
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other 
copyright owners. A copy can be downloaded for personal non-commercial 
research or study, without prior permission or charge. This thesis cannot be 
reproduced or quoted extensively from without first obtaining permission in writing 
from the copyright holder/s. The content must not be changed in any way or sold 
commercially in any format or medium without the formal permission of the 
copyright holders.
  

 When referring to this work, full bibliographic details including the author, title, 
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name 
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/


University of Southampton
Faculty of Engineering and the Environment

Algorithms for

Scientific Computing

Neil Stephen O’Brien

Doctor of Philosophy

October 2012





UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

Doctor of Philosophy

ALGORITHMS FOR SCIENTIFIC COMPUTING

Neil Stephen O’Brien

There has long been interest in algorithms for simulating physical systems. We are

concerned with two areas within this field: fast multipole methods and meshless meth-

ods.

Since Greengard and Rokhlin’s seminal paper in 1987, considerable interest has arisen

in fast multipole methods for finding the energy of particle systems in two and three

dimensions, and more recently in many other applications where fast matrix-vector

multiplication is called for. We develop a new fast multipole method that allows the

calculation of the energy of a system of N particles in O(N) time, where the particles’

interactions are governed by the 2D Yukawa potential which takes the form of a mod-

ified Bessel function Kv.

We then turn our attention to meshless methods. We formulate and test a new radial

basis function finite difference method for solving an eigenvalue problem on a periodic

domain. We then apply meshless methods to modelling photonic crystals. After an ini-

tial background study of the field, we detail the Maxwell equations, which govern the

interaction of the light with the photonic crystal, and show how photonic band gaps

may be given rise to. We present a novel meshless weak-strong form method with re-

duced computational cost compared to the existing meshless weak form method. Fur-

thermore, we develop a new radial basis function finite difference method for photonic

band gap calculations.

Throughout the work we demonstrate the application of cutting-edge technologies

such as cloud computing to the development and verification of algorithms for phys-

ical simulations.
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Chapter 1

A brief introduction to algorithms

and context for this thesis

Since the early development of digital computers around the era of World War II, a

vast body of work has been undertaken on the development of increasingly efficient

and involved algorithms to enable computers to tackle a broad range of problems.

This work has been accompanied by a continual increase in the capabilities and speeds

of available hardware, captured by Moore’s Law [1, 2], which has together lead to

a massive increase in the usefulness of digital computers in science and engineering

problems.

In a special issue of Computing in Science and Engineering the editors, Jack Dongarra

and Francis Sullivan, reviewed the algorithms developed over the 20th century and

picked the top ten of those algorithms [3]. The methods that they picked each changed

the way that a certain class of problem is approached, or enabled new classes of prob-

lems to be tackled.

The algorithms that were selected include the following:

• Metropolis algorithm for Monte Carlo

• Simplex method for linear programming

1



• Krylov subspace iteration

• Decompositional approach to matrix computations

• The FORTRAN optimising compiler

• QR algorithm for eigenvalue computations

• Quicksort algorithm

• Fast Fourier transform

• Integer relation detection

• Fast multipole method

In the present work, we develop several new algorithms, each of which is applic-

able to a specific problem in scientific computing. These algorithms are:

• A new fast multipole method for the 2D Yukawa potential,

• A meshless local weak-strong form method for photonic crystal modelling,

• A meshless radial basis function finite difference method for solving an eigen-

value problem on a periodic domain,

• A meshless radial basis function finite difference method for photonic crystal

modelling.

These contributions are aligned rather closely with the top 10 algorithms picked

out by Dongarra and Sullivan.

The fast multipole method is formulated in a similar style to that of Greengard

and Rokhlin’s seminal work [4], with the important difference that it is suitable for the

2D Yukawa potential and naturally handles infinitely-tiled repeats of the unit cell. It

has applications in modelling the vortex state in superconductor physics simulations,

which often make use of the Metropolis-Hastings algorithm. In implementing this

2



method, it was necessary to calculate many convolutions, and to this end a fast Four-

ier transform could have been employed, though it was concluded that in this case,

the overheads made the FFT unfavourable. The meshless methods for photonic crys-

tal modelling all reduce the problem eventually to a generalised eigenvalue problem,

which is solved by library routines formulated either in terms of the QR algorithm, or

subspace iterative methods – which rely on Krylov techniques and may employ LU

decomposition. Moreover, all the algorithms in the present work owe some of their

performance to modern optimising compilers. Thus, the present work has direct rela-

tion to several of the editors’ picks.

In addition to the algorithmic contributions made herein, we review the recent de-

velopments in novel technologies for scientific computations, including such machines

as the GRAPE series of computers, and the increasingly popular trend towards apply-

ing the new technologies of GPGPU and cloud computing in science and engineering.

We present some results from the development and verification of a meshless method

using a cloud-based architecture.

This thesis is structured as follows:

Introduction. The present chapter introduces the historical context for the work and

illustrates how it fits in with some of the key developments in the field of nu-

merical algorithms. Introductions to specific areas and algorithms are included

in each of the subsequent chapters.

Computational technologies. In this chapter, hardware developments targeted at ac-

celerating numerical computing to reduce wall-clock time are reviewed. At first

we focus on special purpose, dedicated hardware such as the GRAPE series of

machines, and then move on to the current leading-edge trends of general pur-

pose and scientific computing on GPUs (GPGPU) and cloud based architectures.

The content in this section foreshadows the application of a cloud-based archi-

tecture during the development and testing of a meshless method for photonic

crystal modelling in a later chapter.
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Fast multipole methods. This chapter provides background to the many-body prob-

lem in physics. Since there is no general analytical solution for N > 2 bodies,

numerical solution methods are reviewed, beginning with the naïve method that

takes a time of O(N2) through various accelerated methods to the fast multipole

method which reduces the problem to linear (i.e. O(N)) time.

A fast multipole method for the 2D Yukawa potential. This chapter gives the formu-

lation of a fast multipole method for the energy of systems of particles interacting

via the 2D Yukawa potential. The method was implemented and performance

results are given in which it is compared to the naïve method for run time and

accuracy with various parameters.

Meshless methods. In this chapter, the background to meshless methods is surveyed,

and by way of comparison to mesh-based methods such as the finite element and

finite difference methods, advantages of the meshless methods are elucidated.

The chapter also introduces radial basis functions, and gives the formulation of a

new radial basis function finite difference (RBF-FD) method for solving an eigen-

value problem on a periodic domain, including the formulation of a higher-order

RBF-FD scheme.

Meshless methods for photonic crystal modelling. In this chapter, meshless methods

are applied to the modelling of photonic crystals. Existing work in the field has

proved that these methods can successfully model such crystals. This chapter

presents the formulation of, and some results from, two new meshless methods

suited to modelling photonic crystals.

Conclusions and outlook. This chapter reviews the main findings of the work, and

goes on to show some areas in which further useful development would be likely

as a result of continued research efforts.

4



Chapter 2

Computational technologies

While the algorithms of high-performance computing have been evolving rapidly in

terms of the size and complexity of the problems that can be solved, from the Monte

Carlo method in 1949 [5] to the fast algorithms of today, the computer hardware on

which they run has also undergone dramatic changes. In this chapter, some of the more

recent developments related to high-performance computing are reviewed. For histor-

ical context, we briefly consider some special purpose computers in §2.1.1. In §2.1.2 we

review the GRAPE series of machines which, although initially designed just for astro-

physical N-body simulations, are being developed into increasingly general purpose

parallel scientific computers.

Moving further towards the commodity hardware that underlies progress in some

fields of scientific computing, we devote §2.2 to the Cell Broadband Engine. A signi-

ficant and exciting recent development is the advent of general-purpose programming

on graphics processing units (GPUs). We discuss applications of this technology to

scientific problems in §2.3. This is currently a field enjoying huge growth and rapid in-

novation, driven both by the increasing demands of consumers for immersive gaming

and multimedia experiences, and of the scientific community for affordable, massively

parallel processing. We finish the section by introducing the paradigm of cloud com-

puting and its applicability to scientific computation in §2.4, and present a summary

in §2.5. The material in this chapter underlies the development and tuning of one of
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the meshless algorithms presented in §6.4, a large proportion of which was accelerated

by the application of a cloud based architecture.

2.1 Special-purpose hardware

In this section, we introduce some special-purpose hardware that was specially de-

signed for scientific computations. Many of the machines mentioned here are of his-

torical interest, and are mentioned to give some context for the more contemporary

technologies discussed later. These machines typically did not enjoy the benefits and

economies of scale associated with mass-market products, and therefore were often

very costly. This is in stark contrast to GPUs, which we shall examine in §2.3.

2.1.1 Historical special purpose hardware

The literature contains many examples of historical special-purpose computers. To

provide a little historical context, we summarise two such machines in this section,

before moving on to look at more contemporary solutions.

Auerbach, et al., designed and implemented a special purpose computer for mo-

lecular dynamics (MD) [6]. This work was done in 1987, a time when the efficiency

of the serial von Neumann architecture was being called into question in scientific

computations. At that time, the peak performance, since described as ‘the perform-

ance vendors guarantee not to exceed’1, of a single processor supercomputer was 4 Gflops.

The sustained performance was considerably lower. Therefore, Auerbach et al. in-

troduced a special-purpose parallel computer which was built at IBM’s Almaden Re-

search Centre. They noted that MD problems are eminently suitable for parallelisa-

tion since they may be evenly divided up for load-balancing across processors, and

they have low communications overheads. The prototype special-purpose computer,

known as SPARK, achieved a sustained compute rate 1.73 times greater than the IBM

1http://www.hoise.com/primeur/01/articles/weekly/UH-PR-09-01-1.html accessed 11 Novem-

ber 2011
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370/3081 (a mainframe introduced in 1980). It was anticipated that an array of ten

SPARK nodes would have a performance of around 30 Mflops, or 17× faster than the

IBM mainframe.

Boehncke, et al. proposed a special-purpose machine for MD calculations in 1990 [7].

The machine consisted of a network of Transputer nodes, running at 20 MHz and each

having 4 MB RAM. They used 60 such nodes in a systolic ring network. The authors

note that their system “does very well when large numbers of atoms are involved.”

It is interesting to note that in a ring topology, the processes carried out by the nodes

must explicitly take account of the topology: coordinates, in this example, were sent

clockwise around the ring, whilst forces were sent counter-clockwise. When forces are

calculated, they are sent round the ring, with each Transputer running a routing pro-

cess which decides if the force is relevant to the atoms that processor is dealing with; if

it is not, the only action taken is to pass it on to the next neighbour.

2.1.2 GRAPE

The gravity pipe (GRAPE) was a special-purpose computer, developed for astrophys-

ical N-body simulations. The GRAPE project was commenced at Tokyo University in

1989 and underwent several revisions.

The special GRAPE hardware acts as a force-calculation accelerator to a host work-

station. The workstation is responsible for executing the vast majority of the instruc-

tions in any simulation. The GRAPE is called only to perform gravitational force cal-

culations, in the innermost loop of the simulation [8]. The parts of the calculation that

are run by the host workstation are generally the O(N) parts, whereas the force cal-

culation, in some cases evaluated by the naïve O(N2) approach, and in others by an

O(N log N) algorithm, is carried out on the GRAPE. Even the faster tree codes can

benefit from being run on the GRAPE [9].

There exist GRAPE systems that allow arbitrary force implementations, lending

themselves to applications such as molecular dynamics, for which the MDGRAPE sys-

tem was specifically designed, but most systems are specific to astrophysical prob-
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Machine Year Peak Speed Notes

Low-precision machines

GRAPE-1 1989 240 Mflops Concept system

GRAPE-3 1991 15 Gflops Custom integration

GRAPE-5 1999 1 Tflops Supports forces with arbitrary cutoff functions

High-precision machines

GRAPE-2 1990 40 Mflops Supports IEEE-754 single and double precision

HARP-1 1993 180 Mflops Calculates force and its time-derivative

GRAPE-4 1995 1 Tflops Single-chip pipeline

GRAPE-6 2002 64 Tflops 6 pipelines per chip

GRAPE-DR 2008 2 Pflops New architecture

Table 2.1: Comparison of GRAPE hardware, with speeds in floating-point operations

per second, after [8].

lems [8]. In table 2.1 a summary of various GRAPE machines is presented.

From a programmer’s perspective, the effort of harnessing the power of a GRAPE

system is minimal: the use of the special-purpose hardware just requires calling a

few library functions [10]. Thus, writing new software or porting existing codes is

fairly straightforward. Since there is essentially just one calculation to be done on the

GRAPE, writing the library function itself is also relatively straightforward.

The next GRAPE iteration was the greatly reduced array of processor elements with

data reduction (GRAPE-DR), and it represented quite a departure from the previous

GRAPE machine architectures. It was planned that the system would consist of 4096

processor chips, each having 512 cores clocked at 500 MHz. A processor chip’s peak

speed would be 512 Gflops. A prototype was built, featuring a single GRAPE-DR chip

on the PCI-X bus. The final system was envisaged to be a cluster of 512 PCs each

featuring two four-chip GRAPE-DR boards, for a total compute power of 2 Pflops [11].

The GRAPE-DR architecture, illustrated in fig. 2.1, is a modified form of the ba-
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Figure 2.1: The GRAPE-DR processor architecture. In the figure, PE is an abbreviation

for Processing Element. After fig. 4 in [11].

sic single instruction, multiple data (SIMD) architecture, where the processor elements

(PEs) are grouped into blocks in hardware, and each block has some buffer memory

and a connection to a reduction network. These customisations made the hardware

ideal for scientific computing, where the answer to the problem being solved usually

requires some reduction operation over the results of all the individual parallel com-

putations.

Although at the time of writing there appear to be no recent published works on the

GRAPE-DR project, a presentation appearing online [12] announced that a single chip

achieves 0.5 Tflops, with a projected chip initial development cost of approximately

$10 M. In the presentation, the GRAPE-DR was compared to field programmable gate

array (FPGA) solutions, and was claimed to offer significant advantages over the lat-

ter, because GRAPE-DR is programmable via assembly language and compilers whilst

FPGAs require the use of VHDL (very-high-speed integrated circuit hardware descrip-

tion language). GRAPE-DR also offers the possibility of better use of silicon area, and

potentially faster clock speeds than FPGAs.

The same talk compared the GRAPE-DR to a GPU (see §2.3), claiming its advant-
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GRAPE-DR NVIDIA G92 AMD FS9170

Design rule (nm) 90 65 55

Clock speed (GHz) 0.5 1.5 0.8

No. of FPUs 512 112 320

Single precision peak Gflops 512 336 512

Double precision peak Gflops 256 U/S 102.4

Power consumed (W) 65 ∼70 ∼150

Table 2.2: Comparison of specifications of GRAPE-DR and GPUs, some data from [12].

U/S: double precision calculations are unsupported on the NVIDIA G92.

ages are the better usage of silicon, and the fact that as a processor designed for sci-

entific computing, the GRAPE-DR offers efficient reduction, and low communications

overheads. Conversely, the GRAPE-DR is a small-quantity device, which makes it ex-

pensive, and its development takes place over a much longer cycle of around 5 years,

vs. closer to one year between generations of GPUs.

The current status of the GRAPE-DR project is that it is available commercially

from K&F Computing Research Co2. Prices start from3 ¥340 K (approx. £2650) for a

PCI-Express card with a single GRAPE-DR chip to ¥1.6 M (approx. £12500) for an 8-

processor version in an external chassis with 16-lane PCI Express connections to the

host system. The performance figures for one chip, reproduced from [12] in table 2.2,

were similar to those of GPUs, so it remains to be seen whether GRAPE-DR can con-

tinue to offer an advantage over the considerably cheaper GPUs whose performance is

increasing rapidly, due both to the consumer demand for rich multimedia and gaming

experiences, and an increasing interest from the scientific computing sector.

2http://www.kfcr.jp/grapedr-e.html
3prices and exchange rates current as of September 2012
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2.2 Cell Broadband Engine

The Cell Broadband Engine was the first chip multiprocessor implementation that

provided significant numbers of programmable, general-purpose cores [13]. The Cell

Broadband Engine Architecture (CBEA) is a joint venture between Sony, Toshiba, and

IBM. It was targeted at multimedia and compute-intensive workloads, and the first

target for the architecture was a games console, the Sony PlayStation 3 (PS3) [14]. The

architecture was designed to support large amounts of parallelism, and to offer high

memory bandwidth. The CBEA allows programmers to explicitly perform data trans-

fers in parallel with computation, potentially leading to a far better use of available

bandwidth.

The Cell has been recognised as early as 2006 as having huge potential for carry-

ing out scientific computations with both high performance and power efficiency [15].

IBM’s Cell offerings are currently twofold: the PowerXCell 8i processor is at the core

of Roadrunner, the world’s second-fastest supercomputer at the time of writing4; and

the Cell Broadband Engine, the chip used in the PS3.

The CBEA provides two processor components: the main processor, called the

Power processor element (PPE), and the parallel processing accelerators, called syner-

gistic processor elements (SPEs). The other major components of CBEA are an on-chip

interconnect, the element interconnect bus (EIB), and the I/O interfaces which consist

of a memory interface controller (MIC) and a Cell Broadband Engine Interface (BEI).

The PPE is intended to run the operating system, manage system resources, and

control the SPEs, managing threads running thereupon. The SPEs are designed to

handle the computational workload. The PPE supports 2-way hardware simultaneous

multi-threading, and completes two double-precision operations in a clock cycle, so

that a 3.2 GHz part has a peak performance of 6.4 Gflops.

The SPEs are where the computation is performed. The SPEs are based on SIMD

RISC (reduced instruction set computer) processor and an MFC (memory flow control-

4http://top500.org/system/ranking/10377, accessed March 2010
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ler), facilitating memory transfers to be carried out in parallel with computation. Each

SPE also has a 256 kB local store for instructions and data, which must be explicitly

managed by the programmer. Because the MFC is able to make up to 16 simultaneous

transfers of up to 16 kB each between system and local memory, large memory oper-

ands can be pre-fetched into local memory before they are needed, saving on the high

cost of frequent cache misses [16, §9]. The SPEs feature a double-precision arithmetic

unit, with a throughput of 12.8 Gflops per SPE, so a PowerXCell 8i processor, featur-

ing eight SPEs, has an overall peak performance of 108 Gflops. At the time of writing,

however, the price-performance ratio does not compare favourably with that of GPUs

(see §2.3): an IBM BladeCenter QS21 system, which contains two Cell Broadband En-

gine processors at 3.2 GHz, gives 216 Gflops peak aggregate performance and is priced

around £3,8005. This compares to an NVIDIA GeForce GTX 295 that offers 1789 Gflops

single precision or 149 Gflops double precision, at a cost of less than £5006.

The Cell Broadband Engine has been found to deliver good speedups in some com-

putational science applications. For example, in a quantum chromodynamics applic-

ation, the US National Centre for Supercomputing Applications (NCSA) ported an

existing program to the Cell architecture, and achieved a 3.4× speedup for a small

simulation and a 5.7× speedup for a larger one, compared to a parallel implement-

ation running on a quad-core Intel Xeon processor [14]. Other applications already

using the CBEA include cosmology [17] and bioinformatics [18].

2.3 GPU acceleration

In this section, we address the increasingly popular trend of applying graphics pro-

cessing units to scientific computations. We begin by giving some background and

recent history, before considering programming environments such as CUDA, ATI

Stream Computing and OpenCL. We also consider some higher-level programming

interfaces designed to make the functionality of the GPU available to engineers and

5http://www.hp-sales.co.uk/products.asp?partno=079232G accessed on 29th March 2010
6Results from a shopping search at http://www.google.com, 29th March 2010.
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scientists who do not have a low-level familiarity with the hardware.

2.3.1 Introduction

For many decades, Moore’s law, which states that the number of transistors on a chip

will double approximately every 18 months, has held true. For a long time these extra

transistors and other advances in processor design offered considerable performance

enhancement for conventional, single-threaded codes. However, the rate of increase

of clock rates on CPUs has fallen considerably and CPU vendors are moving to new

product generations which introduce more cores, rather than enhance the speed of a

single core. These architectures permit running code with a degree of parallelism, but

for intensely parallel problems, it is not clear that they represent an ideal solution.

GPUs offer a considerably different, and hugely parallel architecture. In recent

years, the compute power of commodity, consumer GPUs has tremendously increased,

such that the graphics processor is now viewed as a high performance co-processor for

scientific as well as consumer game-driven calculations. The rapid increase of compute

performance available with GPUs is shown in fig. 2.2, in which GPU performance is

compared with CPU performance over a time period of almost 10 years.

The growth of general-purpose computing on GPUs (GPGPU) up to the year 2006

was reviewed in [21]. In that review, Owens chronicled the evolution of graphics

hardware from a fixed-function pipeline where each stage was hardwired for spe-

cific tasks through several generations, each of which have been increasingly flexible

and programmable, from NVIDIA’s 1999 introduction of the first programmable stage,

through to the third revision of the vertex shader and pixel shader standards in 2006,

by which time the hardware was explicitly designed to process multiple data-parallel

primitives at the same time. The history of GPU development, from early times to

2002, was also charted by Fernando and Kilgard [22].

More recent developments include the NVIDIA CUDA toolkit [19], and the ATI

Stream Computing SDK [23], both of which afford considerably more flexibility to the

programmer. They also dispense with the paradigms of the older GPGPU program-
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Figure 2.2: The (approximate) relative speed of consumer GPUs and CPUs from 2003 to

2012. The graph is based on data extracted from figures in [19] and [20].

ming environments, in which scientific computations of interest had to be recast into

graphics terms. In 2007, solving involved scientific problems on the GPU required

significant efforts by both computer graphics experts, and by specialists within the do-

main of the problem to be solved. The trend is towards increasing the accessibility of

graphics hardware to all programmers, and lowering the entry threshold in terms of

specialist graphics knowledge required.

Although GPU acceleration is becoming increasingly popular, it only achieves peak

efficiency with data-parallel computations. These are problems in which the solution

is found by executing the same program code on many data elements in parallel, such

as when filling an array with function evaluations in which each value is independent

of other calculated values. The ratio of arithmetic operations to memory operations

should also be large. This is because GPUs lack large cache memories, and have a high

latency for accesses to local or global memory (up to 600 cycles for both local and global

memory; local memory is accessed only for some automatic variables, at the compiler’s

discretion [19]). When the workload is compute-intensive, threads awaiting data from
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memory are swapped out, and those with data present continue running, effectively

masking the latency. The current generations of NVIDIA hardware are able to swap

out inactive threads with zero overhead [19, pg. 72].

2.3.2 GPU programming environments

NVIDIA’s CUDA

CUDA was introduced in November 2006 by NVIDIA [19]. It is a general purpose par-

allel computing architecture, designed to leverage NVIDIA GPUs’ parallel compute

engines. Initially the CUDA toolkit and development environment supported an ex-

tended C language only, but by release v2.3, it had support for NVIDIA’s extended C,

as well as OpenCL, DirectX Compute, and FORTRAN.

CUDA is designed to allow programs to scale dynamically to make good use of

the capabilities of whatever GPU is available in the machine on which the program

runs. These capabilities vary widely: as of CUDA v2.3, supported GPUs have between

one and 60 multiprocessors, where each multiprocessor consists of eight processors. In

order to scale the same program code efficiently to hardware with this large a range of

compute ability, CUDA introduces abstractions. These consist of a hierarchy of thread

groups, barrier synchronisation, and shared memories. By decomposing the problem

into sub-problems, and these into threads, it is possible to schedule each sub-problem

on any available processor cores. This enables run-time scaling of compiled CUDA

code.

ATI Stream Computing

ATI Stream Computing is ATI’s toolkit for using its GPUs for high-performance, data

parallel computing. It is similar to NVIDIA’s CUDA in its overall aim and structure,

in that it includes software tools and drivers which expose the compute capabilities of

compatible graphics hardware.

ATI Stream processors consist of programmable stream cores, which run user code
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expressed as kernels that operate on streams of data [23]. ATI defines a stream as a

collection of data elements, all of the same type, that can be operated on in parallel.

The stream cores run kernels using a virtual SIMD model. Input data is stored

in arrays in memory, and mapped onto a number of SIMD engines. The results that

these generate by running the supplied kernel on the inputs are then written to output

arrays. In the Stream model, threads exist in an array. This is known as the domain

of execution and corresponds to a rectangular region of the output buffer to which

threads are mapped. As in the CUDA model, the array of threads is scheduled onto a

group of thread processors, until all the threads have been processed.

As in the CUDA model, ATI Stream Computing supports a number of higher level

languages which abstract the details of the hardware from the programmer. This

means that the job of the developer is restricted to providing inputs, outputs, and ker-

nels that are to be executed over defined domains.

The ATI Stream Computing environment explicitly supports open-systems and

open-platform standards [23], such that third parties can provide development tools.

Particularly, it is accompanied by the Brook+ open source data-parallel C compiler.

This has its roots in the Brook C-language extension from Stanford University. AMD

implemented the Brook GPU specification on top of its compute abstraction layer, and

added some enhancements.

OpenCL

OpenCL is a recently standardised framework designed to enable programming across

heterogeneous platforms, including GPUs, CPUs, Cell-type architectures, and other

parallel processors such as digital signal processors (DSPs). The specification was

formalised in 2009 [24]. It is an open and royalty-free standard, and has the benefit

of wide industry support, from companies such as AMD, Apple, Fujitsu, IBM, Intel,

NVIDIA, and many others in the computer, mobile telecommunications, and semicon-

ductor markets.

By using OpenCL as opposed to the proprietary CUDA environment or the open
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– but vendor specific – ATI Stream platform, the developer gains the advantage of be-

ing able to target multiple vendors’ hardware from a single code base, and leverage

the available facilities of the heterogeneous systems on which his code may ultimately

run. OpenCL combines acceleration and portability across devices and architectures. It

is important to note that OpenCL defines requirements on numerical precision, which

guarantees mathematical consistency across hardware of different sorts and from dif-

ferent vendors [25].

OpenCL is a younger technology than ATI’s stream computing or NVIDIA’s CUDA.

There exists limited literature treating OpenCL. However, Khanna and McKennon [25]

have implemented a modelling application for gravitational wave sources, which is

based on a finite-difference, linear, hyperbolic, inhomogeneous partial differential equa-

tion (PDE) solver using OpenCL. They compared the results to their previous imple-

mentations which were based on native CUDA and Cell (see §2.2) SDKs, and found

that OpenCL delivers comparable performance along with the advantage that from

identical source code, it is possible to build programs for both architectures. They also

noted that the OpenCL libraries and compilers they utilised were in beta, and likely to

be significantly improved in the future.

