
A Linear Approximation Method
for the Shapley Value

Shaheen S. Fatima ∗
Department of Computer Science, Loughborough University, Loughborough LE11 3TU,

U.K.

Michael Wooldridge

Department of Computer Science, University of Liverpool, Liverpool L69 7ZF, U.K.

Nicholas R. Jennings

School of Electronics and Computer Science, University of Southampton, Southampton
SO17 1BJ, U.K.

Abstract

The Shapley value is a key solution concept for coalitional games in general and voting
games in particular. Its main advantage is that it provides a unique and fair solution, but
its main drawback is the complexity of computing it (e.g for voting games this complexity
is #P-complete). However, given the importance of the Shapley value and voting games,
a number of approximation methods have been developed to overcome this complexity.
Among these, Owen’s multi-linear extension method is the most time efficient, being linear
in the number of players. Now, in addition to speed, the other key criterion for an approxi-
mation algorithm is its approximation error. On this dimension, the multi-linear extension
method is less impressive. Against this background, this paper presents a new approxima-
tion algorithm, based on randomization, for computing the Shapley value of voting games.
This method has time complexity linear in the number of players, but has an approxima-
tion error that is, on average, lower than Owen’s. In addition to this comparative study, we
empirically evaluate the error for our method and show how the different parameters of
the voting game affect it. Specifically, we show the following effects. First, as the num-
ber of players in a voting game increases, the average percentage error decreases. Second,
as the quota increases, the average percentage error decreases. Third, the error is different
for players with different weights; players with weight closer to the mean weight have a
lower error than those with weight further away. We then extend our approximation to the
more general k-majority voting games and show that, for n players, the method has time
complexity O(k2n) and the upper bound on its approximation error is O(k2/

√
n).

Key words: Coalitional game theory, Shapley value, Approximation method

Preprint submitted to Artificial Intelligence 20 May 2008

1 Introduction

Coalition formation is a key form of interaction in multi-agent systems. It is the
process of bringing together two or more agents so as to achieve goals that individ-
uals on their own cannot, or to achieve them more efficiently [2,19,24,23]. Often,
in such situations, there is more than one possible coalition and a player’s payoff
depends on which one he joins. Given this, there are two key problems in this area.
First, to ensure that none of the parties in a coalition has any incentive to break
away from it and join another coalition. Second, to determine how the players split
the gains from cooperation between themselves.

In this context, cooperative game theory deals with the problem of coalition for-
mation and offers a number of solution concepts that possess desirable properties
like stability, fair division of joint gains, and uniqueness [28,24]. Cooperative game
theory differs from its non-cooperative counterpart, in that, it allows the players to
form binding agreements, and so there is often an incentive to work together to
receive the largest total payoff. Also, unlike non-cooperative game theory, coop-
erative games are not specified through a description of the strategic environment
(including the order of the players’ moves and the set of actions at each move)
and the resulting payoffs. Instead, cooperative game theory reduces this collec-
tion of data to the coalitional form, where each coalition is represented by a single
real number. In short, there are no actions, moves, or individual payoffs. The chief
advantage of this approach, at least in multiple agent environments, is its practical
usefulness. Specifically, it allows the abstraction of dealing with groups, rather than
the individuals, and so much larger problems can be handled.

In more detail, cooperative game theory offers a number of solution concepts (such
as the core, kernel, and Shapley value [24]) and a number of multi-agent systems
researchers have used and extended these to facilitate automated coalition forma-
tion [34,35,32,27]. In so doing, a key challenge, from the multi-agent systems per-
spective, is to study the computational aspects of the solutions that game theory
provides. This is important because many of these solutions are computationally
hard to find and so of limited use in building actual systems. For example, comput-
ing the core is often NP-complete [10], while computing the Shapley value is often
#P-complete [12].

To this end, this paper is concerned with efficiently computing the Shapley value
[33]. In more detail, a player’s Shapley value reflects how much that player con-
tributes to a coalition — that is, how much value the agent adds to a coalition. An
agent who never adds much has a small Shapley value, while an agent that always

∗ Corresponding author.
Email addresses: S.S.Fatima@lboro.ac.uk (Shaheen S. Fatima),

M.J.Wooldridge@csc.liv.ac.uk (Michael Wooldridge),
nrj@ecs.soton.ac.uk (Nicholas R. Jennings).

2

makes a significant contribution has a high Shapley value. Now, the main advan-
tage of the Shapley value, over solution concepts such as the core and the kernel, is
that it provides a solution that is both unique and fair. The former is desirable be-
cause it leaves no ambiguity; there is only one possible solution for a game and so
the players know what they will gain from playing it. The latter property relates to
how the gains from cooperation are split between coalition members. In this case, a
player’s Shapley value is proportional to the contribution he makes as a member of
a coalition; the greater the contribution, the higher its value. Thus, from a player’s
perspective, both uniqueness and fairness are desirable properties.

However, while uniqueness and fairness are both desirable properties, the Shap-
ley value has one major drawback: for many coalitional games, it cannot be deter-
mined in polynomial time. One of the most common coalitional games is the voting
game (which is a means for the players to reach a consensus) and for this game,
finding the Shapley value is #P-complete [12] (meaning that it is as hard as count-
ing satisfying assignments of propositional logic formulae [26, p442]). Since #P-
completeness subsumes NP-completeness, this implies that computing the Shapley
value for the voting game will be intractable in general. In other words, it is prac-
tically infeasible to try to compute the exact Shapley value. However, the voting
game has practical relevance not only in the context of multi-agent systems [29,35],
but also in human settings, as it is an important means of reaching consensus be-
tween multiple parties.

Against this background, a number of approximation methods have been developed
in order to overcome the problem of computational hardness of finding the exact
Shapley value (see Section 3 for details). These methods vary in terms of their
time complexities. Among these, however, Owen’s multi-linear extension method
[25] for a weighted voting game is one of the most time efficient, requiring time
linear in the number of players. However, the accuracy with which it approximates
the real value can be an issue in some cases (the method works well for those
games for which all the players have small weights). To combat this, this paper
presents a new approximation algorithm for computing the Shapley value for a
weighted voting game. Our method is based on the technique of randomization
and has time complexity that is linear in the number of players, but has a lower
approximation error than Owen’s method. In addition to this comparative study, we
empirically evaluate the error for our method in a range of environments and show
how the different parameters of the voting game affect the error. We then extend
our approximation method (for a weighted voting game) to the more general k-
majority voting games. For this, we show that for n players, the time complexity of
our extended method is O(k2n) and the upper bound on its approximation error is
O(k2/

√
n).

By undertaking this work, this paper makes a number of important contributions
to the state of the art. First, and most importantly, it presents a new computation-
ally efficient approximation algorithm for the Shapley value for weighted voting

3

games. The proposed method has linear time complexity, and is better than Owen’s
method in terms of its error of approximation. Second, we extend our approxi-
mation method for a weighted voting game to the more general k-majority voting
games. This is the first such method for this game. Finally, we provide a compre-
hensive error analysis of our approximation method. As mentioned earlier, we not
only consider the worst case and obtain the upper bound on the error, but we also
consider a general case and show how the different parameters of the voting game
affect this error. This analysis distinguishes our work from the existing literature on
approximation methods in that these have no error analysis 1 (neither for the worst,
nor the general case). Nevertheless, we believe such analysis is essential because
it enables us to present a complete picture of our method’s performance in terms
of how far the approximation can be from the exact Shapley value and how the
different parameters of the voting game affect it.

The remainder of the paper is organized as follows. Section 2 defines the Shap-
ley value more formally and details voting games studied in this paper. Section 3
discusses related literature. In Section 4, we present our method for finding the ap-
proximate Shapley value and analyze its approximation error in Section 5. In Sec-
tion 6, we experimentally evaluate our method’s approximation error and compare
it with that of Owen’s method. Section 7 concludes. Appendix A gives a summary
of notation employed throughout the paper. Appendices B to F provide proofs of
theorems. Appendix G and H give details on the results and data used for our
experiments.

2 Background

We begin by introducing coalitional games and the Shapley value. We then define
a weighted voting game and, its generalized form of a weighted k-majority game.

2.1 Coalitional games and the Shapley value

A coalition game is where groups of players (‘coalitions’) may enforce coopera-
tive behavior between their members. Hence, the game is a competition between
coalitions of players, rather than between individual players (c.f. non-cooperative
game theory). Now, depending on how the players measure utility, coalitional game
theory is split into two parts. If the players measure utility or the payoff in the same
units and there is a means of exchange of utility, such as side payments, we say

1 Error bounds for approximate coalition structure generation have been studied in [31],
but there has been no such study in the context of finding the approximate Shapley value.

4

the game has transferable utility; otherwise it has non-transferable utility. More
formally, a coalitional game with transferable utility, 〈N, v〉, consists of [24]:

(1) a finite set, N = {1, 2, . . . , n}, of players and
(2) a function, v, that associates with every non-empty subset S of N (i.e., a coali-

tion) a real number v(S) that indicates the worth of S.

For each coalition S, v(S) is the total payoff that is available for division among the
members of S. Note that, viewed in this abstract way, a coalitional game gives no
indication of how a coalition’s value might or should be divided amongst coalition
members. Coalitional games with non-transferable payoffs differ from those with
transferable payoffs in that they associate with each coalition, a set of payoff vectors
that is not necessarily the set of all possible divisions of some fixed amount. The
focus of this paper is on weighted voting games (described in Section 2.2) which
have transferable payoffs.

In a voting game, the players will only join a coalition if they expect to gain from
it. Here, the players are allowed to form binding agreements, and so there is often
an incentive to work together to receive the largest total payoff. The problem then
is how to split the total payoff between the players. In this context, Shapley [33]
constructed a solution using an axiomatic approach. In particular, he defined a value
for games to be a function that assigns to a game 〈N, v〉, a number ϕi(N, v) for each
i in N . This function satisfies three axioms [30,33]:

(1) Symmetry: The names of the players play no role in determining the value.
That is, two players who are identical with respect to what they contribute to
a coalition should have the same Shapley value.

(2) Carrier: The sum of ϕi(N, v) for all players i in any carrier C equals v(C).
Here carrier C is simply a subset of N such that v(S) = v(S ∩ C) for any
subset of players S ⊂ N .We obtain the error e(ϕ̄i) by propagating the error
e(EΔX−1

i) to all coalitions between size X = 1 to X = n. This is done
using the following error propagation rules [37]. Let x and y be two random
variables with errors e(x) and e(y) respectively. Then, from [37] we have the
following propagation rules :
R2 The error in the random variable z = x + y is:

e(z) = e(x) + e(y)

R3 If z = kx where the constant k has no error, then the error in z is:

e(z) = |k|e(x)

R4 The error in the random variable z = x× y is:

e(z) = e(x) + e(y)

Note that for X = 1 (i.e., player i is the first member of a coalition), e(EΔX−1
i) =

5

0 since we know that a one player coalition can never win and i’s marginal
contribution to such a coalition is therefore known to be zero. Also, recall
from Theorem 2, that a player’s approximate Shapley value is the average
of its approximate marginal contributions to coalitions of size 1 ≤ X ≤ n.
Hence, as per rules R2, R3, and R4, the absolute error (e(ϕ̄i)) is the average
of the approximation errors e(EΔX−1

i) for all coalitions between the sizes
X = 1 and X = n.

(3) Additivity: This specifies how the values of different games must be related to
one another. It requires that for any games ϕi(N, v) and ϕi(N, v′), ϕi(N, v)+
ϕi(N, v′) = ϕi(N, v + v′) for all i in N .

Shapley showed that there is a unique function that satisfies these three axioms.
This value gives a fair division of the gains of cooperation between the members
of a coalition. Thus, one can think of the Shapley value as a measure of the utility
of risk neutral players in a game [30].

Having given these intuitions, we now turn to their formalization. Specifically, we
first introduce notation and then define the Shapley value. Let S denote the set
N − {i} and fi : S → 2N−{i} be a random variable that takes its values in the set
of all subsets of N − {i}, and has the probability distribution function (g) defined
as:

g(fi(S) = S)=
|S|!(n− |S| − 1)!

n!

