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ABSTRACT

Semantic spaces encode similarity relationships between ob-
jects as a function of position in a mathematical space. This
paper discusses three different formulations for building se-
mantic spaces which allow the automatic-annotation and se-
mantic retrieval of images. The models discussed in this
paper require that the image content be described in the
form of a series of visual-terms, rather than as a continuous
feature-vector. The paper also discusses how these term-
based models compare to the latest state-of-the-art contin-
uous feature models for auto-annotation and retrieval.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.3.1 [Information Storage and
Retrieval]: Content Analysis and Indexing;
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Performance Evaluation; I.4.9 [Artificial In-
telligence]: Applications; I.2.6 [Artificial Intelligence]:
Learning

General Terms

Algorithms, Experimentation, Measurement, Performance
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1. INTRODUCTION
The generic notion of semantic image retrieval is one in

which a corpus of images is made as accessible to retrieval
and semantic understanding as a text corpus is now. This
is an important notion that could affect everyone from pro-
fessional multimedia searchers searching their archives, to
home users searching their personal photo collections. The
barrier to this notion is that whereas in text retrieval the
methodology to index and retrieve documents is well un-
derstood in computational terms, an analogous methodol-
ogy for multimedia is not. The biggest disappointment of
over four decades worth of research into computational vi-
sion has been the general inability to transform images into
sufficiently accessible information structures; this problem
is known as the semantic gap in image retrieval.

Many different approaches to solving the problem of the
semantic gap have been proposed; these almost invariably
revolve around the idea of developing machines to automat-
ically annotate images with keywords that can be used for
indexing. Recently, it has been shown that whilst this tech-
nique is effective, it can often be better to record a keyword’s
similarity to an image, and use this similarity for ranked re-
trieval.

Perhaps the most obvious way to attempt to solve the
problem of automatically annotating images is to attempt
to use techniques from the computer vision field, in which
the task of object recognition, or detection, is performed
by specially trained classifiers which are used to determine
the class or keyword of an object that has been segmented
from the image. Unfortunately, this approach has limited
use in the kind of real world images that we would like to
deal with. The biggest problem is that the segmentation
step is a chicken-and-egg problem; it is almost impossible
to perform accurate object segmentation without any top-
down knowledge of what the object looks like, but at the
same time, the segmentation is required to describe what
the object looks like.

Recent approaches to automatic annotation have tended
to take a different approach, by inferring probabilities or
similarities of concepts by analysing statistical properties of
whole images. The basic premise of these automatic an-
notation approaches is that a model can be learned from a
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training set of images that describes how low-level image fea-
tures are related to higher-level keywords. This model can
then be applied to unannotated images in order to auto-
matically generate keywords that describe their content. In
essence, the process of auto-annotation is analogous to trans-
lating from one language to another [1]. In fact, many of the
state-of-the-art techniques for encoding low-level image con-
tent are based around the idea of transforming or quantizing
the features to a vocabulary of visual-terms, which represent
a purely visual language [13, 15, 30].

One of the earliest attempts at automatic annotation ap-
plied a co-occurrence model to keywords and low-level fea-
tures of rectangular image regions [25]. Current techniques
for auto-annotation generally fall into two categories; those
that first segment images into regions, or ‘blobs’ and those
that take a more scene-orientated approach, using global in-
formation. The segmentation approach has recently been
pursued by a number of researchers. Duygulu et al.[8] pro-
posed a method by which a machine translation model was
applied to translate between keyword annotations and a dis-
crete vocabulary of clustered ‘blobs’. The data-set proposed
by Duygulu et al.[8] has become a popular benchmark of
annotation systems in the literature. Jeon et al.[18] im-
proved on the results of Duygulu et al.[8] by recasting the
problem as cross-lingual information retrieval and applying
the Cross-Media Relevance Model (CMRM) to the annota-
tion task. Jeon et al.[18] also showed that better (ranked)
retrieval results could be obtained by using probabilistic an-
notation, rather than hard annotation. Lavrenko et al.[21]
used the Continuous-space Relevance Model (CRM) to build
continuous probability density functions to describe the pro-
cess of generating blob features. The CRM model was shown
to outperform the CMRM model significantly. Metzler and
Manmatha [22] propose an inference network approach to
link regions and their annotations; unseen images can be
annotated by propagating belief through the network to the
nodes representing keywords.

The models by Monay and Gatica-Perez [23], Feng et
al.[10] and Jeon and Manmatha[19] use rectangular regions
rather than blobs. Monay and Gatica-Perez [23] investi-
gates Latent Space models of annotation using Latent Se-
mantic Analysis and Probabilistic Latent Semantic Analysis,
Feng et al.[10] use a multiple Bernoulli distribution to model
the relationship between the blocks and keywords, whilst
Jeon and Manmatha[19] use a machine translation approach
based on Maximum Entropy. Blei and Jordan [3] describe
an extension to Latent Dirichlet Allocation [4] which as-
sumes that a mixture of latent factors are used to generate
keywords and blob features. This approach is extended to
multi-modal data in the article by Barnard et al.[1]. Most re-
cently, Carneiro and Vasconcelos [5] have proposed a method
that splits an image into blocks and models each keyword
class as a hierarchical mixture of Gaussians describing the
DCT coefficient information of these blocks. At the time of
writing, Carneiro and Vasconcelos have the best published
results on the dataset of Duygulu et al [8].