The results of Khanna and McKennon on their Cell-based system put the perform-

ance factor of the native Cell SDK code at approximately 37, normalised to the perform-

ance of the PPE code, whilst the OpenCL implementation had a performance factor of

approximately 34. That is, the Cell SDK code running on the Cell-based system per-

formed at 37× the speed of the same code running on the Cell’s PPE. They noted that

the OpenCL must use a pre-compiled kernel in order to demonstrate this speedup,

since when they elected to dynamically compile the OpenCL kernel, the performance

was approximately equal to the unaccelerated PPE, the runtime being dominated by

the compilation stage.

Their results in comparing OpenCL with CUDA on a Tesla S1060 GPU were even

more favourable for OpenCL; the CUDA SDK and OpenCL with pre-compiled kernel

achieved an identical speedup of approximately 26 times compared to their baseline,
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Figure 2.3: Illustration of the approximate speedup obtained for a gravitational wave

modelling PDE solver on an NVIDIA Tesla S1060 accelerator and a Cell

Broadband Engine processor, using OpenCL and the native Cell/CUDA

SDKs. Data from [25].

chosen to be the system’s 2.5 GHz AMD Phenom processor. In this case, the OpenCL

implementation with kernel left as source code for runtime compilation also provided a

significant speedup compared to the baseline, by a factor of approx. 17 times. Moreover,

the performance gains that their code achieves overall on the Cell and the GPU are

comparable, but the GPU is considerably cheaper; thus, in this application the GPU

offers a considerably better price/performance ratio. The results of Khanna and McK-

ennon are summarised in fig. 2.3 and in table 2.3 (in which the prices used are the list

prices quoted in the reference).

2.3.3 Higher-level GPU interfaces

There also exist a number of higher-level programming interfaces to GPUs, which aim

to expose the power of GPUs to programmers in engineering and scientific fields who

do not wish to be concerned with the lower-level details of programming the GPU.
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relative price relative performance price-to-performance

Phenom 2.5 GHz 1 1 1

Cell BE 5 25 0.2

Tesla S1060 1.5 26 0.06

Table 2.3: Relative price, performance, and price-performance characteristics of the

Cell Broadband Engine and Tesla S1060 accelerators, all compared against a

2.5 GHz AMD Phenom CPU. Data from [25].

Here we summarise two of the better known such interfaces, with very brief code

examples to illustrate the potential simplicity of employing these accelerator technolo-

gies.

Jacket

AccelerEyes produces a software product called Jacket. This facilitates access to the

GPU as a compute accelerator within MATLAB. Jacket is specific to CUDA, and there-

fore to NVIDIA’s GPU lineup. Although it is possible to use MATLAB’s MEX facility

to compile and link external code, such as C for CUDA programs, and access them

within MATLAB, Jacket eliminates the need for the user to know any specifics of GPU

programming. The code example that follows, taken from [26], illustrates this with a

simple example:

Jacket for MATLAB Example
1 A = eye(5); % Creates 5x5 identity matrix

2 A = gsingle(A); % Casts A from CPU to GPU as single precision

3 A = A * 5; % Uses GPU to multiply matrix by scalar

4 A = double(A); % Casts A from CPU to GPU

As shown, the use of the GPU is transparent to the user; the gsingle() command is

the only one which deviates from the standard MATLAB language. The Jacket tool-

box gives real-time, transparent access to the GPU which maintains the interpretive

19



nature of the MATLAB language [27]. The same straightforward syntax allows the ac-

celeration of user-defined functions, so the above example is not constrained to simple

operators: if the arguments of a user function have been cast onto the GPU, Jacket will

attempt to accelerate that function when the function is called.

PGI Compilers

Another commercial offering in the GPU programming sector is from the Portland

Group (PGI); their FORTRAN compiler incorporates support for accessing CUDA func-

tionality via extensions to the FORTRAN language. Because of the huge number of ex-

isting HPC codes written in FORTRAN, this is an attractive option to developers who

wish to harness some of the power of the GPU as a computational accelerator without

incurring the effort and time penalties associated with porting large code bases to C.

PGI also offer support for GPU acceleration in their C compiler.

The CUDA FORTRAN compiler exposes much of the CUDA language as a small

set of language extensions [28]. This allows as much fine-grained control of the paral-

lelisation as may be necessary, and is comparable to C for CUDA. However, PGI also

offer the PGI Accelerator “Kernels” programming model [29]. The PGI Accelerator

Programming Model shares with OpenCL the goal of avoiding the need for program-

mers to maintain different versions of a project that must be able to target both x64

CPU-only systems and those with GPUs suitable for accelerating the code. However,

they seek also to avoid the labour of converting the existing code into host and device

portions, and possibly also of having to change the language used.

The Accelerator Programming Model is implemented in PGI FORTRAN and C

compilers as a set of directives, similar in appearance as OpenMP directives. The res-

ulting program, PGI claims [29], will run unmodified on the CPU alone, or on the CPU

and GPU in concert.

One of the most trivial examples that illustrates the syntax is shown below, taken

from an example in [29]. This FORTRAN code assigns values to the n-element vector

a(i). It doubles the vector both on the GPU, storing the result in r(i) (lines 4-8), and
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on the CPU (lines 9-11), storing it in e(i), and raises an error if the values calculated

do not agree. The simplicity of specifying the region for GPU acceleration is evident;

it only required the use of the !$acc region and !$acc end region directives enclos-

ing the loop. The compiler handles all the required steps to set up and use the GPU,

such as copying data to and from the GPU, and working out where parallelisation is

possible. It should be noted that other compilers would treat the !$acc... directives

as comments and therefore the code remains portable.

PGI Accelerator Programming Example
1 do i = 1,n

2 a(i) = i*2.0

3 enddo

4 !$acc region

5 do i = 1,n

6 r(i) = a(i) * 2.0

7 enddo

8 !$acc end region

9 do i = 1,n

10 e(i) = a(i) * 2.0

11 enddo

12 ! check the results

13 do i = 1,n

14 if( r(i) .ne. e(i) )then

15 print *, i, r(i), e(i)

16 stop ’error found’

17 endif

18 enddo

19 print *, n, ’iterations completed’

Of course, this is not a ‘silver bullet,’ and there is skill required in utilising it effect-
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ively. The algorithms within accelerated regions must be appropriately expressed in a

suitably data-parallel form. For example, an assignment statement in which the values

being assigned appear on the right hand side is not parallelisable, whereas when they

do not, it is. Other conditions for successful parallelisation include the independence

of the iterations of loops. These conditions are general to all parallel programming

on GPUs, but they are highlighted here to clarify that even applying the relatively

high-level Accelerator Programming Model requires specific knowledge and careful

consideration of the principles of parallel programming.

2.4 Cloud computing

In this section we introduce the paradigm of cloud computing, and discuss its applic-

ability to the challenges of scientific computing. In contrast to the previous sections,

which all dealt with tangible pieces of hardware that may be precisely and completely

specified, and which would usually be purchased and commissioned by an individual

or an organisation, cloud computing is a broad concept that is expressed in several

different forms and many implementations.

2.4.1 Introducing cloud computing

One commonly quoted definition of cloud computing is from NIST [30]; it begins with

the following summary of the essential elements that are present in all cloud comput-

ing offerings:

cloud computing is a model for enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable computing re-

sources (e.g., networks, servers, storage, applications, and services) that can

be rapidly provisioned and released with minimal management effort or

service provider interaction.

It goes on to detail the essential characteristics, service models, and deployment mod-

els that compose the NIST cloud model.
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Cloud computing has been described as “the next stage in the evolution of compu-

tational and data handling infrastructure,” [31]. A key feature of cloud computing is

that it provides a dynamically scalable compute resource, available on-demand with a

so-called utility pricing model [32]. Under this model users are charged on the basis

of the amount of resources they actually consume. Available resources are typically so

large as to be limited by the user’s budget rather than the amount of hardware that

a provider possesses. Therefore, as computational problems outstrip the capabilities

of the machines or clusters available locally, and increasing amounts of resource are

demanded, cloud computing can offer a solution.

Cloud computing is not the only suitable technology in such situations; grid com-

puting [33], and other distributed computing and data-processing efforts seek to fulfil

similar requirements. Indeed, cloud computing could be seen as an evolution of the

grid.

Cloud computing is provided commercially by several vendors, such as Amazon7,

Google8 and Microsoft9. They offer customers the ability to provision resources rap-

idly (on the order of minutes), and typically have short minimum rental periods (at

the time of writing, this is one hour for Microsoft Windows Azure). The providers

buy hardware in bulk and benefit from economies of scale that are almost impossible

for smaller companies or institutions to achieve. They also optimise administration

practices, which minimises their costs. At the time of writing, a small range of dif-

ferent hardware specifications are available from each of the major providers, so that

users may request appropriately-sized machines. Thus, cloud-based applications can

usually be scaled “up” (by moving to larger hardware) or “out” (by moving to more

hardware instances) when higher throughput is required.

Cost to the user is reduced because idle resources can be rapidly returned to the

provider, for subsequent provisioning to other customers, and cease incurring costs.

This is in stark contrast to local ownership of hardware (either of the types of accel-

7http://aws.amazon.com/ec2/
8http://cloud.google.com/
9http://www.windowsazure.com/en-us/
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erator hardware described in the preceding sections, or of generic servers or work-

stations) where an asset, once purchased, is typically difficult or impossible to return

to the supplier, and continues to consume space and power even when it is under-

utilised.

Classes of cloud service

Three main classes of cloud service are available commercially [34]. These are software-

as-a-service (SaaS), platform-as-a-service (PaaS) and infrastructure-as-a-service (IaaS).

These correspond to the NIST service models [30].

SaaS is a model in which the user procures from the provider a license and facility

to use some piece of software. Code for that software is not kept on the user’s

machine, nor is data stored there. However, in examples such as Microsoft Office

Live, the code may run in a web browser on the user’s machine, and it may be

possible for the user to download copies of the data. SaaS offerings can be built

on top of the PaaS or IaaS models.

PaaS is similar to the SaaS model, but lower-level, in that the cloud provider estab-

lishes a programming interface against which the end-user or other organisa-

tions can develop their own programs to run on the cloud provider’s hardware.

Access will, again, be over the network, and the experience for an end-user on

the desktop may resemble that for SaaS. A typical example of PaaS software is

Microsoft Windows Azure, which provides an OS and libraries (the .NET frame-

work) upon which customers’ workers are run. PaaS offerings can be seen as

being built upon the IaaS model.

IaaS is the lowest-level of the common cloud models. In this case, the cloud provider

offers infrastructure such as networking, servers or virtual machines, and it is up

to the developer or end-user to provide the operating system, libraries, and user

applications. Amazon’s EC2 service allows users to rent virtual machines in this

manner.
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At one end of the scale, SaaS puts the vast majority of the administrative control

(and burden) on the cloud supplier. They are responsible for setting up the software

that is made available, applying updates when required, and maintaining the service

security. In stark contrast, IaaS puts these responsibilities into the hands of the de-

veloper rather than the cloud provider. This offers more flexibility and control, but at

the cost of having more complexity to manage. PaaS offerings strike a balance where

application updates may be pushed out by the customer, but the platform itself may be

maintained by the cloud provider (using virtual machine “live migration” techniques,

it will be possible for them to update the host OS, and by upgrading various guest

instances asynchronously, it is possible to patch any part of the software stack without

loss of service).

Cloud deployment models

Cloud services may be deployed on several different models, which differ in their in-

tended user community and provider. The US NIST breaks the models down as fol-

lows [30]:

Public cloud is an infrastructure which is made available for use by the general public.

Such infrastructure may be provided by business, government, or academia, and

is physically located upon the premises of the provider.

Private cloud is an infrastructure for the exclusive use of one organisation but typic-

ally shared between business units of the organisation. Such infrastructure may

be located on or off the organisation’s premises and owned and managed by the

organisation, an external party, or some combination thereof.

Community cloud is where a cloud infrastructure is used by a community of con-

sumers form various organisations who share certain requirements (such as se-

curity or policy). These clouds are either on- or off-premises and may be man-

aged by one of the organisations from the community served, a third party, or a

combination thereof.
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Hybrid cloud schemes arise where at least two distinct cloud infrastructures are some-

how bound together. The constituent clouds remain separately identifiable, but

data and applications are made portable across the clouds. This facilitates migra-

tion of jobs between clouds, e.g. for intra-cloud load balancing.

2.4.2 Areas of strength for cloud-based architectures

Just as GPUs and other accelerator technologies discussed previously have specific

areas of strength and areas of weakness, so does cloud computing. The strengths of

cloud computing may be divided into four key areas [31]:

Algorithm development is accelerated by the ability to procure appropriate types of

hardware on-demand and almost instantly when required. It is possible for an

algorithm developer to rent powerful machines, or large numbers of machines

to be run in parallel, for the time it takes to assess the performance or validity

of a particular implementation of his algorithm. In cases where the input or out-

put data sets for the test or validation process are very large, cloud providers

can supply storage that is near the compute, in order to minimise time spent in

I/O routines. It should also be noted that using cloud-based architectures in sci-

entific computing in general encourages modular designs, which simplifies the

substitution and comparison of alternative algorithms [35]. However, at the time

of writing, the dedicated high-performance interconnects found in typical super-

computers are not commonly available in commercial cloud computing offerings,

as will be discussed in §2.4.3.

Data dissemination is often a slow and possibly expensive process, especially when

large volumes of data are to be copied to multiple locations. When data is stored

in a cloud service, however, it is possible to grant data access permissions to

collaborators without needing to transfer the data to them. They will be enabled

to perform further analysis or computation on the data using compute resources

located near the data. There may in future be an expectation that published work
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would be required to make its underlying data available [36] so that readers can

confirm findings, and cloud based data storage naturally facilitates this.

Burst capability is considerably better for cloud-based solutions than for traditional,

data centre-based architectures. Data centres may be scaled to cope with estim-

ated peak demands, but this may leave hardware idle for the majority of the time;

otherwise, peak demands may be under-resourced, reducing quality of service.

Cloud-based architectures, though, allow the provisioning of a massive amount

of resources very quickly to cope with demand peaks. In algorithm development

work, a burst of demand may be given rise to each time a new version of the

algorithm is to be tested.

Scalability is inherently available in cloud-based architectures, because of the huge

amount of hardware owned and operated by cloud suppliers. The utility pricing

model ensures that for solutions which begin small and later need to scale, undue

costs are not incurred.

2.4.3 Scientific computing in the cloud

A variety of investigations have been performed into the suitability of cloud comput-

ing for scientific and engineering applications. By 2008 it was accepted that cloud-

based computing could offer “a feasible, cost-effective model in many application

areas” [37] where traditional high-performance computing systems might otherwise

be used. However, the type of problem to be solved, and its attendant level of parallel-

isability and communication requirement, is a massive determining factor in whether

a cloud-based solution will be an attractive proposition.

Applications such as parameter sweeps, where the algorithm used can take effect-

ive advantage of all the cores in one node, and where inter-node communication is

low, are ideal candidates for processing on the cloud. However, those tasks that make

heavy use of communications between nodes are less well suited, because, typically,

cloud providers currently utilise 1 Gbit s−1 Ethernet between nodes. This interconnect
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features both a higher latency (60–125 µs) and a lower bandwidth (45–50 MB s−1) than

a specialist interconnect that may be used on a traditional HPC system, such as Infini-

Band Architecture, whose latency and bandwidth were measured in one study as 13–

17 µs and 560–610 MB s−1 respectively [38]. There have been some technological and

business developments since the cited study, and indeed some cloud providers will

now provision nodes with 10 Gbit s−1 Ethernet interconnects, but at the same time,

faster specialised interconnects are now available for top-end HPC clusters. It is still

the case that cloud computing thrives best on commodity hardware in homogeneous

data centres which power its economies of scale, although it is expected that the most

common of specialised hardware requirements will eventually be satisfied by cloud

providers [39].

One example of a scientific workload poorly suited to cloud computing was given

by Napper and Bientinesi, who benchmarked cloud performance for dense linear al-

gebra loads [40]. This class of application relies heavily upon the high-speed inter-

connects and available memory on a traditional HPC cluster, so it is unsurprising that

they concluded that a cluster of any number of Amazon EC2 nodes would not be able

to claim a place in the TOP500 list. Moreover, they analysed how the cost of compu-

tation scales for their test load, and found that their throughput, measured in Gflops

returned per dollar spent, dropped exponentially with increasing core counts – im-

plying an exponential increase in the cost of solving linear systems with the problem

size. The authors of that study explain that this exponential decrease in performance

is easily attributed to the communications taking place over the slow interconnect.

Cost-effectiveness is difficult to evaluate without knowing the specifics of any given

application, and it can also be difficult to assign accurate costs to the alternatives, such

as an in-house compute cluster. Hazelhurst noted [37] that for scientists as end users,

large shared clusters often have no direct cost, but access can depend on successful

research proposals. He compared the US$2700 cost of a local server (neglecting elec-

tricity, cooling, maintenance and space overheads) to the US$0.20 per hour cost of a

comparable Amazon EC2 instance. The purchase price of the local machine would

28



fund approximately 1.5 years of continuous processing on EC2, so, assuming the local

server to have a 3-year lifetime, he suggested that a local machine with utilisation

below 50% would be more economically replaced by a cloud-based system; higher

utilisations, for this scenario, would be more economically served by local machines.

However, this analysis neglects the potential costs of data storage and transfers in the

cloud.

A more comprehensive analysis of the costs of another scientific application hosted

locally and in the cloud was carried out by Berriman, et al. in 2010 [41]. The sample

workload here was running montage, an image-processing application that assembles

images in the astronomical data format FITS (flexible image transport system) into

custom mosaics. The cost effectiveness was calculated on the basis of having a local

and a cloud-based service, each of which would be called upon to service requests for

36000 mosaics of data from the Two Micron All Sky Survey. Including the costs of

power, administration, cooling, and support contracts, the local service would return a

cost of US$0.64 per mosaic whilst a similar service in Amazon’s EC2 cloud would cost

US$1.46 per mosaic.

Although the work by Berriman et al. referred to above found that a local hard-

ware resource may offer lower costs, it is not possible to reach a conclusion on the

question of whether cloud-based architectures are more or less suited for scientific and

engineering computations in general, because there are many classes of problem and

many possible implementations of solutions. Moreover, it should be noted that many

sample applications in the literature don’t align particularly well with the strengths

of cloud-based architectures given in §2.4.2. In cases where these strengths are better

utilised, however, cloud computing can offer results that are significantly difficult or

highly costly to achieve by other means [42, 35].
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2.5 Summary

This chapter was devoted to discussing the technological advances made in computa-

tional technologies and how they may be applied to scientific and high-performance

computing. Initially special-purpose hardware for scientific computation was dis-

cussed, before considering a recent and growing trend towards scientific computing

on graphics processors (GPUs). Considerable momentum is gathering in respect of

utilising consumer GPUs for their unparallelled price-performance ratio. Higher-level

interfaces to the accelerator hardware were also discussed. The chapter closed by in-

troducing another technology that has recently been attracting considerable attention,

namely cloud computing. We introduced the ideas of cloud computing, described vari-

ous types of cloud computing service that are available, and considered some studies

that have attempted to assess the merit of cloud computing for scientific applications.

The introduction to cloud computing given here underlies the application of cloud

computing to the process of developing and verifying the meshless local weak-strong

form method as described in §6.4 and [43].
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Chapter 3

Fast multipole methods

3.1 Introduction

In this chapter, we introduce the N-body problem and discuss methods by which

it may be solved. We point out the limitations of the naïve approach, and discuss

schemes whereby the computation time is reduced. These methods include particle-

in-cell (PIC) methods, tree codes, and the fast multipole method (FMM), which we

describe in detail. Additionally, in certain work, special-purpose hardware has been

exploited in order to accelerate the N-body problem; §2 provides an overview of this,

including machines such as some of the GRAPE series which were developed spe-

cifically for the N-body problem, and technologies which allow modern graphics pro-

cessing units (GPUs) to run highly parallel general-purpose algorithms.

In many physics and engineering problems, it is required that we consider the dy-

namics of large numbers of particles interacting via long-range forces. This is known

as the N-body problem. For N > 2 there is no general analytic solution to this class

of problem [44]. The naïve numerical solution is to interact each particle directly with

the N− 1 other particles in the system, and sum the contributions of every interaction.

The compute time scales as O(N2) in these naïve codes, which severely limits the size

of system that may be simulated.

It should be noted that there have been many simulations in which the long range
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nature of the Coulomb force has been neglected by truncation beyond some set dis-

tance. These sorts of simulations are popular in molecular dynamics, where there

are many complicated short-range interactions to account for, as well as the infinite-

range Coulomb interactions [45]. Truncation ranges are typically of the order of 8 Å

to 20 Å [46], and in certain simulations where the many other forces involved are ac-

curate only to a few significant figures, this approach is successful. However, such

an approach is inappropriate for modelling the results of the long-range interaction

itself, such as in astrophysics. It can also give rise to problems when applied naïvely

to certain systems, such as layered high temperature superconductors [47]. Therefore,

a strong motivation has long existed to pursue efficient methods of computing such

simulations without introducing an artificial cutoff.

3.2 Particle-in-cell methods

Many particle-in-cell (PIC) methods are applied in cases where the potential satisfies

Poisson’s equation. This equation takes the form (3.1), where the Laplace operator is

∆, and f and ξ are real- or complex-valued functions on a manifold:

∆ξ = f . (3.1)

The Newtonian gravitational potential may be shown to satisfy the Poisson’s equa-

tion for gravity,

∇2φg = 4πGρ,

where on 2D Euclidean space we write ∆ as∇2 and we have introduced the scalar grav-

itational potential φg, the density ρ of the massive object that gives rise to the gravita-

tional potential, and G, the universal gravitational constant. It can also be shown that

a similar relationship holds in electrostatics:

∇2φe = −
ρf

ε
,

where we have labelled the electrostatic potential as φe, and introduced the free charge

density ρf and the permittivity of the material ε. It can also be seen that the potential

32



arising between stacks of pancake vortices in layered high-temperature superconduct-

ors, (4.1), which will be discussed in §4.1, is of the same form as (3.1).

In these PIC methods, a grid is superimposed upon the simulation domain, and the

particles of the system contribute their charges, masses or other properties of interest

to a density field. At the grid points, this density is evaluated and the potential is then

calculated at each grid location. A fast Poisson solver, of which many examples can be

found, e.g. [48, 49, 50], can be used to reduce computational overheads of this stage [4].

The solution is then interpolated back to the positions of the individual particles [44].

When the force is required as well as the energy, it is calculated before the interpolation.

For N particles in a system which has M grid points, the computational costs of the

PIC method scale as O(N + M log M). The O(N) part of the scaling is given rise to

by the processes of setting up the field, and of interpolating the solution; in both cases

these require calculations involving each particle once. The fast Poisson solver typic-

ally utilises FFT techniques to achieve a solution at the M grid points in O(M log M)

time.

The PIC method can therefore be efficient, because in many scenarios it is usual

to have M ≪ N, so that the time required scales approximately proportionally to N.

However, the PIC method has some considerable weaknesses. Especially in systems

with highly nonuniform particle distributions, the mesh spacing limits the resolution

and thus accuracy attainable. Moreover, if there are strong local particle-particle in-

teractions within cells of the mesh, these are smoothed away when the potential is

evaluated at the mesh points. These qualities make it unsuitable for modelling many

gravitational systems, where there are considerable effects from local interactions in a

highly nonuniform overall structure.

3.2.1 Particle-particle/particle-mesh (P3M) methods

It is possible to improve the accuracy of PIC methods by directly calculating the short-

range interactions, and using the mesh technique described above for the long-range

interactions. Such methods are known as particle-particle/particle-mesh (P3M) meth-
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ods [51]. These algorithms can provide theoretically arbitrary precision. However, in

cases where the requested accuracy is high or the particle distribution is not close to

uniform spacing in a rectangular region, the time required by these algorithms can

become excessive [4].

3.3 Tree codes

An improvement on PIC codes is to be found in tree codes. These algorithms make use

of a hierarchical tree data structure from which information about the separation of

particles may be inferred without explicit distance calculations. The interactions with

nearby particles are calculated directly as particle-particle interactions. More distant

particles are grouped into clusters and the influence of the group is represented by a

single, particle-group, interaction.

The tree codes achieve their results in O(N log N) time. The FMM codes discussed

in §3.4 are based upon similar fundamentals as the tree codes, but can achieve O(N)

run times.

Although various independent researchers introduced different types of tree codes

in the early 1980s [44], the most influential and widely implemented scheme is that

proposed by Barnes and Hut [52], which uses an octree in 3D space. In their algorithm,

particles are added one by one to the simulation cell. As soon as more than one particle

is inside any cell, that cell is divided into eight daughter cells, each having half the

width, depth, and breadth of its parent. If more than one particle remains inside any

cell, it is recursively subdivided until at most one particle is located within each cell.

This process is repeated for each particle that is added. A two-dimensional example

is shown in fig. 3.1(a). In this 2D case, each subdivision gives rise to four daughter

cells rather than eight. Shown in fig. 3.1(b) is the tree structure resulting from such a

subdivision process.

The work in creating a tree of N particles is of O(N log N), which can be verified

by considering the average volume of a finely-divided cell, which is given by V/N,
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(b) Tree structure and corresponding spatial di-

visions

Figure 3.1: Division of space and creation of tree structure to track nodes, as user in

Barnes and Hut’s algorithm. Shown in 2-D for clarity. Based on figures

in [44].

where V is the volume of the entire simulation cell. Such cells will have an average

edge length which is some power x of V1/3/2, where x is the height of the tree, so we

have [44, §2.1]:

(
1
N

)1/3

=

(
1
2

)x

,

=⇒ x =
1

3 log 2
log N ≈ log N. (3.2)

On average, from the root of the tree, there are log N divisions to be made to reach a cell

containing only one particle. Since there are N such particles, total effort isO(N log N).

It has been shown [44] that the average work required to calculate the interactions

scales as O(N log N) also, so that the method overall scales as O(N log N).

3.4 The 2D Greengard-Rokhlin FMM

In 1987, Greengard and Rokhlin introduced a new scheme to solve the N-body prob-

lem, with an asymptotic runtime estimate of O(N) [4]. It has since been named one of

the top 10 algorithms of the 20th century [46, 3].

The ideas behind the FMM were perhaps first conceived in literature on protein

simulation [53], in which Pincus and Scheraga observed that when simulating proteins,
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it is usual practise to neglect long-range interactions beyond some arbitrary cutoff dis-

tance. However, although every such interaction is of small magnitude, there are many

of these interactions, so that their net effect need not necessarily be insignificant. They

go on to propose a method in which, beyond an arbitrary cutoff distance, interactions

are no longer computed directly. They introduce computation of interactions between

two spheres, where the charge distribution of the molecules being simulated is repres-

ented by two interacting dipoles rather than individual particles.