The random variable fi is interpreted as the random choice of a coalition that player
i joins. Then, a player’s Shapley value is defined in terms of its marginal contri-
bution. Thus, the marginal contribution of player i to coalition S with i /∈ S is a
function Δiv that is defined as follows:

Δiv(S) = v(S ∪ {i})− v(S) (1)

This means a player’s marginal contribution to a coalition S is the increase in the
value of S as a result of i joining it. A player’s Shapley value is defined in terms of
its marginal contribution as follows [30,33]:

Definition 1 The Shapley value (ϕi) of the game 〈N, v〉 for player i is the average
of its marginal contribution to all possible coalitions:

ϕi =
∑

S⊂N

|S|!(n− |S| − 1)!

n!
×Δiv(S) (2)

The Shapley value may be interpreted as follows. Suppose that all the players are
arranged in some order, all orderings being equally likely. Then ϕi(N, v) is the

6

expected marginal contribution, over all orderings, of player i to the set of players
who precede him.

Now, the method for finding a player’s Shapley value depends on the definition
of the value function (v). This function is different for different games, but here
we focus specifically on the voting game because the computation of its Shapley
value is computationally hard. Furthermore, voting games are an important way of
modeling situations where there are multiple agents, different agents have different
preferences, and they want to reach a consensus. For these games, the Shapley value
gives an indication of how much influence each agent has on reaching a consensus.

2.2 Weighted voting games

Let n be a set of players that may, for example, represent shareholders in a company
or members in a parliament. A weighted voting game [24] is then a game G =
〈N, v〉 in which:

v(S) =

⎧⎪⎨
⎪⎩

1 if w(S) ≥ q

0 otherwise

for some q ∈ IR+ and wi ∈ IR+, where:

w(S)=
∑
i∈S

wi

for any coalition S. Thus, wi is the number of votes that player i has and q is the
number of votes needed to win the game (i.e., the quota).

For this game (denoted 〈q; w1, . . . , wn〉), a player’s marginal contribution is either
zero or one. This is because the value of a coalition is either zero or one. A coali-
tion with value zero is called a “losing coalition” and with value one a “winning
coalition”. If a player’s entry to a coalition changes it from losing to winning, then
the player’s marginal contribution for that coalition is one; otherwise it is zero. A
coalition S is said to be a swing for player i if S is losing but S ∪ {i} is winning.

A well known example of weighted voting is the Electoral College of the United
States, where the players are the 50 states plus the District of Columbia; each player
casts a number of votes equal to the number of that state’s representatives plus
senators. Another example is a company of shareholders where each shareholder
casts a number of votes proportional to the number of shares he owns.

Speaking more broadly, however, a weighted voting game is just a special case of
a more general setting called a k-majority game (for k = 1, we have the weighted
voting game). This general version is defined as follows.

7

2.3 k-majority games

For the set N of n players, a weighted k-majority game (v1∧ . . .∧ vk) is a situation
in which vt = [qt; wt

1, . . . , w
t
n] for 1 ≤ t ≤ k are weighted voting games and

(v1 ∧ . . . ∧ vk)(S) =

⎧⎪⎨
⎪⎩

1 if wt(S) ≥ qt for 1 ≤ t ≤ k

0 otherwise

where wt(S) =
∑

i∈S wt
i .

The k-majority game finds application, for example, in the European Union en-
largement. The Council of ministers of the European Union represents the national
governments of the member states. The Council uses a voting system of qualified
majority to pass new legislation. The Nice European Council established two deci-
sion rules for the European Union enlarged to 27 countries. One of these two rules
is a weighted triple majority game v1 ∧ v2 ∧ v3 described in the following example
(taken from [5]):

Example 1 Each member state represented in the future Council is considered an
individual player. The players in the Council of the European Union enlarged to 27
countries are: {Germany, United Kingdom, France, Italy, Spain, Poland, Romania,
The Netherlands, Greece, Czech Republic, Belgium, Hungary, Portugal, Sweden,
Bulgaria, Austria, Slovak Republic, Denmark, Finland, Ireland, Lithuania, Latvia,
Slovenia, Estonia, Cyprus, Louxembourg, Malta}. The decision rule is a weighted
triple majority game v1 ∧ v2 ∧ v3, where the three weighted voting games corre-
sponding to votes, countries, and population are the following:

v1 = {255; 29, 29, 29, 29, 27, 27, 14, 13, 12, 12, 12, 12, 12, 10, 10, 10, 7, 7, 7, 7, 7,

4, 4, 4, 4, 4, 3}
v2 = {14; 1, 1}
v3 = {620; 170, 123, 122, 120, 82, 80, 47, 33, 22, 21, 21, 21, 21, 18, 17, 17, 11,

11, 11, 8, 8, 5, 4, 3, 2, 1, 1}

The game v3 is defined by assigning to each country, a number of votes equal to
the rate per thousand of its population over the total population and the quota
represents 62% of the total population. So a vote will be favourable if it counts
on the support of 14 countries with at least 255 votes, and at least 62% of the
population.

Although voting games have so far mostly been used in human contexts, they are
now being increasingly studied in the context of multi-agent systems [29,32,35].
In systems composed of autonomous agents, each agent has a range of problem
solving capabilities and resources at its disposal. While such agents are typically

8

DE-SHAPLEYVALUE

1. For each S ⊂ N do the following

For i from 1 to n do the following

If i ∈ N − S and q − wi ≤ w(S) < q then ϕi ← ϕi + |S|!(n − |S| − 1)!/n!

2. Return ϕi

Table 1
Direct enumeration algorithm to find the Shapley value for player i.

self interested, often there are benefits to be obtained from pooling resources. In
such cases, the agents need to cooperate and coordinate their activities to achieve
joint goals. Since the individual agents are autonomous, different agents may have
different preferences over these joint goals. In such scenarios, voting is an effective
mechanism for the agents to reach consensus on what goals to achieve. Given this,
in what follows, we will analyze voting games in the abstract without reference to
their different contexts.

3 Related work

For a weighted voting game, a number of methods have been proposed for finding
the Shapley value. These methods can be divided into two types. The first compute
the exact value. The second compute the approximate value. These methods vary
in their approach and in their computing requirements. None is universally ideal.
Given this, in what follows, we discuss the main methods in each category and
highlight their main advantages and limitations.

3.1 Exact methods

The following are the four main methods that can be classified as exact:

(1) Direct enumeration
(2) Generating functions [22,8,36]
(3) Conitzer and Sandholm’s method [9]
(4) Ieong and Shoham’s method [17,18]

In more detail, the direct enumeration method directly applies Equation 2 to com-
pute the Shapley value for player i. The algorithm for doing this is described in
Table 1. Since the number of subsets of the set (N = {1, 2, . . . , n}) of players is
2n, evaluating the Shapley value for player i has time complexityO(2n). The disad-
vantage of this method is that it has exponential time complexity, but its advantage

9

is that it is a simple algorithm and it can reasonably be applied for finding the exact
value for games with a small number of players.

The generating functions method [21,22] was proposed by Mann and Shapley. This
finds the exact Shapley value in terms of the coefficients of a polynomial generated
by a function (see [39] for details on generating functions). The disadvantage of
this method is that it uses a substantial amount of memory, but its advantage is
that it has polynomial time complexity – O(Cn2) – where C is the number of
possible vote totals [6]. For games where every player has the same weight, there
are n+1 possible vote totals. For games where each player has a unique weight, the
number of possible vote totals may be 2n. Therefore, this method is practical for
games in which many players have the same weights. Methods based on generating
functions have also been proposed in [8,36,1]. Generally speaking, these methods
also tradeoff memory space for computation time and so cannot easily scale to
larger numbers of agents.

Conitzer et al [9] use a method to find the exact value. However, their method can be
used only if a characteristic function game is represented in a specific decomposed
form. Also, this method has exponential time complexity and so it does not scale
well.

Finally, the method proposed by Ieong et al [17,18] assumes that the Shapley value
of a component of a given coalitional game is given by an oracle. Then, on the basis
of this assumption, it aggregates these values to find the value for the overall game.
The advantage of this method is that it has polynomial time complexity. However,
its disadvantage is that it can be used only if the coalitional game is represented as
a “marginal contribution net”.

To summmarize, all the above methods give the exact Shapley value, but they each
have disadvantages; including requiring exponential time (as in the case with direct
enumeration and, in some cases, with Mann and Shapley’s), a large memory space
(as in the case of Mann and Shapley), or a specific representation 2 for the voting
game (as is the case with Conitzer et al and Ieong et al). In order to overcome these
problems, a number of approximation methods were developed.

3.2 Approximation methods

The methods that have been proposed to approximate the Shapley value are as
follows:

(1) Monte Carlo simulation method [21]

2 Note that transforming a voting game into these specific forms requires additional com-
putational time.

10

(2) Multi-linear extension (MLE) method [25]
(3) Modified MLE method [20]
(4) Random permutation method [40]

The earliest approximation method was proposed by Mann and Shapley [21]. This
method is based on Monte Carlo simulation and estimates the Shapley value from
a random sample of coalitions. This is done as follows. Suppose a coalition S is
selected by randomly sampling the players. Define a random variable X for each
player. This X is one for player i if it is the swing player for the coalition, and
zero otherwise. Then, the expectation of X is E[X] = E[|S|!(n−1−|S|)!X

n!
] = ϕi

and the variance is V ar(X) = V ar[|S|!(n−1−|S|)!X
n!

] = ϕi(1 − ϕi). Now take a
sequence of m independent drawings, X1, . . . , Xm, with corresponding coalition
sizes |S1|, . . . , |Sm|. Then, the estimated Shapley value (ϕ̂i) for i is:

ϕ̂i =
1

m

m∑
j=1

|Sj|!(n− |Sj| − 1)!

n!
Xj

with variance V ar(ϕ̂i) = ϕi(1 − ϕi)/m. The variance decreases as m increases.
The disadvantage of this method is that it does not give details of how the samples
are to be drawn, which has a significant impact on the method’s effectiveness. Given
this, it it is hard to assess the accuracy of this method. However, the advantage is
its linear time complexity.

For the sampling approach, Bachrach and Rosenschein provide an analysis of the
error bounds and minimum number of samples required to achieve a given accu-
racy [4]. In more detail, they give randomized approximation methods for power in-
dices such as the Shapley value, which can be used for any simple coalitional game.
They show that their approximation methods approach the optimal, and give lower
bounds for both deterministic and randomized approaches to computing power in-
dices.

The MLE approximation method proposed by Owen [25] works as follows. Con-
sider player i. Let Ti be a coalition such that Ti is losing, but Ti ∪ {i} is winning.
Then, as per Equation 2, i’s Shapley value is:

ϕi =
∑
Ti

|Ti|!(n− |Ti| − 1)!

n!
(3)

Equation 3 for the Shapley value can be rewritten by noting that the term inside the
summation is a beta function:

B(t + 1, n− t) =
t!(n− t− 1)!

n!
=
∫ 1

0
xt(1− x)n−t−1dx (4)

11

where t = |Ti| is the number of players in Ti. The integrand on the right hand side
of Equation 4, xt(1−x)n−t−1, can be interpreted as the probability that the random
subset Ti appears, when x is the probability that any member joins Ti, assumed
constant and independent for all players j, j ∈ N − {i}. Summing this expression
over all swings gives the probability of a swing for i. Call this probability f i(x):

fi(x) =
∑
Ti

xt(1− x)n−t−1. (5)

Integrating x out of Equation 4 gives the Shapley value, because substituting Equa-
tion 4 in Equation 3 gives:

ϕi =
∑
Ti

∫ 1

0
xt(1− x)n−t−1dx =

∫ 1

0

(∑
Ti

xt(1− x)n−t−1
)
dx

=
∫ 1

0
fi(x)dx. (6)

Thus, the Shapley value can be evaluated by integrating fi(x). But as per Equa-
tion 5, this requires evaluating a function whose size doubles every time a new
player is added. Obviously, this method has exponential time complexity. In order
to overcome this problem, Owen approximated fi(x) as follows. Assuming that
each player votes in the same way as i with probability x, independently of others,
a random variable vi(x) is defined that counts the number of votes cast by others
on the same side as i. Its mean (μ̄i) and variance (ν̄i) are:

μ̄i(x) =E(vi(x)) = xw(N − {i}) = xw(N)− xwi (7)

and

ν̄i(x)= V ar(vi(x)) = x(1− x)h(N − {i})
= x(1− x)h(N)− x(1− x)w2

i , (8)

where h(T) =
∑

i∈T w2
i is the sum of squared weights.