Oliva and Torralba [27, 28] explored a scene oriented ap-
proach to annotation in which they showed that basic scene
annotations, such as ‘buildings’ and ‘street’ could be ap-
plied using relevant low-level global filters. Hare and Lewis
[14] showed how vector-space representations of image con-
tent, created from local descriptors of salient regions within
an image [12, 13, 30], could be used for auto-annotation

by propagating semantics from similar images. Yavlinsky
et al.[33] explored the possibility of using simple global fea-
tures together with robust non-parametric density estima-
tion using the technique of ‘kernel smoothing’. The results
shown by Yavlinsky et al.[33] were comparable with the in-
ference network [22] and CRM [21]. Notably, Yavlinsky et
al. showed that the Corel data-set proposed by Duygulu
et al.[8] could be annotated remarkably well by just using
global colour information. Hare and Lewis [15] also demon-
strated that global histogram features could be used within a
linear-algebraic retrieval/annotation system to yield better
performance than Duygulu’s machine translation approach
combined with complex blob features for a number of differ-
ent queries.

The system of Hare and Lewis [15] essentially constructs
a special form of a vector space, called a semantic space,
from the visual-terms and keyword annotations that occur
in image documents. Unannotated images are projected into
this space in order to be retrieved or annotated. The fun-
damental idea of a semantic space is that of a mathematical
space in which objects are placed in a well defined pattern.
The underlying principle is that objects that are semanti-
cally similar should be placed in such a way that they are
near to each other in the space when measured using a suit-
able measure or metric. In terms of image retrieval research,
such spaces are now becoming commonplace.

This paper revisits the linear-algebraic technique proposed
in [15] and performs a number of evaluations using the Corel
set with different image features. The linear-algebraic tech-
nique is also compared and contrasted to two probabilistic
models based around Probabilistic Latent Semantic Analysis
(PLSA).

2. LINEAR-ALGEBRAIC SEMANTIC

SPACES
Our Linear-Algebraic Semantic Space approach [15, 11]

is a generalisation of a text-retrieval technique called Cross
Language Latent Semantic Indexing [20], which is itself an
extension of Latent Semantic Indexing/Analysis (LSI/LSA)
[6].

In general, any document (be it text, image, or even video)
can be described by a series of observations, or measure-
ments, made about its content. We refer to each of these
observations as terms. Terms describing a document can
be arranged in a vector of term occurrences, i.e. a vector
whose i-th element contains a count of the number of times
the i-th term occurs in the document. There is nothing stop-
ping a term vector having terms from a number of different
modalities. For example a term vector could contain term-
occurrence information for both ‘visual’ terms and textual
annotation terms. Given a corpus of documents, it is possi-
ble to form a matrix of observations or measurements (i.e.
a term-document matrix).

Fundamentally, the Semantic Space technique works by
estimating a rank-reduced factorisation of a term-document
matrix of data, O, into a term matrix T and a document
matrix D:

O ≈ TD . (1)

The two vector bases created in the decomposition form
aligned vector-spaces of terms and documents. The rows
of the term matrix, T, create a basis representing a position
in the space of each of the observed terms. The columns of
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the document matrix, D, represent positions of the observed
documents in the space. Similar documents and terms share
similar locations in the space.

The Singular Value Decomposition proves to be a useful
tool for estimating the factorisation in Equation 1. The
term-document matrix, O can be decomposed using SVD
into a m × r matrix U, a r × r diagonal matrix Σ and a
r × n matrix VT ,

O = UΣVT
, (2)

such that UT U = VVT = VT V = I, where I is the iden-
tity matrix. Now partitioning the U, Σ and VT matrices as
follows:

U =
ˆ

Uk UN

˜
}m

|{z}

k

|{z}

r−k

Σ =

»
Σk 0
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(3)

we have, UΣVT = UkΣkV
T
k + UNΣNVT

N . If we now as-
sume that there are k independent terms in the term-docu-
ment matrix O, then it can be shown that the best possible
rank-k approximation (in the least-squares sense) to O is
given by UkΣkV

T
k .

Since the matrix O contains all of the relationships be-
tween terms and documents, it follows that all co-occurrences
between terms can be characterised by OOT and between
documents by OT O. Expanding using the SVD expres-
sion (2), it follows that:

OOT = (UΣVT )(UΣVT )T = UΣ2UT ,

OT O = (UΣVT )T (UΣVT ) = VΣ2VT .
(4)

From this, it can be seen that the co-occurrence relation-
ships between terms is independent of V and conversely,
the document co-occurrence is independent of U. This im-
plies that individual terms are represented by rows of U,
and documents by columns of VT .