Such approximations give rise to energies comparable to those computed from all

pairwise interactions. The authors note that their method results in substantial reduc-

tions in computational times when compared to full direct simulations.

In the FMM, the first key idea is the process of replacing distant groups of particles

by pseudo-particles, whose properties – such as net charge, dipole moment, and quad-

rupole moment – are identical to those of the group of particles represented. These

properties are represented as a multipole series, which converges rapidly so that re-

taining between three and eight terms typically give good accuracy [46].

The FMM also employs the hierarchical division of space as in the Barnes-Hut

tree code, discussed in §3.3. The creation of the tree and the interaction of particles

with other particles and pseudo-particles where appropriate has a computational com-

plexity of O(N log N) but the FMM introduced a new concept, which reduces the al-

gorithm’s complexity to O(N). The new concept is the local expansion, whereby the

interaction of distant groups of particles is calculated with groups of target particles

at once. Multipole expansions are used in representing both the target particles and

the distant group. The calculation of an interaction between the groups then consists

largely of a single convolution of arrays containing the coefficients of the appropriate

multipole expansions [46].

Greengard and Rokhlin introduced several lemmas which provide the mathemat-

ical foundations of the FMM, developing a fast method for use in two-dimensional

systems governed by the electrostatic or gravitational potentials [4]. To demonstrate

the advantage of using multipole expansions in calculations with potential fields, they
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Figure 3.2: Well-separated sets of particles, after [4].

gave the following example, which is illustrated in fig. 3.2.

They placed the charges q1, q2, ..., qm at the points x1, x2, ..., xm ∈ C, with y1, y2,

..., yn being other points in C (we adopt the notation that a vector v = (v0, v1) may

be represented as the complex number v0 + iv1, where i =
√
−1). If the conditions

of (3.3) are met, where R is the radius of circles centred at x0 and y0 containing the sets

{xi}m
i=1 and {yj}n

j=1 respectively, as illustrated in fig. 3.2, then the sets {xi} and {yj} are

described as well-separated.

|xi − x0| < R ∀ i = 1, ..., m
∣∣yj − y0

∣∣ < R ∀ j = 1, ..., n

|x0 − y0| > 3R (3.3)

Naïvely one could compute the potential at the points yj by evaluating

m

∑
i=1

φxi

(
yj
)
∀ j = 1, ..., n, (3.4)

where φxi

(
yj
)

is the contribution at the point yj due to the source at xi. This evaluates

m fields at n positions, so it requires O(mn) work.

A speedup comes from evaluating a p-term multipole expansion about the point x0

for the potential due to the charges q1, q2, ..., qm, expending work of order O(mp). The

expansion can be evaluated at the n points yj with O(np) work so that the total work

is reduced to O((m + n)p).
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The expansion of the two-dimensional electrostatic potential φ(z) at some location

z due to these charges {qi}m
i=1 is given in exact terms in (3.5),

φ(z) =
m

∑
i=1

qi log(|z|) +
∞

∑
k=1

ak

zk ,

where ak =
m

∑
j=1

−qjz
k
j

k
, (3.5)

but Greengard and Rokhlin also derived an uncertainty bound on the truncation of

this expansion to p terms, as shown in (3.6).
∣∣∣∣∣φ(z)−Q log(|z|)−

p

∑
k=1

ak

zk

∣∣∣∣∣ ≤
m

∑
i=1
|qi|

(
1
2

)p

, (3.6)

with

Q =
m

∑
j=1

qj.

If one demands a precision ǫ relative to the overall total charge, it can be shown [4]

that p should be of order− log2(ǫ), and specifying the precision leads to a computation

time of O(m) +O(n).
Greengard and Rokhlin then went on to furnish lemmas which allow manipulation

of multipole expansions. Specifically, they provided for the shifting of the centre of a

multipole expansion, the conversion of a multipole expansion to a local expansion,

and for shifting the centre of a Taylor expansion. They derived error bounds for the

translation operators.

They presented their FMM algorithm using 2D examples. They first introduced a

hierarchy of meshes that divide the computational domain into small boxes. The levels

are labelled such that level 0 is the entire domain, and level l + 1 is derived from level

l by subdividing each box into 4 equal sub-boxes. Thus, at level l, there are 4l boxes.

They used a tree structure in which the children of a box i are the the boxes obtained

when i is subdivided. Interaction lists were created for each box i, which contain those

boxes that are children of the nearest neighbours of i’s parents, but which are well-

separated from i.

The steps of the algorithm are then as follows:
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1. Form multipole expansions for each box, about the box centre, representing the

potential due to the particles in the box.

2. Translate these multipole expansions up the tree, forming multipole expansions

about the centres of all boxes at coarser levels, using the translation operator and

adding so that each expansion represents all the particles within the box.

3. Starting from the coarsest level, form a local expansion about the centre of each

box, at each refinement level. These expansions represent the field due to all

particles not in the box or its nearest neighbours. Expand the local expansions

about the centres of each child box to form the expansions at the next finer level.

4. At the finest mesh level, for each box i, form a local expansion about the centre

of box i from the multipole expansion of each box j in the interaction list of box

i. The final local expansion is the sum of all appropriate local expansions, and

describes the potential field due to all the particles in boxes other than i’s nearest

neighbours.

5. For each box i, and for each particle in that box, evaluate the potential due to the

well-separated particles via the local expansion. Evaluate interactions with other

particles inside the same box and its nearest neighbours directly. Sum the direct

and far-field terms.

None of the stages above require work proportional to any power of N greater than

unity. Greengard and Rokhlin estimated the total running time to be

N
(
−2a log2 ǫ + 56b (log2 ǫ)2 + 4.5dkn + e

)
,

where kn is a bound on the number of particles per box at the most-refined mesh level;

a, b, d, and e are constants dependent on the implementation and computer system, etc.

Results of the Greengard-Rokhlin implementation of the FMM demonstrate clearly

that the error bounds required are satisfied, and that the speedup is significant. Indeed,

for a simulation with 6,400 particles in the unit cell, the FMM took 24.7 seconds, with
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the largest relative error being 7.2× 10−5, compared to the direct summation in single

precision that took 4480 seconds, with a maximum relative error of 6.8× 10−5 (where

the errors stated for the FMM and the single precision direct calculation are relative to

the results of the direct calculation in double precision). The FMM in this case gave

rise to a 180× speedup compared to the single precision direct method, and achieved

a similar accuracy [4].

3.5 Enhanced FMM algorithms

Since the original FMM implementation, a 2D-only code for gravitational and elec-

trostatic potentials [4], many researchers have contributed enhanced versions of the

algorithm, widening its applicability considerably. This section draws attention to a

small selection of these enhanced FMM algorithms.

Carrier, Greengard and Rokhlin introduced an adaptive version of the FMM soon

after the publication of Greengard and Rokhlin’s original work [54]. The adaptive ver-

sion is an O(N) algorithm, but unlike that described in their original paper, it does

not depend upon the statistics of the particle distribution for its efficient performance.

For a nonuniform distribution of points, this algorithm imposes a hierarchy of meshes

rather than using a uniformly spaced mesh. This was achieved by altering the subdi-

vision process so as to only subdivide those boxes containing more than some fixed

number s of particles. Any empty boxes generated are immediately forgotten, to save

memory and because they are of no use. It is concluded that the scheme is more ef-

ficient for nonuniform than uniform distributions. Both the storage and time require-

ments are found to scale as O(N).

Elliott and Board introduced a faster version of the Greengard-Rokhlin FMM al-

gorithm in 1996 [55]. They applied FFT acceleration techniques to the convolution-like

calculation in the FMM and achieved runtime savings dependent upon the value of p,

the number of coefficients retained. For p = 8 on a single processor their speedup

was 2; on a vector processor they achieved a speedup of 6 for p = 16. Their en-
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hancements reduced the p-dependence of the time scaling of the FMM from O(p4N)

to O(p2 log2(p)N).

In their 1997 paper, Greengard and Rokhlin introduced a new version of the FMM,

which utilises new diagonal forms of the translation operators to achieve high accur-

acy in 3D with an acceptable cost [56]. They pointed out in their introduction that after

about ten years in research, many FMM schemes had appeared in the literature, but

for 3D applications there were few schemes offering acceptable accuracy and compu-

tational costs. The new algorithm was later described as “highly efficient over a wide

range of accuracies” [57]. The mathematical apparatus involved in the new method,

however, was considerably more involved than that usually used in the design of fast

multipole algorithms. The work nevertheless brought high accuracy 3D calculations

within practical reach.

FMMs have also been applied to the Maxwell equations, where the FMM may be

used to calculate fast matrix vector products and to optimally compress the matrix [58]

when analysing the scattering of harmonic plane waves from perfectly-conducting

obstacles. The application of the FMM leads to a large speedup in runtime and a

reduced memory usage, which means that problems of unprecedented size may be

tackled. In this application, the formulation consists of computing the currents on the

surface of the scattering object. A Galerkin method is applied and the resulting lin-

ear system can be solved iteratively. During the iterative solution, the FMM calculates

fast matrix-vector products. Another researcher applied an FMM to the problem of

evaluating the parasitic capacitance of the microstrip signal lines that are used to carry

microwave signals above stratified dielectric media [59]. The algorithm developed for

this application retains the FMM’s characteristic O(N) scaling in time and memory.

Still other FMMs that have been developed are known as the “black box,” or kernel-

independent methods, because unlike the methods developed for specific kernels (such

as the Newtonian kernel 1
2π log ‖x‖ which applies to gravitational and electrostatic

potentials), they use schemes such as interpolating between kernel evaluations via

Chebyshev polynomials to achieve independence of the kernel. Therefore, such meth-
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ods have application to arbitrary non-oscillatory potentials, which need only be nu-

merically obtainable for all the required coordinates, so it is not always necessary to

have even an analytical representation of the potential [60, 61].

3.6 Summary

In this chapter the N-body problem was introduced. The naïve O(N2) solution was

considered, and a summary was provided of some of the key methods developed since

the 1980s to solve the problem more efficiently. Specifically, particle-in-cell (PIC) meth-

ods were introduced, followed by the particle-particle/particle-mesh (P3M) methods

that they inspired. The PIC methods scale as O(N + M log M) where N is the particle

count and M is the number of grid points; with M ≪ N, this can amount to a signific-

ant saving compared to the naïve approach. Subsequently tree codes, which typically

run in O(N log N) time, were considered, and these methods lead naturally to a de-

tailed review of the original Greengard-Rokhlin O(N) FMM and a summary of some

more recent FMM developments.

In §4 we present a new fast multipole method which was developed utilising the

concepts introduced in this section. Our new method is applicable to systems governed

by the two-dimensional Yukawa potential, and with suitably chosen parameters its

runtime scales as O(N). We begin that chapter with a definition of the 2D Yukawa

potential and a derivation of the required multipole-analogue series, which are in our

case obtained from vectorised forms of the Gegenbauer addition formulæ. We then

describe our implementation, which naturally handles periodic boundary conditions,

and give performance results obtained in numerical experiments.
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Chapter 4

An O(N) multipole method for

energies of systems governed by the

2D Yukawa potential

This chapter presents a new fast multipole method for the energy of systems of particles

interacting via the 2D Yukawa potential. Simon Cox and Geoff Daniell worked on the

original derivation in this chapter. I re-derived the mathematics; the presentation, im-

plementation, illustrations, results and analysis in this chapter are my own work.

4.1 Introduction

In this chapter, we describe a new multipole method which was developed to find the

energy of systems of particles in which the inter-particle potential is governed by a

modified Bessel function, i.e. the 2D Yukawa potential.

As discussed in §3, a volume of work has been done on FMMs for potentials of the

form U(x) = − log(‖x− x0‖), which typifies the gravitational and Coulomb potentials

in two dimensions. Much effort has also been expended on multipole methods applied

to scattering problems in fields such as antenna design. However, our interest is in
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simulating the vortex state in high-temperature superconductors, where the potential

U is governed by the solution of the 2D Helmholtz equation [62],

∇2U − U
λ2

m
= δ2(s), (4.1)

where δ2 is a 2-dimensional delta function at the location of the core of the vortex pan-

cake. When we consider the interaction between stacks of pancake vortices in layered

high-temperature superconductors, the relevant solutions are of the form

U(s) = K0

(
‖s‖

λm

)
, (4.2)

where K0 is the modified Bessel function of the second kind [63, §9.6], λm is the mag-

netic penetration depth and ‖s‖ is the distance between the stacks of pancakes [62, 64,

65, 66].

Since λm can be several orders of magnitude larger than ‖s‖ [66], the K0 potential

has a very long range character. The inter-particle potential is repulsive, which yields

a relatively homogeneous distribution of particles, so we can divide the unit simula-

tion cell into a regular hierarchy of meshes as described in [4, 44, 67, 68]. The particles

are grouped together in boxes and are represented by a set of coefficients which allow

their effect on particles in distant boxes to be calculated. Our approach follows stand-

ard fast multipole methods where the system energy is computed by summing the

interactions between boxes which are sufficiently well-separated [57]. Previous stud-

ies on multipole methods for the Helmholtz equation have focused on applications in

electromagnetic scattering [69, 70, 71]; by contrast, here we develop an algorithm suit-

able for particle simulations governed by an inter-particle potential resulting from its

solution.

In line with the usual terminology in the literature, at a given level of refinement,

l, a box b is divided into 4 child boxes at level l + 1. Box b is referred to as the parent

of these boxes. Two boxes are nearest neighbours if their intersection is not empty at a

given level. Boxes are ‘well-separated’ if they are at the same level l, but are not nearest

neighbours. The interaction set of a box b is the set of boxes which are the children of
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Figure 4.1: The interaction set, i, of a box, b. Nearest neighbours are marked with n.

the nearest neighbours of the parent of b, but are not themselves nearest neighbours

of b – see fig. 4.1. The highest level of refinement used is L, which we initially set to

⌈log4 N⌉ (see §4.5), where N is the number of particles in the unit cell.

In our proofs we require the following formulæ, which are vectorised forms of the

Gegenbauer addition formulæ [72, 73]. The vectors a and b are as shown in fig. 4.2.

For a = (a1, a2), we employ the notation Θ(a) = arg(a1 + ia2) (where i =
√
−1) and

throughout we use Kν(a) ≡ Kν (|a|):

Kν (|a− b|) eiν(Θ[a−b]−Θ[a]) =
∞

∑
n=−∞

Kν+n(a)In(b)ein(Θ[a]−Θ[b]); |a| > |b|, (4.3)

Iν (|a− b|) eiν(Θ[a−b]−Θ[a]) =
∞

∑
n=−∞

(−1)n Iν+n(a)In(b)ein(Θ[a]−Θ[b]), (4.4)

Kν (|a + b|) eiν(Θ[a]−Θ[a+b]) =
∞

∑
n=−∞

Kν+n(a)In(b)ein(π−Θ[a]+Θ[b]); |a| > |b|, (4.5)

Iν (|a + b|) eiν(Θ[a]−Θ[a+b]) =
∞

∑
n=−∞

(−1)n Iν+n(a)In(b)ein(π−Θ[a]+Θ[b]), (4.6)

where the modified Bessel functions of order ν, of the first and second kinds respect-

ively, are denoted Iν and Kν [63, §9.6].

4.2 Multipole formulæ

In this section, we introduce the formulæ that we require to design and implement the

method. These are based upon the Gegenbauer addition formulæ as discussed in §4.1.

In §4.2.1 we derive an expression for the energy of an interaction; in §4.2.2 we develop

an expression for the energy of the interaction between two well-separated boxes; and
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Figure 4.2: Vectorised Bessel functions: definitions of a, b, a + b, a− b, δ = Θ [a− b]−
Θ [a] and ε = Θ [a]−Θ [a + b]

Figure 4.3: Well-separated boxes b and b̃ at level l containing nj and nk particles, located

at zj and z̃k respectively. The vectors qj and q̃k go from the centres of the

boxes, at c and c̃ respectively, to the locations of the particles.

we furnish a means of translating expansions in §4.2.3.

4.2.1 Interaction energy

In fig. 4.3, we consider two well-separated boxes b and b̃, at level l, centred at c and c̃.

They are separated by r = c̃ − c and contain nj and nk particles respectively, located at

zj and z̃k, where j = 1, . . . , nj and k = 1, . . . , nk.

The interaction energy between two of the particles can be written as:

K0
(∣∣z̃k − zj

∣∣) =
∞

∑
m=−∞

Km (r) eimΘ[r]
∞

∑
n=−∞

Im+n (q̃k) ei(m+n)(π−Θ[q̃k ]) In
(
qj
)

einΘ[qj], (4.7)

where qj = zj − c and q̃k = z̃k − c̃ are vectors from the centre of each box to the

particles.
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Proof

Write the energy of the two particles as

K0
(∣∣z̃k − zj

∣∣) = K0
(∣∣r + q̃k − qj

∣∣) . (4.8)

Using (4.5) this becomes:

K0
(∣∣z̃k − zj

∣∣) =
∞

∑
m=−∞

Km (r) Im
(∣∣q̃k − qj

∣∣) eim(π−Θ[r]+Θ[q̃k−qj]), (4.9)

which requires |r| >
∣∣q̃k − qj

∣∣ for convergence. This is guaranteed since we only apply

the formula between boxes which are well-separated. From (4.4), we write the final

term as:

Im
(∣∣q̃k − qj

∣∣) eim(Θ[q̃k−qj]−Θ[q̃k ]) =
∞

∑
n=−∞

(−1)n Im+n (q̃k) In
(
qj
)

ein(Θ[q̃k ]−Θ[qj]). (4.10)

Using (4.10) in (4.9) and re-arranging yields:

K0
(∣∣z̃k − zj

∣∣) =
∞

∑
m=−∞

Km (r) eim(π+Θ[q̃k ]−Θ[r]) ×

∞

∑
n=−∞

(−1)n Im+n (q̃k) In
(
qj
)

ein(Θ[q̃k ]−Θ[qj]). (4.11)

Equation (4.7) then follows by replacing m by −m and −n by n and using (−1)ν =

eiπν, eiπν = e−iπν, Iν (x) = I−ν (x) and Kv (x) = K−ν (x) [63].

Note that if the inter-particle potential is governed by a Bessel function of order

higher than 0, then we use a modified version of (4.5):

Kν (|a + b|) =
∣∣∣Kν (|a + b|) eiν(Θ[a]−Θ[a+b])

∣∣∣

=

∣∣∣∣∣
∞

∑
n=−∞

Kν+n (a) In (b) ein(π−Θ[a]+Θ[b])

∣∣∣∣∣ ; |a| > |b| , (4.12)

and so

Kν

(∣∣z̃k − zj
∣∣) =

∣∣∣∣∣
∞

∑
m=−∞

Km+ν (r) eim(π+Θ[q̃k ]−Θ[r])×

∞

∑
n=−∞

(−1)n Im+n (q̃k) In
(
qj
)

ein(Θ[q̃k ]−Θ[qj])

∣∣∣∣∣ . (4.13)
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4.2.2 Multipole expansion

We can compute the total interaction between all of the particles in well-separated

boxes b and b̃ using:

nk

∑
k=1

nj

∑
j=1

K0
(∣∣z̃k − zj

∣∣) =
∞

∑
m=−∞

Km (r) eimΘ[r]
∞

∑
n=−∞

Q̃m+nQn, (4.14)

where:

Q̃m+n =
nk

∑
k=1

Im+n (q̃k) ei(m+n)(π−Θ[q̃k ]),

Qn =
nj

∑
j=1

In
(
qj
)

einΘ[qj], (4.15)

are analogous to the multipole expansions for each of the boxes.

Proof

This follows from expanding the energy given by (4.7) and changing the order of sum-

mation on the right hand side of (4.14).

4.2.3 Translation of expansions

In fig. 4.4, we show the parents of boxes b and b̃, at level l − 1, centred at c(l−1) and

c̃ (l−1), and separated by r(l−1) = c̃ (l−1)− c(l−1). We can compute the contribution from

the particles in boxes b and b̃ to the interaction energy between the parent boxes using

the multipole expansions for boxes b and b̃:

Ebb̃ =
∞

∑
m=−∞

Km

(
r(l−1)

)
eimΘ[r(l−1)]

∞

∑
n=−∞

∞

∑
µ=−∞

Q̃(l)
m+n+µ Iµ (ã) eiµΘ[ã] ×

∞

∑
λ=−∞

Q(l)
n+λ Iλ (a) eiλ(π−Θ[a]), (4.16)

where a = c(l−1) − c(l) and ã = c̃ (l−1) − c̃ (l) are vectors from the centre of the child

box to the centre of the parent box. To find the total energy between all particles in

the parent boxes, we sum the contributions from all of the children of the parents of b

and b̃.
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Figure 4.4: Translation of multipole expansions from a child box at level l to its parent

at level l− 1. The vectors qj and q̃k go from the centres of the boxes at level l

to the locations of particles at zj and z̃k, whilst a and ã go from the centres of

the boxes at level l to the centres c(l−1) and c̃(l−1) of their respective parents

at level l − 1.

Proof

Using (4.14), write the interaction between particles in the parent box as:

∑
k∈b̃

∑
j∈b

K0
(∣∣z̃k − zj

∣∣) =
∞

∑
m=−∞

Km

(
r(l−1)

)
eimΘ[r(l−1)]

∞

∑
n=−∞

Q̃(l−1)
m+n Q(l−1)

n , (4.17)

where the terms:

Q(l−1)
n =

nj

∑
j=1

In

(
q(l−1)

j

)
einΘ

[
q
(l−1)
j

]

, and (4.18)

Q̃(l−1)
m+n =

nk

∑
k=1

Im+n

(
q̃ (l−1)

k

)
ei(m+n)

(
π−Θ

[
q̃
(l−1)
k

])

, (4.19)

use the distance from each particle to the centre of the parent boxes. Since

q
(l−1)
j = zj − c(l−1)

= zj − c(l) + c(l) − c(l−1)

= q
(l)
j − a, (4.20)

we can use (4.4) to write:

e−inΘ
[
q
(l)
j

]

In

(
q(l−1)

j

)
einΘ

[
q
(l−1)
j

]

= In

(∣∣∣q(l)
j − a

∣∣∣
)

ein
(

Θ
[
q
(l)
j −a

]
−Θ

[
q
(l)
j

])

=
∞

∑
λ=−∞

(−1)λ In+λ

(
q(l)j

)
Iλ(a)eiλ

(
Θ
[
q
(l)
j

]
−Θ

[
a
])

. (4.21)

49



Substituting into (4.18) yields

Q(l−1)
n =

nj

∑
j=1

einΘ
[
q
(l)
j

] ∞

∑
λ=−∞

(−1)λ In+λ

(
q(l)j

)
Iλ (a) eiλ

(
Θ
[
q
(l)
j

]
−Θ[a]

)

=
∞

∑
λ=−∞

nj

∑
j=1

In+λ

(
q(l)j

)
ei(n+λ)

(
Θ
[
q
(l)
j

])

Iλ (a) eiλ(π−Θ[a])

=
∞

∑
λ=−∞

Q(l)
n+λ Iλ (a) eiλ(π−Θ[a]). (4.22)

Combining (4.22) and a similar proof for Q̃(l−1)
m+n with (4.17) yields (4.16).

4.3 Algorithm

1. For each box at the most-refined level, L, and for n = 0, . . . , ktrunc, compute

Q(L)
n =

nb

∑
j=1

In
(
qj
)

einΘ[qj], and

Q̃ (L)
n =

nb

∑
j=1

In
(
qj
)

ein(π−Θ[qj]) = (−1)n
(

Q(L)
n

)∗
, (4.23)

where qj = zj − c is a vector from the centre of the box to the particle j and (Qn)
∗

is the complex conjugate of Qn. The number of particles in the box under consid-

eration is nb.

2. Shift the multipole expansion for each box up to its parent at the next level up

using:

Q(l−1)
n = ∑

children

∞

∑
λ=−∞

Q(l)
n+λ Iλ (a) eiλ(π−Θ[a]), (4.24)

where a = c(l−1)− c(l) is a vector from the centre of the child box currently under

consideration at level l to the centre of its parent at level l − 1, and the sum runs

over all such children of each box at level (l − 1). Repeat this shift for all levels

until the coefficient for the entire unit cell, Q(1)
n , is calculated. For each value of

Q(l)
n calculated, apply the last relation in (4.23) to find the corresponding Q̃ (l)

n .
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3. Compute the interaction energies. In contrast to other multipole algorithms, we

do not shift the expansions down the tree; instead we directly compute the in-

teraction energies between pairs of boxes at each level and sum them. The work

required by the two approaches is comparable, though our method is slightly

more amenable to efficient parallelisation of the algorithm. For every box b̃ in the

interaction set of a box b at level l, calculate the contribution to the total energy

E(b,b̃,l):

E(b,b̃,l) =
nk

∑
k=1

nj

∑
j=1

K0
(∣∣z̃k − zj

∣∣)

=
∞

∑
m=−∞

Km

(
r(l)

)
eimΘ[r(l)]

∞

∑
n=−∞

Q̃(l)
m+nQ(l)

n , (4.25)

where nj and nk are the numbers of particles in boxes b and b̃ respectively. Calcu-

late E fmm, the contribution to the total energy due to multipole expansions across

all the levels l using

E fmm = ∑
l

∑
bl

∑
b̃∈Ωb

b̃>b

E(b,b̃,l), (4.26)

where Ωb denotes the interaction set of box b and bl denotes ‘boxes at level l’.

Note that we need only compute the interaction energy between each pair once.

4. Compute nearest neighbour interaction energies directly. For each particle, j, in

each box at level L, compute the interaction energy with particles, k, in the same

box b and in each of the nearest neighbour boxes nn:

E direct = ∑
jL

∑
k∈ nn∪b

k>j

K0
(∣∣zk − zj

∣∣) , (4.27)

where jL represents box j at level L and it is again possible to ensure that each

interaction energy is computed only once.

5. Compute the total energy. Finally, add together the interaction energy from the

multipole expansions and the directly computed energies:

E tot = E fmm + E direct. (4.28)
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Due to the rapid convergence of the Gegenbauer addition formulæ, the infinite sum-

mations in the above steps may be truncated at ktrunc between 5 and 20 terms while

maintaining good overall accuracy, as illustrated in fig. 4.8. A further factor of two

in performance can be obtained by using symmetry to convert all summations from

k = −∞ . . . ∞ to the range k = 0 . . . ∞. We now analyse the algorithmic complexity.

Step Operations Description

1 O (2Nktrunc)
Compute 2ktrunc terms for each of N particles and

sum.

2 O
(

N(k2
trunc + 3ktrunc)

) There are ∼ N boxes to be shifted up the quadtree

and each shift requires k2
trunc + 3ktrunc operations.