In large games with many small weights and no large weights, vi(x) will be ap-
proximately normally distributed, and the desired swing probability:

fi(x) = Pr[q − wi ≤ vi(x) < q] (9)

can be obtained approximately using the normal distribution function N (.) as fol-
lows:

12

fi(x)≈N
(

q − μ̄i(x)

ν̄i(x)

)
−N

(
q − μ̄i(x)− wi

ν̄i(x)

)
. (10)

The advantage of this method is its linear time complexity.

The modified MLE method [20] is an extension of the above described MLE method
that trades-off computational time in order to improve the error of approximation.
In more detail, the modified MLE method combines the essential features of di-
rect enumeration and MLE in order to improve the accuracy of the MLE method.
Specifically, the players are divided into two subsets: major players with large
weights L = {1, 2, . . . , l}, and minor players N − L. This combined method
treats the major players using enumeration as in the direct approach, but treats
minor players using Owen’s MLE approximation technique. Large values of l will
improve accuracy, but will also increase computation time. The advantage of this
method is that it generates a better approximation than Owen’s MLE method, but
its disadvantage is that it has exponential time complexity:O(2 l).

Finally, an an approximation method was proposed by Zlotkin and Rosenschein
[40]. This is a random permutation mechanism where the players choose a ran-
dom permutation and form the full coalition, one player after another, according
to the chosen permutation. Here each player gets a utility equal to its contribution
to the coalition at the time of joining it. If each permutation has equal chance of
being chosen, then this mechanism gives each player an expected utility equal to its
Shapley value. This method requires the players to agree on an all-or-nothing deal.
The advantage of this method is its linear time complexity. However, for weighted
voting games, getting the players to agree on an all-or-nothing deal may be an issue
because, for these games, there is only one swing player for each possible coalition.
So only one player gets a utility of one and all others get zero utility.

In summary, the existing literature on methods for finding the Shapley value have
two key drawbacks. First, it only describes methods for finding an approximate
Shapley value, but there is no associated error analysis available. Second, none of
these methods can easily be extended to the generalized k-majority game. In or-
der to overcome these drawbacks, we present new approximation methods for both
weighted voting games and k-majority games. These methods are computationally
efficient and have polynomial time complexity. Furthermore, we provide a compre-
hensive error analysis in terms of their worst and average case performance.

4 A new method for the approximate Shapley value

This section details the main contribution of the paper, namely a new method for
finding the approximate Shapley value. As already stated, our approach is based on
randomized algorithms, which are one of the most commonly used approaches for

13

finding approximate solutions to problems whose exact solutions are hard to com-
pute. In short, these algorithms tradeoff accuracy for computational time. More
specifically, a randomized algorithm is one that, during some of its steps, makes
random choices [3]. Moreover, since such algorithms generate approximate solu-
tions, their performance is typically evaluated in terms of two criteria [3]: their time
complexity and their error of approximation (i.e., the difference between the exact
solution and its approximation).

Against this background, we present a new randomized algorithm for finding the
approximate Shapley value for a weighted voting game. We then extend this method
to k-majority games. Finally, we evaluate the approximation error for these algo-
rithms; both theoretically to obtain an upper bound (in Section 5) and experimen-
tally in order to obtain a more typical average case (in Section 6).

4.1 For a weighted voting game

The intuition behind the proposed method is as follows. As per Definition 1, in or-
der to find a player’s Shapley value, we first need to find its marginal contribution
to all possible coalitions. For n players, there are 2n−1 possible coalitions. Finding
a player’s marginal contribution to each of these 2n−1 possible coalitions is com-
putationally infeasible. So we do not attempt to find the marginal contribution to
each possible coalition. Rather, we consider n random coalitions. The first coali-
tion is of size one, the second is of size two, and so on. We find a player’s approx-
imate marginal contribution to each of these n coalitions. The average of all these
marginal contributions gives the player’s approximate Shapley value. Theorem 1
characterizes a player’s approximate marginal contribution to a random coalition
of size X , and Theorem 2 characertrizes its approximate Shapley value.

In what follows, ϕi (ϕ̄i) denotes the exact (approximate) Shapley value for player i
for a weighted voting game. Also, the approximate marginal contribution of player
i to a random coalition of size X is denoted EΔX

i .

Theorem 1 For an n player weighted voting game with mean weight μ and vari-
ance ν, player i’s approximate marginal contribution (EΔX

i) to a random coalition
of size X (1 ≤ X ≤ n) is:

EΔX
i =

1√
(2πν/X)

∫ b

a
e−X

(x−μ)2

2ν dx. (11)

where a = (q − wi)/X , b = (q − ε)/X , and wi is player i’s weight.

Proof: To find a player’s approximate marginal contribution to a random coalition,
we use the following rule from sampling theory. Let the players’ weights in N be

14

 a b
 Weight

b + e(σX)

a − e(σX)

A

B

C

Z
1

Z
2

Fig. 1. A normal distribution for the players’ weights in a coalition of size X.

denoted w1, w2, . . . , wn. Irrespective of how these weights are distributed, let the
mean weight be μ and the variance ν. From this set (N) if we randomly draw a
sample coalition, then the mean of the players’ weights in the sample coalition is
given by the following rule [16]:

R1: If w1, w2, . . . , wX is a random sample of size X drawn from ‘any distribu-
tion’ with mean μ and variance ν, then the sample mean (i.e., 1

X

∑X
i=1 wi) has

an approximate Normal distribution,N , with mean μ and variance ν
X

(the larger
the X the better the approximation 3).

From Section 2.2, we know that for a weighted voting game, the marginal contri-
bution of player i to a random coalition of size X is one if the total weight of the X
players in the coalition is greater than or equal to q −wi but less than q − ε (where
ε is an inifinitesimally small quantity). Otherwise, its marginal contribution is zero.
Thus, the approximate marginal contribution of player i to a random coalition is the
area under the curve defined byN (μ, ν

X
) in the interval [a, b] where a = (q−wi)/X

and b = (q − ε)/X . This area is shown as the region B in Figure 1 (the dotted line
in the figure is μ – the mean of the weights for a coalition of size X). If the mean
weight in a coalition of size X is a, then the sum of weights of the coalition is
q − wi. Likewise, if the mean weight of a coalition of size X is b, then the sum of
weights of the coalition is q − ε. Hence, i’s approximate marginal contribution to
X is:

EΔX
i =

1√
(2πν/X)

∫ b

a
e−X

(x−μ)2

2ν dx.

�

Note that, in order to find EΔX
i , we do not actually draw sample coalitions. Rather,

we use ruleR1 to find the probability distribution (i.e., normal), the mean (i.e., μ),

3 Also, for large X, any measurement done on a sample drawn with replacement is the
same as that for a sample drawn without replacement [16].

15

and the error (i.e., ν/X) in the approximate weight in a random coalition of size
X . The advantage of not having to draw samples will be explained in detail after
presenting our method for finding an approximate Shapley value.

We now formulate the approximate Shapley value of player i in terms of its marginal
contribution. This is done in Theorem 2.

Theorem 2 For an n player weighted voting game, player i’s approximate Shapley
value is:

ϕ̄i =
1

n

n∑
X=1

EΔX−1
i (12)

where EΔX
i is as defined in Theorem 1.

Proof: Consider player i. In order to find i’s Shapley value, we must consider
all possible ways in which i can join in a coalition. For a game of n players, i
can join a coalition as the Xth the member where 1 ≤ X ≤ n. If i joins as the
Xth member, there are X − 1 players that precede it. Then i joins and then the
remaining n − X players join in. From Section 2.2, we know that the value of a
coalition for a weighted voting game depends on the sum of weights of the players
in the coalition. In other words, this value does not depend on the order in which the
players joined the coalition. It follows that i’s marginal contribution to the coalition
of X − 1 players that precede it depends on the weights of these players and not
on the order in which they formed a coalition. Also, according to rule R1, the
approximate weight in a random coalition of size X − 1 depends on the coalition
size X − 1 and not on the actual players in it. Consequently, EΔX−1

i also depends
only on X .

Now, there are P (n−1, X−1) possible coalitions of X−1 players (where P (n−
1, X − 1) denotes the number of permutations of X − 1 players drawn from the
set of n − 1 players excluding player i) that precede i. Also, the remaining n −
X players that join after i can do so in (n − X)! ways. Thus, there are P (n −
1, X−1)× (n−X)! possible coalitions where i joins as the Xth member. Since i’s
approximate marginal contribution to a random coalition of size X − 1 is EΔX−1

i ,
its total marginal contribution to all possible coalitions where i joins a the Xth
member is P (n − 1, X − 1)(n − X)!EΔX−1

i . Given this, i’s approximate total
marginal contribution to all possible coalitions (i.e., for all possible values of X) is∑n

X=1 P (n − 1, X − 1)(n − X)!EΔX−1
i . It follows that i’s approximate Shapley

value, which is its average marginal contribution to all n! possible coalitions (see
Definition 1) is:

16

ϕ̄i =
1

n!

n∑
X=1

P (n− 1, X − 1)(n−X)!EΔX−1
i

=
(n− 1)!

n!

n∑
X=1

EΔX−1
i

=
1

n

n∑
X=1

EΔX−1
i

�

Algorithm 1 ShapleyValueWVG(n, q, μ, ν, wi)
n: Number of players
q: Quota for the game
μ: Mean weight of the players in N
ν: Variance in the weights of the players in N
wi: Player i’s weight

1: Ti ⇐ 0
2: for X = 0 to n− 1 do
3: a⇐ (q − wi)/X; b⇐ (q − ε)/X

4: EΔX
i ⇐ 1√

2Πν/X

∫ b
a e−X

(x−μ)2

2ν dx

5: Ti ⇐ Ti + EΔX
i

6: end for
7: ϕ̄i ⇐ Ti/n
8: return ϕ̄i

Having got the approximate Shapley value, we are now ready to present this com-
putation in Algorithm 1. In more detail, Step 1 does the initialization. In Step 2, we
vary X between 0 and n − 1 and repeatedly do the following. Player i’s approxi-
mate marginal contribution to a random coalition of size X is found in Step 3. Step
4 finds the sum of these n marginal contributions. The average of these marginal
contributions is found in Step 6 – and this is an approximate Shapley value for
player i.

The key advantages of the method used in Algorithm 1 are as follows. First, it does
not require making measurements on randomly drawn samples. This is because our
method is based on R1 which gives an approximate distribution for the weights in
a random coalition. Contrast our method with that of Mann and Shapley [21,22]
which estimates an approximate Shapley value by making measurements on ran-
domly drawn samples. The key disadvantage of actually drawing samples is that
the estimate depends on how the samples are drawn; if we change the way in which
samples are drawn, then the estimate changes. The method we propose is indepen-
dent of any such details because it does not require the actual drawing of samples.
The second advantage of our method is that it only requires the number of players,

17

the quota, the mean weights, and the variance in the weights – the weights of the
individual players are not needed. The third advantage of our method is that it can
easily be extended to k-majority games. Having detailed the algorithm, we now
consider its complexity.

Theorem 3 For a game of n players, the time complexity of computing a player’s
approximate Shapley value (ϕ̄i) using Algorithm 1 is O(n).

Proof: From Equation 11, we know that EΔX
i can be found in constant time. As

per Equation 12, EΔX−1
i must be computed n times. This is done in the for loop of

Step 2 in Algorithm 1. Since this for loop is repeated n times, the time complexity
of computing a player’s approximate Shapley value (ϕ̄i) using Algorithm 1 isO(n).
�

4.2 For a k-majority game

We now extend the method described in Algorithm 1 to k-majority games. The
intuition behind the proposed method is as follows. As described in Section 2.3,
a k-majority game is defined in terms of k weighted voting games vg (1 ≤ g ≤
k). So we first find a player’s approximate marginal contribution to vg (1 ≤ g ≤
k). Given these k marginal contributions, we find the marginal contribution and
then the Shapley value for a k-majority game. Before doing so, we introduce some
notation.