Assume that we have two collections of images; a train-
ing set with keyword annotations and a test set without.
The content of each image can be represented by a vec-
tor of ‘visual-term’ occurrences. A cross-modality term-
document matrix, Otrain can be created for the training
set of images by combining the visual-term occurrence vec-
tor with the keyword-term occurrence vector for each image.
This can then be factorised according to Equation 1 into a
term matrix Ttrain and a document matrix Dtrain by using
the singular value decomposition and letting T = Uk and
D = ΣkV

T
k . As described above, the rows of T describe the

position in the space of each term, and the columns of D
describe the position of each document.

In order to make the unannotated test images search-
able, we can project them into the semantic space described
by Ttrain (and Dtrain). Firstly, a cross-modality term-
document matrix, Otest must be created for the test set
of images by setting the number of occurrences of each (un-

known) keyword to 0. It can be shown that it is possible to
create a document matrix, Dtest for the test documents as
follows:

Dtest = TT

trainOtest . (5)

In order to query the test set for images relevant to a term,
we just need to rank all of the images based on their position
in the space with respect to the position of the query term in
the space. The angle between the vectors or cosine similarity
is a suitable measure for this task.

2.1 Weighting the term-document matrix
In text-retrieval it is often beneficial to apply some form

of weighting to individual terms and whole documents in
order to provide some normalisation. The same may also
be true of using this technique, and is perhaps even more
important given the possible issues related to the difference
in magnitudes of the counts of the visual-terms compared
to the semantic terms. It has been suggested that a suit-
able method for normalising the data is to use a normalised-
entropy scheme [2], which normalises the document length
and word entropy. The normalised-entropy weighting can
be expressed as follows: for each element (i, j) of O,

wi,j = (1 − εi)
ci,j

nj

, (6)

where,
ci,j number of times wi occurs in dj

nj total number of words in dj

εi normalised entropy of wi in the set of documents
The global weighting (1 − εi) reflects the fact that two

words in the same document, with the same count, do not
necessarily convey the same amount of information about
the document, and thus is a measure of the indexing power
of a given term. The intuition is that a word that is dis-
tributed across many documents will have a lower indexing
power than a word that only occurs in a few specific docu-
ments. If we denote the number of times the total number
of times a word wi occurs in all documents by ti =

P

j
ci,j ,

the expression for εi is

εi =
1

log N

NX

j=1

ci,j

ti

log
ci,j

nj

. (7)

2.2 Experiments
Our previous work [15, 16] demonstrated that the linear-

algebraic technique can be quite effective at image retrieval.
One of the problems with many of the recent works on au-
tomatic annotation is that whilst they have used the Corel
dataset as a benchmark from which to compare results, each
technique has used a different type of visual feature. The
use of different features makes it rather difficult to compare
algorithms directly, as it it impossible to say what effect the
choice of feature has on the machine learning performed by
the algorithm; as an example, it is difficult to say whether
the impressive results of [5] are due to the performance of
the probabilistic model, or to the power of the DCT features
used [32].

In this paper we investigate the performance of the tech-
nique for semantic retrieval and auto-annotation tasks using
the Corel dataset [8] using a number of different types of
image features. Results from these experiments allow us to
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quantify the performance of our technique when compared
to other techniques, but also to say something about the
expressive power of the different visual features.

The Corel dataset has been criticised in the past as both
being“too easy”, and as too small for proper retrieval evalua-
tion [31, 26]. However, that being said, it is still used as the
defacto standard in most auto-annotation papers. In this
study, we believe that the choice of dataset is reasonable
because the experiments will be repeatable and compara-
ble. Also, we don’t believe that the dataset is quite as easy
as has sometimes been suggested since the state-of-the-art
techniques struggle to annotate effectively. One answer to
this is that the dataset is actually quite representative of
other real-world datasets in that it contains many errors,
and strange keyword choices. These factors confound the
problem of training a machine to learn how to annotate im-
age content effectively, but are realistic of training data in
the real world.

We have split the dataset into three subsets for exper-
imental purposes; a 4000 image training set, a 500 image
validation set, and a 500 image test set. The 500 image test
set is the same as used in [8]. The linear-algebraic tech-
nique described above has one parameter in which to opti-
mise; the number of dimensions, or k. This is optimised by
training on the training set, and finding the value of k that
maximises the mean average precision of a hypothetical se-
mantic retrieval scenario using the validation set [15]. Once
the optimal k value has been found, a new space is trained
using the training and validation sets combined before the
unannotated test set is projected in.

2.2.1 Image features

In order to investigate the effect of different feature mor-
phologies on the performance of the linear-algebraic tech-
nique, we have selected four different types of visual-term
feature. In particular, we study a feature based on the dis-
crete cosine transform in detail.