3 ∼ O
( 27

2 Nk2
trunc

)

Each box has at most 27 entries in its interaction

set, but each interaction is computed only once for

each of the N boxes, which halves the number of

operations required. The factor k2
trunc is from the

O(k2
trunc) correlation required.

4 ∼ O (4N)

Each box has 8 nearest neighbours, and with

sufficient subdivision there should be ∼ 1 particle

per box. Computing each pairwise interaction only

once yields an average O(4N) computations.

5 1 Adding together the two components of the energy.

The total algorithm therefore scales with O(N) for constant ktrunc and requires

O(ktruncN) memory. The performance of the method has been optimised by employing

recurrence relations [74] for the trigonometric terms and a vectorised Bessel function.

Furthermore, our sequences converge rapidly so we require values of ktrunc between 5

and 20: the additional memory required to obtain numerically stableO(ktrunc log ktrunc)

correlation does not improve the performance significantly. Since the force between the
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particles is repulsive, the particle distribution in simulations tends to be homogeneous,

so it is not necessary to adopt an adaptive hierarchical grid in this case.

4.4 Periodic boundary conditions

It has been shown [47] that it is essential to sum the interactions of the particles over

infinite periodic repeats of the unit cell to handle the long range nature of the interac-

tions. This avoids introducing artificial effects into the simulation that may otherwise

be given rise to by truncation of the interaction range. We write the energy of the

infinitely tiled system as:

U (s) = K∗0 (s) = ∑
mx ,my

K0
(∣∣s + Lxmx x̂ + Lymyŷ

∣∣) , (4.29)

where mx and my are integers, x̂ and ŷ are unit vectors in the x and y directions, and Lx

and Ly are the lengths of the edges of the simulation cell. The energy of the system is

bounded as more unit cells are included in the calculation, since lims→∞ Kν (s) = 0. We

can compute the interaction between well-separated unit cells using

E infinite = ∑
mx ,my

∞

∑
m=−∞

Km
(∣∣mxLx x̂ + myLyŷ

∣∣) eimΘ[mx Lx x̂+my Ly ŷ]
∞

∑
n=−∞

Q̃(0)
m+nQ(0)

n ,

(4.30)

where Q(0)
n and Q̃(0)

m+n are multipole expansions of the unit cell at the highest level.

Following the procedure in [47] we reverse the order of computation and pre-compute

the coefficients:

Sm = ∑
mx ,my

Km
(∣∣mxLx x̂ + myLyŷ

∣∣) eimΘ[mx Lx x̂+my Ly ŷ]. (4.31)

In equations (4.30) and (4.31) the values of mx and my are chosen so as to add cells to

the summation in rings of increasing radius, until the sum converges.

Finally it is necessary to compute the contribution to the energy from image particles

in the nearest neighbours of the unit cell. This is achieved by computing:
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Figure 4.5: Interaction set of box 0 at level 3 of the mesh, using periodic boundary con-

ditions.

Figure 4.6: Interaction set of box 0 at level 2 of the mesh, using periodic boundary con-

ditions. To avoid double counting of pairwise interactions, the images of box

0 shown in brackets are ignored.

1. the energy from the interaction set of each box in levels 3 . . . L using periodic

boundary conditions, as shown in fig. 4.5, and

2. the interaction energy due to periodic repeats at level 2, as shown in fig. 4.6.

For the latter energy, it is necessary to explicitly exclude some of the self-interactions

between boxes to avoid double counting: these have their box numbers in brackets

in fig. 4.6. The total system energy is therefore given by E tot = E infinite + E fmm + E direct,

where E fmm and E direct now incorporate the energy contribution from periodic image

particles in the nearest neighbours of the unit cell.

4.5 Results

We have implemented the method described here for systems whose inter-particle po-

tential is governed by the zeroth order modified Bessel function K0, and demonstrated
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Figure 4.7: One of the inhomogeneous particle distributions used to test the effect of

particle location on the accuracy of the FMM. Particles were displaced away

from the central region.

its performance using a set of particles in a unit cell. Table 4.1 shows the accuracy of

the multipole method for three values of ktrunc, the number of retained terms in our

series expansions. The data were calculated by simulating a single unit cell without

periodic boundary conditions containing N particles in a hexagonal configuration, rep-

resentative of the relatively homogeneous and regular particle distributions obtained

in realistic simulations. Similar results are obtained when the particles are randomly

distributed. The inter-particle distance is fixed to be 1 unit for all N and all calcula-

tions use a tree with 4 levels. We show the fractional error per particle compared to

the direct evaluation when the summations are truncated at ktrunc = 5, 10 and 20, and

find it to be, on average, of orders 10−4, 10−6, and 10−7 respectively. The errors do

not exhibit a monotonic trend with increasing N. We speculate that this may be due

to varying numbers of particles falling into each cell at the finest grid level as N is

changed, which would affect the numbers of particles involved in the direct vs. the

multipole calculation.

We tested the accuracy of the multipole method applied to inhomogeneous particle

distributions, such as that illustrated in fig. 4.7, and found that for ktrunc = 5, 10 and

20 the error is of orders 10−4, 10−5, and 10−7 respectively. In these cases, the accuracy
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5 coefficients 10 coefficients 20 coefficients

N |δfmm| × 10−4 trun |δfmm| × 10−6 trun |δfmm| × 10−7 trun

280 2.1 0.04 s 0.8 0.09 s 1.6 0.20 s

468 4.9 0.05 s 0.9 0.10 s 0.3 0.21 s

900 2.6 0.06 s 6.5 0.11 s 3.8 0.21 s

988 3.4 0.06 s 11.0 0.11 s 1.3 0.21 s

1080 3.8 0.06 s 15.0 0.11 s 2.9 0.21 s

1176 4.1 0.06 s 0.8 0.11 s 0.8 0.21 s

1320 2.4 0.07 s 8.7 0.11 s 2.5 0.22 s

1426 1.3 0.07 s 13.0 0.11 s 0.7 0.21 s

1700 1.9 0.07 s 8.9 0.12 s 4.5 0.22 s

2128 2.5 0.08 s 9.1 0.12 s 1.0 0.23 s

Table 4.1: Accuracy of fast multipole method for a unit cell containing a regular ar-

rangement of N particles, showing the fractional error |δ(fmm)| in energy per

particle as the number of coefficients is increased, at 4 levels of refinement. Er-

rors are calculated relative to the naïve method. The runtime for each FMM

result is also shown.
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compares favourably to that for homogeneous distributions. We note that in the applic-

ation of the method to simulations of stacks of pancake vortices in high-temperature

superconductors, such a configuration is unlikely to arise because the inter-particle

potential is repulsive, which usually gives rise to relatively homogeneous particle dis-

tributions. To maintain high accuracies for increasingly inhomogeneous systems, it

may be necessary to adopt an adaptive meshing scheme such as that given in [54].

We performed numerical experiments to determine the effect of truncating the in-

finite summations. In the correlation routine, at the innermost loop level we found

the largest- and smallest-magnitude contributions to the result, L̃ and S̃ respectively.

At the outer loop level, we take the ratio R̃ = S̃/L̃, and for any value of ktrunc we

define εseries = max
(

R̃
)

, where the maximum is taken across all calls to the correla-

tion routine in the simulation. In figure 4.8 we plot this ratio as a function of ktrunc. It

can be seen that the ratio becomes comparable to machine precision εm at ktrunc = 15

for single precision, and ktrunc = 25 for double precision. The values of this ratio de-

pend upon λ, and figure 4.9 shows the results of a numerical study of the effect of this

parameter on the ratio εseries. We are interested in cases where λ≫ |s| [66] and in these

large-λ cases it can be seen that εseries is very small even for the relatively low value of

ktrunc = 10.

In fig. 4.10 we show the effect of using different numbers of tree levels in the sim-

ulation, for various numbers of particles N and for two different numbers of retained

terms in our multipole-analogue series, ktrunc = 5 and ktrunc = 20. The O(N) scaling

of the algorithm is evident and our implementation of the method is faster than the

O(N2) algorithm for N & 1100. For ktrunc = 20, the crossover is around N ∼ 2500,

provided the level of refinement is chosen appropriately.

The performance of our method for the infinitely tiled periodic system is shown in

Figure 4.11. The accuracy of these results is checked by ensuring that the energy per

particle for the infinitely tiled system is constant as N is increased. Typical per particle

errors were of similar magnitude to those in Table 4.1. The performance improvement

of using the infinite summation technique over a naïve implementation, which directly
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Figure 4.8: The value of εseries as a function of ktrunc, illustrating the justification for trun-

cating the infinite summations with relatively few terms. For single preci-

sion, εseries is comparable to the machine precision εm for ktrunc = 15; for

double precision this occurs for ktrunc = 25. We held λ = 1 in this plot.
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Figure 4.9: The variation of the error due to series cut-off εseries as a function of λ, the

magnetic penetration depth. We truncated the series at ktrunc = 10 terms in

this plot.
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(a) Runtime with ktrunc = 5
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Figure 4.10: Time to evaluate system energy for particles in a hexagonal lattice in a unit

cell without periodic boundary conditions using direct and multipole meth-

ods, with different numbers of levels in the multipole algorithm (a tree with

L levels has 4L boxes at its lowest level).
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Figure 4.11: Time taken to evaluate system energy for an infinitely tiled periodic

hexagonal lattice using the multipole method with cut-off of infinite sums

after ktrunc = 5 terms, and different numbers of levels of refinement.

sums the energies from particles in unit cells in shells of increasing radius has been de-

tailed elsewhere [47]. Again, the O(N) scaling of the algorithm is evident when there

are relatively few particles in each box at the lowest level. As the number of levels

is decreased the direct summation in equation (4.27) becomes dominant, which ulti-

mately scales as O(N2), as is evident from the lines showing the performance when 6

and 7 levels are used with large N. For practical applications of the method in simu-

lations, it is best to optimise the number of levels to employ in the tree hierarchy by

timing the implementation on the machine to be used. We recommend such timings

begin with log4 N levels, so that, on average, there is one particle per box at the most

refined level.
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4.6 Conclusions

We have described and implemented an O(N) algorithm suitable for molecular dy-

namics or Monte Carlo simulation of systems where the inter-particle potential is gov-

erned by a modified Bessel function, Kν. The method naturally handles an infinitely

tiled periodic system.

Our implementation of the method shows speed advantages for N & 1100 with

ktrunc = 5 or N & 2500 for ktrunc = 10 when applied to the unit cell, and for N & 300 in

infinitely-tiled simulations with ktrunc = 5.

Whilst the algorithm is efficient and the implementation makes use of several op-

timisations, there may be potential to further speed up the runtime by utilising one of

the acceleration technologies mentioned in §2. It is expected that molecular dynamics

or Monte Carlo simulations calling this algorithm could save significant amounts of

computational time, either by running multiple threads, each of which would run the

algorithm described for a different vortex stack configuration, or by parallelising the

implementation of the algorithm itself and calling it with different vortex stack config-

urations sequentially. The calculation of expansions for the lowest-level boxes may be

carried out independently, and the translation of expansions up the tree could make

use of any optimised hardware facilities for reduction. Which parallelisation scheme

would deliver better performance overall would depend upon the specifics of the ar-

chitecture in use, and its available memory and bandwidth.
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Chapter 5

Meshless methods

5.1 Introduction

There are many engineering problems which give rise to a set of partial differential

equations (PDEs) along with some boundary conditions when modelled mathemat-

ically. These problems were traditionally solved using various mesh-based methods,

including the finite element method (FEM), finite difference method (FDM) and finite

volume method (FVM). We begin this chapter by briefly introducing these methods.

Whilst the methods are popular and well-established, they suffer some disadvant-

ages inherent in their mesh-based nature, and for this reason there has been interest

in alternatives, including the meshless methods [75, 76]. Here, we introduce mesh-

less methods, and also the radial basis functions that many meshless methods rely

upon. We go on to describe a novel meshless method developed to solve an eigen-

value problem on a periodic domain; this method is based on the radial basis func-

tion finite difference (RBF-FD) formulation. In §6, we draw on the material presented

here in developing a hybrid meshless weak-strong form method suitable for model-

ling photonic crystals, and also develop RBF-FD methods for the same purpose, based

upon the RBF-FD method formulated in this chapter.
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5.2 Mesh based methods

There are three main classes of established discretization techniques that are routinely

applied to problems of solving PDEs in science and engineering. These are the finite

element method (FEM), finite difference method (FDM) and the finite volume method

(FVM). In the following subsections, we give a very brief introduction to each of the

methods, and provide references for more detailed information. These mesh-based

methods provide the context against which the meshless methods – the focus of this

chapter – were first developed, and therefore a brief introduction to each of the meth-

ods is in order. We also note where these methods have been applied to photonic

crystal modelling, in advance of the development of new meshless methods for this

purpose in §6.

5.2.1 Finite element method

In the FEM, an approximate solution to a partial differential equation (PDE) is sought

by means of a variational problem, involving integrating the differential equation over

the problem domain. The finite elements after which the method is named are the non-

overlapping subdomains into which the problem must be divided; the solution of the

PDE is then approximated by a polynomial function on each element. The individual

element equations are then systematically recombined into a global system of equa-

tions, which may be solved using various techniques subject to the initial conditions of

the original problem to obtain a numerical answer.

The seminal paper on the FEM was authored by Turner et al. [77], in which ex-

amples are given of the use of simple finite elements such as the triangular plate and

pin-jointed bar for the analysis of aircraft structures. The method has since been suc-

cessfully applied to many problems, including heat conduction [78], electric and mag-

netic fields [79], seepage flow [80] and fluid dynamics [81], as well as the structural

mechanics for which it was originally formulated. There now exists a large body of

literature on the subject, including reference books such as [81, 82, 83], and the method
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has also been applied to photonic crystal modelling [84, 85, 86, 87].

Despite the wide success of the method, it has some drawbacks [75], which gen-

erally stem from the mesh, that is, the topological map connecting the individual ele-

ments together. These issues include the possibility of mesh distortion in Lagrangian

type computations, which may have severely damaging consequences for the accuracy

of the method [88]. Moreover, where problems have a distinct local character or high

gradients, a very fine mesh is required. Such a mesh can be computationally expens-

ive to generate and update. Remeshing adaptively is a formidable task, especially in

cases of explosion/fragmentation, impact/penetration and flow passing obstacles. It is

also difficult to map thermodynamic state variables from one mesh to another without

introducing numerical errors, which means that remeshing should be avoided when

possible.

Usually, FEM interpolation fields are functions with C0 smoothness, and it is diffi-

cult to construct higher order fields for arbitrary geometries using unstructured meshes

in multiple dimensions; this can also result in poorer accuracy [89].

In mechanics applications there is an additional limitation, in that when FEMs are

used to simulate material disintegration, the disintegration corresponds to the disin-

tegration of the FEM subdivision. Therefore, the possible disintegration patterns are

limited to those embedded in the way that the domain is subdivided before the simu-

lation begins.

5.2.2 Finite difference method

In an FDM, the unknown function u(x) is represented by its values at some discrete

set of points, which lie on the nodes of a mesh. Then, a finite-difference representation

is substituted into the equation to be solved, expressing the derivatives in terms of the

known function values at the nodes. This allows the formulation of the problem as a

matrix equation A · u = b, where the matrix A is tridiagonal with fringes and b encodes

information on the (known) values of u(x) or its derivative on the boundary points.

The method still relies upon the creation of a grid of nodes, and requires the to-
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pological relations between them be known, so that the finite difference formulæ for

the derivatives can be evaluated. In this sense, the FDM potentially suffers from the

disadvantages of computationally-expensive mesh generation that applies to the FEM.

Moreover, care has to be taken to ensure the sparseness of the matrix A, whose struc-

ture is governed by the problem at hand, in order to avoid generating prohibitively

large matrix problems [74].

The finite difference method has been applied to the problem of photonic crystal

modelling by a group from MIT, and is implemented in the well-known finite differ-

ence time domain software Meep [90].

5.2.3 Finite volume method

The finite volume method offers a discretization that calculates values at discrete points

on a mesh which has been set up on the geometry of the problem at hand. Therefore,

the drawbacks arising from the mesh (and possible necessary remeshing) in the FEM

apply also to the FVM. The solution proceeds by considering the small volumes sur-

rounding each node, and using the divergence theorem to convert volume integrals

containing a divergence term into surface integrals. The method is naturally conser-

vative, since the terms are evaluated as fluxes at each surface of the volume, and the

flux entering a given volume is identical to that leaving the adjacent volume. These

methods are particularly attractive, therefore, for simulating e.g. elliptic, parabolic,

or hyperbolic conservation laws. Considerable detail on these methods is given by

Eymard, et al. [91], and the FVM has been also applied to modelling photonic crystal

devices [92, 93].

5.2.4 Other mesh-based methods

Additional mesh-based methods have been introduced. One example is the discon-

tinuous Galerkin methods, where features from both finite element and finite volume

methods are combined. These methods have been gradually developed by a number of

workers, and a self-contained treatment of the method, its applications to various prob-
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lems, and a rigorous mathematical analysis of the underpinning ideas is presented in

a recently-published textbook [94]. Another example is given by the immersed bound-

ary method [95], which was introduced to study problems in fluid-structure interac-

tion, having been developed for the study of flow patterns around heart valves [96].

5.3 Meshless methods

The difficulties arising from mesh generation and remeshing in the methods outlined

above have motivated research into alternative methods for solving PDEs in engineer-

ing and scientific problems. One group of methods that is enjoying some popularity

are the so-called meshless methods, which are detailed in the following sections. The

methods have been developed for particular applications within the discipline of en-

gineering, and we briefly mention a few representative examples of such applications.

We also give details of some of the common radial basis functions (RBFs) that are used

with many meshless methods, and consider how meshless methods may be classified

by their formulation.

5.3.1 Introduction

Meshless methods are a class of methods for solving PDEs in engineering problems. In

a meshless method, the problem is discretized at a number of nodes, positioned arbit-

rarily in the problem domain, where there is no need for any special connections or re-

lationships between the nodes. Meshless methods naturally facilitate solving problems

involving discontinuities, large and complicated geometries, and large deformations,

whilst avoiding the inherent problems of generating and updating meshes including

the topological information required for traditional, mesh-based methods.

Meshless methods have been defined as follows [97]:

[A meshless] method is a method used to establish system algebraic equa-

tions for the whole problem domain without the use of a predefined mesh

for the domain discretization.
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Meshless methods enjoy a history traceable back to early collocation methods pub-

lished in the 1930s for the purpose of computing excited electronic energy bands in

metals [98, 99]. Many types of meshless method have since been introduced, such as

the diffuse element method (DEM) [100], the element free Galerkin (EFG) method [101],

meshfree collocation methods – on which there exists a body of literature including

Kansa’s 1990 paper introducing the RBF (radial basis function) collocation method

of solving elliptic, hyperbolic and parabolic PDEs [102] and some further develop-

ments [103, 104], and meshfree weak-strong form methods, which were developed

chiefly by Liu and Gu from 2002 onwards [104, 105]. As recently as 2013, new forms

of meshless method have been introduced, such as the direct meshless local Petrov-

Galerkin (DMLPG) method from Mirzaei and Schaback [106], which uses a general-

ised moving least squares approximation and promises lower computational costs and

higher accuracies. These methods are broadly divisible into three categories, based

upon whether they use a weak or strong formulation, or some hybrid approach, as we

shall explore in §5.3.4.

Despite the relative novelty of applying meshless methods to PDEs in engineer-

ing, they have already been shown to be suitable for a variety of application areas, in-

cluding simulations of crack growth and propagation (one of many examples is given

in [107]), strain localisation (e.g. [108]), a number of fluid dynamics/fluid-structure

interaction problems [109, 110], and heat flows [111]. More recent work has demon-

strated that meshless methods can be applied to solve eigenvalue problems on peri-

odic domains [112], and also showed that they can be applied to bandgap calculations

for photonic crystals [113].

The meshless local Petrov-Galerkin (MLPG) method was applied in 2012 [114] to

boundary-value problems arising in the analysis of two-dimensional electromagnetic

wave propagation and scattering. The results for the TM polarisation were found to be

in good agreement with other numerical studies. Additionally, recent work has shown

that finite cloud [115] meshless methods may be applied to solve vectorial mode fields

in microstructured optical waveguides [116, 117].
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In §6 the application of meshless methods to photonic crystals is explored in more

detail before we go on to develop some novel meshless methods for photonic crystal

modelling.

5.3.2 Radial basis functions

The excellent performance of radial basis functions for scattered data interpolation,

which will be discussed in §5.3.3, motivates their use in developing meshless schemes

for solving PDEs. Here, an overview of radial basis functions is given. A continuous

function φ : Rd → R is a radial basis function if φ(x) = φ(y) for all x and y satisfying

‖x‖ = ‖y‖, where the Euclidean norm is denoted ‖ · ‖, Rd is a d-dimensional space on

R and x, y ∈ Rd.

In this section, we give the equations for various common RBFs that are seen in the

literature and will be used later, along with some of their derivatives. The following

paragraphs introduce the notation φ ≡ φ(r) where r = ‖r‖ for any RBF evaluated for a

distance r from the origin. The partial derivative of an RBF φ with respect to some vari-

able v is denoted φv ≡ ∂φ/∂v, for second derivatives φv1v2 = ∂2φ/∂v1∂v2, and we have

the Laplace operator ∇2 where, in 2D space, ∇2φ ≡ ∂2φ(r)/∂x2 + ∂2φ(r)/∂y2, with

r =
√
‖x‖2 + ‖y‖2. All the RBFs given below have an adjustable shape parameter, and

the illustrations show that the general trend across all the families of RBFs mentioned

is that an increase of the shape parameter leads to a broader, flatter RBF shape.

Globally supported RBFs

The globally supported RBFs (GSRBFs) meet the definition in §5.3.2 and have a domain

extending from −∞ to ∞. As we shall see in §5.3.3, some GSRBFs have been proven

to always lead to solvable interpolation problems. Some GSRBFs commonly found in

the literature include the Gaussian, multiquadric, inverse multiquadric, and thin plate

spline functions, which we examine below. Here, we denote the shape parameter c,

in harmony with the notation used in the discussions of compactly-supported RBFs

in §5.3.2, but we remark that in much of the literature, this parameter is denoted σ
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instead.

Gaussian The Gaussian family of RBFs is illustrated in figs. 5.1(a)-5.1(c) for three

values of the shape parameter, c. The RBF and some of its derivatives are given in

(5.1-5.4).

φ = exp(−r2/c) (5.1)

φx = −2x
c

exp(−r2/c) (5.2)

φy = −2y
c

exp(−r2/c) (5.3)

∇2φ =
4
c

exp(−r2/c)
(

r2

c
− 1

)
(5.4)

Multiquadric The multiquadric (MQ) family of RBFs is illustrated in figs. 5.1(d)-5.1(f).

The RBF and some of its derivatives are given in (5.5-5.8).

φ = (c2 + r2)1/2 (5.5)

φx =
x

(c2 + r2)
(5.6)

φy =
y

(c2 + r2)
(5.7)

∇2φ =
r2 + 2c2

(r2 + c2)3/2 (5.8)

Inverse multiquadric The inverse multiquadric (IMQ) family of RBFs is illustrated in

figs. 5.1(g)-5.1(i). The RBF and some of its derivatives are given in (5.9-5.12).

φ = (c2 + r2)−1/2 (5.9)

φx =
−x

(c2 + r2)3/2 (5.10)

φy =
−y

(c2 + r2)3/2 (5.11)
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(l) Thin plate spline, c = 3

Figure 5.1: Various globally supported RBFs, illustrated for different values of the shape

parameter c
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∇2φ =
3
(

x2 + y2)

(c2 + r2)5/2 −
2

(c2 + r2)3/2 (5.12)

Thin plate spline The thin plate spline (TPS) family of RBFs is illustrated in figs. 5.1(j)-

5.1(l). The RBF and some of its derivatives are given in (5.13-5.16).

φ = r2c log(r) (5.13)

φx = xr2c−2 (1 + 2c log r) (5.14)

φy = yr2c−2 (1 + 2c log r) (5.15)

∇2φ = 4cr2c−2 (1 + c log r) (5.16)

Compactly supported RBFs

Compactly supported radial basis functions (CSRBFs) can also give rise to nonsingu-

lar interpolation problems. Their compactness can lead to increased sparseness and

better conditioning of the system matrices, which makes them attractive for compu-

tational applications. Perhaps the most popular CSRBFs in the literature are those

of Wu [118] and Wendland [119]. Both authors construct compactly supported, pos-

itive definite functions, which use a univariate polynomial within their support do-

main. The simplest of these is a cut-off polynomial; that is, a polynomial piece on

[0, 1] which vanishes on [1, ∞). More recently, Buhmann [120] proposed a new, larger

class of smooth radial functions of compact support. Some typical CSRBFs used in the

literature are illustrated in fig. 5.2.

A function which has k first continuous derivatives is called a Ck function. A CSRBF

has the general form

φ(r) = (1− r)n
+ p(r), for k ≥ 1, (5.17)

where where n = 2k + 1, p(r) is a prescribed polynomial, and we have introduced the
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notation:

(1− r)n
+ =





(1− r)n, for 0 ≤ r < 1,

0, for r ≥ 1.
(5.18)

Wu’s CSRBFs Wu [118] introduced a series of positive definite compactly supported

RBFs for various degrees of smoothness. In (5.19-5.26) we give two of the most popular

forms used in the literature, expressed with r scaled by a shape parameter c so that φ(r)

vanishes for r ≥ c. Equations (5.19-5.22) give Wu’s C2 function and its derivatives:

φ =
(c− r)5

+

c9

(
8c4 + 40rc3 + 48r2c2 + 25r3c + 5r4

)
(5.19)

φx =
x(c− r)4

+

c9

(
−144c3 − 261rc2 − 192r2c2 − 45r3) (5.20)

φy =
y(c− r)4

+

c9

(
−144c3 − 261rc2 − 192r2c2 − 45r3) (5.21)

∇2φ =
9 (c− r)3

+

c9

(
−32c4 + 9rc3 + 123r2c2 + 135r3c + 45r4

)
(5.22)

Equations (5.23-5.26) give Wu’s smoother C4 function and selected derivatives:

φ =
(c− r)6

+

c11

(
6c5 + 36rc4 + 82r2c3 + 72r3c2 + 30r4c + 5r5

)
(5.23)

φx =
x(c− r)5

+

c11

(
−88c4 − 440rc3 − 528r2c2 − 550r3c− 110r4

)
(5.24)

φy =
y(c− r)5

+

c11

(
−88c4 − 440rc3 − 528r2c2 − 550r3c− 110r4

)
(5.25)

∇2φ =
11 (c− r)4

+

c11

(
−16c5 − 64rc4 + 128r2c3 + 307r3c2 + 220r4c + 55r5

)
(5.26)

Wendland’s CSRBFs In a paper published shortly after Wu’s, Wendland [119] intro-

duced a class of new CSRBFs which are of minimal degree given for a given smooth-

ness, and showed that such functions are unique up to a constant factor. Wendland

also showed Wu’s functions to be special cases of his functions [120]. In (5.27-5.30) we
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Figure 5.2: Compactly supported RBFs with shape parameter c = 0.5, from both Wu’s

and Wendland’s families, and with two different smoothnesses. Note that

the functions are identically zero for r =
√

x2 + y2 ≥ c.