For game vg, let μg denote the mean weight of the players, νg the variance in their
weights, and qg the quota. For game vg and player i, let PLg

i (SX) denote the prob-
ability that the coalition SX is losing but SX ∪ {i} is winning. And, for game vg,
let PW g

i (SX) denote the probability that the coalition SX ∪ {i} is winning. Also,
for a k-majority game, let kEΔX

i denote the approximate marginal contribution of
player i to a random coalition SX of size X . Finally, let ϕk

i (ϕ̄k
i) denote the exact

(approximate) Shapley value for player i for a k-majority game.

Theorem 4 characterizes a player’s approximate marginal contribution, and Theo-
rem 5 a player’s approximate Shapley value.

Theorem 4 For an n player k-majority game with mean weight μg and variance νg

(1 ≤ g ≤ k), player i’s approximate marginal contribution (kEΔX
i) to a random

coalition SX of size X is:

kEΔX
i =

k−1∑
j=0

(
Πj

g=1(1− PLg
i (SX))× PLj+1

i (SX)× Πk
f=j+2PW f

i (SX)

)
(13)

where

18

PLg
i (SX) =

1√
(2πνg/X)

∫ (qg−ε)/X

(qg−wg
i)/X

e−X
(x−μg)2

2νg dx (14)

and

PW g
i (SX)=

1√
(2πνg/X)

∫ ∞

(qg−wg
i)/X

e−X
(x−μg)2

2νg dx. (15)

Proof: Consider player i. From Section 2.3, we know that the approximate marginal
contribution of player i to a coalition SX for the game v1 ∧ . . . ∧ vk is 1 if the fol-
lowing conditions hold:

(1) there is at least one game vg (1 ≤ g ≤ k) for which i is the swing player, and
(2) for each game vg (1 ≤ g ≤ k), the value of SX ∪ {i} is 1.

We find the probabilities PLg
i and PW g

i using the sampling rule R1. As per this
rule, PLg

i (SX) is the area under the normal distribution N(μg, νg/X) between the
limits (qg − wg

i)/X and (qg − ε)/X:

PLg
i (SX) =

1√
(2πνg/X)

∫ (qg−ε)/X

(qg−wg
i)/X

e−X
(x−μg)2

2νg dx (16)

And PW g
i (SX) is the area under the normal distribution N(μg, νg/X) between the

limits (qg − wg
i)/X and∞:

PW g
i (SX)=

1√
(2πνg/X)

∫ ∞

(qg−wg
i)/X

e−X
(x−μg)2

2νg dx. (17)

Given Equations 16 and 17, we find kEΔX
i by considering all possible ways in

which i can be swing player. For 0 ≤ j ≤ k − 1, the probability that i is not swing
player for games 1 to j, it is swing player for game j + 1, and may or may not be
swing player for games j + 2 to k is:

Πj
g=1(1− PLg

i (SX))× PLj+1
i (SX)× Πk

f=j+2PW f
i (SX)

By summing the above expression over all possible j (i.e., between zero and k− 1)
we get i’s approximate marginal contribution given in Equation 13. �

19

Algorithm 2 ShapleyValue-KMG(k, n, q, μ, ν, wi)
k: The number of weighted voting games
n: Number of players
q: A k-element vector containing the quotas for the games
μ: A k element vector containing the mean weight of the players for the k games
ν: A k element vector containing the variance in the weights of the players for the
k games
wi: A k-element vector containing player i’s weight for the k games

1: Ti ⇐ 0;
2: for X = 0 to n− 1 do
3: sum⇐ 0
4: for j = 0 to k − 1 do
5: prod⇐ 1
6: for g = 1 to j do
7: a⇐ (qg − wg

i)/X; b⇐ (qg − ε)/X

8: prod⇐ prod ×
(

1− 1√
2Πνg/X

∫ b
a e−X

(x−μg)2

2νg dx

)

9: end for
10: a⇐ (qj+1 − wj+1

i)/X; b⇐ (qj+1 − ε)/X

11: prod⇐ prod × 1√
2Πνj+1/X

∫ b
a e−X

(x−μj+1)2

2νj+1 dx

12: for f = j + 2 to k do
13: a⇐ (qf − wf

i)/X; b⇐∞
14: prod⇐ prod × 1√

2Πνf /X

∫ b
a e−X

(x−μf)2

2νf dx

15: end for
16: sum⇐ sum + prod
17: end for
18: kEΔX

i ⇐ sum
19: Ti ⇐ Ti + EΔX

i

20: end for
21: ϕ̄k

i ⇐ Ti/n
22: return ϕ̄k

i

We now formulate an approximate Shapley value for player i in terms of its marginal
contribution. This is done in Theorem 5.

Theorem 5 For an n player k-majority game with mean weight μg and variance
νg (1 ≤ g ≤ k), player i’s approximate Shapley value is:

ϕ̄k
i =

1

n

n∑
X=1

kEΔX−1
i (18)

20

where kEΔX
i is as defined in Theorem 4.

Proof: As Theorem 2. �

The steps for computing ϕ̄k
i are detailed in Algorithm 2. The time complexity of

this method is formulated in Theorem 6.

Theorem 6 The time complexity of Algorithm 2 is O(k2n).

Proof: The time to execute the for loop in Step 4 of Algorithm 2 is O(k2). Since
this for loop is within the for loop of Step 2 (which is executed n times), the time
complexity of Algorithm 2 is O(k2n). �

As already noted, the quality of an approximation method is evaluated on the ba-
sis of both its running time and its approximation error. To this end, we will now
provide a comprehensive error analysis. This is done in three steps. First, we ana-
lytically find the upper bound on the error. This upper bound gives an indication of
how our method performs in the worst case. Second, we provide an experimental
analysis of the error in the general case. Third, we experimentally compare the er-
ror for our method with that for Owen’s. In the following section, we first derive the
formulae for error and carry out its worst case analysis for the methods proposed in
Algorithms 1 and 2.

5 Worst case analysis of the approximation error

We first formalize the idea of error and then derive the formula for measuring it.
The concept of error relates to an approximate measurement made of a quantity
which has an exact value [37,7]. Obviously, it cannot be determined exactly how
far off an approximation is from the exact value; if this could be done, it would be
possible to just give the more accurate, corrected value. Thus, error has to do with
uncertainty (i.e., variance or standard error) in measurements that nothing can be
done about. If a measurement is repeated, the values obtained may differ and none
of the results can be preferred over the others. However, although it is not possible
to do anything about such an error, it can be characterized in terms of two essential
components [37,7]:

(1) a numerical value giving the best “estimate” possible of the quantity mea-
sured, and

(2) an error, i.e., the degree of uncertainty or variance associated with this esti-
mated value.

For example, if the approximate measurement of a given quantity is x and the ap-
proximation error is e(x), the quantity would lie in the interval x± e(x). For sam-

21

pling based experiments, approximation error is defined as follows [37]:

Definition 2 The approximation error (i.e., sampling error) in a set of measure-
ments on random samples is the standard deviation for the set of measurements
divided by the square root of the number of measurements.

Since the exact value that corresponds to an approximation lies in the range x ±
e(x), the term standard error is analogous to the algorithmic term absolute error
which is defined as follows [3]:

Definition 3 The absolute error of an approximation is the absolute difference be-
tween the approximate and its exact counterpart.

The following section defines this error and uses it to evaluate the performance
of the proposed randomized method. We first find this error for a weighted voting
game and the k-majority game. Then we find the upper bound on these errors.

5.1 Absolute error

We first consider our approximation method for the weighted voting game. The
error for this method depends on the error in the approximation rule R1 defined in
the proof for Theorem 1. This error is defined as follows [37,7]:

Definition 4 For rule R1, the absolute error (e(σX)) in a player’s weight in a
coalition SX of size X is:

e(σX)=
√

(ν/X)/
√

(X)

=
√

(ν)/X. (19)

On the basis of Definition 4, we find the absolute error in a player’s approximate
marginal contribution (e(EΔX

i)) and its approximate Shapley value (e(ϕ̄i)).

Theorem 7 For an n player weighted voting game with mean weight μ and vari-
ance ν, the absolute error in E(ΔX

i) with respect to its exact counterpart (denoted
ΔX

i) is:

e(EΔX
i) = abs(E(ΔX

i)−ΔX
i)

=
1√

(2πν/X)
×
(∫ a

a−e(σX)
e

−X(x−μ)2

2ν dx +
∫ b+e(σX)

b
e

−X(x−μ)2

2ν dx

)

(20)

22

where a = (q − wi)/X and b = (q − ε)/X .

Proof: See Appendix B. �

On the basis of the e(EΔX
i), Theorem 8 characterizes the absolute error in the

Shapley value for player i.

Theorem 8 For an n player weighted voting game, if ϕ̄i denotes player i’s approx-
imate Shapley value that corresponds to the exact ϕi, then the absolute error of ϕ̄i

with respect to ϕi is:

e(ϕ̄i) = abs(ϕi − ϕ̄i) =
1

n

n∑
X=1

e(EΔX−1
i) (21)

Proof: See Appendix C. �

Given Theorem 8, the percentage error, PEi, in player i’s Shapley value for a
weighted voting game is:

PEi =100× e(ϕ̄i)/ϕi (22)

On the basis of Theorem 8, we now obtain the error for our approximation method
for a k-majority game. Let e(σX

g) be the error in the approximate weight of players
in SX for game g. Let e(PLg

i (SX)) and e(PW g
i (SX)) denote the errors in PLg

i (SX)
and PW g

i (SX) respectively 4 . These two errors are obtained in the same way as we
obtained e(EΔX

i) in Theorem 7. Thus, we have:

e(PLg
i (SX))=

1√
(2πνg/X)

×
(∫ (qg−wg

i)/X

(qg−wg
i)/X−e(σX

g)
e−X

(x−μg)2

2νg dx

+
∫ (qg−ε)/X+e(σX

g)

(qg−ε)/X
e−X

(x−μg)2

2νg dx

)
(23)

and

e(PW g
i (SX))=

1√
(2πνg/X)

×
∫ (qg−wg

i)/X

(qg−wg
i)/X−e(σX

g)
e−X

(x−μg)2

2νg dx. (24)

4 See Equations 16 and 17 for a definition of PLg
i (SX) and PW g

i (SX).

23

2 3 4 6 7 851

1

0.5

0.25

0.75

y=1/sqrt(x)

y

x

Fig. 2. Approximating sum (
∑n

X=1
1√
X

) with definite integral.

For a k-majority game, let e(kEΔX
i) denote the absolute error in i’s marginal con-

tribution to a random coalition SX , and let e(ϕ̄k
i) denote the absolute error in i’s

Shapley value.

Theorem 9 For an n player k-majority game, if ϕ̄k
i denotes player i’s approximate

Shapley value that corresponds to the exact (ϕk
i), then the absolute error of ϕ̄k

i with
respect to ϕk

i is:

e(ϕ̄k
i)= abs(ϕk

i − ϕ̄k
i) =

1

n

n∑
X=1

e(kEΔX−1
i) (25)

Proof: See Appendix D. �

Having formulated e(ϕ̄i) and e(ϕ̄k
i), we now find the upper bound on these absolute

errors.

5.2 Upper bound for weighted voting game

Theorem 10 characterizes the upper bound for e(ϕ̄i).

Theorem 10 For a weighted voting game of n players, the upper bound for the
absolute error in the approximate Shapley value (e(ϕ̄i)) isO(1/

√
n). Also, as n→

∞, e(ϕ̄i)→ 0.

Proof: See Appendix E. �

Theorem 10 shows that, as n increases, the upper bound on the error decreases
(Figure 2 shows how 1/

√
n varies with n). This happens because as n increases,

the error in Equation 19 decreases and, consequently, the error in the Shapley value

24

decreases with n 5 .

5.3 Upper bound for k-majority games

On the basis of Theorem 10, we get the upper bound for the error for our random-
ized method for k-majority games.

Theorem 11 For an n player k-majority game, the upper bound for e(ϕ̄k
i) isO(k2/

√
n).

Also, as n→∞, e(ϕ̄k
i)→ 0.

Proof: See Appendix F. �

Here the error increases in k because, as per the method described in Section 4.2,
we make k approximate measurements on a random coalition of size X (1 ≤ X ≤
n). For a weighted voting game, k = 1 (see Section 4.1), so we make a single
approximate measurement on a coalition of size X . As k increases, the number of
approximate measurements also increases and so does the error.