Global RGB Histogram.
The first type of feature selected is a 64-bin (4×4×4)

global RGB histogram. This is the same feature that was
demonstrated to perform surprisingly well on the Corel data-
set in [15]. Each bin of the histogram is considered to repre-
sent a single visual term, and the size of the bin represents
the number of times that visual term occurs in the image.

Local RGB Histogram.
The global colour histogram described above completely

discards all information about the layout of colour in the
image. If we first segment the image into blocks, and then
calculate a colour histogram for each block, it is possible to
develop a rudimentary descriptor that describes the colour
at a rough location in the image. For our experiments, we
split each image into 16 blocks (four evenly sized intervals
along each axis) and calculated a 64-bin RGB histogram for
each block. Each histogram bin at each of the 16 different lo-
cations was taken to be a different visual term, and as before
the size of the bin represented the number of occurrences of
the respective term.

Blobs.
The blobs feature is the same as found in [8]. The fea-

ture was created by segmenting each image into a number of

Figure 1: Example of a visual vocabulary from clus-
tered DCT blocks

blobs, and then calculating a descriptor using various colour,
texture and shape attributes of each blob in the respective
image. The set of descriptors was then clustered using k-
means to create a vocabulary of 500 visual-terms. Each blob
was then converted to a visual term by vector quantising its
descriptor into the nearest visual term. Term-occurrence
vectors were finally calculated by counting the occurrences
of each visual term in each image.

Clustered DCT Features.
It has been suggested that the reason for the impressive

performance of the system presented in [5] is partially due to
the Discrete Cosine Transform (DCT) features used. We can
use quite the same feature as [5] in our annotation/retrieval
system because of the requirement that we have discrete
visual-terms, rather than a continuous feature; however, it
is possible to use the DCT to create a visual vocabulary
by clustering image blocks in the DCT domain, and then
applying vector quantisation to create lists of visual-terms
for each image.

In our implementation, we split each image into a sequence
of 8×8 blocks. We also left a 4-pixel border around the edge
of each image in order to reduce the likelihood of problems
occurring due to the black borders in many of the Corel im-
ages. For each of the Red, Green and Blue planes of the
block we calculated the DCT, and ordered the DCT coef-
ficients from highest to lowest frequency. It is well known
that the lowest frequency coefficients are less important vi-
sually, so of the 64 DCT coefficients, we kept only the high-
est 10 coefficients from each plane (including the DC coef-
ficient). The selected coefficients from each plane were ap-
pended together to form a feature vector for the respective
image block.

Once sets of feature-vectors had been calculated for each
image, a random sample was drawn and clustered using K-
means. The cluster centres formed a codebook, or vocabu-
lary, of visual-terms which was then used to assign a visual
term to each feature-vector by finding the closest term in
the codebook (using Euclidean distance). An example of
the representative image blocks found in a typical 500 term
vocabulary generated from the Corel set is shown in Fig-
ure 1.

There are a number of factors that affect the quality of
image description using this technique; for example, how
many clusters (and thus visual-terms) should be defined.
This issue, and a number of others are investigated below.

Number of clustered features.
The number of clusters chosen is an important factor. In

order to determine an optimal vocabulary size we created a
number of different codebooks of varying sizes (500, 1000,
3000 and 6000 terms). For each of these vocabularies, we
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trained spaces on the training data and used the validation
data as a basis for performing retrieval experiments. The
mean average precision over a range of different k values is
plotted in Figure 2.

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0N u m b e r o f D i m e n s i o n s ( K )00 . 0 50 . 10 . 1 50 . 2mAP 1 0 0 0 V i s T e r m s5 0 0 V i s T e r m s3 0 0 0 V i s T e r m s6 0 0 0 V i s T e r m s
Figure 2: Plot showing variation in mean average
precision (averaged over all queries) versus the num-
ber of dimensions for 4 different sizes of visual-term
codebook.

Interestingly, Figure 2 shows that the size of the codebook
has negligible effect on the maximally achievable mean av-
erage precision. The only noticeable effect is that the value
of k for which mAP is maximised increases with vocabu-
lary size. This is not really surprising as we expect that
the larger vocabulary sizes will introduce more independent
terms. For practical purposes, we choose to use the smallest,
500 term, vocabulary in subsequent experiments because it
is more computationally efficient to deal with a smaller vo-
cabulary, and there is no trade-off in retrieval performance
for doing so.

Effect of clustering on DCT features.

0 2 0 0 4 0 0 6 0 0 8 0 0N u m b e r o f D i m e n s i o n s ( K )00 . 0 50 . 10 . 1 50 . 2mAP
Figure 3: Plot showing variation in mean average
precision (averaged over all queries) versus the num-
ber of dimensions. The error bars show 1 standard
deviation of mAP over 11 different 500 visual-term
codebooks.