74



give Wendland’s C2 function and its derivatives:

φ =
(c− r)4

+

c5 (c + 4r) (5.27)

φx =
20x
c5 (c− r)3

+ (5.28)

φy =
20y
c5 (c− r)3

+ (5.29)

∇2φ = −20
c5 (c− r)2

+ (2c− 5r) (5.30)

Wendland’s C4 function and some of its derivatives are given in (5.31-5.34):

φ =
(c− r)6

+

c8

(
3c2 + 18rc + 35r2) (5.31)

φx =
56x(c− r)5

+

c8 (−c− 5r) (5.32)

φy =
56y(c− r)5

+

c8 (−c− 5r) (5.33)

∇2φ = −112
c8 (c− r)4

+

(
c2 + 4cr + 20r2) (5.34)

5.3.3 RBF interpolation

RBFs have long been synonymous with scattered data interpolation, and are the found-

ations of a well-established and successful technique in the theory of multivariate func-

tion approximation. Given data {xi, fi} ∈ Rn ×R, 1 ≤ i ≤ N specifying values of a

function f : Rn → R on a finite set of distinct centres {xi}N
i=1 ∈ Rn, the interpolant

F(x) approximating the function f (x) is given by:

F(x) =
N

∑
j=1

γjφ(‖x− xj‖) + β, (5.35)

where x and xj are points in Rn, the RBF is φ, the Euclidean norm on n-dimensional

space is indicated by ‖ · ‖, and N is the total number of points. The coefficients γj and

β may be found by setting

F(xi) = f (xi), for i = 1, . . . , N. (5.36)
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and imposing that ∑
N
j=1 γj = 0. This gives rise to a symmetric linear system of equa-

tions, 
 Φ e

eT 0




 γ

β


 =


 u

0


 , (5.37)

with Φij = φ(‖xi − xj‖) for i, j = 1, . . . , N, u = [ f1, · · · , fN ]
T, and ei = 1 for i =

1, . . . , N.

The interpolation problem is well-posed if and only if the coefficient matrix in (5.37)

is nonsingular, i.e. its inverse exists. It has been shown [121] that (5.37) can always be

solved when using multiquadric interpolation and the following two conditions are

met:

1. The points xi are distinct, and

2. The degree of the appended polynomial is chosen to be the order of strictly con-

ditionally positive definiteness of the RBF used.

5.3.4 Classes of meshless method

Meshless methods may be classified on various different characteristics of their formu-

lation and implementation, including the way the domain is represented (domain or

boundary), the function approximation scheme employed, and the formulation pro-

cedure used. In this section we expand on the latter and specifically split the methods

into those based on strong forms, weak forms, and combinations of both.

In a strong form (or collocation) method, the approximate unknown function is

assumed to be sufficiently smooth to be differentiable at least up to the order of the

PDEs to be solved. Strong form methods are formulated by obtaining a set of discret-

ized system equations using the strong forms of the governing equations and bound-

ary conditions, directly discretized at the nodes. These methods, therefore, enjoy a

high computational efficiency and are truly meshless (in contrast to weak form meth-

ods which require a set of background cells over which the requisite integration may

be performed). They are also simple in algorithmic terms and may be implemented
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with relative ease. However, there are many situations in which they have significant

downsides, such as a lack of robustness and stability, or in which they yield relatively

inaccurate results.

Although the weak form methods have enjoyed more research effort than the strong

form methods, there are many examples of strong form methods in the literature, in-

cluding the collocation methods of Kansa, Wu, Zhang and Song et al., etc [102, 103, 122],

as well as Oñate et al.’s finite point method [123] and the generalised finite difference

method [124].

The weak form methods do not require the same high degree of consistency of the

unknown function as the strong form. In order to relax this requirement, an integral

operation is introduced to the system equation, based on a mathematical or physical

principle. The weak form thus requires more computation, but can usually produce

highly stable discretized system equations giving rise to more accurate results than the

strong form [76].

In formulating the weak form methods, the PDEs and boundary conditions are

transformed into a set of weak form integral equations. The system equations are de-

rived using a numerical integration process with the weak forms, over sets of back-

ground cells that are set up either locally or globally in the problem domain.

Significant contributions in the history of weak form methods include work by

Nayroles et al., who introduced the diffuse element method (DEM) using a (global)

Galerkin weak form [100], and the introduction by Belytschko et al. of the element-free

Galerkin (EFG) method [101] which was based upon the DEM. The local weak form

methods based on Petrov-Galerkin formulations were developed initially by Atluri

and Zhu [125].

It is possible to combine the weak and strong form methods, so as to have the

advantages of the stability of the weak form formulation in the vicinity of natural

boundaries, to obtain a stabilised solution, and the relative computational efficiency

of the strong form method further from the boundaries. The meshless weak-strong

form method was developed by Liu and Gu in 2002 [104]. They applied the local weak
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form to all nodes that are on or near boundaries with derivative boundary conditions,

and the strong form for the other, so-called collocatable, nodes in the problem. This

method can provide stable and accurate solutions in mechanics problems, using fewer

background cells for the integration than competing weak-form methods.

There also exist other methods such as smooth particle hydrodynamics [126, 127],

in which strong form equations are discretized at the particles but the function approx-

imation is performed with a weak form.

5.3.5 Disadvantages of meshless methods

Although meshless methods possess attractive qualities, as detailed earlier in this sec-

tion, they are of course not without drawbacks. Perhaps the chief drawbacks attending

the meshless methods developed and applied in this thesis are those of long runtimes

and poorly conditioned system matrices.

The problem of long runtimes arises in RBF-based methods largely due to the ne-

cessity to evaluate many RBFs and their derivatives in the course of assembling the

system matrices. Numerical integration in the weak-form Galerkin methods is also a

time-consuming process, requiring a large number of integration points for sufficient

accuracy. However, computational acceleration technologies such as GPUs (see §2)

are becoming increasingly popular and affordable, and have been successfully applied

to ameliorate this disadvantage of meshless methods to some degree. One recent ex-

ample is the use of multiple GPUs to accelerate a radial basis function finite difference

(RBF-FD) PDE solver, where an unoptimised implementation on a GPU achieved a 9×
speedup compared to a CPU-only code [128]. Meshless methods also tend to suffer

from a high memory requirement compared to the usual mesh based methods such as

the FEM, FDM and FVM.

The problem of ill-conditioned, dense system matrices arises in many RBF meth-

ods, and for strong-form methods, the ill-conditioning increases with the number of

collocation points, leading – in some cases – to an unsolvable system. One way to

ameliorate this sort of issue is to solve many smaller sub-regions by collocation tech-
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niques, rather than one larger global domain problem which would require many

collocation points [129]. Moreover, using schemes such as RBF-FD or a compactly-

supported RBF-based method allows the sparseness of the matrix to be controlled via

some adjustable shape parameter.

Another potential problem with meshless methods is that the development of the

mathematical theory on meshless methods, including aspects such as stability and con-

vergence order estimates, has been described as “far from satisfactory” [130]. How-

ever, some work has been carried out on estimating the bounds of the smallest eigen-

value of the collocation matrix and how the collocation matrix may be stabilised by

smoothing [131], and on stability estimates for the meshless unsymmetric collocation

method [130].

5.4 A meshless RBF-FD method for solving an eigenvalue prob-

lem with a periodic domain

Here we formulate a new meshless method using the radial basis function finite differ-

ence (RBF-FD) technique. We begin with an introduction to our problem (the elliptic

Helmholtz equation) and to the RBF-FD technique, and then give our formulation.

This is followed by results from our implementation, and we then go on to formulate a

higher order RBF-FD scheme for the problem. The work in this section also forms the

background for the RBF-FD method for calculating photonic band structure which we

formulate in §6.5.

5.4.1 Introduction

As we stated in §5.1, many problems in engineering result in sets of partial differential

equations, and sets of boundary conditions. In 2008, Hart et al. proposed a new mesh-

less method to solve an eigenvalue problem with periodic boundary conditions [112].

In this case, CSRBFs are utilised and the shape parameter is kept less than or equal to

half of the length of the domain to satisfy the boundary conditions. The compact sup-
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Figure 5.3: System domain with periodic boundary conditions.

port of these RBFs gives rise to a well-conditioned system matrix (compared to those

generated by global RBF methods) with adjustable sparsity.

In this section we begin by describing the problem and its analytical solutions, and

then introduce the formulation of a novel meshless method for the same problem,

based upon an RBF-FD strong form formulation. The “local” nature of the RBF-FD

method increases sparseness and improves the conditioning of the linear system [132,

§1], analogously to the use of CSRBFs in Hart’s work [112]. We give some numerical

results demonstrating that the method is in good agreement with the analytical solu-

tion, and go on to formulate a higher-order scheme for the RBF-FD method to increase

accuracy.

The method is formulated for the elliptic Helmholtz equation:

∇2u + λ2u = 0, (5.38)

where ∇2 is the Laplace operator, λ is a constant and the unknown function is u,

defined on n-dimensional Euclidean space Rn. For two dimensions, we have ∇2 =

∂2/∂x2 + ∂2/∂y2.

This problem has analytical solutions, which may be obtained after imposing the

periodic boundary conditions:

u(x, 0) = u(x, b), u(0, y) = u(a, y), (5.39)
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and

u′(x, 0) = u′(x, b), u′(0, y) = u′(a, y), (5.40)

where the domain extends from (0, 0) to (a, b) as shown in fig. 5.3.

Separating variables leads to the analytical solution of:

u(x, y) = X(x)Y(y), (5.41)

with

X(x) = A cos(lx) + B sin(lx), (5.42)

and

Y(y) = C cos
(

y
√

λ2 − l2
)
+ D sin

(
y
√

λ2 − l2
)

. (5.43)

In (5.42-5.43), l is some constant and the boundary conditions may be enforced to

give a set of solutions λ2
nk for l:

λ2
nk =

(
2πn

b

)2

+

(
2πk

a

)2

, for n, k = 0, 1, 2, . . . . (5.44)

For a square domain extending from (0, 0) to (a, a), this reduces to

λnk =
2π

a

√
n2 + k2. (5.45)

5.4.2 Formulation

Radial basis functions may be applied in finite-difference mode, which may be seen

as analogous to the generalised finite difference schemes [133], but using arbitrary or

random point positions rather than a fixed grid system. The idea of using RBFs with

a local collocation, as in finite differences, reduces the number of connections (the so-

called support) for each node, hence producing a sparse and better-conditioned mat-

rix (unlike the global RBF methods which produce dense and ill-conditioned matrices

when the number of nodes increases). The scheme was introduced independently by

Tolstykh and Shirobokov [134], and Wright and Fornberg [132], in the literature. Chin-

chapatnam et al. later developed RBF-FD methods for application to the incompress-

ible Navier-Stokes equations [110].
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xi

Figure 5.4: Schematic representation of an RBF-FD stencil around the node xi, with 9

nodes in total. Nodes are those at which we use the values of u.

In the RBF-FD method, the complete domain is represented by a set of N nodes,

which may be arbitrarily located. For each node, an influence domain (or stencil) is

defined, which consists of M nodes near to the node under consideration. Such a

stencil is represented schematically in fig. 5.4. Because the boundary conditions in

this problem are periodic, distances between nodes are calculated using the minimum

image distance (that is, the minimum of the distance between nodes within the unit

cell, or that between a node in the unit cell and the appropriate node in a periodic

repeat of the unit cell, see e.g. [135, §A.1]), rather than the absolute distance. At each

node, a local RBF interpolation problem is set up to determine the RBF-FD coefficients

to represent the interpolant, and the weights to represent its derivatives. The diagram

in fig. 5.5 illustrates an influence domain for node x1 under these periodic boundary

conditions. The nodes are shown arranged on a regular rectangular spacing for visual

clarity, but this is not a requirement of the algorithm.

In a conventional finite difference scheme the derivative of the function u(x, y) with

respect to x at some grid point (i, j) can be estimated using a central difference expres-

sion like:
∂u
∂x

∣∣∣∣
(i,j)
≈ ∑

k∈{i−1,i,i+1}
w(k,j)u(k, j), (5.46)

where the function value at the grid point (k, j) is u(k, j) and the coefficients w(k,j) can

be obtained via a Taylor series or a polynomial interpolation. The set of nodes {(i −
1, j), (i, j), (i + 1, j)} are often referred to as the stencil in finite difference literature.
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x0 x1 x2

x3

x4

Figure 5.5: The nodes of the system, and an RBF-FD influence domain or stencil. The

unit cell is the outer square. The small circles illustrate the nodes (shown

uniformly spaced for visual clarity). A stencil for node x1, which includes

those nodes within a radius of rp = 0.26a, is shown with a darker back-

ground.

Using conventional interpolation techniques requires that the nodes are situated on a

structured grid, as explained in §5.2.

The RBF-FD concept is to use a formula like (5.46), but to compute the weights us-

ing the RBF interpolation technique rather than the traditional polynomial or Taylor

series approaches. This brings several advantages, namely that the method is truly

meshless, requiring no information about the connectivity of the nodes, as well as util-

ising the accuracy of RBF interpolants in approximating derivatives, and overcoming

the problem of well-posedness in the polynomial interpolation scheme, since RBF in-

terpolation is well posed in multidimensional problems.

We now turn our attention to formulating the RBF-FD method for this problem.

Recall that the standard RBF interpolation problem seeks an interpolant of the form

in (5.35), with coefficients that may be determined from (5.37). The RBF interpolation

problem here is of the standard form:

u(x) ≈ s(x) =
M

∑
j=1

γjφ(‖x− xj‖) + β, (5.47)
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where φ(‖ · ‖) is a (globally supported) RBF, M is the number of nodes in the influence

domain, and β is a constant.

In Lagrangian form, (5.47) can be written as

s̄(x) =
M

∑
j=1

χ(‖x− xj‖)u(xj), (5.48)

where χ(‖x− xj‖) is of the form (5.47) and satisfies the usual cardinal conditions, i.e.,

χ(‖xk − xj‖) =





1, if k = j,

0, if k 6= j,
k = 1, · · · , N. (5.49)

The goal is to write the approximations of function derivatives as a linear combina-

tion of function values, as in (5.46). Here, we derive the RBF-FD approximation for an

arbitrary linear operator L operating on u(x). The function u(x) is represented at any

node as an RBF interpolant whose centres are on the node and the M− 1 surrounding

nodes. We pick node x1 (see fig. 5.5) for this example, although the process is repeated

for all the nodes in the domain. We approximate the differential operator at the node

by applying the operator to the Lagrangian form of the RBF interpolant:

Lu(x1) ≈ Ls̄(x1) =
M

∑
j=1
Lχ(‖x1 − xj‖)u(xj) (5.50)

Equation (5.50) can be rewritten as a FD formula of the form

Lu(x1) ≈
M

∑
j=1

w(1,j)u(xj), (5.51)

where the RBF-FD weights {w(1,j)}M
j=1 are formally given by the operator L applied on

the Lagrange form of the basis functions, i.e.,

w(1,j) = Lχ(‖x1 − xj‖), (5.52)

We compute the weights by applying Gaussian elimination to solve the linear sys-

tem 
 Φ e

eT 0




 w

µ


 =


 Lϕ1

0


 , (5.53)
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where ei = 1, and Lϕ1 denotes the column vector Lϕ = [Lφ(‖x − x1‖),Lφ(‖x −
x2‖), · · · ,Lφ(‖x− xM‖)]T evaluated at the node x1. The matrix Φ is given by Φij =

φ(‖xi − xj‖) and µ is a scalar value which enforces the condition

M

∑
j=1

w(1,j) = 0,

ensuring that the stencil is exact for all constants.

The above procedure is formulated with an arbitrary linear differential operator L,

and so the weights w corresponding to any such operator may be found this way.

To apply this technique to the eigenvalue problem at hand, it is first necessary to

calculate the weights {w(xx)
(1,i)}M

i=1 for ∂2u/∂x2
∣∣

x=x1
and {w(yy)

(1,i)}M
i=1 for ∂2u/∂y2

∣∣
x=x1

. The

periodic boundary conditions are enforced in the definition of the stencil for the node

x1, as shown in fig. 5.5, and in using the minimum image distances in evaluating func-

tions arguments. Thus, at the node x1, we identify the set Ω1 = {x0, x1, x2, x3, x4} as

the stencil (with reference to fig. 5.5), and expand (5.53) as follows:



φ(‖x0 − x0‖) φ(‖x0 − x1‖) · · · φ(‖x0 − x4‖) 1

φ(‖x1 − x0‖) φ(‖x1 − x1‖) · · · φ(‖x1 − x4‖) 1
...

...
...

...
...

φ(‖x4 − x0‖) φ(‖x4 − x1‖) · · · φ(‖x4 − x4‖) 1

1 1 · · · 1 0







w(xx)
(1,0)

w(xx)
(1,1)
...

w(xx)
(1,4)

µ




=




φ,xx(x1, x0)

φ,xx(x1, x1)
...

φ,xx(x1, x4)

0




,

(5.54)

where φ,xx(xi, xj) = ∂2

∂x2 φ(‖x− xi‖)|x=xj
, with an analogous system for the ∂2/∂y2

operator to determine {w(yy)
(1,i)}M

i=1. These equations are solved using Gaussian elimina-

tion. Then, the procedure is repeated at all other nodes in the system, and the weights

are stored. The RBF-FD weights are clearly functions only of the relative positions of

the nodes and the RBF employed. Thus, such weights may be pre-calculated if the

inter-node distances are known in advance.

The discretization of (5.38) leads to an eigenvalue problem:

Lu = −λ2u, (5.55)

with the eigenvalues λ2 corresponding to the various λ values in the analytical solu-

tion (5.45). The N × N matrix L is constructed using the RBF-FD weights calculated
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at each node, and its sparsity can be varied by changing the number of nodes used

in the stencils when calculating these weights. The elements Lij of this matrix can be

expressed as follows:

Lij =





w(xx)
(i,j) + w(yy)

(i,j) , if j ∈ Ωi,

0, otherwise,
(5.56)

where the notation Ωi represents the set of nodes comprising the stencil for node at xi.

With the matrix assembled, an eigensolver routine is called to solve the problem

for the eigenvalues λ which are then compared to the analytical solutions to determine

the accuracy of the method. For the results in §5.4.4, the eigensolver chosen was a

Krylov-Schur iterative algorithm provided as part of the SLEPc library [136].

5.4.3 Formulation of a higher-order RBF-FD scheme

In §5.4.2, we formulated an RBF-FD method for solving an eigenvalue problem on a

periodic domain, and in §5.4.4 we shall give some numerical results from this method.

For a fixed stencil size, it will be observed that the accuracy of the method increases

for larger numbers of nodes (smaller inter-node distances h), and for increasing shape

parameters. However, increasing the shape parameter too severely will be found

found to produce ill-conditioning of either the eigenvalue problem (5.55) or the lin-

ear system (5.54).

Another way to increase the accuracy of an RBF-FD method, without changing the

size of the stencil or the number of nodes used, is to employ a higher-order RBF-FD

scheme, using ideas from Hermite interpolation. In this section, we will introduce and

formulate such a scheme.

Wright and Fornberg [132] proposed to keep the stencil size fixed and include in the

RBF-FD approximation of the derivative some linear combination of the derivatives of

u at the surrounding nodes, as illustrated schematically in fig. 5.6. This work was built

upon Collatz’s original Mehrstellenverfahren [137], which was developed by Lele into

compact finite difference formulæ [138]. In a higher-order finite difference scheme,
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xi

Figure 5.6: A schematic representation of a higher-order RBF-FD stencil for node xi,

with nine nodes in total. Nodes are those at which we use the values

of u whilst nodes are those at which we also consider the additional in-

formation, ∂u/∂x.

including this derivative information might transform (5.46) into:

∂u
∂x

∣∣∣∣
(i,j)
≈ ∑

k∈{i−1,i,i+1}
w(k,j)u(k,j) + ∑

k∈{i−1,i+1}
w̃(k,j)

∂u
∂x

∣∣∣∣
(k,j)

, (5.57)

where the additional term includes the derivative information, with its own set of

weights {w̃(k,j)}, without changing the size of the stencil employed.

To formulate the higher order RBF-FD method, we first construct an interpolant

analogous to (5.35), and then impose conditions similar to (5.36), giving rise to a block

linear system of equations reminiscent of (5.37).

Taking L to be an arbitrary linear differential operator and the unknown function

to be u(x), we require the function values {u(xi)} at each of the N nodes {xi}N
i=1. We

introduce η, a vector containing m ≤ N of the numbers {1, . . . , N}. The derivative

information we require is the data Lu(xηl ) at the nodes {xηl}m
l=1, which are a subset of

the nodes {xi}N
i=1. Then, the interpolant may be expressed:

u(x) ≈ s(x) =
N

∑
i=1

γiφ(‖x− xi‖) +
m

∑
l=1

γ̃lL2φ(‖x− xηl‖) + β, (5.58)

where L2φ(‖ · ‖) is a basis function derived by applying the operator L to the basis

function φ(‖ · ‖) as a function of the second variable, and and β is a constant as in the

lower-order case.
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The conditions we enforce to obtain the unknowns are:

s(xi) = u(xi), i = 1, . . . , N,

Ls(xηl ) = Lu(xηl ), l = 1, . . . , m,
N

∑
i=1

γi = 0. (5.59)

As before, these conditions lead to a system of block linear equations:




Φ L2Φ e

LΦ LL2Φ 0

eT 0T 0







γ

γ̃

β


 =




u

Lu

0


 , (5.60)

with

Φij = φ(‖xi − xj‖), i = 1, . . . , N, j = 1, . . . , N,

L2Φij = L2φ(‖xi − xηj‖), i = 1, . . . , N, j = 1, . . . , m,

LΦij = Lφ(‖xηi − xj‖), i = 1, . . . , m, j = 1, . . . , N,

LL2Φij = LL2φ(‖xηi − xηj‖), i = 1, . . . , m, j = 1, . . . , m,

ei = 1 i = 1, . . . , N. (5.61)

We write the interpolant (5.58) in the Lagrange form,

s̄(x) =
N

∑
i=1

χ(‖x− xi‖)u(xi) +
m

∑
l=1

χ̃(‖x− xηl‖)Lu(xηl ), (5.62)

with χ(‖x− xi)‖) and χ̃(‖x− xηl‖) of the form of (5.58). These terms satisfy the car-

dinal conditions,

χ(‖xk − xi‖) =





1, if k = i,

0, if k 6= i,
k = 1, . . . , N, (5.63)

and

Lχ(‖xηk − xi‖) = 0, k = 1, . . . , m, (5.64)
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and for the χ̃ terms, we have

χ̃(‖xk − xηl‖) = 0, k = 1, . . . , N, (5.65)

and

Lχ̃(‖xηk − xηl‖) =





1, if k = l,

0, if k 6= l,
k = 1, . . . , m. (5.66)

We can then write a higher-order RBF-FD discretization of Lu(x1) based upon the

Lagrangian form, as we did in the initial RBF-FD scheme in (5.50):

Lu(x1) ≈ Ls̄(x1) =
n

∑
i=1
Lχ(‖x1 − xi‖)u(xi) +

m̃

∑
l=1
Lχ̃(‖x1 − xηl‖)Lu(xηl ). (5.67)

Here, the set of nodes {xi}n
i=1 are those in the stencil for node x1 at which we use

the value u(x), whilst the set {xηl}m̃
l=1 are those at which we also use the derivative

information Lu(x). Introducing the weights for the higher-order RBF-FD scheme as

{wL(1,i)}n
i=1 and {w̃L(1,l)}m̃

l=1, we may rewrite (5.67) as a compact FD formula,

Lu(x1) ≈
n

∑
i=1

wL(1,i)u(xi) +
m̃

∑
l=1

w̃L(1,l)Lu(xηl ), (5.68)

where we have

wL(1,i) = Lχ(‖x1 − xi‖),

w̃L(1,l) = Lχ̃(‖x1 − xηl‖), (5.69)

and the superscript L indicates the operator for which these weights were calculated.

We compute the weights in practise by applying Gaussian elimination to solve the

linear system 


Φ L2Φ e

LΦ LL2Φ 0

eT 0T 0







wL

w̃L

µ


 =




L∗ϕ1

L∗ϕ̃1

0


 , (5.70)

where L∗ϕ1 denotes the column vector L∗ϕ = [Lφ(‖x − x1‖), · · · ,Lφ(‖x − xn‖)]T,

and L∗ϕ̃1 is the column vector L∗ϕ̃1 = [Lφ(‖x − xη1‖), · · · ,Lφ(‖x − xηm̃‖)]T, both
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evaluated at the node x1. Here, µ is a scalar value which enforces the condition

n

∑
i=1

wL(1,i) = 0,

ensuring that the stencil is exact for all constants.

The above formulation is given for node x1, and the procedure is carried out for

each node xi, i = 1, . . . , n, in order to calculate all the required RBF-FD weights.

With the weights known, the discretization of (5.38) at the node x1 gives:

n

∑
j=1

wL(1,j)uj +
m̃

∑
l=1

w̃L(1,ηl)
Luηl = −λ2u(x1) (5.71)

This can be rewritten in a form suggestive of a generalised eigenvalue problem (where

we have substituted from (5.55)):

n

∑
j=1

wL(1,j)uj = −λ2

[
u(x1)−

m̃

∑
l=1

w̃L(1,ηl)
uηl

]
(5.72)

Considering all the N nodes in the system, the generalised eigenvalue problem formed

is:

Lu = −λ2Gu (5.73)

with the L matrix given by

Lij =





w∇
2

(i,j), if j ∈ Ωi,

0, otherwise,
(5.74)

and the G matrix given by

Gij =





1, if i = j,

−w̃∇
2

(i,j), if j ∈ ηi,

0, otherwise,

(5.75)

where Ωi represents the stencil for node i, i.e. the nodes at which we consider u(x).

Again, we note that by adjusting the size of the stencil Ωi we are able to control the

sparseness of the matrix L, whilst adjusting the size of the subset Ω∇
2

i adjusts the

sparseness of G.
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With the matrices assembled, the generalised eigenvalue problem (5.73) is passed

to a vendor-optimised eigensolver and the calculated eigenvalues λ are compared to

the analytical solution.

5.4.4 Results

We implemented the algorithm using Gaussian elimination to solve the linear systems

(5.53) and a Krylov-Schur iterative eigensolver [136] to find the eigenvalues of (5.55).