6 Experimental analysis of approximation error

For a weighted voting game, Theorem 10 gives the error in the worst case. How-
ever, in general, the error may well be less than this upper bound. Hence, we now
focus on the general case and conduct an empirical analysis of the error for our
approximation method. There are two objectives to this analysis:

(1) To compare the error for our method with that of Owen’s.
(2) To analyze the effect of the parameters of a voting game on the error for our

method.

We describe the former analysis in Section 6.2 and the latter in Section 6.3. For
both, we focus on weighted voting games and not k-majority games. There are two
reasons for this. First, from Section 5, we know the effect of k on the approximation
error; e(ϕ̄k

i) increases with k. This is because e(kEΔX
i) increases in k (see Equa-

tion D.1). Given this, we now want to find how the parameters n, q, and μ affect

5 Note that we have found the bound for the absolute error for the Shapley value and this
bound decreases with n. Here, it is interesting to note that a related concept for characteris-
ing the quality of an approximation is performance ratio. Roughly speaking, this is the ratio
of an approximate solution and its exact counterpart [3]. The problem of approximating the
Shapley value such that the approximation ratio is bounded by a constant is intractable un-
less P=NP [13]. In future, it would be interesting to obtain a similar result for the absolute
error as well.

25

the percentage error PEi (see Equation 22). The second reason for our focus on
weighted voting games is that there are no pre-existing approximation methods for
k-majority games. Hence, we can only compare the performance of these existing
methods with our method for weighted voting games.

Given this, Section 6.1 describes the notation and experimental setting for the re-
sults presented in Sections 6.2 and 6.3.

6.1 Experimental Setting

We evaluate the approximation error for a range of voting games. Let G denote
the set of all the games we consider. These are defined as follows. Recall that a
weighted voting game is defined in terms of the parameters n, q, and wi (1 ≤ i ≤
n). Also, recall that, for a given game, μ and ν denote the mean weight and the
variance in weights respectively. Given this, in what follows, we consider a range
of games by varying n, q, and μ such that the variance, ν, is always close to 1. In
more detail, we vary the number of players between n = 20 (since approximation
methods do not produce good results for games with a smaller number of players
and, in any case, they are not necessary in such cases) and n = 70 (since the method
in [22] becomes extremely slow for games with a larger number of players). For
20 ≤ n ≤ 70, the players’ weights are generated randomly in such a way that the
variance in the weights is always between ν = 1 and ν = 1.5. Keeping the variance
in this range, for each n, we generate a range of games by varying the mean weight
between μ = 20 and μ = 100. Thus, in all, we consider 54 different cases (varying
n between 20 and 70 in increments of 10, and for each n varying the mean weight
between 20 and 100 in increments of 10).

The players’ weights for the range of games for each of the 54 cases are shown in
Figures H.1 to H.6 in Appendix H. For instance, Figures H.1(a) shows the player’s
weights for a range of games with μ = 21.1 and ν = 1. Likewise, for other figures
in the appendix. For each of these 54 cases, we consider different games by varying
the quota between q > nμ/2 (i.e., a half majority weighted voting game) and
q > 2nμ/3 (i.e., a two thirds majority weighted voting game). Thus, we have a set
of games for each of the 54 cases and G denotes the union of the sets of games for
all the 54 cases).

We now introduce some notation for describing our experimental results. Recall
that ϕi denotes player i’s exact Shapley value. As before, for player i, let ϕ̄i, e(ϕi),
and PEi denote the approximate Shapley value, the absolute error of approxima-
tion, and the percentage error respectively for our method. Analogously, let ϕ̄O

i ,
eO(ϕi), and PEO

i denote the approximate Shapley value, the absolute error, and
the percentage error respectively for Owen’s method. Then we have:

26

eO(ϕi)= abs(ϕi − ϕ̄O
i) and (26)

PEO
i = eO(ϕi)× 100/ϕi. (27)

For a game G ∈ G, the average percentage error across all the players for our
method is:

APEG =
1

n

n∑
i=1

PEi. (28)

For Owen’s method, APEO
G is defined analogously.

6.2 Comparison with Owen’s method

Recall that Owen’s method is defined in terms of a random variable given in Equa-
tions 7 and 8, while our method is defined in terms of a random variable given by
the rule R1. Here we want to determine how this difference in the methods affects
their performance in terms of their approximation errors.

For each game, G ∈ G, we compare the exact Shapley value for each player with its
approximate Shapley value generated by our method and by Owen’s MLE method.
For each game, we find the percentage error in the Shapley value for each player.
Then, for each game, we find the average percentage error across all the players.
Finally, for each n, we find the average percentage error across all the games.

Having outlined the experimental setting and process, we now turn to the actual
results. For all G ∈ G, APEG and APEO

G are shown in Appendix G. This appendix
is comprised of 6 figures: G.1 to G.6. Each of these 6 figures is, in turn, comprised
of 9 tables. Thus, in all there are 54 tables in Appendix G which correspond to the
54 cases mentioned Section 6.1. Each row of each table represents a game. Thus, G
is the set of all the rows (i.e., games) in all the tables of Appendix G. The results of
these 54 cases are shown Figures G.1 to G.6 of Appendix G. The players’ weights
for each of the 54 cases are shown in Figures H.1 to H.6 in Appendix H. Thus,
the player’s weights for Figure G.1 are as given in Figure H.1, for Figure G.2 in
Figure H.2, and so on. For each game in Appendix G, the quota is given in the
first column of the table, μ and ν are given at the top of the table, n is given at the
bottom of the figure, and the players’ weights are given in Appendix H. Note that,
the games represented in a given table differ only in terms of their quotas. But the
players’ weights, n, μ, and ν are the same for all the games in a given table. In more
detail, for each table in Appendix G, there is a corresponding graph in Appendix H
that shows the players’ weights. For instance, for all the games in G.1, the players’
weights are as shown in H.1. Likewise, for the tables in G.2 to G.6, the players’
weights are shown in H.2 to H.6 respectively.

27

0 50 100
0

1

2

3

4

5
(a) n=20

0 50 100
0

1

2

3

4
(b) n=30

0 50 100
0

1

2

3

4
(c) n=40

0 50 100
0

1

2

3

Mean weight

A
v
e
ra

g
e
 p

e
rc

e
n
ta

g
e
 e

rr
o
r

(d) n=50

0 50 100
0

1

2

3
(e) n=60

0 50 100
0

1

2

3
(f) n=70

APE
n

APEO
n

APE
n

APEO
n

APE
n

APEO
n

APE
n

APEO
n

APE
n

APEO
n

APE
n

APEO
n

Fig. 3. A comparison of the average percentage error (for our method and Owen’s) across
all games with n players.

Consider the table in G.1(a) by way of explanation. For this table, n = 20, μ =
21.1, ν = 1, and the players’ weights are as shown in Figure H.1(a) in Appendix H.
For these fixed values of n, μ, ν, and weights, the quota is varied between 220
and 320. Likewise for each of the remaining figures in Appendix G. The last two
columns of each table in Appendix G show a comparison of errors APEG and
APEO

G . For each n, we find the average percentage error (for our method) across
all the games in G:

APEn =
1

|Gn|
∑

G∈Gn

APEG. (29)

where Gn ⊂ G denotes the set of games in G with n players. For Owen’s method,
APEO

n is defined analogously. For different n, a comparison of APEn and APEO
n

is shown in Figure 3. Recall that for our experiments, we vary the quota between
q > nμ/2 (i.e., a half majority weighted voting game) and q > 2nμ/3 (i.e., a
two thirds majority weighted voting game). Thus, for a given n and a given μ, the
percentage error shown in Figure 3 is the average taken over this range of quotas.
As seen in the figure, for each n and each μ, the error for our method is no worse
than that for Owen’s. These results show that, in comparison to Owen’s method,
our’s performs better in terms of approximation error.

28

5 to 15 15 to 25 25 to 35 35 to 45 X 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Quota

Av
er

ag
e p

er
ce

nta
ge

 er
ro

r

(a) n = 50

20 21 22 23 24
1

2

3

4

5

6

7

8

9

10
(b) n = 30 μ = 22.33 ν = 0.96

A player’s weight (w
i
)

Pe
rce

nta
ge

 er
ro

r P
E i

q=325
q=380
q=410
q=465

Fig. 4. The effect of the parameters of a voting game on the average percentage error.

6.3 Effect of the voting game parameters

We analyze the effect of ν, n, q, and wi on the approximation error for our method.
The effect of ν on PEi is evident from Equation 22. As per this equation, PEi

depends on the absolute error e(ϕ̄i). The error e(ϕ̄i) depends on e(EΔX
i) (see The-

orem 8), which, in turn, depends on e(σX) (see Equation 19). As ν increases, e(σX)
increases. As a result, e(ϕ̄i), and consequently PEi increases.

Now consider the effect of n on approximation error. The error in the weights of a
random coalition of size X (i.e., e(σX) given in Equation 19) decreases in X and
so does the error e(EΔX

i) (see Equation 20). Consequently PEi decreases in n.

The effect of the other parameters (i.e, q and wi) are not so immediately obvious
from this equation for e(ϕ̄i). Hence, for these, we conduct an experimental analysis.

• Effect of q. Recall from Section 4.1, that a = (q − wi)/X and b = (q − ε)X .
Thus, as q increases, both a and b increase. The error e(EΔX

i) is either the area
of A or the area of C in Figure 1. As q increases, the three regions marked
A, B, and C move to the right. As a result, e(EΔX

i) may increase or decrease
depending on the coalition size X . Whether e(EΔX

i) increases or decreases is
not obvious from Equation 20. Thus, we conduct an experimental analysis to
determine the effect of q on PEi. The setting for these experiments is as follows.
We fix n and ν, and vary μ between 20 and 100. For each μ, we consider a range
of games with different q. Specifically, we vary q between nμ/2 (i.e., a half
majority voting game) and 2nμ/3 (i.e., a two thirds majority voting game). For
each game, we determine PEi (where 1 ≤ i ≤ n) and the average percentage
error 1

n

∑n
1PEi. We then split the set of all games into 1 ≤ j ≤ 4 classes with

class j containing those games for which the quota lies in the range nμ/2 +
nμ(j − 1)/24 to nμ/2 + nμj/24. We then find the average percentage error for
the games in each class. We then repeated the above experiments for different n
in the range 20 ≤ n ≤ 70. The effect of quota on the average percentage error

29

was found to be the same for all n: the error decreased with q. The results of
these experiments for n = 50 (corresponding to the data in the tables shown in
Figure G.4) are plotted in Figure 4(a).

• Effect of wi. Consider Equation 20, for which the limits of integration depend
on e(σX). These limits are a = (q−wi)/X and b = (q− ε)/X . As wi increases,
a decreases but b remains unchanged. Also as wi increases, the area of region C
(see Figure 1) remains unchanged, the area of region B increases, and the area
of region A may increase or decrease. The relation between this change in the
areas A and B is again not obvious from the equations. Hence, we computed
e(ϕ̄i) for each voting game G ∈ G. For each game, the error PEi was found to
increase with abs(μ−wi). Consequently, for a given n, APEn also increases with
abs(μ − wi). The results of experiments for n = 30, μ = 22.33, and ν = 0.96
are are plotted in Figure 4(b). For these fixed values of n, μ, and ν, and a range
of different quotas, the figure shows how PEi varies with wi.

This analysis gives us the following key insights. First, as the number of play-
ers (n) increases, the average percentage error decreases. Second, as the quota (q)
increases, the average percentage error decreases. Third, the error is different for
players with different weights; players with weight closer to the mean weight (μ)
have a lower error than those with weight further away from μ.

7 Conclusions and future work

The main advantage of the Shapley value as a solution concept in cooperative
games is that it provides a solution that is both unique and fair. However the prob-
lem of finding this value for the voting game is #P-complete. In order to overcome
this computational complexity, we presented a new approximation algorithm for
computing the Shapley value for a weighted voting game. Like the current state
of the art, our method has linear time complexity, but it is better in terms of its
approximation error. We also empirically evaluated the error for our method and
showed how the different parameters of a voting game affect it. Specifically, we
showed the following effects. First, as the number of players in a voting game in-
creases, the average percentage error across the players decreases. Second, as the
quota increases, the average percentage error decreases. Third, the error is different
for players with different weights; players with weight closer to the mean weight
have a lower error than those with weight further away. We then extended our ap-
proximation method to the more general k-majority voting game and showed that,
for n players, the method has time complexity O(k2n) and the upper bound on its
approximation error is O(k2/

√
n).

