRSA-aided ML algorithm required by the
RWBS algorithm to converge. Then the complexity of the
proposed blind method is given by

C = COHRSA−ML(N) × NOHRSA−ML. (13)

The complexity of the OHRSA-aided ML detector is difficult
to find precisely as it depends on the signal-to-noise ratio
(SNR), but this complexity is increasing with the data length
N . The RWBS algorithm is a simple yet efficient global
search algorithm. In [21], both the genetic algorithm (GA)
and the RWBS algorithm were used to find the ML channel
and data estimation for single-input multiple-output systems,
and it was seen that the RWBS algorithm achieved slightly
better accuracy at the same convergence speed as the GA.
The RWBS algorithm has additional advantages of requiring
minimum programming effort and having fewer algorithmic
parameters to tune. Since COHRSA−ML(N) is increasing with
N , it is critical in terms of complexity that the blind scheme
can work with as short of the data length as possible. We
will demonstrate that our proposed blind method can achieve
a joint ML solution with a very short data length N through
simulation.

IV. THE PROPOSED SEMI-BLIND SCHEME

As discussed in the previous section, a blind scheme suffers
from scaling and permutation ambiguity. One way of resolving

TABLE I

THE SIMULATED MIMO SYSTEM

Tx antenna 1 Tx antenna 2 Tx antenna 3
Rx antenna 1 -0.0314 + 0.0719i 0.3101 + 0.7030i 0.0188 + 0.6350i
Rx antenna 2 0.3864 + 0.0120i -0.4124 - 0.3786i 0.5770 - 0.4521i
Rx antenna 3 -0.5177 - 0.1239i -0.2124 + 0.2281i 0.0747 + 0.7835i
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Fig. 1. Mean square error against the number of OHRSA-ML evaluations
averaged over 20 different runs for a range of SNR values using the proposed
blind ML channel and data estimation scheme, where N = 50.
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Fig. 2. Mean channel error against the number of OHRSA-ML evaluations
averaged over 20 different runs for a range of SNR values using the proposed
blind ML channel and data estimation scheme, where N = 50.

this ambiguity is to employ a few pilot training symbols. If
we adopt this pilot training approach to resolve the ambiguity
of joint ML estimate, we can further exploit this training to
provide an initial channel estimate. This naturally leads to
a semi-blind scheme, which also reduces the computational
complexity considerably, in comparison with the pure blind
technique. The proposed semi-blind method follows exactly
the same methodology of the blind scheme explained in
section III, except that it uses a few pilot training symbols
to initialise the RWBS algorithm.
The least squares channel estimation (LSCE) technique is used
to find the initial estimate for the channel. The estimated LSCE
channel matrix is given by

ȞLSCE = YtSH
t

(
StSH

t

)−1
. (14)

The best performance of LSCE technique is achieved when
the transmitted training symbols from the M transmit antennas
are orthogonal to each other [26]. The only difference between
the proposed semi-blind scheme and the blind one is that all
the members of the initial channel population for the RWBS
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channel estimator are randomly chosen for the blind scheme
while for the semi-blind scheme the LSCE ȞLSCE is used
as one of the members of the initial channel population.
The proposed semi-blind method requires less computational
complexity than the blind one and the number of training
symbols NT required is very small, as will be demonstrated
in the simulation example.

V. SIMULATION EXAMPLE

The simulated MIMO system consisted of M = 3 transmit
antennas and P = 3 receive antennas. Table I shows this
simulated 3×3 MIMO channel matrix. The modulation scheme
was BPSK and the length of data sequences was N = 50. The
simulation was carried out using both the proposed blind and
semi-blind methods. For the semi-blind scheme, the number
of training symbols was NT = 4. In practice the value of
the likelihood metric JMSE(Ȟ) is all what the upper-level
RWBS optimiser can have, and the convergence of the scheme
can only be observed through this MSE. However, in the
simulation the performance can also be assessed by means
of the mean channel error (MCE), which we define as

MCE =
1

M × P

M∑
m=1

P∑
p=1

∣∣∣hp,m − Ĥ∗(p,m)
∣∣∣ . (15)

Figs. 1 and 2 show the evolutions of the MSE and MCE
averaged over 20 different runs for a range of different SNR
values, respectively, obtained by the proposed blind scheme.
From Fig. 1 it can be seen that the MSE converged to the noise
floor, and at SNR= 20 dB the scheme required approximately
2000 OHRSA-ML evaluations to converge. Note that the
data length N = 50 was very small and each OHRSA-
ML evaluation was performed very fast. The accuracy of the
blind scheme can be seen from Fig. 2, where we can see
that the proposed blind scheme achieved a high accuracy in
estimating the MIMO channel matrix. This accuracy can be
seen also from Fig. 3 which shows the bit error rates (BERs)
calculated by the ML detectors using the estimated channel
matrix obtained by the proposed blind method and the perfect
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Fig. 3. Bit error rate comparison for the proposed blind scheme and the
perfect channel. The length of data samples for blind scheme was N = 50.

channel, respectively. For the proposed blind scheme, the BER
was averaged over 20 different runs. From Fig. 3, we can see
that the proposed blind scheme only induces less than half dB
degradation in SNR, compared with the perfect channel case.
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Fig. 4. Mean square error against the number of OHRSA-ML evaluations
averaged over 20 different runs for a range of SNR values using the proposed
semi-blind ML channel and data estimation scheme, where N = 50 and
NT = 4.
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Fig. 5. Mean channel error against the number of OHRSA-ML evaluations
averaged over 20 different runs for a range of SNR values using the proposed
semi-blind ML channel and data estimation scheme, where N = 50 and
NT = 4.

For the same 3 × 3 MIMO system listed in Table I, Figs. 4
and 5 show the evolutions of the MSE and MCE averaged
over 20 different runs for a range of SNR values, respectively,
obtained by the proposed semi-blind scheme with NT = 4
training symbols. Fig. 6 depicts the BERs of the ML detectors
calculated using the estimated channel obtained by the semi-
blind scheme and the perfect channel, respectively. We also
used the LSCE technique to estimate the MIMO channel and
the resulting channel estimate was then used to detect the
data by the ML detector. The BER results obtained using
this training based LSCE technique with different training
symbols are also shown in Fig. 6. The BER curve of the
LSCE technique using 32 training symbols, not shown here,
were indistinguishable from the BER curve of the semi-blind
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scheme. It can be seen from Fig. 4 that the proposed semi-blind
method required approximately 300 OHRSA-ML evaluations
to converge, and each OHRSA-ML run is only with respect to
a data length of N = 50. This should be compared with the
semi-blind MIMO estimation scheme of [17], which requires
a data length of N = 200 to work properly.
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Fig. 6. Bit error rate comparison for the proposed semi-blind scheme, the
perfect channel and the case of the LSCE training based technique with
various training lengths. For the semi-blind method, N = 50 and NT = 4.

VI. CONCLUSIONS

A blind joint ML scheme for MIMO channel estimation and
data detection has been proposed by iterating between the
RWBS channel estimator and the OHRSA-aided ML detector.
Simulation study has shown that the proposed blind scheme
requires a very short data length to achieve excellent accuracy,
at the cost of relatively high computational complexity. Like
any pure blind method, the proposed blind scheme can only
find the joint ML solution up to some permutation and scaling
ambiguity. By using a very few pilot training symbols to
resolve this ambiguity and to initialise the RWBS channel
estimator, a semi-blind scheme has been proposed. It has been
shown that this semi-blind scheme significantly reduces the
computational complexity and has a slightly better perfor-
mance, in comparison with the blind scheme.
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