Here we present results showing how the accuracy of the method varies with various

of its parameters. We set the domain size a = b = 1 and we use eigenvalues scaled by

π, i.e., λs = λ/π.

We defined the relative error between an analytical and a numerical result to be:

ǫr =
‖λa − λn‖
‖λa‖

, (5.76)

with the analytical eigenvalue denoted λa and the numerical results λn. We compare

the numerical and analytical results for the scaled eigenvalue λs = 2 which has a four-

fold degeneracy (n = 0, k = ±1 and k = 0, n = ±1 in (5.45)). The reported values of ǫr

are the mean of ǫr calculated for the four λs = 2 results.

In fig. 5.7 we show the relative error ǫr as a function of the total number of nodes

N in the system. The stencil employed in each case was a circle with radius set so that

29 nodes were admitted on the uniformly spaced grid at each value of N. We used the

multiquadric RBF with shape parameter c = 0.2. Results are shown for three different

node layouts: uniformly distributed nodes on a square grid, nodes distributed accord-

ing to a Sobol sequence, and uniformly distributed nodes perturbed randomly within

a radius of 0.3h from their original position, where h is the distance between adjacent

uniform nodes.

It can be seen that increasing the number of nodes leads to a decreasing relative

error. The difference in relative error between the three node layouts is less than an

order of magnitude in all cases, but for large numbers of nodes the uniform distribu-

tion consistently yields the best accuracies, whilst for small and moderate numbers of
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Figure 5.7: Mean relative error ǫr as a function of total number of nodes N for three point

layouts, with a stencil of fixed shape (standard order method, multiquadric

RBF, c = 0.2).

nodes, the perturbed pattern often performs best.

In fig. 5.8 we illustrate the mean relative error ǫr as a function of the number of

nodes N for the higher order and the standard order methods, using uniformly distrib-

uted nodes. As in fig. 5.7 we used the multiquadric RBF, with c = 0.2 and an influence

domain that admits 29 nodes at each resolution, and in the higher order method we

included all nodes other than i from Ωi in ηi.

For all the numbers of nodes that we considered, the higher-order method pro-

duced better overall relative errors, and it demonstrates a considerably more rapid

convergence toward the analytical solution as the number of nodes increases when

compared to the standard-order method.

Convergence rates for the standard and higher order methods are determined ac-

cording to fig. 5.9. The error is modelled in terms of the mesh spacing (i.e., the inter-
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Figure 5.8: Comparison of mean relative error ǫr as a function of total number of nodes

N for the higher order and standard order methods, using uniformly distrib-

uted nodes (multiquadric RBF, c = 0.2).
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Figure 5.9: Determination of the orders of convergence for the standard and higher or-

der methods by plotting log ǫr against log h (using uniformly distributed

nodes with the multiquadric RBF and shape parameter c = 0.2).

node distance) h as a power law,

ǫr(h) ≈ Chp,

with C a constant scale factor and p defined as the order of convergence. Taking log-

arithms, we have log ǫr = log C + p log h. Plotting log ǫr against log h and applying

the nonlinear least-squares Marquardt-Levenberg algorithm [139, 140] to fit straight

lines to the data yields the lines shown in the the figure. We therefore find that the

orders of convergence for the standard-order method and the higher-order method are

O(h4.3) and O(h8.5) respectively. These compare favourably to the convergence rates

for the central difference form of the finite difference method, which is O(h2), and to

the CSRBF-based methods, which are of order O(h3) when using C2 functions and

O(h5) with C4 functions [112].

In fig. 5.10, we show the runtimes of the RBF-FD method code for both standard

and higher orders, using the parameters that were used to generate the data for fig. 5.8.
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Figure 5.10: Approximate runtimes for the RBF-FD code using standard and higher

order, with the same parameters used in generating the results shown

in fig. 5.8.

This is given as approximate guidance only; the code that was used to generate these

results was a debug version which benefited neither from compiler optimisations nor

an implementation that prioritised speed of execution. Moreover, the timings were

carried out on a workstation on which various other programs were running so the

RBF-FD code may have been allocated less CPU time than wall-clock time by the

scheduler. We see that for all numbers of nodes considered (other than 64), the higher

order method takes longer than the standard order method, in some cases significantly

longer.

In fig. 5.11 we show the results of varying the multiquadric shape parameter c with

a fixed number of nodes N = 3136 and fixed stencil radius r = 0.053625, using uni-

formly distributed nodes, so that the stencil always contains 29 nodes. We observe

that the relative error drops monotonically for increasing shape parameters up to a

threshold c = 0.28 and has an oscillatory nature for large values of c, with many of the
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Figure 5.11: Mean relative error ǫr as a function of multiquadric shape parameter c using

a fixed number of uniformly-distributed nodes (standard order).

larger values giving rise to very high relative errors.

Further, we examined the performance of the method using various different RBFs,

as discussed in §5.3.2. In fig. 5.12 we show ǫr as a function of the total number of nodes

N, using regularly-spaced nodes, for six different combinations of RBF and shape para-

meter. It can be seen that, in general, larger shape parameters give rise to better accur-

acy, which follows the trend illustrated in fig. 5.11 for the multiquadric RBF. However,

as the number of nodes increases, errors in the Gaussian elimination solution of the

linear system (5.53) became more significant, ultimately compromising accuracy for

some sets of parameters (where data points are missing the eigensolver failed to con-

verge on at least four nonzero eigenvalues). In fig. 5.13 we show the results of the

same investigations using Sobol-pattern nodes. The trends are mostly similar, but we

see considerably larger maximum relative errors, and for some combinations of RBF

and shape parameter, increasing the resolution above a threshold value causes a con-

siderable loss of accuracy. For the Gaussian RBF, with N > 1000, the larger shape
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Figure 5.12: Mean relative error ǫr as a function of the total number of nodes N for vari-

ous RBFs and shape parameters (uniformly spaced nodes, standard order).

parameter gave rise to worse accuracies than a smaller one. We note that in this case

the eigensolver failed to find the requested number of the smallest eigenvalues, and

speculate that the cause is likely to be an increasingly poor condition number of the

eigenvalue problem. It is possible that a suitable preconditioner might improve the

results in these cases, as discussed in e.g. [141]. In both cases, the inverse multiquadric

with shape parameter c = 0.50 and the Gaussian with shape parameter c = 0.05 gave

the most consistently good results.

5.5 Summary and conclusions

This chapter has introduced the field of meshless methods for partial differential equa-

tions, beginning by outlining the context in which meshless methods began to at-

tract considerable research interest. A brief introduction was provided to the tradi-

tional, mesh-based methods including the finite element method (FEM), finite differ-
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Figure 5.13: Mean relative error ǫr as a function of the total number of nodes N for vari-

ous RBFs and shape parameters (Sobol nodes, standard order).

ence methods (FDM), and finite volume method (FVM). Each of these methods inevit-

ably has certain drawbacks, and in particular, some drawbacks stem intrinsically from

the mesh-based nature of the methods. Among them are an inability to simulate ma-

terial disintegration in mechanics applications (except along paths embedded in the

mesh of the original problem), and the requirement for a very fine mesh to capture

local character imposing a high computational burden through necessary re-meshing,

along with the potential introduction of inaccuracies when mapping thermodynamic

state variables between meshes.

Meshless methods were then introduced as a class of methods for solving PDEs

where the problem is discretized at a number of nodes in the problem domain, without

need for any special connection or relationship between nodes. Although the applic-

ation of meshless methods in engineering is a relatively young field of research com-

pared to the traditional finite element, finite difference and finite volume methods,

the methods have already become established as suitable for a variety of applications
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including fluid dynamics, crack growth and propagation, and heat flow problems.

The radial basis functions (RBFs) that many meshless methods are based upon were

detailed, starting with the definition of an RBF and then giving examples of popular

globally- and compactly- supported RBFs seen in the literature. The classification of

meshless methods was considered, particularly a classification in terms of whether the

methods are based on weak or strong forms, or a hybrid of both.

The chapter concluded by giving the formulation of a novel RBF-FD meshless

method for solving an eigenvalue problem on a periodic domain. The system matrix is

made sparse and well-conditioned in our method by employing a stencil or influence

domain whose radius is tunable, and the method formulated for our sample prob-

lem is capable of good accuracy. The chapter also showed how ideas from Hermite

interpolation may be incorporated into the RBF-FD method to increase the accuracy

available with a fixed size of RBF-FD stencil. Results from our implementations of the

RBF-FD and higher order RBF-FD schemes indicate that these are promising methods

for solving eigenvalue problems on a periodic domain, and confirm that the higher

order scheme delivers enhanced accuracy without increasing the template size.

The material in this chapter forms the background to the novel meshless methods

formulated and reported on in §6 for the specific application of modelling the bandgap

characteristics of two-dimensional photonic crystals.
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Chapter 6

Meshless methods for photonic

crystal modelling

This chapter begins with a brief overview of the field of photonic crystals. The sub-

ject area is first introduced in §6.1, then the mathematical and physical background to

modelling 2D photonic crystals is summarised in §6.2. Recently, other work has shown

that meshless methods can successfully be used in photonic crystal modelling. These

developments are summarised in §6.3. Following this, we draw upon the background

material presented in §5 to introduce a new meshless local weak-strong form method

for photonic crystal modelling in §6.4, which builds upon the existing methods. We

then go on to formulate a new radial basis function finite difference method, based on

that in §5.4 to solve the transverse magnetic mode problem in photonic crystal model-

ling in §6.5. The chapter ends with a summary and conclusions.

The work presented in §6.4.3 was carried out in collaboration with others. Spe-

cifically, the cloud worker infrastructure responsible for enqueueing parameter sets,

invoking the meshless method using those parameters, and recording the results was

provided by Steven Johnston, who also created the diagram that fig. 6.9 is based upon.

However, I developed the meshless method itself.
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6.1 Introduction to photonic crystals

‘Photonic crystal’ is a term that describes a periodic dielectric structure that prevents

the propagation of specific wavelengths of electromagnetic radiation. Considerable

interest in such structures arose after two important publications in 1987 [142, 143],

although Lord Rayleigh had analysed a 1D case in 1887 [144]. The photonic band

gap structure present in photonic crystals is analogous to the electron energy bands

and band gaps in semiconductor physics. In nature, photonic band gap structures

create splendid optical effects, including the iridescent blue in the wings of the Morpho

butterfly.

Typical photonic crystals fabricated in laboratories may consist of silicon pillars

arranged in a lattice, the pillars being surrounded by air. Photonic crystals are an inter-

esting area of research because of their wide field of potential applications in filtering,

focusing and dispersing light. Suitably designed photonic crystals could profitably be

applied, for example, to lasers, telecommunications, other light sources, and to optical

electronics or computing.

Because fabricating photonic crystals can be a tedious and expensive process [145],

it is desirable to be able to accurately model the crystals and check that they behave

as intended, before committing to manufacture them. With an increasingly complex

array of shapes and lattices being considered for photonic crystals (e.g. [146]), it is ap-

propriate to investigate novel methods of modelling their behaviour. It was shown

by Hart et al. [147] that meshless methods are a viable means of modelling photonic

crystals.

6.2 Mathematical and physical background

In this section, we detail specific aspects of photonic crystals and how they are mod-

elled. We begin by recounting some ideas from crystallography in §6.2.1 before con-

sidering the Maxwell equations in §6.2.2, and examining harmonic solutions to the

equations to the equations in §6.2.3. With those solutions in hand, we then illustrate
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how a photonic band gap may be given rise to in §6.2.4, and briefly note the conven-

tion for expressing the size of such band gaps in §6.2.5. Following this, in §6.2.6, we

move from the simplest, 1D example system to a 2D photonic crystal of the kind that

we shall model in later sections.

6.2.1 Prerequisite crystallography

Since photonic crystals are part of the broader class of crystals, many ideas from crys-

tallography and solid state physics are called into requisition in the description and

analysis of photonic crystals. Here we outline some of the most important of these

concepts. Considerably more detailed background is given in various textbooks, in-

cluding, e.g. [148, 149].

Lattices The ‘essence of crystallinity’ is said to be the regular geometrical arrange-

ment of atoms in space [148]. These arrangements of atoms are described by reference

to perfect, infinite arrays of points in space, which are termed lattices. In a lattice, the

points are so arranged that every point has identical surroundings. Positions on a lat-

tice relative to an arbitrarily chosen origin are traditionally expressed as combinations

of lattice vectors. For example, on a 2D lattice with basis vectors a and b, a position vec-

tor is R = n1a + n2b where n1 and n2 are arbitrary integers. In the case of the photonic

crystals discussed in this chapter, their discrete translational symmetry is such that the

structure repeats itself on each lattice point, so that for some physical entity φ(r) we

have φ(r) = φ(r + R).

Lattice cells For any lattice, each point has some given volume associated with it,

which is the primitive cell. The primitive cell may be formed either with a vertex at

the lattice point, or with the lattice point at its centre. In the latter case it is known as

the Wigner-Seitz cell. For the two dimensional case, the Wigner-Seitz cell is the area

enclosed by the perpendicular bisectors of the lines linking a given lattice point to its

nearest neighbours.
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The reciprocal lattice Considering a 2D case, a lattice with basis vectors a and b can

be seen as an assembly of identical lines; these lines may be chosen in one of an infinity

of ways. To describe the choice of lines in use, Miller indices are employed. Within the

unit cell, the intercepts x and y of the chosen lines with the coordinate axes are noted.

These are then expressed in terms of the basis vectors, as x/‖a‖ and y/‖b‖. Taking

the inverse and expressing the resulting ratios as the lowest pair of integers hk gives

the 2D Miller index for the line. If we characterise the family of lines (hk) by the unit

normal nhk and the inter-line spacing dhk, we can define a reciprocal lattice in terms of

the vectors Ghk = 2πnhk/dhk. If we take Ghk = hA + kB then the directions of A and

B are the directions perpendicular to b and a respectively. The magnitudes of A and B

are the reciprocals of the spacing between lines in the real lattice in the directions of B

and A respectively.

The Brillouin zones The Wigner-Seitz cell of the reciprocal lattice is known as the

first Brillouin zone. This zone has a physical significance because it is the part of the

reciprocal lattice space in which all the wavevectors k are unique. Where the first

Brillouin zone features rotational symmetry, a smaller section, known as the irreducible

Brillouin zone, can be seen to contain all unique k vectors instead. For a square lattice,

the reciprocal lattice is square also. We illustrate the reciprocal lattice, the first Brillouin

zone, and the irreducible Brillouin zone for this case in fig. 6.1. We label the critical

points Γ, X and M, which are located around the perimeter of the irreducible Brillouin

zone, at (0, 0), (π/a, 0), and (π/a, π/a) respectively, where a is the lattice constant.

The Bloch-Floquet theorem Bloch showed [150] that the electrons in a conductor are

scattered only by impurities, not by the ions which are aligned periodically on a lattice.

Considering Schrödinger’s equation and a wavefunction Ψk(r) which solves the equa-

tion, Bloch extended a theorem first advanced by Floquet [151] to show that Ψk(r) may

be written as the product of a plane wave exp(ik · r) and a spatially periodic envelope

function Uk(r). We will see in §6.2.2 that the solutions to the Maxwell equations may
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Figure 6.1: The reciprocal lattice of a square real-space lattice, illustrating the construc-

tion of the first Brillouin zone (green) around the black-shaded reciprocal

lattice point, and the irreducible Brillouin zone (purple).

be written in terms of Bloch states, and due to the lattice periodicity, we must have

Uk(r) = Uk(r + R) (6.1)

for a lattice vector R. Moreover, different values of k do not necessarily give different

modes. For a system periodic in y only, the Bloch states with wavenumber ky and ky +

2mπ/a are identical from a physical point of view, and thus ω(ky) = ω(ky + 2mπ/a).

The only set of non-redundant values of the wavenumber that we need to consider are

those in the first Brillouin zone; in this case, −π/a < ky ≤ π/a.
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6.2.2 The Maxwell equations

To model the effect of photonic crystals on light, it is necessary to solve Maxwell’s

equations. Expressed in their differential, macroscopic form, in SI units, they are:

∇ · B = 0,

∇ · D = ρ,

∇× E = −∂B

∂t
,

∇× H = J +
∂D

∂t
, (6.2)

where E and H are the macroscopic electric and magnetic fields, and D and B are the

displacement and magnetic induction fields respectively. The free charge density is ρ

and the current density is J. Here we are interested in analysing the propagation of

light through the crystal, so we can set ρ = 0 and J = 0, which precludes any light

sources (or electric currents) within the material.

In line with standard practice [152, 153], we further assume that the field strengths

present are sufficiently low that we remain within the linear regime. The linear regime

is that in which the components of the displacement field D are related linearly to

the components of the electric field vector E. At sufficiently high field strengths, in

so-called nonlinear media, this assumption would be invalid and various nonlinear

effects, including frequency doubling (second harmonic generation) may be observed

in experiments, as described in, for example [154, §13.4] or [155, §26].

We also take the dielectric constant to be isotropic, and perfectly periodic with re-

spect to the spatial coordinates. Thus, we can write the following constitutive equa-

tions:

D(r) = ε0ε(r)E(r),

B(r) = µ0µ(r)H(r), (6.3)

where we introduced the vacuum and relative permittivities ε0 and ε(r, ω), and the va-

cuum and relative magnetic permeabilities µ0 and µ(r) respectively. The angular fre-

quency of the light is ω. We ignore any material dispersion, setting ε(r) = ε(r, ω)|ω=ω0
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for the frequency of interest, ω0. In the materials we are interested in, the magnetic

permittivity is very close to unity, so we also take µ(r) = 1. A final assumption is that

the material is lossless, so that ε(r) is always real and positive.

Under these assumptions, the Maxwell equations (6.2) become the following:

∇ · H(r, t) = 0,

∇ · [ε(r)E(r, t)] = 0,

∇× E(r, t) = −µ0
∂H(r, t)

∂t
,

∇× H(r, t) = ε0ε(r)
∂E(r, t)

∂t
. (6.4)

6.2.3 Harmonic solutions and the eigenvalue equation

We seek harmonic solutions to (6.4) of the form

E(r, t) = E(r)e−iωt,

H(r, t) = H(r)e−iωt, (6.5)

where i =
√
−1 and we have written the solutions as Bloch states, the products of

plane waves and the spatial patterns or mode profiles E(r) and H(r). Fourier analysis

shows us that we may build arbitrary solutions by combining harmonic solutions.

Substituting the trial solutions (6.5) into (6.4) gives the relations,

∇× E(r)− iωµ0H(r) = 0,

∇× H(r) + iωε0ε(r)E(r) = 0. (6.6)

Eliminating E and noting that c = 1/
√

ε0µ0 yields the following eigenvalue equation

entirely in terms of H:

∇×
(

1
ε(r)
∇× H(r)

)
=

(ω

c

)2
H(r), (6.7)

whose solutions must additionally conform to the divergence criteria in the first two

lines of (6.4). There is a physical interpretation of these conditions, which is that

the electromagnetic waves are transverse: for a wave H(r) = a exp(ik · r), with a
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wavevector k, the divergence criteria would require that a · k = 0. This is equivalent

to saying that the medium contains no point sources or sinks of the displacement and

magnetic fields.

The equation above is an eigenvalue equation, and may be re-written in terms of

an operator Θ to emphasise its nature:

ΘH(r) =
(ω

c

)2
H(r), (6.8)

where we have defined

Θ = ∇×
(

1
ε(r)
∇×

)
. (6.9)

The operator Θ introduced in (6.9) is a linear, Hermitian operator: it has real ei-

genvalues and any linear combination of solutions is itself a valid solution. The eigen-

values (ω/c)2 of (6.8) are proportional to the squares of the frequencies of the modes,

whose spatial field patterns are given by the eigenvectors H(r).

6.2.4 Photonic band gaps in one-dimensional photonic crystals

Lord Rayleigh was probably first to show that a one-dimensional photonic crystal con-

sisting of a stack of layers of alternating dielectric constants may have a band gap;

that is, a range of wavelengths across which its reflectivity is large [144]. This mul-

tilayer configuration is homogeneous in two axes and periodic along the other; it is the

simplest photonic crystal. Rayleigh considered light travelling along the z-direction,

normal to the layers. He used the technique of considering the sums of multiple re-

flections and refractions which occur at the interfaces between the materials as a plane

wave travels through the structure to analyse the system [156]. The one-dimensional

photonic crystal is illustrated in fig. 6.2. The origin of the photonic band gap is intim-

ately related to the periodicity of the structure, which can be shown not to support any

extended electromagnetic modes (i.e. modes with a real wave vector) with frequencies

inside a certain range. This range of frequencies is the band gap.

To understand the origin of the band gap, we follow the approach set out in [152]

and consider waves propagating in the z-direction so that the only important compon-

108



x
y

z

Figure 6.2: The one-dimensional photonic crystal. Rayleigh treated light travelling in

the z-direction, normal to the layers. The two colours represent materials

with different dielectrics. After fig. 1 in [152, §4].

ent of the wavenumber is k = kz. In a bulk medium, which is not periodic, we may

assign an arbitrary periodicity of a. The dispersion relation for such a material is given

by the light line

ω(k) =
ck√

ε
, (6.10)

because the speed of light is reduced by the index of refraction n =
√

ε. We specified

periodic boundary conditions, and require that k repeat itself outside of the first Bril-

louin zone, so that the light line must fold back into the Brillouin zone when it reaches

an edge. There is no photonic band gap in this material, as shown in fig. 6.3 in dashed

lines. If, however, we consider a material consisting of periodically stacked layers with

alternating dielectric constants, the dispersion relation changes somewhat at the edge

of the Brillouin zone; a gap emerges between the upper and lower branches of the lines,

as shown with solid lines in fig. 6.3. This is the photonic band gap, which contains no

modes with real wave vectors.

The first band gap arises for k = π/a, which is a mode with wavelength 2a, where

a is the periodicity of the crystal. This mode can be spatially localised in the crystal in

either of two configurations: the nodes of the standing wave can be centred in the crys-

tal layers with high dielectric, or the layers with low dielectric. From the variational

theorem in electromagnetics, we know that modes with lower frequencies have more

energy in regions of high dielectric, whilst the opposite holds for higher frequency

modes. Thus, at the edge of the Brillouin zone, the mode which has most energy in
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Figure 6.3: Schematic dispersion relation for a one-dimensional photonic crystal for

light travelling normal to the layers. Dashed lines represent the case for a

homogeneous material; solid lines for a periodically layered material with

layer thickness 0.5a. The vertical lines illustrate the boundary of the first

Brillouin zone. Adapted from fig. 2 in [152, §4].

the high-dielectric region lies just below the gap, which gives it a lower frequency. The

mode with most energy in the low-dielectric region has a higher frequency and sits just

above the gap.

It is noted, however, that modes with complex wave vectors k+ iκ may exist within

the band gap. Such evanescent states decay exponentially into the crystal, on a length

scale of 1/κ, as shown:

H(r) = eikzu(z)e−κz. (6.11)

In a perfect, infinite photonic crystal, these modes cannot be excited since they are di-

vergent as z→ ±∞ (dependent upon the sign of κ), and would require infinite energy.

In real crystals, imperfections may halt the exponential growth and these modes may

be energised.
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Figure 6.4: The two-dimensional photonic crystal. We treat light travelling in the xy

plane. The left hand inset shows a view of the lattice from above, defining the

radius r of the rods, the lattice constant a, and the unit cell (in red). After fig.

1 in [152, §5], with thanks to Richard Boardman for assistance in preparing

this figure.

6.2.5 Scale invariance in the Maxwell equations

Because the results of the Maxwell equations are scalable, attempts to directly measure

the frequency range of the band gap are meaningless for any comparison purposes,

since a photonic crystal with a band gap whose width is ∆ω may be expanded in its

physical dimensions by some factor x, after which its band gap width will become

∆ω/x. A more useful and conventional approach is to express the band gap in terms

of the gap-midgap ratio, ∆ω/ωm where ωm is the frequency at the middle of the band

gap.

6.2.6 Two-dimensional photonic crystals

A two-dimensional photonic crystal is homogeneous along one axis, which we take

as the z axis, and periodic along the other two, x and y. One such crystal structure,

a square lattice of cylindrical dielectric columns of radius r and lattice constant a, is

illustrated in fig. 6.4.

Because of the periodicity, for a 2D photonic crystal, the dielectric function obeys

the relationship ε(r) = ε(r + R) for all lattice vectors R.

If we restrict our analysis to modes that have kz = 0, i.e., those that propagate
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strictly in the xy plane, there is a mirror symmetry in the z direction. This means that

we may define the TM (transverse magnetic) polarisation to be the one in which the

magnetic field is confined to the xy plane, having no component in the z direction, and

the electric field has no component along an axis other than z; and the TE (transverse

electric) mode is the one in which the electric field is confined to the xy plane, with

no z component, and the magnetic field has no components other than along the z

direction. The symmetry allows the splitting of (6.8) into two equations, one for each

polarisation. The TE and TM modes can have markedly different band structures, in

some cases there are band gaps in for one polarisation but not the other. For a band

gap to be considered complete, it must be the coincidence of gaps in the TE and TM

modes.

A band diagram is shown in fig. 6.5 for a 2D photonic crystal consisting of a trian-

gular lattice of holes (ε = 1) in a substrate (ε = 12). It features a complete band gap,

shown in yellow.

6.3 Meshless methods for photonic crystal modelling: back-

ground

In this section we begin by reviewing some existing meshless methods that have been

applied to photonic crystal modelling and bandgap calculations, these being the mesh-

less local strong- and weak-form methods developed by Hart et al., for producing band

diagrams for 2D photonic crystals [147]. This section is a prelude to §6.4 and §6.5,

in which we will develop meshless methods for calculating the band diagrams of

2D photonic crystals by a meshless local weak-strong form method and and RBF-FD

method respectively.

The eigenvalue problem (6.8) can be split up into two equations, one for each pos-

sible polarisation state, as discussed in §6.2.6. The transverse magnetic (TM) and trans-
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Figure 6.5: Band diagram of 2D photonic crystal with a triangular lattice of holes (ε =

1) in a substrate (ε = 12). The structure has a complete band gap, shown

in yellow (calculations performed using the freely available MPB software

package [141]).
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verse electric (TE) mode equations are:

−1
ε

∆ϕ = λϕ, (6.12)

−∇ · 1
ε
∇ϕ = λϕ, (6.13)

respectively, where, in two dimensions,

∆ =




∂2

∂x2

∂2

∂y2


 .

The photonic crystal is modelled as being of infinite extent with periodic boundary

conditions on the unit cell, under which conditions the wave function can be expressed

as:

ϕ = exp(ik · x)u(x), (6.14)

with wave vector k = (k1, k2) and x = (x, y).