The results are important because by devising a computationally efficient approx-
imation method, that has a high degree of accuracy, we make it more attractive to
use the Shapley value as the basis for computing solutions in a range of practi-

30

cal contexts. In particular, coalition formation techniques lie at the heart of virtual
organizations, collective robotics, and agent teams. Thus, by providing such an al-
gorithm, we start to open up the possibility of applying the principle approaches of
cooperative game theory to such practical problems.

There are several interesting directions for future work. First, this work extended
our approximation method for weighted voting games [15] to k-majority games.
In future, we would like to generalize our method so that it works not just for the
voting game, but also for other coalitional games. Second, although we found the
upper bound on the approximation error for our method, it would be interesting
to determine whether or not it is possible to find an approximate Shapley value in
linear time, but with a better error bound. Third, the accuracy of our approximation
method can be improved at the expense of computation time (using an approach
similar to the MLE extension method). Thus, we would like to investigate how
much time needs to be traded off in order to arrive at a more accurate result and
whether an agent could make this tradeoff at run-time in order to reflect its current
goals and available resources.

Acknowledgements

This paper is a substantially revised and extended version of our earlier work pub-
lished in [15,14]. Specifically, we make the following extensions. We extend the
randomised method (for a weighted voting game) presented in [15,14] to k-majority
games, find the upper bounds for its approximation error, and also experimentally
compare its error (for a weighted voting game) with the error for Owen’s method.
Finally, we show how the parameters of a voting game effect the approximation
error.

We are very grateful to the anonymous reviewers of this paper. Their insightful and
informative comments helped has to substantially improve the technical content
and presentation of the paper.

References

[1] E. Algaba, J. M. Bilbao, J. R. Garcia, and J. J. Lopez. Computing power indices in
weighted multiple majority games. Mathematical Social Sciences, 46:63–80, 2003.

[2] R. Aumann. Acceptable points in general cooperative n-person games. In
Contributions to the Theory of Games volume IV. Princeton University Press, 1959.

[3] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi. Complexity and approximation: Combinatorial optimization problems and
their approximability properties. Springer, 2003.

31

[4] Y. Bachrach and J. Rosenschein. Approximating power indices. In Proceedings of the
Seventh International Conference on Autonomous Agents and Multi-Agent Systems,
2008.

[5] J. M. Bilbao, J. R. Fernandez, N. Jimenez, and J. J. Lopez. Voting power in the
european union enlargement. Journal of Operational Research, 143:181–196, 2002.

[6] J. M. Bilbao, J. R. Fernandez, A. J. Losada, and J. J. Lopez. Generating functions for
computing power indices efficiently. Top 8, 2:191–213, 2000.

[7] P. Bork, H. Grote, D. Notz, and M. Regler. Data Analysis Techniques in High Energy
Physics Experiments. Cambridge University Press, 1993.

[8] S. Brams and P. J. Affuso. Power and size: A new paradox. Theory and Decision,
7:29–56, 1976.

[9] V. Conitzer and T. Sandholm. Computing Shapley values, manipulating value division
schemes, and checking core membership in multi-issue domains. In Proceedings of the
National Conference on Artificial Intelligence, pages 219–225, San Jose, California,
2004.

[10] V. Conitzer and T. Sandholm. Complexity of constructing solutions in the core based
on synergies among coalitions. Artificial Intelligence Journal, 170:607–619, 2006.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. An introduction to
algorithms. The MIT Press, Cambridge, Massachusetts, 2003.

[12] X. Deng and C. H. Papadimitriou. On the complexity of cooperative solution concepts.
Mathematics of Operations Research, 19(2):257–266, 1994.

[13] E. Elkind, L. A. Goldberg, P. Goldberg, and M. Wooldridge. Computational
complexity of weighted threshold games. In In Proceedings of the National
Conference on Artificial Intelligence (AAAI-2007), 2007.

[14] S. S. Fatima, M. Wooldridge, and N. R. Jennings. An analysis of the Shapley value
and its uncertainty for the voting game. In Proc. 7th Int. Workshop on Agent Mediated
Electronic Commerce, pages 39–52, 2005.

[15] S. S. Fatima, M. Wooldridge, and N. R. Jennings. A randomized method for
the Shapley value for the voting game. In Proceedings of the Sixth International
Conference on Autonomous Agents and Multi-Agent Systems, pages 955–962, 2007.

[16] A. Francis. Advanced Level Statistics. Stanley Thornes Publishers, 1979. (pg 425).

[17] S. Ieong and Y. Shoham. Marginal contribution nets: A compact representation scheme
for coalitional games. In Proceedings of the Sixth ACM Conference on Electronic
Commerce, pages 193–202, Vancouver, Canada, 2005.

[18] S. Ieong and Y. Shoham. Multi-attribute coalition games. In Proceedings of the
Seventh ACM Conference on Electronic Commerce, pages 170–179, Ann Arbor,
Michigan, 2006.

[19] J. P. Kahan and A. Rapoport. Theories of Coalition Formation. Lawrence Erlbaum
Associates Publishers, 1984.

32

[20] D. Leech. Computing power indices for large voting games. Management Science,
49(6):831–837, 2003.

[21] I. Mann and L. S. Shapley. Values for large games iv: Evaluating the electoral college
by monte carlo techniques. Technical report, The RAND Corporation, Santa Monica,
1960.

[22] I. Mann and L. S. Shapley. Values for large games iv: Evaluating the electoral college
exactly. Technical report, The RAND Corporation, Santa Monica, 1962.

[23] A. MasColell, M. Whinston, and J. R. Green. Microeconomic Theory. Oxford
University Press, 1995.

[24] M. J. Osborne and A. Rubinstein. A Course in Game Theory. The MIT Press, 1994.

[25] G. Owen. Multilinear extensions of games. Management Science, 18(5):64–79, 1972.

[26] C. H. Papadimitriou. Computational Complexity. Addison Wesley Longman, 1994.

[27] T. Rahwan and N. R. Jennings. An algorithm for distributing coalitional value
calculations among cooperating agents. Artificial Intelligence Journal, 171:535–567,
2007.

[28] A. Rapoport. N-person Game Theory: Concepts and Applications. Dover Publications,
Mineola, NY, 2001.

[29] J. S. Rosenschein and G. Zlotkin. Rules of Encounter. MIT Press, 1994.

[30] A. E. Roth. Introduction to the shapley value. In A. E. Roth, editor, The Shapley value,
pages 1–27. University of Cambridge Press, Cambridge, 1988.

[31] T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohme. Coalition structure
generation with worst case guarantees. Artificial Intelligence Journal, 111:209–238,
1999.

[32] T. Sandholm and V. Lesser. Coalitions among computationally bounded agents.
Artificial Intelligence Journal, 94(1):99–137, 1997.

[33] L. S. Shapley. A value for n person games. In A. E. Roth, editor, The Shapley value,
pages 31–40. University of Cambridge Press, Cambridge, 1988.

[34] O. Shehory and S. Kraus. A kernel-oriented model for coalition-formation in
general environments: Implemetation and results. In In Proceedings of the National
Conference on Artificial Intelligence (AAAI-96), pages 131–140, 1996.

[35] O. Shehory and S. Kraus. Methods for task allocation via agent coalition formation.
Artificial Intelligence Journal, 101(2):165–200, 1998.

[36] P. Tanenbaum. Power in weighted voting games. The Mathematica Journal, 7:58–63,
1997.

[37] J. R. Taylor. An introduction to error analysis: The study of uncertainties in physical
measurements. University Science Books, 1982.

33

[38] W. V. Underhill. Finding bounds for definite integrals. The College Mathematics
Journal, 15(5):426–429, 1984.

[39] H. S. Wilf. Generatingfunctionology. Academic Press, 1994.

[40] G. Zlotkin and J. Rosenschein. Coalition, cryptography, and stability: mechanisms
foe coalition formation in task oriented domains. In In Proceedings of the National
Conference on Artificial Intelligence (AAAI-94), pages 432–437, 1994.

Appendix

A A summary of notation

N The set of players
n Number of players in N
N−i The set of players excluding player i
q Quota for a game
S A subset of N
S The set N − {i} where i ∈ N
s Number of players in S
v(S) The value of coalition S
wi The weight of player i
w(S) The weight of coalition S
Δiv(S) The marginal contribution of player i to coalition S
ϕi The exact Shapley value for player i for a weighted voting game
Ti A coalition such that Ti is losing but Ti ∪ {i} is winning
t The number of players in Ti

μ The mean weight of players
ν The variance in players’ weights
EΔX

i The approximate marginal contribution of player i to coalition X for a
weighted voting game

kEΔX
i The approximate marginal contribution of player i to coalition X for a k-

majority game
ϕk

i The exact Shapley value for player i for a k-majority game
ϕ̄i Approximate Shapley value (for player i) generated by the proposed method for

a weighted voting game
ϕ̄k

i Approximate Shapley value (for player i) generated by the proposed method
for a k-majority game

PLg
i (SX) For game vg and player i, the probability that the coalition SX is losing

but SX ∪ {i} is winning
PW g

i (SX) For game vg, the probability that the coalition SX ∪ {i} is winning
e(σX) Absolute error in the sum of weights of a random coalition SX of size X
e(EΔX

i) Absolute error in i’s marginal contribution to coalition SX for a weighted
voting game

34

e(kEΔX
i) Absolute error in i’s marginal contribution to coalition SX for a k-

majority game
ϕ̄O

i Player i’s approximate Shapley value generated by Owen’s method for a weighted
voting game

e(ϕi) Absolute error in i’s approximate Shapley value generated by the proposed
method for a weighted voting game

eO(ϕi) Absolute error in i’s approximate Shapley value generated by Owen’s method
for a weighted voting game

PEi Percentage error in i’s approximate Shapley value generated by the proposed
method for a weighted voting game

PEO
i Percentage error in i’s approximate Shapley value generated by Owen’s

method for a weighted voting game
G The set of all games on which the experiments are conducted
G An element of the set G
APEG Average percentage error in the approximate Shapley value generated by

the proposed method for a weighted voting game; the average is taken over all
the players in N for the game G

APEO
G Average percentage error in the approximate Shapley value generated by

Owen’s method for a weighted voting game; the average is taken over all the
players in N for the game G

APEn Average percentage error in the approximate Shapley value generated by
the proposed method for a weighted voting game; the average is taken over all
the players over all the games in G for which there are n players

APEO
n Average percentage error in the approximate Shapley value generated by

Owen’s method for a weighted voting game; the average is taken over all the
players over all the games in G for which there are n players

B Proof of Theorem 7

The error (e(EΔX
i)) is obtained by propagating the error in Equation 19 to the error

in a player’s approximate marginal contribution given in Equation 11. In this equa-
tion, a and b are the lower and upper limits for the approximate mean of the players’
weights for a coalition of size X . Since the error in this mean is e(σX), the actual
values of a and b lie in the intervals a± e(σX) and b± e(σX) respectively. Hence,
the error in Equation 11 is either the probability that the mean weight lies between
the limits a − e(σX) and a (i.e., the area under the curve defined by N (μ, ν

X
) be-

tween a−e(σX) and a, which is the region A in Figure 1) or the probability that the
mean weight lies between the limits b and b + e(σX) (i.e., the area under the curve
defined by N (μ, ν

X
) between b and b + e(σX), which is the region C in Figure 1).

35

The area of region A in Figure 1 is:

1√
(2πν/X)

×
∫ a

a−e(σX)
e−X

(x−μ)2

2ν dx

and that of C is:
1√

(2πν/X)
×
∫ b+e(σX)

b
e−X

(x−μ)2

2ν dx

More specifically, the error e(EΔX
i) is at most the sum of the two areas A and C.