One possible problem with our approach to clustering
the DCT feature-vectors is that the clustering has a cer-
tain amount of randomness and uncertainty associated with
it; firstly we are randomly selecting a subset of points from
which to cluster, and secondly, k-means starts at random
points. It is interesting to investigate how much of a prob-
lem this causes. Figure 3 shows the average and standard
deviation of the mAP over a range of k for a number 500
term codebooks. The standard deviation is fairly consistent
across the whole range of k. On average the standard de-
viation of mAP from the different codebooks is little over
0.6%, which shows that the randomness of the clustering is
almost negligible; that being said, we choose to use the best
performing codebook for the remainder of the experiments.
It should however be noted that there is no guarantee that

the codebook which provides the best performance on the
validation data will work best on the actual test data.

Overlapping DCT blocks.
In the work of Carneiro and Vasconcelos [5], overlapping

DCT blocks are selected using a sliding window scheme.
Overlapping blocks will increase the number of visual-terms
extracted from a given image. In order to investigate whether
the overlapping of blocks helps performance, we created 500-
term vocabularies and semantic spaces for varying amounts
of offset between subsequent image blocks. Offsets of 2, 4,
6, and 8 pixels were used. The 8 pixel offset corresponds to
no overlap.

2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0 5 5 0N u m b e r o f D i m e n s i o n s ( K )0 . 0 80 . 10 . 1 20 . 1 40 . 1 60 . 1 80 . 20 . 2 2mAP 2 p x o f f s e t4 p x o f f s e t6 p x o f f s e t8 p x o f f s e t
Figure 4: Plot showing variation in mean average
precision (averaged over all queries) versus the num-
ber of dimensions for 4 different amounts of offset
of the extracted 8 × 8 image blocks.

Figure 4 shows the effect the varying offset has on the
mAP over a range of k values. Interestingly, an offset of
2-pixels (the most overlap of blocks) leads to a much greater
maximum mAP than with lower amounts of overlap. As
mentioned earlier, increased amounts of overlap result in
more visual-terms for a given image; it is likely that this in
turn leads to a much richer image description, which then
leads to an improved retrieval performance.

2.2.2 Retrieval Performance

Semantic retrieval performance of the different features
is compared by creating semantic spaces for each feature
and using the trained keywords to attempt retrieval of the
images in the test set. Since the ground truth annotations
of the test set are known, it is possible to determine which
images are relevant to a particular keyword query and thus
calculate precision and recall.

Figure 5 illustrates the performance of each of the fea-
tures, with and without weighting, within the semantic space
framework. Table 1 summarises the mean average precision
for the retrieval experiments. It should be noted that these
precision-recall scores are perhaps a little misleading as the
system does not perform equally for all queries; that is to
say that for each of the different features, certain queries
will perform much better than others, depending on what
underlying relationships have been learnt by the system.

The results show a number of findings; firstly, the clus-
tered DCT feature does indeed perform better than the
other features. Secondly, and rather surprisingly, the lo-
cal RGB Histogram feature outperforms the Blob feature
(significantly, if we just consider the unweighted variants).
Thirdly, the use of the weighting scheme helps in some cases,
but hinders in others. More discussion of these findings can
be found in Section 4.
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Figure 5: Interpolated precision-recall curves for se-
mantic retrieval using each of the different image
features, with and without weighting

Table 1: Summary of Retrieval Performance using
linear-algebraic method
Feature unweighted normEnt

Kopt mAP Kopt mAP
Global RGB Histogram 39 0.126 27 0.137
Local RGB Histogram 164 0.187 223 0.178
Blobs 39 0.155 21 0.184
Clustered DCT Feature 354 0.208 345 0.181

2.2.3 Annotation Performance

In addition to performing semantic search by locating a
keyword in the space and then finding images sharing a sim-
ilar location, the semantic space technique can be used in
reverse; an un-annotated image can be located in the space,
and similar keywords can be found, thus allowing automatic
annotation to take place.

Following the methodology of [5], for each image in the
test set we predict the annotations of each image to be
the closest 5 keywords in the semantic space. Performance
of the auto-annotation can be calculated as follows; For
each keyword, assume there are wH images with that key-
word as ground truth, and that the system has annotated
wauto, of which wC are correct. It is then possible to de-
termine a precision and recall measure for each keyword by
precision = wC

wauto
and recall = wC

wH
. Also, considering the

number of keywords with a nonzero recall (i.e. wC > 0) gives
an indication of how many keywords have been effectively
learnt.

Table 2 shows the annotation precision and recall averaged
over all query terms, together with the number of learnt
terms. Again, the clustered DCT performs well. However
the most surprising result is that the local RGB histogram
is able to learn 100 terms (albeit with lower precision and
recall than the DCT feature). The effect of the weighting is
also interesting — again, it improves some features slightly,
but hinders others.