6.3.1 The plane-wave expansion method as a reference for comparison

In order to compute a suitable comparison result, to assess the accuracy of the mesh-

less methods developed here, we followed Hart et al. [147] in utilising an established,

optimised, plane-wave expansion method (PWEM), implemented as the freely avail-

able MIT Photonic Bands (MPB) software [141], which computes the definite-frequency

eigenstates of Maxwell’s equations in arbitrary periodic dielectric structures, using

preconditioned block-iterative eigensolvers in a planewave basis. The algorithm was

demonstrated by its authors to have convergence of order O(h2) for a mesh spacing of

h [141], and although the accuracy of the results inevitably varies with the number of

sampling values employed, MPB was found to have a relative error of the lowest eigen-

value at the M-point of better than 10−4 for approximately 105 sampling points [157,

§16.3]. The MPB program has been used to calculate some of the band diagrams found

in [152].

In the present work, the plane wave expansion method was run with a resolution of

approximately 4× 106 sampling points, to generate the reference results for a sample
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geometry of photonic crystal, against which the meshless methods will be compared.

This sample geometry consists of a square unit cell, of side length a = 1, containing a

round rod of radius r = 0.2a, with a dielectric εrod = 8.9, in air (εair = 1). Where run

times for the PWEM are given in later sections of this work, it should be noted that

although MPB includes support for parallelisation via the MPI standard and libraries,

we used a single-threaded MPB.

6.3.2 Meshless local strong form method

For the TM mode, Hart et al. solved (6.12) by a meshless local-strong form method

(MLSFM) (see §5.3.4) employing compactly supported radial basis functions [147].

They used selected compactly supported RBFs from Wendland [119] and Wu [118],

specifically, the C2 and C4 functions of each of those families.

The average relative error for a band diagram for a set of rods of radius r = 0.2a in

air was given as 1%, and the results of the method were shown to be in good agreement

with the results from the PWEM. The MLSFM was used with uniformly spaced nodes

and was found to have a convergence rate of O(h2) where h is the distance between

nearest-neighbour nodes [147].

6.3.3 Meshless local weak form method

Because of the differential operator acting upon 1/ε(x) in (6.13), a strong-form col-

location method such as the one formulated for the TM mode is unsuitable here. At

the boundary of the rod and surround, there is a discontinuity in ε(x) which would

cause the derivative to diverge. For this reason, Hart et al. developed a meshless local

weak form method (MLWFM) (see §5.3.4) using Galerkin’s method with CSRBFs [147].

Galerkin’s method is naturally suited to handling discontinuous media, and uses an in-

tegral to calculate a discretized approximation to the true solution of the problem. Hart

et al. developed an MLWFM for both the TM and TE polarisations, but noted that the

increased computation burden of the MLWFM means that the MLSFM is preferred for

the TM polarisation.

115



The average relative error for a band diagram for a set of rods of radius r = 0.2a

in air was stated as 1%, and the results of the method were showed to be in good

agreement with the results from the established PWEM. The method was implemented

with nodes uniformly spaced, and found to have a convergence rate of O(h4) where h

is the spacing between nearest-neighbour nodes [147].

6.3.4 Other meshless methods for photonic crystal modelling

Additional meshless methods for photonic crystal band structure calculations have

been proposed. The moving least squares (MLS) method was proposed by Jun, Cho

and Im [158]. They presented results initially for the electromagnetic Kronig-Penney

problem, for which analytical solutions are possible. The agreement between the ana-

lytic solutions and the MLS results was very good. They went on to furnish results for

the TE and TM modes in a 2D photonic crystal, compared against results from a plane

wave expansion method (PWEM). They observed that the agreement is again good,

but that the MLS converges more rapidly than the PWEM, making the method very

attractive.

The meshless local Petrov-Galerkin (MLPG) method was employed by Nicomedes

et al. in 2012 [114]. Their approach is based on a form of the MLPG known as the local

boundary integral equation method (LBIE), with the periodicity enforced through the

shape functions rather than imposed upon the unit cell. They achieved results for the

TM polarisation which are in good agreement with other numerical studies, but did

not treat the TE polarisation.

Additionally, recent work has shown that meshless methods may be applied to

solve vectorial mode fields in microstructured optical waveguides [116, 117]. In this

work, a finite cloud method was applied to solve for both “transverse components of

the magnetic field as well as the effective index of refraction for the waveguides.” The

finite cloud method was first presented in 2001 [115] as a truly meshless technique for

solving partial differential equations.
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6.4 A meshless local weak-strong form method for 2D bandgap

calculations

Building on the work of Hart et al. [147], summarised in §6.3, we propose a new mesh-

less method to solve the Maxwell equations with periodic boundary conditions for

photonic crystal modelling. The new method is a hybrid meshless local weak-strong

form method (MLWSFM) using compactly supported radial basis functions, and we

formulate the method for both TE and TM polarisations. It retains the generic advant-

ages of meshless methods whilst improving on the MLWFM by reducing the amount

of computationally-expensive numerical integration required. We applied a cloud-

based architecture for performing distributed parameter sweeps during the develop-

ment and verification of this algorithm, which conferred a number of advantages as

discussed in the general case in §2.4. We discuss the application of cloud computing to

the development of this algorithm in §6.4.3.

6.4.1 Meshless method formulation

The MLWSFM was formulated with two subdomains, as illustrated in fig. 6.6(b). The

figure shows the subdomains, namely Ωw and Ωs. For nodes i with xi ∈ Ωw, the

weak form method is used; where xi ∈ Ωs, the strong form method is used. Note

that, should any node fall upon the border, we define it to be within Ωs. Moreover,

the overall domain of the system Ω = Ωs ∪ Ωw is made periodic by imposing the

conditions u(x, 0) = u(x, b) and u(0, y) = u(a, y), where a and b are the lengths of the

edges of the domain. In the next paragraphs, we formulate meshless local strong- and

weak-form methods for the TE and TM modes, which will be the foundations of the

MLWSFM.

TM mode, strong form We begin by formulating a local strong form method for TM

mode. Substituting (6.14) into (6.12), we have:

− (∇+ ik) · (∇+ ik)u = ε(x)λu, (6.15)
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(a) Part of the photonic crystal

modelled

0

b

a

(0, y)

Ωs

(a, y)δr

(x, b)

(x, 0)
0

Ωw

(b) The subdomains used

Figure 6.6: The physical system modelled and the subdomains used. (a) is a section

through the square array of dielectric rods (with radius r = 0.2a). The dashed

box indicates the computational unit cell. (b) shows the subdomains within

the unit cell (the unit cell is represented by the dashed line in (a)). Ωw is of

radius r + δ, and is centred on the rod (shown with a dotted line). Ωs is the

subdomain outside of Ωw.

118



where λ is the spectral parameter and ε(x) is the dielectric constant (see §6.2.2). Sub-

stituting

u(x) =
n

∑
j=1

γjφj(x), (6.16)

where φ(‖ · ‖) is a CSRBF, φj(x) = φ(‖x− xj‖) and n = ns + nw is the total number of

nodes of the strong and weak form domains, with ns the number of nodes in Ωs and

nw the number of nodes in Ωw, we can formulate the following matrices A and B, of

order ns × n, which we will later assemble into a generalised eigenvalue problem:

Aij = −(∇+ ik) · (∇+ ik)φj(xi), (6.17)

Bij = ε(x)φj(xi), (6.18)

for j = 1, 2, . . . , n and nodes i with xi ∈ Ωs.

TM mode, weak form We formulate a local weak form method for TM by applying

Galerkin’s method to (6.15), giving the following integral:
∫
(∇+ ik)u · (∇+ ik)vdx = λ

∫
ε(x)uvdx. (6.19)

Representing

u(x) =
n

∑
j=1

γjφj(x), (6.20)

and

v(x) = φi(x), (6.21)

we can formulate matrices C and D, of order nw× n, which will also be assembled into

the generalised eigenvalue problem. They are given by:

Cij =
∫
(∇+ ik)φj(xi) · (∇+ ik)φi(xj)dx, (6.22)

Dij =
∫

ε(x)φj(xi) · φi(xj)dx. (6.23)

for j = 1, 2, . . . , n, and nodes i with xi ∈ Ωw.

The strong form matrices A and B can be transformed into global matrices Ag and

Bg of order n× n by adding rows of zeros to the local matrices for the kth row, i.e. for
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nodes xk ∈ Ωw. Likewise, the weak form matrices C and D may be transformed into

global matrices Cg and Dg by adding rows of zeros to the local matrices for the kth row,

i.e. for nodes xk ∈ Ωs.

TM mode, weak-strong form hybrid Stacking the nodal matrices for the strong and

weak forms together row-by-row (for i = 1, 2, . . . , n) to form the global matrices, we

obtain the generalised eigenvalue problem:

E(k)α = λFα (6.24)

where α are the eigenvectors of order n corresponding to the nodal field values of the

modes of propagation that the photonic crystal allows, λ are eigenvalues correspond-

ing to the frequencies of the mode, and E(k) and F are matrices of order n× n, defined

for i = 1, 2, . . . , n and j = 1, 2, . . . , n, given by:

Eij =





Aij if xi ∈ Ωs, j = 1, 2, . . . , n,

Cij if xi ∈ Ωw, j = 1, 2, . . . , n,
(6.25)

and

Fij =





Bij if xi ∈ Ωs, j = 1, 2, . . . , n,

Dij if xi ∈ Ωw, j = 1, 2, . . . , n.
(6.26)

The eigenvalues of (6.24) then give the frequencies of the allowed modes at each quasi-

momentum vector k.

TE mode, strong form We now formulate the local strong form method for the TE po-

larisation, which is valid only for regions of constant ε(x). Substituting (6.14) into (6.13)

gives:

− (∇+ ik) · 1
ε(x)

· (∇+ ik)u = λu. (6.27)

The left-hand side can be expanded to:

−∇ ·
(

1
ε(x)
∇u

)
− i∇ ·

(
1

ε(x)
ku

)
− ik ·

(
1

ε(x)
∇u

)
+ k ·

(
1

ε(x)
ku

)
= λu. (6.28)
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In general the dielectric constant ε(x) is discontinuous in photonic crystals, as they

have different dielectric constants either side of the interface between the materials.

The differential operator acting on 1/ε(x) would lead to a divergent result. In the

MLWSFM, we apply this formulation only in regions known to be of constant ε(x).

Substituting

u(x) =
n

∑
j=1

γjφj(x), (6.29)

where we write φj(x) = φ(‖x− xj‖) and n = ns + nw is the total number of nodes of

the strong and weak forms (with ns the number of nodes in Ωs and nw the number of

nodes in Ωw) into (6.28) we can formulate the following G and H matrices, of order

ns × n, which we will later assemble into a generalised eigenvalue problem:

Gij = −(∇+ ik) · 1
ε(x)

· (∇+ ik)φj(xi), (6.30)

Hij = φj(xi). (6.31)

for j = 1, 2, . . . , n; and nodes with xi ∈ Ωs.

TE mode, weak form The local weak form method for the TE polarisation is also

formulated beginning with (6.27). The weak form method will be suitable for regions

of continuous or discontinuous ε(x) and in the MLWSFM we apply it in the vicinity of

the discontinuity. Applying Galerkin’s method to this equation, we get the following

integral for TE: ∫ 1
ε(x)

(∇+ ik)u · (∇+ ik)vdx = λ
∫

uvdx. (6.32)

Substituting

u(x) =
n

∑
j=1

γjφj(x), (6.33)

and

v(x) = φi(x) (6.34)
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into (6.32), we may formulate the following L and M matrices, of order nw × n, which

we will later assemble into a generalised eigenvalue problem:

Lij =
∫ 1

ε(x)
(∇+ ik)φi(xj) · (∇+ ik)φj(xi)dx, (6.35)

Mij =
∫

φi(xj)φj(xi)dx. (6.36)

for i = 1, 2, . . . , n; and nodes with xi ∈ Ωw.

The strong form matrices G and H can be transformed into global matrices Gg and

Hg of order n× n by adding rows of zeros to the local matrices for the kth row, i.e. for

nodes xk ∈ Ωw. Likewise, the weak form matrices L and M may be transformed into

global matrices Lg and Mg by adding rows of zeros to the local matrices for the kth row,

i.e. for nodes xk ∈ Ωs.

TE mode, weak-strong form hybrid Stacking the nodal matrices for the strong and

weak forms together row-by-row (for i = 1, 2, . . . , n) to form the global matrices, we

obtain the generalised eigenvalue problem:

P(k)α = λQα (6.37)

where α are the eigenvectors of order n, λ are eigenvalues, interpreted as in § 6.4.1, and

P(k) and Q are matrices of order n× n, defined for i = 1, 2, . . . , n and j = 1, 2, . . . , n,

given by:

Pij =





Gij if xi ∈ Ωs, j = 1, 2, . . . , n,

Lij if xi ∈ Ωw, j = 1, 2, . . . , n,
(6.38)

and

Qij =





Hij if xi ∈ Ωs, j = 1, 2, . . . , n,

Mij if xi ∈ Ωw, j = 1, 2, . . . , n.
(6.39)

The eigenvalues of (6.37) then give the frequencies of the allowed modes at each quasi-

momentum vector k.
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Gaussian quadrature

In the weak (and, hence, weak-strong) formulations, integrals (such as (6.19)) arise

following the application of Galerkin’s method. In order to solve these numerically,

Gaussian quadrature was employed. In two dimensions, this provides a method to

numerically evaluate the integral of some function f (x, y) over a quadrilateral where

a ≤ x ≤ b and c ≤ y ≤ d. The variables are first changed so that the integration in the

new variables runs from −1 to +1:
∫ b

a

∫ d

c
f (x, y)dxdy =

∫ 1

−1

∫ 1

−1
f (x (ζ) , y (η)) |J|dζdη, (6.40)

where |J| is the Jacobian determinant. Taking the original quadrilateral to be a square

with opposite corners given by (a, c) and (b, d), we have:

x =

(
b− a

2

)
ζ +

(
b + a

2

)
, (6.41)

y =

(
d− c

2

)
η +

(
d + c

2

)
, (6.42)

and substituting these into (6.40) we have
∫ b

a

∫ d

c
f (x, y)dxdy =

(
b− a

2

)(
d− c

2

) ∫ 1

−1

∫ 1

−1
f
(

b− a
2

ζ +
b + a

2
,

d− c
2

η +
d + c

2

)
dζdη. (6.43)

Gaussian integration then proceeds by approximating the integral as a sum of

weighted terms as follows:
(

b− a
2

)(
d− c

2

) ∫ 1

−1

∫ 1

−1
f
(

b− a
2

ζ +
b + a

2
,

d− c
2

η +
d + c

2

)
dζdη ≈

nx

∑
i=1

ny

∑
j=1

WixWjy f
(

b− a
2

ζi +
b + a

2
,

d− c
2

ηj +
d + c

2

)
, (6.44)

where, for the four-point rule that we applied in this work, nx = ny = 2, Wix = Wjy =

1, ζ1 = η1 = −
√

3/3 and ζ2 = η2 =
√

3/3 [63, §25]. The four Gaussian evaluation

points are (ζi, ηj) for i = 1, 2 and j = 1, 2. Applying this quadrature rule yields an

integral with a remainder of O(h4), where in this case, 2h is the side-length of the

square domain of integration [63, §25.4.62].
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In implementing the weak form method developed here, the domain of the system

is filled with background cells, each of which contains four evaluation points for the

integral; we ensure that there are between three and nine times as many evaluation

points as nodes in the system, as recommended in [76, p. 157]. Using too few integra-

tion points would decrease the accuracy of the results, which must be balanced against

the computational cost of performing quadrature at many points.

Each background cell is associated with a circular support domain, whose radius is

equal to the shape parameter of the compactly supported RBF in use. For simplicity, we

evaluate the weak form matrices in parts. Taking the example of the weak form matrix

C in (6.22), we can expand its formulation in terms of “sub-matrices” as follows:

Cij = Sij + i
(
Pij −Qij

)
+ k2Tij, with (6.45)

Sij =
∫
∇φi · ∇φj dx, (6.46)

Pij =
∫

kφi · ∇φj dx, (6.47)

Qij =
∫

kφj · ∇φi dx, (6.48)

Tij =
∫

φi · φj dx. (6.49)

To evaluate an element e.g. Tij of the T matrix in (6.49) by Gaussian quadrature, we

must consider contributions involving the nodes xi and xj arising from all the back-

ground cells whose support domains include the nodes in question. We achieve this as

follows:
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Algorithm 1 Calculate Tij via Gaussian quadrature

1: Tij = 0

2: for all background cells p do

3: if node i in support domain of p and node j in support domain of p then

4: set ̺1,...,4 to position vectors of each Gaussian evaluation point in p

5: Tij = Tij + φ(‖xi − ̺1‖) · φ(‖xj − ̺1‖)
+ φ(‖xi − ̺2‖) · φ(‖xj − ̺2‖)
+ φ(‖xi − ̺3‖) · φ(‖xj − ̺3‖)
+ φ(‖xi − ̺4‖) · φ(‖xj − ̺4‖)

6: end if

7: end for

Once all the relevant nodes have been considered and the elements of (6.46-6.49) are

filled, the C matrix may be assembled as per (6.45). Implementing the method in this

manner lends perspicacity to the code, making its working clearer and facilitating more

straightforward debugging, but at a cost of significantly increased memory footprint

due to keeping all the “sub-matrices” in memory until the final matrix is assembled.

6.4.2 An illustrative example

The MLWSFM formulated in §6.4 was implemented with emphasis on convenience

of debugging, rather than on optimal speed of execution. This section details two

example simulation runs explicitly, illustrating how the nodes, background cells, in-

tegration points, etc., come together in the method. We also compare the runtime and

resource utilisation of our implementation with that of the established PWEM code

(specifically, the MPB package, as detailed in §6.3.1), but we note that the PWEM code

has benefited from more time for development and optimisation, and is therefore likely

to be considerably more highly optimised than our MLWSFM code. Moreover, as dis-

cussed further in §6.4.4, our code uses a LAPACK eigensolver based on the QZ al-

gorithm (specifically, for this example, we used the zggev routine from the Sun Per-
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formance Library [159] accelerated LAPACK implementation) that attempts to find all

the eigenvalues for each generalised eigenproblem, rather than a more suitable iterat-

ive eigensolver; the times given include the runtime consumed by this routine.

In this illustrative example, we will furnish absolute runtimes. These were all re-

corded on the same computer, which features an Intel Core i7 CPU model 920 running

at 2.67 GHz, 12 GiB RAM, with an Intel X58/ICH10R chipset.

Simulation parameters We ran the MLWSFM simulation with two sets of paramet-

ers, which are detailed fully in table 6.1. We used the smaller numbers of nodes and

background cells to produce the graphical illustrations in this section; later in the sec-

tion, we present run-time and memory allocation metrics related to both parameter

sets.

We ran the PWEM with two different configurations, as described in table 6.2. The

resolution and mesh size parameters are particular to this implementation, and are

described in the MPB manual [160] as follows:

resolution “Specifies the computational grid resolution, in pixels per lattice unit...

(The grid size is then the product of the lattice size and the resolution, rounded

up to the next positive integer.)”

mesh size “At each grid point, the dielectric constant is averaged over a ‘mesh’ of

points to find an effective dielectric tensor. This mesh is a grid with mesh-size

points on a side.”

Nodes, strong- and weak-form subdomains In fig. 6.7 we illustrate the placement of

the nodes, and the areas in which (in this example) we applied the strong and weak

form methods. This corresponds to illustrating which nodes fall into each of the do-

mains Ωs and Ωw from fig. 6.6(b). We also show the dielectric constant assigned to

each node. No nodes are shown at x = 1 or y = 1, as these are the same nodes found

at x = 0 and y = 0 respectively, due to the periodic boundary conditions.
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description symbol and value

setup 1 setup 2

unit cell edge length a = 1 ←
rod radius r = 0.2a ←

rod dielectric εrod = 8.9 ←
background dielectric εbg = 1.0 ←

weak form parameter (see fig. 6.6) δ = 0.3 ←
unit cell dimensions a = 1 b = 1 ←

CSRBF type Wu’s C4 ←
CSRBF shape parameter c = 0.5 ←

no. of Brillouin zone samples 16 ←
no. of nodes 900 225

no. of background cells 900 289

no. of nodes in Ωw 697 172

no. of nodes in Ωs 203 53

Table 6.1: The parameters chosen for the MLWSFM in “setup 1” and “setup 2” as used

in the illustrative example.

127



description symbol and value

high resolution lower resolution

unit cell edge length a = 1 ←
rod radius r = 0.2a ←

rod dielectric εrod = 8.9 ←
background dielectric εbg = 1.0 ←

resolution 2048 256

mesh size 128 32

Table 6.2: The parameters chosen for the PWEM in the high- and lower-resolution cases,

as used in the illustrative example.
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Figure 6.7: Positions of nodes (arranged on a regular grid for visual clarity) used in the

example MLWSFM run with 225 nodes in total. Dielectric constants are also

shown for the nodes.

128



0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

y

x

Gaussian points (ε = 1)
Gaussian points (ε = 8.9)

Figure 6.8: Position of Gaussian integration points and background cells (with back-

ground cells delineated by thin grey lines).

Gaussian integration points and background cells In fig. 6.8 we illustrate the place-

ment of Gaussian integration points in background cells across the computational do-

main. The Gaussian points are assigned a dielectric constant based on whether they

are located inside or outside of the rod to be simulated.

Resource consumption: runtime and memory requirements We analysed the re-

source consumptions of the MLWSFM in terms of its wall clock time and its memory

requirements, and compared the results to those of the PWEM code. Our MLWSFM

implementation was written in C, and (aside from several automatic variables) stores

its data in memory assigned via calls to the malloc function. We were therefore able to

estimate the total memory consumption of the code by recording the number of bytes

requested in calls to malloc, and the results are summarised in table 6.3. In table 6.3,

the entry “housekeeping data” refers to a number of arrays allocated to store, for ex-

ample, the dielectrics at each node and Gaussian point, records of which of Ωw and Ωs

each node belongs to, etc. The “component” matrices are those from which the eigen-
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description setup 1 setup 2

node coordinates 14.4 kB 3600 B

background cell coordinates 14.4 kB 4624 B

Gaussian point coordinates 57.6 kB 18.5 kB

housekeeping data 16.2 MB 1.1 MB

“component” matrices 252 MB 15.8 MB

eigenproblem matrices 25.9 MB 1.6 MB

Table 6.3: Memory used for various data structures used within our MLWSFM imple-

mentation.

problem may be assembled, as well as those that hold evaluations of the CSRBF and

its derivatives.

For the purposes of this comparison, we take the PWEM results for the given sys-

tem, when the PWEM is run at a high resolution (see table 6.2) as our reference values.

We define the error of a method to be the mean of the relative errors at the lowest four

eigenvalues calculated at each of 16 points around the perimeter of the irreducible Bril-

louin zone.

In table 6.4, we compare the memory use, runtime and mean error of the MLWSFM

for each of our two example configurations, and of the PWEM running at two resol-

utions. Here we measure not the sizes of the various data structures stored by each

algorithm in memory, but rather the maximum resident set size of the process during

its lifetime, since this may be straightforwardly measured and compared for both the

PWEM and the MLWSFM. Note that these memory consumption figures for the ML-

WSFM somewhat exceed the sums of those given in table 6.3 because the maximum

resident set size is the maximum number of kilobytes of physical memory that the

process used (including its data structures, code, and shared libraries). We note that if

some of a process’s memory is swapped to disk, the measurement of the maximum res-

ident set size may be unrepresentative of the maximum memory used by the process,
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algorithm/setup run time error memory used

MLWSFM, setup 1 456 s 0.01 291 MiB

MLWSFM, setup 2 9 s 0.02 27 MiB

PWEM, high resolution 31 392 s 0 7.3 GiB

PWEM, lower resolution 57 s 0.0002 40 MiB

Table 6.4: Comparison of the resources consumed by the MLWSFM and PWEM codes.

Note the zero error for “PWEM, high resolution” is by definition, because we

used these results as our reference data; it is not a claim that those results are

exact.

so we verified in each case that no swapping occurred.

6.4.3 MLWSFM in the cloud

We applied Microsoft Windows Azure to the development and verification of this

method, although the principles that we demonstrate are applicable across other cloud

providers. Workers are the building blocks of an Azure-based solution; each consumes

messages from a queue, completes the work described in the message, and outputs res-

ults to storage or to a different queue, as shown in Figure 6.9. Windows Azure workers

provide a Windows operating system and basic libraries such as the .NET runtime to

run user applications. The process of provisioning an Azure worker involves building

a virtual machine, allocating hardware, booting the operating system and starting the

user-defined application code; this is managed by the Azure fabric. In our experience

it takes approximately 15-30 minutes to provision an Azure worker. At times when

new revisions of the algorithm were ready for testing and characterisation it was not

necessary to re-provision the worker. Instead we could halt the code, load the new

revision, and start it executing, which typically took under five minutes. Upgrading

workers in this manner is also managed by the Azure fabric.

Azure also provides data storage in the form of blob storage. This is highly scalable

and designed to be robust. It supports key-based access, so that it is easy to provide
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computation

storage

Azure worker

input queue

...

output queue

...

blob SQL table

Figure 6.9: Cloud worker architecture pattern: a worker consumes jobs from a queue

and writes intermediate output and final results to blob, SQL or table storage,

allowing dynamic numbers of workers to process messages. Messages are

also written to the output queue if required, facilitating further processing

by other workers. Diagram based upon [35, Fig. 2].

multiple users with access to intermediate results stored here during the verification

and tuning process, or to final results once the algorithm is known to be working cor-

rectly. In cases where the development of the algorithm, or the provision of input

data sets, or analysis of output data, is a highly collaborative activity requiring input

from teams around the world, this is a clear advantage for cloud-based technologies.

Their high bandwidth and availability obviates the need to copy large amounts of data

between institutions whilst providing large amounts of compute capability near to the

data.

Our cloud-based architecture was utilised in the development cycle whenever we

wanted to check that the current revision of the algorithm could produce accurate res-

ults, or assess the effect of various parameters on the accuracy and runtime of the

algorithm. In order to achieve this, we ran a parameter sweep with Azure.
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We set up a scalable cloud-based architecture, in which we placed each combina-

tion of parameters of interest in a message which was submitted to the input job queue.

We provisioned workers which take messages off the queue and run the algorithm

with the specified parameters, storing the output (the results from the algorithm, ac-

companied by logging and performance data) in blob storage. The software running

on the workers consisted of the Windows Server 2008 R2 operating environment that

Azure provides, with a custom worker process to access the job queue and call the al-

gorithm via a command-line interface, capturing its output and writing that to blob

storage. The algorithm itself was a Windows executable with supporting libraries

such as a vendor-optimised LAPACK implementation. This modularity of the worker

design facilitated easy updates of the algorithm when these were required. Moreover,

treating each worker as an independent computational resource in this way reduces

the requirement for inter-worker communication, thus helping to avoid some of the

communications latencies encountered in architectures involving significant message

passing between nodes [161].