C Proof of Theorem 8

We obtain the error e(ϕ̄i) by propagating the error e(EΔX−1
i) to all coalitions be-

tween size X = 1 to X = n. This is done using the following error propagation
rules [37]. Let x and y be two random variables with errors e(x) and e(y) respec-
tively. Then, from [37] we have the following propagation rules :

R2 The error in the random variable z = x + y is:

e(z) = e(x) + e(y)

R3 If z = kx where the constant k has no error, then the error in z is:

e(z) = |k|e(x)

R4 The error in the random variable z = x× y is:

e(z) = e(x) + e(y)

Note that for X = 1 (i.e., player i is the first member of a coalition), e(EΔX−1
i) = 0

since we know that a one player coalition can never win and i’s marginal contri-
bution to such a coalition is therefore known to be zero. Also, recall from Theo-
rem 2, that a player’s approximate Shapley value is the average of its approximate
marginal contributions to coalitions of size 1 ≤ X ≤ n. Hence, as per rules R2,
R3, and R4, the absolute error (e(ϕ̄i)) is the average of the approximation errors
e(EΔX−1

i) for all coalitions between the sizes X = 1 and X = n.

D Proof of Theorem 9

We obtain the error e(ϕ̄k
i) by propagating the error e(kEΔX−1

i) to all coalitions
between size X = 1 to X = n. The error e(kEΔX

i) is obtained using the error
propagation rulesR2,R3 andR4:

36

e(kEΔX
i) =

k−1∑
j=0

(j∑
g=1

(e(PLg
i (SX))) + e(PLj+1

i (SX)) +

k∑
f=j+2

e(PW f
i (SX))

)
(D.1)

Given Equation D.1 and the fact that player i’s approximate Shapley value is the
average of its approximate marginal contribution to coalitions between size X = 1
and X = n, we get e(ϕ̄k

i) = 1
n

∑n
X=1 e(kEΔX−1

i).

E Proof of Theorem 10

We find a bound for the error in Shapley value by finding a bound for Equa-
tion 20. A bound for Equation 20 is found by first finding a bound for 1√

(2πν/X)
×

∫ a
a−e(σX) e−X

(x−μ)2

2ν dx and then for 1√
(2πν/X)

× ∫ b+e(σX)
b e−X

(x−μ)2

2ν dx and then sum-

ming them both. In order to obtain a bound on 1√
(2πν/X)

×∫ a
a−e(σX) e−X

(x−μ)2

2ν dx we

use the following rule from [38]:

On some interval [ā, b̄], suppose that functions f̄ and ḡ are integrable, ḡ never
changes sign, and m ≤ f̄(x) ≤M . Then

m
∫ b̄

ā
ḡ(x)dx ≤

∫ b̄

ā
f̄(x)ḡ(x)dx ≤ M

∫ b̄

ā
ḡ(x)dx

We use this result to find the bound for e(ϕ̄i) as follows. Let h = e(σX), ḡ(x) = 1,

f̄(x) = e−X
(x−μ)2

2ν , ā = a − h, and b̄ = a. This gives
∫ a
a−h ḡ(x)dx = h, m =

e−X
(a−μ)2

2ν , and M = e−X
(a−h−μ)2

2ν . Then using the above rule from [38], we get:

∫ a

a−e(σX)
e−X

(x−μ)2

2ν dx≤he−X
(a−h−μ)2

2ν (E.1)

Since the upper bound for e−X
(a−h−μ)2

2ν is 1, we get:

∫ a

a−e(σX)
e−X

(x−μ)2

2ν dx≤h

≤ e(σX) (E.2)

Also, from Equation 19, we know that e(σX) =
√

(ν/X)/
√

(X). Hence, Equa-
tion E.2 can be rewritten as:

37

∫ a

a−e(σX)
e−X

(x−μ)2

2ν dx≤
√

(ν)/X (E.3)

It follows that

1√
(2πν/X)

∫ a

a−e(σX)
e−X

(x−μ)2

2ν dx≤ 1√
(2πX)

(E.4)

In the same way we get

1√
(2πν/X)

×
∫ b+e(σX)

b
e−X

(x−μ)2

2ν dx≤ 1√
(2πX)

(E.5)

From Equations 20, E.4, and E.5 we get:

e(EΔX
i)≤ 2√

(2πX)
(E.6)

Recall that e(EΔX−1
i) = 0 for X = 1. Given this and Equations 21 and E.6, we

get the bound for the error in Shapley value as:

e(ϕ̄i)≤ 1

n

n−1∑
X=1

2√
(2πX)

≤ 2

n
√

(2π)

n−1∑
X=1

1√
(X)

(E.7)

Approximating summation with definite integral [11], we get the bound for
∑n

X=1
1√
X

as follows (see Figure 2):

n∑
X=1

1√
X
≤
∫ n

0

1√
x
dx

≤ 2
√

n (E.8)

Substituting Equation E.8 in Equation E.7, we get:

e(ϕ̄i)≤ 2

√
2

nπ
(E.9)

In other words, e(ϕ̄i) = O(1/
√

n). Also, from Equation E.9, it follows that as
n→∞, e(ϕ̄i)→ 0.

38

F Proof of Theorem 11

From Equations 23, E.4, and E.5, we get e(PLg
i (SX)) ≤ 2√

(2πX)
. And from Equa-

tions 24, E.4, and E.5, we get e(PW g(SX)) ≤ 1√
(2πX)

. Substituting these two

inequalities in Equation D.1, we get:

e(kEΔX
i)≤ 2k2√

(2πX)
(F.1)

Substituting Equation F.1 in Equation 25, we get:

e(ϕ̄k
i)≤ 2k2

√
2

nπ
. (F.2)

Therefore, e(ϕ̄k
i) = O(k2/

√
n). It also follows that as n→∞, e(ϕ̄k

i)→ 0.

G Experimental Results

Results of experiments: a comparison of the error for our method and that for
Owen’s for the 54 cases mentioned in Section 6.2.

H Players’ Weights for the Games

Data for experiments: the players’ weights for the 54 cases mentioned in Sec-
tion 6.2. This is data for the results given in Appendix G.

39

(a) μ = 21.1 ν = 1 (b) μ = 30.9 ν = 1.39 (c) μ = 40.9 ν = 1.25

Quota APEG APEO
G Quota APEG APEO

G Quota APEG APEO
G

220 0 3.5 310 0 11 420 0 2

240 0 3.5 330 0 3 440 0 2

260 0 3.25 350 0 3 470 0 2

280 0.2 3 370 0 3 500 0 2

300 1.4 2.25 400 0 3 530 7.5 5

320 5 2 425 7 4 560 0 2

 475 0 3 590 0 2

 620 0 2

(d) μ = 51.4 ν =1.24 (e) μ = 60.9 ν =1.25 (f) μ = 71.3 ν = 1.39

Quota APEG APEO
G Quota APEG APEO

G Quota APEG APEO
G

520 1.2 0.6 620 2 0.5 710 1 2

600 0 1.8 640 0 1.5 800 0 2.5

650 0 1.8 700 0 1.5 850 2 0

700 0 1.8 750 0 1.5 900 0 2.5

750 0 1.8 800 0 1.5 950 0 2.5

800 0 1.8 850 4.75 3.5 1000 15 13

 900 0 1.5 1050 0 2.5

 950 0 1.5 1100 0 2.5

(g) μ =81.25 ν = 1.1 (h) μ = 91.6 ν =1.34 (i) μ =101.4 ν = 1.24

Quota APEG APEO
G Quota APEG APEO

G Quota APEG APEO
G

820 0 1 910 6 5 1010 1.49 0.49

900 0.5 0.5 1000 0 1 1100 0 1

1000 0 1 1050 0 1 1200 0 1

1050 5 4.5 1100 0 1 1300 0 1

1100 0 1 1150 0 1 1400 0 1

1150 0 1 1200 0 1 1500 0 1

1200 0 1 1250 0 1 1550 0 1

1250 0 1 1300 0 1

 1350 0 1

 1400 0 1

Fig. G.1. A comparison of the average percentage errors for games with 20 players.

40

(a) μ =21.33 ν = 1 (b) μ = 31.4 ν = 1.11 (c) μ =41.2 ν = 1.23

Quota APEG APEO
G Quota APEG APEO

G Quota APEG APEO
G

325 3.5 0.7 470 0 2 620 1 1

350 0 4 520 0.5 2 700 1.75 0.25

375 3.5 0.7 540 1 1 750 0.5 2

410 3.6 0.6 560 4 1 800 0 2

440 0 4 600 0 3 850 0 2

460 2 2 640 0.5 2.5 900 0.5 1.5

500 0 4 670 1.5 0.5 950 0 2

 690 12.5 9

 720 7 5

(d) μ =51.17 ν = 1.1 (e) μ =61.13 ν = 1.32 (f) μ = 71.3 ν = 1.21

Quota APEG APEO
G Quota APEG APEO

G Quota APEG APEO
G

760 1.25 1.5 920 0.5 0.6 1100 0 1.5

850 0 1.8 1000 0 1.25 1200 0 1.5

950 7 4 1100 0 1.25 1300 0 1.5

1000 0 1.8 1150 0.5 1.25 1400 0 1.5

1080 2 1.25 1225 0 1.25 1500 10 9

1150 0 2 1300 0 1.25 1600 0 1.5

1200 0 2 1400 0 1.25 1700 0 1.5

 1450 1 8

(g) μ = 81.2 ν =1.36 (h) μ = 91.1 ν =1.16 (i) μ =101.3 ν = 1.1

Quota APEG APEO
G Quota APEG APEO

G Quota APEG APEO
G

1200 0 1 1400 0 1 1500 0 0.75

1300 0 1 1500 0 1 1600 0 0.75

1400 0 1 1600 0 1 1700 0 0.75

1500 0 1 1700 0 1 1800 0 0.75

1600 2 1 1800 0 1 1900 0 0.75

1700 0 1 1900 3 2 2000 0 0.75

1800 2 7.5 2000 0 1 2100 0 0.75

 2200 0 0.75

 2300 0 0.75

Fig. G.2. A comparison of the average percentage errors for games with n = 30 players.

41

(a) μ =21.18 ν = 1.2 (b) μ = 31.1 ν = 1.7 (c) μ =41.28 ν = 1.15

Quota APEG APEO
G Quota APEG APEO

G Quota APEG APEO
G

425 2 1.9 640 0.3 2 850 5 3

475 0.2 3.9 700 0 2.5 900 0 2

500 0.2 3.8 750 7 2.5 950 10 8

550 5 1.6 800 0.2 2 1000 0 2

600 1 3 850 0 2 1050 0 2

650 1.5 2.25 900 9 6 1100 0 2

 950 0 3 1150 2 0.5

 1200 8 6

 1250 0 2

(d) μ =51.1 ν = 1 (e) μ =61.2 ν = 1.16 (f) μ = 71.2 ν = 1.16

Quota APEG APEO
G Quota APEG APEO

G Quota APEG APEO
G

1050 0 1.8 1210 2.8 1.5 1410 3 2

1100 0 1.8 1300 0 1.5 1450 5 4

1200 0 1.8 1400 0.5 0.75 1600 0 1

1300 0 1.8 1500 0 1.5 1700 0.2 1

1400 0 1.8 1600 0.25 1.3 1800 0 1

1500 0 1.8 1700 0 1.5 1900 0 1

1550 0 1.8 1800 0 1.5 2100 1.2 0.8

 1850 0 1.5 2200 0 1

(g) μ = 81 ν =1.25 (h) μ = 91.3 ν =1.21 (i) μ=101.23 ν = 1.7

Quota APEG APEO
G Quota APEG APEO

G Quota APEG APEO
G

1750 0 1.2 1900 0 0.5 2100 0 3

1800 0 1.2 2000 3.2 2.2 2200 0 3

1850 0 1.2 2100 5.8 5.5 2300 0 3

1900 3.3 2 2200 0 1 2400 0 3

2050 0 1.2 2300 0 1 2500 0 3

2150 0 1.2 2400 0 1 2600 0 3

2250 0 1.2 2500 0 1 2700 0 3

2350 0.2 1.2 2600 0 1 2800 0 3

2400 0 1.3 2700 0 1 2900 0 3

 2750 0 1 3000 0 3

Fig. G.3. A comparison of the average percentage error for games with n = 40 players.