3. PROBABILISTIC SEMANTIC SPACES
To highlight the performance of our linear-algebraic LSA-

based approach we compare its results with those of a re-
lated, yet inherently different, semantic correlation approach.
Probabilistic Latent Semantic Analysis (PLSA)[17] is a tech-
nique originally designed to solve the problem of automatic
classification of text documents through word-document co-

occurrence. However, in contrast to LSA, which stems from
linear algebra, PLSA uses a statistical methods to formulate
and solve the problem.

The key concept in PLSA is that of several generative la-
tent classes, to which the presence of particular terms in a
document can be attributed. That is to say, the assumption
of the existence of Nz classes z ∈ {z1, ..., zNz

} which are un-
derlying concepts that generate terms t ∈ {t1, ..., tNt

} and
documents d ∈ {d1, ..., dNd

}. These generative classes can be
interpreted as the corpus’ subjects and are the tool used to
associate terms and documents which have a similar mean-
ing but possibly no direct co-occurence. This is achieved
by maximising the probability of the existence of observed
terms and documents given the underlying concept.

Let P (di) be the probability of choosing a particular doc-
ument. P (zk|di) is therefore the probability of a latent class
given a particular document and P (tj |zk) is the probability
of a particular term occurring given a class. Using the prod-
uct rule, the probability of an observable pair P (di, tj) can
be expressed as:

P (di, tj) = P (di)P (tj |di) , (8)

where,

P (tj |di) =
KX

k=1

P (tj |zk)P (zk|di) . (9)

This makes the assumption that term t and document d

are generated conditionally independently given a particu-
lar class z. Subsequently, the goal becomes the estimation
of P (di) ,P (tj |zk) and P (zk|di) such that we maximise the
probability of document and term pairs we have already ob-
served, i.e. the maximisation of L given that:

L =

NtX

i=1

NdX

j=1

n(dj , ti)logP (dj , ti) , (10)

where n(dj , ti) is the number of times a document and term
pair have been observed or simply put, the occurrences term
tj in a document di.

An approach for maximising L is the iterative Expecta-
tion Maximisation (EM)[7] algorithm. EM works by apply-
ing 2 steps alternately: (i) an expectation step (E) where
the posterior probability of a class given all observed doc-
ument and feature pairs P (zk|di, tj) is recalculated (ii) and
maximisation (M) where the posterior probabilities used as
parameters in step (i) are updated using the new posterior
probabilities. From repeated application of Bayes rule to
P (z|d, t) we can arrive at the (E) step which is:

P (zk|di, tj) =
P (tj |zk)P (zk|di)

PNz

k=1
P (tj |zk)P (zk|di)

. (11)

Also, using marginalisation and conditioning on the P (t|z)
and P (z|d) we can arrive at the (M) step which is:

P (tj |zk) =

PNd

i=1
n(tj |di)P (zk|di, tj)

PNt

m=1

PNd

i=1
n(tm, di)P (zk|di, tm)

(12)

P (zk|di) =

PNt

i=1
n(tj , di)P (zk|di, tj)

n(di)
. (13)

Algorithm 1 illustrates the EM process. The algorithmic
form shows more clearly that P (tj |zk) and P (zk|di) are in
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Table 2: Summary of Annotation Performance using linear-algebraic method
Feature unweighted normEnt

Precision Recall #words(rec>0) Precision Recall #words(rec>0)
Global RGB Histogram 0.109 0.101 55 0.144 0.149 86
Local RGB Histogram 0.187 0.211 100 0.154 0.195 88
Blobs 0.125 0.118 65 0.161 0.154 87
Clustered DCT Feature 0.192 0.246 97 0.191 0.239 98

Algorithm 1 EM Algorithm Pseudo-code

1: {Start with initial random probabilities}
2: P (t|z) = rand(Nt, Nz)
3: P (z|d) = rand(Nz, Nd)
4: for I iterations do
5: {The E step, find P(z|d,t) for the current values}
6: for Each class zk do
7: for Each each observation (di, tj) do
8: P (zk|di, fj) Calculated from current P (tj |zk) and

P (zk|di)
9: end for

10: end for
11: {The M step, using new P (z|d, t) find new values}
12: {Find the new P (t|z) and P (z|d)}
13: for Each class zk do
14: for Each word di do
15: for Each class tj do
16: P (tj|zk) Calculated using new P (zk|di, tj)
17: P (zk|di) Calculated using new P (zk|di, tj)
18: end for
19: end for
20: end for
21: end for

fact 2 matrices of size (Nf , Nz) and (Nz, Nd) respectively. It
is also interesting that the probability P (di, tj) for any give
di, wj is in fact the dot product of the jth row in P (tj |zk)
with the ith column in P (zk|di) scaled by P (di), making the
practical process of image retrieval and comparison using
PLSA quite similar to LSA using SVD.

The outputs of the PLSA iterative EM process can be
directly applied to the image retrieval tasks of (i) document
by term (ii) annotation of an unseen document.