The architecture pattern we used is illustrated in Figure 6.9. As shown, all the

Azure workers have access to read job messages from the input queue and can write

output to blob storage and, if required, an output queue to facilitate further processing

by additional workers. The workers also have access to SQL database storage and

could use this for logging success and failure messages as well as performance data.

Our workers for all but the very highest resolution simulations were “small” instances,

providing a 1.6 GHz CPU and 1.75 GB RAM (our highest resolution simulations re-

quired more RAM; to avoid excessive paging we used larger instances with 3.5 GB

RAM).

In this work, we applied four workers initially, and at times supplemented those

with 20 additional workers, on a separate Windows Azure account. With appropriate

permission, the data in cloud storage is globally accessible by any Azure worker. In this

way, it would have been possible for collaborators to provide resources financed from

different budgets or institutions, all of which could independently consume messages
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from the same queue and write results to blob storage. The cloud based architecture

provides the ability to analyse the effects of changes to the algorithm rapidly, removing

the need to either wait for many hours in a cluster’s job queue, or to have expensive

hardware sitting idle whilst development takes place. Therefore it has the potential to

significantly reduce the development cycle time. In this work, we were able to run 24

instances of the MLWSFM simultaneously, achieving significant wall-clock time sav-

ings compared to the alternatives. With more workers, the process could have been

further accelerated, so that in this architecture, the overall wall-clock time for a para-

meter sweep is bounded below by the sum of times taken to run the longest individual

simulation and to provision the worker on which it runs.

Cloud computing applied to meshless algorithm development and verification

Cloud computing assisted in several ways with the development and verification of

this algorithm:

• It was necessary to validate the algorithm against results calculated by the PWEM

code [141]. In this respect, Azure provided the ability to rent a large, capable

machine with a lot of RAM to run a single instance of the new method, so that

the simulation could be run at a high resolution to check that the results match

expectations within reasonable tolerance. Initial results were available very soon

after they were calculated, so that we could inspect them and verify that the

process was proceeding as intended.

• To assess the impact of each of the tunable parameters of the algorithm – such as

the resolution, the specific CSRBF used, and the balance of strong form to weak

form nodes – we carried out a parameter sweep across a high dimensional space.

• Once the algorithm’s accuracy is established there will be interest in simulating

shapes whose characteristics are not already known; cloud-based architectures

will facilitate this. If it is desired to simulate a large variety of shapes at once,
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as might be the case in a bandgap optimisation exercise [162], we could provi-

sion many worker nodes for a relatively short period of time. We note that these

nodes would still perform independent calculations, so inter-node communica-

tions delays should not be a disadvantage in this application. Were it necessary to

perform very high resolution calculations to verify the best-case results, it would

also be possible to provision a machine with large memory for just the time taken

to run the required simulations.

6.4.4 Results

Figure 6.10 illustrates the relative errors of our MLWSFM compared to a high resolu-

tion PWEM solution of the same system (see §6.3.1), as a function of the number n of

nodes used, for Wu’s C2 and C4 CSRBFs. We calculated the relative error E for each ei-

genvalue in the first four bands, where E = |Ep − Em|/Ep with Ep the high-resolution

PWEM eigenvalue and Em the meshless method eigenvalue. The relative errors we

report are the averages of this error over sixteen values of k and the lowest four bands.

It can be seen that the new method achieves relative errors better than 1% for several

sets of parameters, for both the TE and TM modes, with an error approaching 0.1% for

TM mode in some cases.

Each of the subfigures of Fig. 6.10 shows that, for any given number of nodes and

background cells, the relative error is better for Wu’s C4 than Wu’s C2 CSRBF. Subfig-

ures 6.10(a) and 6.10(b) are for the case where the integration proceeds over the same

number of background cells as nodes. It is claimed that between 3 to 9 times more

Gauss points than nodes [76] should be used; this condition is satisfied here, since we

use four Gauss points per background cell. Subfigures 6.10(c) and 6.10(d) show the

same data for the case where, for n nodes, there are (
√

n + 1)2 background cells.

As expected, the general trend is for the error to decrease with increasing numbers

of nodes. In some cases though, it reaches a minimum and then increases again. We

speculate that this behaviour may be attributable to the increasingly ill-conditioned

nature of the eigenvalue problem as the resolution increases [163].
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(a) TE, n nodes, n background cells (b) TM, n nodes, n background cells

(c) TE, n nodes, (
√

n + 1)2 background cells (d) TM, n nodes, (
√

n + 1)2 background cells

Figure 6.10: Average relative error between MLWSFM and PWEM as a function of the

number of nodes n and number of background cells. Subfigures (a) and (c)

are for TE and subfigures (b) and (d) are for TM. Radial basis functions used

were Wu’s C2 and C4 functions.
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Figure 6.11 illustrates how the relative error of the MLWSFM solution varies with

the CSRBF shape parameter c, for several values of the parameter δ, defining the frac-

tion of nodes in the weak and strong form domains (see Fig. 6.6(b) on page 118). It

is clear that in virtually all cases, c = 0.5 is the optimal value for accuracy, which is

in agreement with previous work [112]. Moreover, it can be seen that the method’s

accuracy increases with increasing δ, which is also as expected, because the MLWFM

has been shown to be have a convergence of order O(h4) compared to the MLSFM

of O(h2), where h is the distance between nearest-neighbour nodes [147]: thus, the

greater the fraction of nodes using the MLWFM, the better the overall accuracy should

be. Values of δ > (
√

2− 0.2) were not investigated since these would correspond to

the entire domain being solved by the MLWFM. We note that the error resulting with

δ = 0.4 is usually comparable to that for δ = 0.5 around the optimal c = 0.5.

In fig. 6.12(a) we compare TE mode band diagrams generated by the MLWSFM

and the PWEM [152]. The band diagram shows the frequencies of the four lowest-

frequency modes that may propagate through the crystal. The agreement between

the MLWSFM and the PWEM can be seen to be good. In fig. 6.12(b) we compare TM

mode band diagrams from the MLWSFM and the PWEM codes. As in the TE case,

good agreement can be seen between the two methods. However, previous work has

showed that a purely strong-form meshless method may be used to solve the TM prob-

lem to a good accuracy [147], so the MLWSFM is comparatively less attractive for the

TM case because it requires significantly more time to run, due to the numerical integ-

ration that is performed in the weak-form region.

Taking δ = 0.3 and c = 0.5, we found the MLWSFM to be faster than the previous

meshless method [147] that uses the weak form alone, by around 11% for n = 400

nodes, and 8% for n = 900 nodes, with one background cell per node in both cases, on

account of the reduced amounts of computationally-intensive numerical integration

required by the new method.

We note that in the aforementioned results, there are some unexpected inconsist-

encies, in that in some cases additional nodes can be seen to reduce the accuracy of
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(a) TE, 1600 nodes, 1600 background cells (b) TM, 1600 nodes, 1600 background cells

(c) TE, 1600 nodes, 1681 background cells (d) TM, 1600 nodes, 1681 background cells

Figure 6.11: Average relative error between MLWSFM and PWEM for TE and TM using

Wu’s C4 RBF as a function of c and δ. Subfigures (a) and (c) are for TE;

subfigures (b) and (d) are for TM. These figures are for a resolution of n =

1600 nodes.
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Figure 6.12: Comparison of TE and TM mode band diagrams calculated by the PWEM

and MLWSFM. TE mode used Wu’s C4 CSRBF with 1225 nodes and 1225

background cells. TM mode used Wu’s C4 CSRBF with 2500 nodes and

2500 background cells.

the final result. Experience gained after the calculation of these results suggested that

these problems may have been related to the poor condition numbers of the matrices

involved [163], and to the choice of eigensolver that was employed for these calcula-

tions. During the (subsequent) development and testing of the RBF-FD method for an

eigenvalue problem on a periodic domain (see §5.4), similar problems arose; changing

from the LAPACK zggev routine used here (based on the QZ algorithm and attempt-

ing to find all eigenvalues) to an iterative Krylov-Schur method [136], which seeks a

few of the smallest eigenvalues, brought about much more consistent behaviour and

significantly reduced the overall error.

6.5 A meshless RBF-FD method for 2D bandgap calculations

In this section, we expand the meshless radial basis function finite difference (RBF-FD)

method developed for an eigenvalue problem with a periodic domain in §5.4.2 to the

calculation of band structures of 2D photonic crystals for the TM polarisation mode.

We begin by formulating the method in §6.5.1, and we present results from the new
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method in §6.5.2.

6.5.1 TM mode formulation

For the TM mode problem, we can formulate a strong form radial basis function finite-

difference (RBF-FD) method, which is analogous in its formulation to the approach

outlined in §6.3.2.

We begin solving (6.12) by substituting the wavefunction (6.14) into (6.12) to give:

− (∇+ ik) · (∇+ ik) u = ε(x)λu. (6.50)

This expression gives rise to a generalised eigenvalue problem of the form:

A(k)u = λBu, (6.51)

where u = [u1, u2, ..., uN ]
T are the eigenvectors of each eigensystem corresponding to

the spatial patterns of the allowed modes of propagation through the crystal, and the

eigenvalues λ correspond to the frequencies of the respective modes, as discussed more

fully in §6.2.3.

Representing

u(x) =
M

∑
j=1

ψj (x) uj, (6.52)

where M is the number of nodes in the RBF-FD stencil (or influence domain), as dis-

cussed in §5.4, with the notation ψj(x) = ψ(‖x− xj‖), and requiring that u(xi) = ui at

all node locations xi means that we must have ψj(xi) = δij.

The vector ψ = [ψ1, ψ2, . . . , ψM, µ] is found by solving the linear system VψT(x) =

φ(x), where φ(x) = [φ1(x), φ2(x), . . . , φM(x), 1]T is a vector formed by evaluating the

globally-supported RBF between nodes in the RBF-FD stencil, and V is the matrix
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given by:

V =




φ1(x1) φ2(x1) · · · φM(x1) 1

φ1(x2) φ2(x2) · · · φM(x2) 1
...

...
...

...
...

φ1(xM) φ2(xM) · · · φM(xM) 1

1 1 1 1 0




. (6.53)

Substituting (6.52) into (6.50) gives the following A and B matrices for the general-

ised eigenvalue problem in (6.51):

Aij = − (∇+ ik) · (∇+ ik)ψj(xi),

= −∇2ψj (xi)− 2ik · ∇ψj(xi) + k2ψj(xi), (6.54)

Bij = ε(xi)ψj(xi). (6.55)

The matrix A in (6.54) may be expanded as:

Aij = −Eij − 2ik · Fij + k2Hij, (6.56)

where

Eij = ∇2ψj(xi), (6.57)

Fij = ∇ψj(xi), (6.58)

Hij = ψj(xi). (6.59)

It follows from (6.52) and the subsequent discussion that B is diagonal, so we may

re-cast the generalised eigenvalue problem (6.51) as a standard eigenvalue problem:

B−1A(k)u = λu, (6.60)

and we have B−1
i,i = (Bi,i)

−1.

We solve the problem on a periodic, square domain, as illustrated in fig. 6.13. By

imposing the conditions

u(x, 0) = u(x, b), (6.61)

u(0, y) = u(a, y), (6.62)
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0 a

b

(x, 0)

(x, b)

(a, y)(0, y)

Figure 6.13: The domain of the system is made periodic by enforcing appropriate

boundary conditions, see text.

we enforce the periodicity of the domain. In our implementation, we account for this

by using the minimum image distance (see e.g. [135, §A.1]) between nodes rather than

the usual Euclidean distance.

Following a similar procedure to the formulation outlined in §5.4.2, we begin by

establishing the influence domain for each node i. Periodic boundary conditions apply,

so we consider all nodes whose minimum image distance from the node i is below the

threshold radius rp to be inside the influence domain.

We require representations of the interpolant as well as its first and second derivat-

ives in x and y to populate our eigensystem matrices, so we let the operator L in (5.50)

take each of the values ∂/∂x, ∂/∂y, ∂2/∂x2, and ∂2/∂y2 in turn, and form each of the

resulting linear systems of the form (5.53) using the appropriate influence domain. This

yields vectors w(x), w(y), w(xx) and w(yy) respectively.

We populate the eigensystem matrices as follows, considering every node i in the

unit cell, and all the nodes j in the influence domain of each node i:

Hij = ψij

Eij = w(xx)
ij + w(yy)

ij

(Fx)ij = w(x)
ij

(Fy)ij = w(y)
ij (6.63)
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Figure 6.14: Comparison of TM mode band diagrams calculated by the PWEM and

RBF-FD method, using multiquadric (MQ) and inverse multiquadric (IMQ)

RBFs.

Finally we form the matrices A and B in (6.60) and apply an eigensolver to find the

eigenvalues corresponding to the frequencies of propagation of the allowed modes at

each point around the Brillouin zone.

6.5.2 Results

We ran the RBF-FD solver for the TM mode problem with two different choices of RBF,

and the results were in good agreement with the results from the traditional PWEM

solver (see §6.3.2 or [141]). We illustrate the results in fig. 6.14(a) for the multiquad-

ric RBF, and in fig. 6.14(b) for the inverse multiquadric RBF. These were calculated for

round rods of dielectric ε = 8.9 in air (ε = 1), with radius r = 0.2a. In the inverse

multiquadric case, we used 400 nodes, with a stencil radius of 0.1, and a shape para-

meter for the RBF of 0.15. For the multiquadric case, we used the same parameters but

changed the shape parameter to 0.12.
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6.6 Conclusions and outlook

This section began by introducing photonic crystals as an area of active research and

of potentially immense practical application. The physical and mathematical back-

ground discussed included essential concepts from crystallography, and the Maxwell

equations, which govern the flow of light through photonic crystals, along with the

simplifications often employed when these equations are solved. The emergence of

band gaps in one-dimensional systems was illustrated, before two-dimensional sys-

tems were introduced.

The recently developed meshless methods for two-dimensional photonic crystal

modelling were then introduced. The splitting up due to symmetry arguments of the

2D problem into transverse magnetic (TM) and transverse electric (TE) polarisation

modes was discussed. Existing meshless local strong- and weak- form methods util-

ising compactly supported radial basis functions were described, as background for

the introduction of a novel meshless local weak-strong form method (MLWSFM).

We gave details of the formulation of the MLWSFM for both TM and TE modes, and

provided results illustrating that it is able to accurately calculate the band structures of

a sample 2D photonic crystal, yielding results in good agreement with the plane wave

expansion method (PWEM) solver. We also discussed how the application of a cloud-

based architecture has assisted with accelerating the development and validation of

the method; the results we presented were calculated using an implementation of the

method running on the Microsoft Windows Azure cloud service.

We also gave the formulation of another novel meshless solver for 2D photonic

crystals, which is a radial basis function finite difference (RBF-FD) method, formulated

similarly to that in §5.4. We illustrated its performance with results that show for TM

mode that it is capable of calculating the band structure of a sample crystal to a good

accuracy and achieving good agreement with the PWEM solver.

Natural progress from this work would be to formulate an RBF-FD method for the

TE mode, which would necessarily involve a method such as Galerkin’s method, to
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avoid the difficulties associated arising from the requirement to take a derivative of

the inverse of the dielectric function – which is discontinuous at the boundary of the

rod and its surrounding material. Work has commenced on this method, as discussed

in §7.2. It would also be productive to investigate the development of higher-order

RBF-FD methods for 2D photonic problems, which would be formulated analogously

to the one in §5.4.3, to potentially benefit from better convergence rates and higher

accuracy.
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Chapter 7

Summary and Outlook

7.1 Summary

We have investigated novel algorithms in computational physics, introducing a new

fast multipole method for the energies of systems of pancake vortices in layered high-

temperature superconductors which naturally handles periodic boundary conditions,

as well as a meshless radial basis function finite difference method for an eigenvalue

problem on a periodic domain and two meshless methods for computing the band

structures of two dimensional photonic crystals.

After a general introduction to algorithms to set the context of the work, we re-

viewed in some detail the fast multipole method introduced in 1987 by Greengard

and Rokhlin. We noted that since their seminal paper, many different versions of the

fast multipole method have been introduced, along with a variety of applications far

broader than the scope of the original method for the energy of particles interacting by

the Coulomb or gravitational forces.

We introduced a novel fast multipole method for interactions governed by the 2D

Yukawa potential – that is, where the inter-particle potential is given by a modified

Bessel function of the second kind. This kind of potential arises in simulating the inter-

action of stacks of pancake vortices in layered high-temperature superconductors. Our

algorithm uses multipole-like expansions based upon the rapidly-converging Gegen-
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bauer addition formulae and achievesO(N) scaling. It also naturally handles periodic

boundary conditions, so that it is possible to rapidly simulate infinitely-tiled systems.

When truncating the series expansions at 20 terms, typical errors in the energy com-

pared to the naïve method were of order O(10−7), and in our implementation, the

multipole method was faster than the naïve method for numbers of particles N & 1100.

We then turned our attention to the field of meshless methods, which is currently

enjoying considerable research interest. We summarised the disadvantages of mesh-

based methods that has lead to the development of the meshless methods, before con-

sidering the radial basis functions upon which many meshless methods are based.

We introduced the concept of the radial basis function finite difference method, and

formulated a new radial basis function finite difference method for solving an eigen-

value problem on a periodic domain. For this example, we took the elliptic Helmholtz

equation. We demonstrated that the RBF-FD method is capable of solving the problem

to a high level of accuracy compared to the analytical solution. Further, we formulated

a higher-order radial basis function finite difference method for the same equation,

utilising ideas from Hermite interpolation.

Continuing our exploration of meshless methods, we considered the problem of

solving the Maxwell equations on a periodic domain, as applicable to modelling a

2D photonic crystal. We developed a new meshless local weak-strong form hybrid

method for calculating the band structure of 2D photonic crystals, which utilises com-

pactly supported radial basis functions in both weak- and strong-forms and handles

both the TM and TE mode polarisations. We demonstrated that its results are in good

agreement with the leading conventional plane wave expansion method solver. We

also formulated a new radial basis function finite difference solver for the TM mode

problem in photonic crystal modelling and demonstrated that it achieves good agree-

ment with the plane wave expansion method.

We also reviewed various technological advances that have taken place in scientific

computing to enhance the computational performance available to engineers and sci-

entists. We introduced various special-purpose hardware, which offered significant
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benefits for certain kinds of calculations, but was often very costly and had limited

ranges of applications. We then considered how graphics processing units offer a

means to run highly parallel numerical codes efficiently and with a favourable price-

to-performance ratio. In the development and verification of the meshless local weak-

strong form method, we applied another cutting-edge technology which is gaining

interest in recent times, cloud computing. In our case, it allowed us to rent hardware

to perform parameter sweeps in parallel, so that the time to validate and character-

ise the algorithm was bounded below by the time required to run the longest single

simulation. Cloud based architectures can also bring significant additional benefits

to scientific applications where they facilitate rapid, straightforward and secure shar-

ing of data and encourage a modular design that makes it simple to swap different

algorithms into use, and compare their results when run on the same input data.

7.2 Outlook and discussion

The methods reported on here have produced results that show they are viable choices

for simulations in computational physics. However, there are several areas where fur-

ther development would either yield improved performance, or where the domain of

application of these methods could be expanded, and these are highlighted below.

RBF-FD method for the TE polarisation In §6.5.1 a radial basis function finite dif-

ference method was formulated for the TM polarisation of light in two dimensional

photonic crystals and the results given in §6.5.2 show that the method is a promising

scheme for calculating band structures. The challenge in formulating a similar method

for the TE mode arises from a differential operator being applied to the dielectric func-

tion, which features a discontinuity. However, Galerkin’s method can be used to over-

come this challenge, as demonstrated in the case of the meshless local weak-strong

form method in §6.4.1. It should therefore be possible to combine the RBF-FD scheme

with a Galerkin weak formulation to solve the TE mode problem with an RBF-FD ap-
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proach.

Work has commenced on implementing this scheme. The structure is very similar

to that of the meshless local weak form method (MLWFM) for the TE mode, described

in §6.4.1. The equation to be solved is identical and once again we apply Galerkin’s

method to (6.27), introducing integrals which we solve numerically by Gaussian quad-

rature: ∫ 1
ε(x)

(∇+ ik)u · (∇+ ik)vdx = λ
∫

uvdx. (7.1)

The difference is that we switch from using a compactly supported RBF function to an

RBF-FD representation. We substitute

u(x) =
M

∑
i=1

ψi(x)ui, (7.2)

v(x) = φj(x), (7.3)

into (7.1). In this case, as in §6.5.1, the vector ψ = [ψ1, ψ2, . . . , ψM, µ] is found by solving

the linear system

VψT(x) = φ(x),

where

φ(x) = [φ1(x), φ2(x), . . . , φM(x), 1]T,

is a vector formed by evaluating the globally-supported RBF and V is the matrix

defined in (6.53).

The generalised eigenvalue problem is then

C1(k)u = λD1u, (7.4)

where

C1
jl =

∫

Ω

1
ε(x)

(
∇ψj(x) · ∇φl(x) + ikψj(x) · ∇φl(x)

−ik∇ψj(x) · φl(x) + k2ψj(x) · φl(x)
)

dx, (7.5)

and

D1
jl =

∫

Ω
ψj(x) · φl(x)dx, (7.6)
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where the integration is over Ω, the support domain in the Gaussian quadrature for

the element in question.

We use the RBF-FD technique to represent ∇ψj(x) = [w(x)
j (x), w(y)

j (x)]T where the

weight vectors w(x) and w(y) are found by solving the linear systems

Vw(x)(x) = [φx(‖x− x1‖), φx(‖x− x2‖), . . . , φx(‖x− xM), 0]T,

and

Vw(y)(x) = [φy(‖x− x1‖), φy(‖x− x2‖), . . . , φy(‖x− xM), 0]T.

Here, the matrix V is as defined in (6.53) and we used the notation φx(‖xi − xj‖) =

∂φ(‖xi − x‖)/∂x|x=xj .

We expand the C1 matrix into “sub-matrices” as follows:

C1
jl = S1

jl + i
(

P1
jl −Q1

jl

)
+ k2T1

jl , with (7.7)

S1
jl =

∫

Ω

1
ε(x)
∇ψj · ∇φl dx, (7.8)

P1
jl =

∫

Ω

1
ε(x)

kψj · ∇φl dx, (7.9)

Q1
jl =

∫

Ω

1
ε(x)

kφl · ∇ψj dx, (7.10)

T1
jl =

∫

Ω

1
ε(x)

ψj · φl dx. (7.11)

The integration is carried out using Gaussian quadrature, as described in §6.4.1 and

the matrices of the eigenvalue problem are then assembled. An existing eigensolver is

used to find the eigenvalues corresponding to each allowed frequency of propagation

at the k values around the irreducible Brillouin zone.

We have tested the current implementation by simulating round rods, of radius

r = 0.2a, with dielectric ε = 8.9 in air (ε = 1). For certain sets of parameters there is

a qualitative agreement between significant features of the results from the TE-mode

RBF-FD method and the established solvers. In fig. 7.1 we present a band diagram

comparison, which illustrates the qualitative agreement. In the figure, we used 100

nodes with 196 background cells, set the RBF shape parameter c = 0.10 and the RBF-
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Figure 7.1: Comparison of TE mode band diagrams calculated by (a) the PWEM and (b)

the RBF-FD method, illustrating qualitative agreement of the main features

of the band structure between the two methods. The RBF-FD method em-

ployed 100 nodes, 196 background cells, with an inverse multiquadric RBF,

shape parameter c = 0.10.

FD influence domain radius to be 0.40. We used an inverse multiquadric radial basis

function.

The initial results show that the method has some potential, but for many com-

binations of input parameters (the type of globally supported RBF used, the shape

parameter chosen, the radius of the influence domain, and the numbers of nodes and

Gaussian points used), the results yielded bear very little resemblance to the expected

results. It is hoped that, with further refinement to and possibly debugging of the im-

plementation, and tuning of the parameters, the method will become competitive with

the established solvers and the MLWSFM for TE-mode calculations; in the short term,

future work will be directed towards achieving this improvement.

Higher order RBF-FD methods for photonic crystals A higher-order RBF-FD scheme

was introduced for the elliptic Helmholtz equation in §5.4.3, where information about

the derivative as well as the function values is considered at some of the nodes in the

stencil. This can lead to enhanced accuracy without increasing the dimensions of the
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stencil. Introducing higher-order RBF-FD schemes for photonic bandgap calculations

would potentially increase the accuracy of these results in a similar way.

Parallelising and optimising the methods There is interest in bandgap optimisation

and engineering, which typically involves a geometry optimisation in which the band

structures of many different photonic crystal structures need to be calculated. Obvi-

ously, if the simulation method can run faster, the optimisation becomes more prac-

ticable. The implementations of the methods that gave the results in this work were

single-threaded; by parallelising the work the wall-clock time would be reduced on

a contemporary multi-core machine. Similarly, if the work were to be split into very

many parallel threads (such as, e.g. using one thread per node in the MLWSFM), a GPU

may be able to deliver significant speedup.

Similar arguments apply to the fast multipole method for the Yukawa potential;

this method could foreseeably be called as part of a larger vortex dynamics simula-

tion, which may require the evaluation of the energy of various particle configurations.

Here, assigning a thread per box on a chosen refinement level would potentially allow

the method to make use of parallel computational resources.

Alternative eigensolvers In the work carried out on photonic crystals, an eigensolver

from LAPACK was used in the examples given here. This eigensolver was not ideal

for the purpose as it attempts to find all N eigenvalues of the N × N matrices passed

to it, where in photonic applications, it is typically only the few lowest bands – and,

hence, the few lowest eigenvalues – that are of interest. Applying a more appropriate

eigensolver, such as a subspace iteration algorithm (see, e.g. [164]), would foreseeably

reduce runtime and wasted calculations significantly.

Additional photonic crystal geometries The geometries simulated in the work here

are all based on a square unit cell, which implies a square lattice arrangement. There is

interest in simulating photonic crystal structures with alternative geometries such as,

for example, triangular lattices. This would involve a rhombic unit cell; it is likely that
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with some modification, the current algorithms would be suitable. The main areas that

would require adjustment would be the definition of the unit cell and the rod shape

within it, and the Gaussian integration scheme where the quadrilateral background

cells would need to be made rhombic.

3D photonic crystal modelling As RBF based meshless methods are shown to be

promising alternative schemes for calculating photonic band gaps in 2D, extending the

proposed meshless methods to three-dimensional photonic crystal modelling would

be of interest.
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