42

(a) μ =21.3 ν =1.36 (b) μ = 31.2 ν = 1.2 (c) μ =41.34 ν = 1.38
Quota APEG APEO

G Quota APEG APEO
G Quota APEG APEO

G
550 4 4 800 0 3 1050 0 2
590 2.5 3 850 1.5 1.5 1100 9 6
630 0 3.5 900 0 3 1220 3 2
660 3 4 950 0 3 1300 0 2.5
720 3 4 1000 13 8 1380 0 3
750 0 20 1050 0 3 1450 0 3
820 0.5 0 1100 2 2.5 1500 1 3
 1150 4 2 1600 0.5 2.5
 1200 0 3

(d) μ =51.34 ν = 1.4 (e) μ =61.14 ν = 1.28 (f) μ = 71.22 ν = 1.33
Quota APEG APEO

G Quota APEG APEO
G Quota APEG APEO

G
1300 0 2 1620 0.8 0.8 1800 0 1.2
1400 0 2 1750 0 1.7 1900 0 1.2
1500 0 2 1950 0 1.7 2000 3.8 2.5
1600 1 0.8 2050 2 0.5 2100 0 1
1700 3 2 2100 0 1.7 2200 1 0.5
1800 7 6 2250 0.2 1.7 2300 0 1
1900 0 2 2350 0 1.8 2400 0 1
2000 0 2 2500 1.2 0.5
 2600 0 1
 2700 1.2 0

(g) μ =81.44 ν =1 (h) μ = 91.4 ν =1.4 (i) μ=101.38 ν = 1.43
Quota APEG APEO

G Quota APEG APEO
G Quota APEG APEO

G
2050 0 1 2300 0 1 2600 0 1
2150 0 1 2500 0 1 2750 0 1
2250 0 1 2700 0 1 3000 0.8 0
2350 0 1 2900 0 1 3200 2 1.5
2450 1.8 0.8 3100 0.2 0.7 3400 6 1
2550 0 1 3300 2.4 1.5 3600 0 1
2650 0 1 3500 0 1.2 3800 0 1
2750 0 1 3850 0 1
2850 0.1 0.9
2950 0 1
3050 0 1
3100

0 1

Fig. G.4. A comparison of the average percentage errors for games with n = 50 players.

43

(a) μ =21.4 ν =1 (b) μ= 31.05 ν = 1.05 (c) μ =41.2 ν = 1.43

Quota APEG APEO
G Quota APEG APEO

G Quota APEG APEO
G

650 1 2.5 900 0 2.5 1250 0 2.5

700 1.5 1.2 1000 2.5 0.5 1320 0.5 2

750 11 5 1050 2.3 0.5 1420 2 0

800 1 4 1100 0 2.5 1600 0 2.5

850 2 2 1150 3 2.5 1700 9 6

900 0.5 4 1200 3 2.5 1750 0 2.5

1000 1 4 1280 3.2 2 1800 0 2.5

 1350 4.5 3.8 1850 4 2

 1410 0 3.8

(d) μ =51.25 ν = 1 (e) μ =61.3 ν = 1.24 (f) μ = 71.42 ν = 1.34

Quota APEG APEO
G Quota APEG APEO

G Quota APEG APEO
G

1550 0 2 1900 0 1 2150 2.5 1

1620 0.2 1.8 2000 7.5 6 2300 0 1

1780 1.8 0 2100 0 1 2450 0 1

1820 4.4 3.4 2200 0 1 2600 0 1

1980 0 2.5 2300 1 0 2800 0 1

2050 0.5 2.5 2400 0 1 2900 0 1

2150 2 0.5 2500 1 1 3100 0 1

2250 0 1.8 2600 0 1 3400 0 1

2350 1 1 2700 9 8

(g) μ =81.2 ν =1.13 (h) μ = 91.5 ν =1.35 (i) μ=101.23 ν = 1.2

Quota APEG APEO
G Quota APEG APEO

G Quota APEG APEO
G

2450 0 1 2750 0 1 3100 0 1

2600 7 7.5 3050 0 1 3300 0.5 0.5

2750 0.5 0.8 3200 0 1 3500 1 0.5

2900 0 1 3300 0 6 3650 4 3

3150 0 1 3500 7 1 3800 0 1

3300 0 1 3650 0 1 4000 0 1

3450 0 1 3800 1 0 4200 0 1

3500 0 1 3950 0 1 4400 0 1

3700 0.5 0.2 4100 0 1 4600 0 1

Fig. G.5. A comparison of the average percentage errors for games with n = 60 players.

44

(a) μ =21.24 ν =1.1 (b) μ= 31.19 ν = 1.26 (c) μ =41.23 ν = 1.26

Quota APEG APEO
G Quota APEG APEO

G Quota APEG APEO
G

700 0.7 3 1100 2 1 1400 3 1

750 7 1.6 1150 0.5 2.3 1500 0 2.2

850 7 6 1200 2 2 1600 0.5 2

900 3 0.8 1300 0 3 1700 0 2

950 2.5 0.8 1400 5 2.8 1900 0 2

1000 2.5 0.8 1500 1 2.6 2000 0 2

1050 3 0.8 1600 1 2 2100 7.8 5.5

1100 3.5 0.6 1700 0.5 2 2200 0 2

1150 2 1

(d) μ =50.96 ν = 1 (e) μ =61.23 ν = 1.1 (f) μ = 71.23 ν = 1.12

Quota APEG APEO
G Quota APEG APEO

G Quota APEG APEO
G

1850 0 1.5 2150 2.5 1 2500 2.5 1.5

1900 0 1.5 2250 0 1 2700 2 1

2000 0 1.5 2350 0 1 2900 0 1

2100 0.3 1 2450 0.3 0.8 3100 0 1

2200 0.7 0.5 2600 0 1 3300 0 1

2300 2.4 0.7 2700 0 1 3500 0.5 0.7

2400 0 1.5 3000 0.2 0.8 3700 0 1

2500 0 1.5 3100 0 0.9 3900 0 1

2600 0 1.5 3200 4.5 3.5

2700 0.3 1.3

(g) μ =81.16 ν =1.36 (h) μ = 91.4 ν =1.13 (i) μ=101.23 ν = 1.26

Quota APEG APEO
G Quota APEG APEO

G Quota APEG APEO
G

3000 0 1.4 3200 0 1 3600 0 0.9

3200 0 1.4 3400 0 1 3900 0 0.9

3400 0 1.4 3600 2 1 4200 0 0.9

3500 0.8 0.4 3800 0 1 4500 0 0.9

3700 0 1.4 3900 0 1 4800 0 0.9

3900 0 1.4 4200 0 1 5100 0 0.9

4100 0 1.4 4300 6.2 5.6 5300 0 0.9

4300 0 1.4 4400 0 1

 4600 0 1

 4800 0 1

Fig. G.6. A comparison of the average percentage errors for games with n = 70 players.

20 21 22 24
0

5

10
(a)

30 31 32 33 34
0

5

10

15
(b)

40 41 42 43 44
0

5

10
(c)

50 51 52 54
0

5

10
(d)

60 61 62 63 64
0

5

10
(e)

70 71 72 73 74
0

5

10
(f)

80 81 82 83 84
0

5

10

Weight

N
u

m
b

e
r

o
f

p
la

y
e

rs

(g)

90 91 92 93 95
0

5

10
(h)

100 101 102 103 104
0

5

10
(i)

μ=30.9
ν=1.39

μ=40.95
ν=1.25

μ=51.4
ν=1.24

μ=60.95
ν=1.25

μ=71.25
ν=1.39

μ=81.25
ν=1.1

μ=91.6
ν=1.34

μ=101.4
ν=1.24

μ=21.1
ν=1

Fig. H.1. Players’ weights for n = 20 players.

45

20 21 22 23 24
0

5

10

15
(a)

30 31 32 34
0

5

10

15
(b)

40 41 42 43 45
0

5

10
(c)

50 51 52 53 54
0

5

10

15
(d)

60 61 62 64 65
0

5

10

15
(e)

70 71 72 74
0

5

10

15
(f)

80 81 82 84 85
0

5

10

15

Weight

N
u

m
b

e
ro

f
p

la
y
e

rs

(g)

90 91 92 93 95
0

5

10

15
(h)

100 101 102 103 105
0

5

10

15
(i)

μ=21.33
ν=1

μ=31.4
ν=1.11

μ=41.2
ν=1.23

μ=51.17
ν=1.14

μ=71.3
ν=1.21

μ=81.2
ν=1.36

μ=91.1
ν=1.16

μ=61.13
ν=1.32

μ=101.3
ν=1.1

Fig. H.2. Players’ weights for n = 30 players.

20 21 22 24 25
0

5

10

15
(a)

30 31 32 33 35
0

5

10

15
(b)

40 41 42 44 45
0

5

10

15
(c)

50 51 52 53 54
0

5

10

15
(d)

60 61 62 64 65
0

5

10

15
(e)

70 71 72 73 75
0

5

10

15
(f)

80 81 82 84
0

10

20

Weight

N
u

m
b

e
r

o
f

p
la

y
e

rs

(g)

90 91 92 94 95
0

5

10

15
(h)

100 101 102 104 105
0

5

10

15
(i)

μ=21.18
ν=1.2

μ=81
ν=1.25

μ=91.13
ν=1.21

μ=31.1
ν=1.17

μ=41.28
ν=1.15

μ=51.1
ν=1.02

μ=61.2
ν=1.16

μ=71.2
ν=1.16

μ=101.23
ν=1.27

Fig. H.3. Players’ weights for n = 40 players.

46

20 21 22 23 24 25
0

10

20
(a)

30 31 32 33 34
0

10

20
(b)

40 41 42 43 44 45
0

10

20

30
(c)

50 51 52 53 54 55
0

10

20
(d)

60 61 62 63 64
0

10

20
(e)

70 71 72 73 74 75
0

10

20
(f)

80 81 82 83 84
0

10

20

Weight

N
u

m
b

e
r

o
f

p
la

y
e

rs

(g)

90 91 92 93 94 95
0

10

20
(h)

100 101 102 103 104 105
0

10

20
(i)

μ=21.38
ν=1.36

μ=31.2
ν=1.2

μ=41
ν=1.4

μ=51.34
ν=1.38

μ=61.14
ν=1.28

μ=71.22
ν=1.33

μ=81.44
ν=1

μ=91.48
ν=1.41

μ=101.38
ν=1.43

Fig. H.4. Players’ weights for n = 50 players.

20 21 22 23 24
0

10

20

30
(a)

30 31 32 33 34
0

10

20

30
(b)

40 41 42 43 44 45
0

10

20

30
(c)

50 51 52 53 55
0

10

20
(d)

60 61 62 63 65
0

10

20
(e)

70 71 72 74 75
0

10

20

30
(f)

80 81 82 83 84
0

10

20

30
(g)

Weight

N
u

m
b

e
r

o
f

p
la

y
e

rs

90 91 92 93 94 95
0

10

20

30
(h)

100 101 102 103 104 105
0

10

20

30
(i)

μ=31.05
ν=1.05

μ=41.2
ν=1.43

μ=51.25
ν=1.05

μ=71.42
ν=1.34

μ=81.15
ν=1.13

μ=91.5
ν=1.35

μ=101.23
ν=1.21

μ=21.4
ν=1

μ=61.3
ν=1.24

Fig. H.5. Players’ weights for n = 60 players.

47

20 21 22 23 24 25
0

10

20

30
(a)

30 31 32 33 34 35
0

10

20

30
(b)

40 41 42 43 44 45
0

10

20

30
(c)

50 51 52 53 54 55
0

10

20

30
(d)

60 61 62 63 64 65
0

10

20

30
(e)

70 71 72 73 74 75
0

10

20

30
(f)

80 81 82 83 84 85
0

10

20

30

Weight

N
u

m
b

e
r

o
f

p
la

y
e

rs

(g)

90 91 92 93 94 95
0

10

20

30
(h)

100 101 102 103 104 105
0

10

20

30
(i)

μ=21.24
ν=1.1

μ=31.19
ν=1.26

μ=41.23
ν=1.26

μ=61.23
ν=1.09

μ=71.23
ν=1.12

μ=81.16
ν=1.36

μ=101.23
ν=1.26

μ=50.96
ν=1.07

μ=91.4
ν=1.13

Fig. H.6. Players’ weights for n = 70 players.

48