Both these retrieval tasks can be approached in a sim-
ilar way to LSA’s projection technique. However, rather
than projecting a query document into the term space, or
finding the geometrically close terms to annotate a docu-
ment, the unseen document’s P (zk|dunseen) distribution is
discovered using further iterations of EM combined with a
process called folding, such that dunseen is the unobserved
document or term query constructed as a complete or par-
tial document. Having run EM, we know the distribution
of P (tj |zk); folding simply involves keeping this distribution
fixed after each M step and discovering a new P (zk|di) based
on the observed instances in the query document. This pro-
cess guarantees the P (zk|di) distribution of dunseen which
most correctly matches the previously learnt class structure.
In the case of retrieval, the query P (zk|di) can be directly
compared to existing P (zk|di) and comparisons made to ex-
isting documents using some distance metric (e.g. cosine or
Euclidian). In the case of annotation, P (tj |dunseen) can be

utilised as shown:

P (tj|dunseen) =

NzX

k=1

P (tj |zk)P (zk|dunseen) . (14)

Which can be calculated using the dot product of each row
in P (tj |zk) with the P (zk|dunseen), the highest values are
the most probable annotations.

PLSA-Mixed vs PLSA-Word

It should be noted that the original development of PLSA
didn’t expect the terms of the domain to be of more than
one type, where as, in the case of image retrieval or annota-
tion, there are visual-terms combined with separate semantic
terms. It has been noted [24] that there is no clear reason
to believe these 2 distinct types of term are equally impor-
tant in defining the underlying concepts and so should be
used to define the concept space simultaneously. Rather,
approaches have been taken to improve recognition results
by acknowledging the greater importance of words to define
the underlying concepts.

The basic approach for applying PLSA to visual and se-
mantic terms is to simply concatenate the terms into the
same bag-of-words representation. This scheme has been
dubbed PLSA-Mixed and produces comparatively poor re-
sults. PLSA-Words is a scheme with better results that ac-
knowledges that the semantic terms are more likely to define
the structure of the underlying subjects which the classes zk

represent. Subsequently the semantic variables are used to
initially learn the P (zk|di) distribution. Once this is found,
a similar technique to folding is utilised and the P (zk|di) is
kept fixed while the P (tj |zk) distribution is discovered util-
ising the visual-terms. This has a dual affect of improving
recognition and annotation results, as well as increasing the
speed of the algorithm as the iterative scheme takes less time
to settle once the initial class structure is known, which it-
self is found very quickly as there are fewer semantic terms
than there are visual.

Results for both PLSA-Mixed and PLSA-Words are shown
in the following section

3.1 Experiments
Performance experiments for PLSA used 4000 training im-

ages, 500 verification and 500 test images all from the Corel
set. The training set was fully annotated, the validation set
used for finding correct parameters and the test set used
for final results on a new training set which combines the
validation and training sets. The visual-terms utilised were
the optimal K-Means clustered DCT features described in
Section 2.2.1.

Firstly, an experiment was performed using the valida-
tion set to gauge the number of underlying classes, as this
is unknown for this document corpus. This was performed
using both the PLSA-Mixed and PLSA-Word approaches.
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For each class size between 10 and 800, 10 attempts are
made to find mAP to account for the random nature of the
iterative EM algorithm. Once Nz was ascertained, we used
the best number of classes to gauge the likelihood of each
semantic term for each document in the test set. Also the
top 5 semantic terms were ascertained to allow for compari-
son to SVD using the technique mentioned in Section 2.2.3.
This was done against a training set comprised of 4500 doc-
uments in the training and validation sets combined. The
results can be seen below:
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Figure 6: A Graph showing mean Average Precision
of PLSA-Words and PLSA-Mixed

The results in Figure 6 show that after roughly Nz = 150
classes are added, there is a levelling out of precision. The
point at which the two lines level out is likely to be the true
Nz , i.e. the correct number of subjects that exist in the cor-
pus. Also, due to the independence of individual classes, the
addition of classes doesn’t reduce precision, but rather the it-
erative EM algorithm guarantees classes randomly initiated
to roughly the same values will be grouped together, i.e.
assigned similar P (zk|tj , di) values. We ascribe the slight
dipping of the PLSA-Mixed results to insufficient iterations
of the EM algorithm.

Figure 7 shows the precision-recall curves for the semantic
retrieval experiment (Section 2.2.2) using the PLSA-based
semantic space techniques. Table 3 shows the retrieval and
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Figure 7: Precision-Recall curves for retrieval exper-
iments using the PLSA-Words, PLSA-Mixed, and
Linear-algebraic techniques.

auto-annotation scores for PLSA-Mixed and PLSA-Words,
together with the linear-algebraic model when using optimal
DCT terms.

4. DISCUSSION
Section 2 and Section 3 have shown three approaches to

semantic annotation. There are however several points of
discussion in the results shown and experiments performed.

Comparison to other annotation techniques

It is interesting to compare the performance of the auto-
matic annotations methods presented in this paper with
other recent and state-of-the automatic annotation tech-
niques. Table 4 summarises the annotation performance of
a number of techniques. In particular, Table 4 shows re-
sults from Mori et al.’s Co-occurrence model [25], Duygulu
el at.’s machine translation approach [8], the Cross Media
Relevance Model (CMRM) [18], the Continuous-space Rele-
vance Model (CRM) [21], the Multiple Bernoulli Relevance
Model (MBRM) [10] and Supervised Multiclass Labelling
(SML) [5], in addition to our results from using PLSA-Words
and Linear Algebraic Semantic Spaces (LASS). The results
shown in Table 4 shows that the techniques presented in this
paper fall in the mid-range of the other techniques. One in-
teresting facet is that our techniques are the best perform-
ing of any techniques that use discrete visual-term features;
the techniques that outperform ours use continuous feature-
spaces.

Weighting

The results for LSA show that with certain visual-terms
weighting greatly improves results while with others it dam-
ages results. We hypothesise that this is due to differences in
the amount of information different visual features contain.
In one situation the relatively minimal occurrence of a cer-
tain visual feature may imply lots of information, whereas
for another visual feature this may have no relevance at
all, yet weighting assumes identical information based only
on appearance. For example, take the colour “Purple” in
the colour histogram and the blob containing the concept
“Tiger”. Both may appear relatively little throughout the
corpus, “purple” only once on a jockey’s uniform and “tiger”
in a few pictures of tigers. However, the appearance of pur-
ple doesn’t necessarily imply jockey where the existence of
“tiger blob” is a pretty good indicator for tiger.

PLSA versus LSA

The results in Table 3 confirm several notions. Firstly,
PLSA-Words achieves better results than PLSA-Mixed show-
ing that indeed corpus concepts are more appropriately de-
rived from semantic terms than visual-terms. However, con-
trary to [24] who reported superior performance of PLSA-
Words, our results show worse results when compared to
LSA in the form of our linear-algebraic technique. We as-
cribe this difference partially to the different features utilised
in their experiments, namely those which take structural fea-
tures such as those obtained from SIFT into account. Also,
their LSA results utilise an approach called SVD-Cos[29],
developed primarily for blob annotation rather than whole
image annotation; giving further explanation for their poor
LSA based global annotation results.
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Table 3: Final Comparative Test Set Results
Retrieval Auto-Annotation

Scheme mAP precision recall #words(rec>0)
PLSA-Mixed 14.1% 7.7% 11.2% 49
PLSA-Words 16.2% 13.7% 17.9% 80
Linear-algebraic 20.1% 19.2% 21.1% 97

Table 4: Annotation performance of various other automatic annotation techniques compare to the linear-
algebraic technique and PLSA-Words
Models Co-Occurrence Translation CMRM PLSA-Words LASS CRM MBRM SML
Words with Recall > 0 19 49 66 80 97 107 122 137
Mean Per-word Recall 0.02 0.04 0.09 0.18 0.21 0.19 0.25 0.29
Mean Per-word Precision 0.03 0.06 0.10 0.14 0.19 0.26 0.24 0.23

5. CONCLUSIONS AND FUTURE WORK
We have shown a comparative set of results of three meth-

ods for building semantic spaces for the Corel image dataset.
We have also shown the usefulness of various discrete visual
term approaches and compared their results, both with and
without an entropy based weighting scheme. Our results
show that an approach using a DCT to compute a set of
K-Means optimal blocks gave the best results and that our
linear-algebraic technique gave the best precision and re-
call over both PLSA-Mixed and PLSA-Words, regardless of
their more rigourous theoretical grounding. Both the linear-
algebraic and PLSA-Words techniques outperform any cur-
rently known automatic-annotation methodology that uses
discrete visual-terms as a basis for image description. The
following describes some of the future directions in which we
intend to investigate.

Optimising K on a per-term basis

Some preliminary experiments which involve finding the op-
timal SVD rank for each semantic-term showed that each
term optimised at different values of K for the chosen DCT
configuration. One approach would be to find the K rank
value for each term that most improves its annotation preci-
sion. This avenue of research would be effectively applying
feature subset selection techniques to the set of singular val-
ues finding the set of projected document and term features
which best describe the space for a given scenario.

Spatially consistent models

The impressive performance of the local RGB histogram in-
dicates that the spacial information provided by a visual
term might be important. Subsequently the addition of spa-
tial information to the more sophisticated visual-terms may
result in improved annotation.

Semantic term significance

In the Corel dataset there is no indication of the relevance
of a particular annotation, rather all annotations are con-
sidered equal. Often this is not the case and there may be
one or two annotations which are the main subject of the
image and others which are less so. Such information could
be correlated with the existence of visual-terms and improve
the information they provide
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