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1 Introduction

A subject’s reputation is a measure of how much a community rates it. Reputation
plays a core role in online communities such as eBay and StackExchange since it
can influence the communities perception and interactions, and affect computational
activities within the system. In eBay, the reputation of a seller can help a buyer
decide whether they want to purchase an item from this seller. In StackExchange,
reputation is a key incentive for people to contribute as it leads to kudos and potential
employment offers.

A subject’s reputation is computed from feedback about it, which may be of two
kinds:

1. User feedback consists of ratings or comments provided by users who partici-
pate in the system, and have interacted with the subject.

2. System feedback consists of various metrics directly measurable by the system,
including performance, timeliness and responsiveness.

Reputation can be evaluated either manually or automatically, on a set of criteria
which differs across domains.

For a subject to achieve and maintain a good reputation, it is important to un-
derstand how different factors influence its calculation. Given that reputation varies
over time as feedback is submitted, it is desirable for a reputation provider to be
accountable. In order to be accountable it is required to explain how reputation mea-
sures have been computed over time, which feedback reports were considered, and
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how the measure evolved. Hence, auditing is a key mechanism that a reputation
provider can offer its clients to inspect reputation measures it derives. In this con-
text, provenance can be used to provide descriptions of the entities, activities, and
agents that may have influenced a reputation measure.

While the use of reputation is frequent in Collective Adaptive Systems (CAS),
there is a lack of agreed methods for its use, representation, and auditability. The
aim of this chapter is to investigate key facets of an auditable reputation service for
collective adaptive systems, summarised by the following contributions:

1. Use cases for reputation and provenance in collective adaptive systems, which
are categorised into functional, auditable, privacy and security, and administra-
tive.

2. A RESTful Reputation API, which allows users access to subject feedback and
to access feedback reports and reputation measures.

3. An upper level ontology for describing entities used in social machines, which
is used to classify objects in provenance.

In Section 2 we outline related work on trust and reputation, and social computa-
tion. Following that, in Section 3, we describe generic provenance use cases. Then
in Section 3, we discuss a reputation API and an upper level ontology for prove-
nance and social computations (see Sections 4.1 and 4.2, respectively). In Section
5, we describe in detail a use case for a ride share application. Finally, Section 6
concludes the paper.

2 Background and Related Work

The following sections define provenance, trust and reputation, and describe their
use in the context of social machines.

2.1 Provenance

Provenance has varied emerging applications: it may be used to make social com-
putations accountable and transparent [1]; provenance can help determine whether
data or users can be trusted [2]; and provenance can be used to ensure reproducibil-
ity [3] of computations.

In this chapter, we adopt the W3C (World Wide Web Consortium) Provenance
Working Group’s definition, given in the PROV Data Model specification. [4]:

Provenance is defined as a record that describes the people, institutions, entities, and activ-
ities involved in producing, influencing, or delivering a piece of data or a thing.

PROV is a recent recommendation of the W3C for representing provenance on the
web. PROV is a conceptual data model (PROV-DM [4]), which can be mapped and
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serialized to different technologies. There is an OWL2 ontology for PROV (PROV-
O [5]), allowing mapping to RDF, an XML schema for provenance [6], and a textual
representation for PROV (PROV-N [7]). In section 4.1 we show an extension of the
PROV ontology, in the description of the Provenance for Social Computations ontol-
ogy.
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prov:wasDerivedFrom
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prov:wasAttributedTo
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prov:wasGeneratedBy

prov:wasAssociatedWith
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Fig. 1: Three Different Views of the Core of PROV. The figure adopts the PROV
layout conventions: an entity is represented by a yellow ellipsis, an activity by a blue
rectangle, and an agent by an orange pentagon. We note here that the diagram is a
“class diagram” illustrating the classes that occur as domain and range of properties.
Taken from [8].

2.2 Trust and Reputation

The topic of trust and reputation has been extensively reviewed ([9, 10, 11, 12]), with
Artz and Gil’s [11] being one of the more comprehensive survey of definitions and
existing systems. Sabater and Siera [10] propose a set of criteria for the characteri-
sation of computational models, and then proceed to qualify a selection of existing
models according to these criteria. Pinyol and Sabater-Mir [13] more recently sur-
veyed trust and reputation models for open multi-agent systems, a category to which
social machines belong. This second survey cites the previous characterisation cri-
teria as just one of several existing classification systems.

http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#actedOnBehalfOf
http://www.w3.org/ns/prov#wasInformedBy
http://www.w3.org/ns/prov#wasAttributedTo
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasAssociatedWith


4 Heather S. Packer, Laura Drăgan and Luc Moreau

Goldbeck’s work, which spans several years [14, 15, 16, 12, 17] tackles the way
trust and reputation is defined and computed in online social networks. Golbeck
describes trust and reputation as “socially loaded” terms, and reputation as a “more
social notion of trust” [14]. The general definition of trust used in her PhD thesis
[15] is:

Alice trusts Bob if she commits to an action based on a belief that Bob’s future actions will
lead to a good outcome.

Different types of trust are described and studied in the research literature, and
trust is often equated with the mechanism for authentication, such as digital signa-
tures and encryption. The survey by Artz and Gil [11] lists the diverse research areas
of trust, from security and access control to decision making and game theory, dif-
ferentiating between policy-based and reputation-based trust – the former focusing
on “hard security” and the latter on “social” aspects. The survey focuses on trust
representations in the Semantic Web.

In the context of the Semantic Web, Tim Berners-Lee envisioned [18] that prove-
nance is a crucial component in establishing trust. In [19], Berners-Lee introduces
the idea of an easy way to access provenance information provided on websites with
an “oh yeah?” button:

At the toolbar (menu, whatever) associated with a document there is a button marked “Oh,
yeah?”. You press it when you loses that feeling of trust. It says to the Web, “so how do I
know I can trust this information?”.

The idea is that if we can determine where data and documents come from, we
can decide whether it can be trusted. Li et al [20] outline how trust can be developed,
or distrust minimised, through provenance on the Semantic Web, by describing and
generalizing several use cases where possible “distrust events” occured. Prat and
Madnick [21] define a provenance-grounded measure of the believability of data
on the web, relying on a measure of trustworthiness of an agent as one of three
dimensions.

A large amount of research in the area of trust comes from the multi-agent do-
main [9, 22, 13]. In a multi-agent context [9], trust is defined as:

Trust is a belief an agent has that the other party will do what it says it will (being honest
and reliable) or reciprocate (being reciprocative for the common good of both), given an
opportunity to defect to get higher payoffs.

The focus of multi-agent systems trust is on actions performed by agents. It is to
be distinguished from trust of information (or content trust [23]) defined as follows:

Content trust is a trust judgement on a particular piece of information in a given context.

In this chapter we use a definition of trust that is based on a mix of provenance
and reputation and content-based trust, not including the hard security.

Trust and reputation models typically introduce a measure, to represent how
trustworthy or reputable a system or individual is. This measure is then typically
summarised in a value, discrete (e.g. 1 to 9 [16], or 1 to 5 star rating as used by
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online commerce sites like Amazon and Ebay) or continuous (e.g. [0,1] [24]), or a
label (trustworthy/not trustworthy). This value is then used to make trust decisions.

Reputation about a subject is acquired from the experiences of others in a com-
munity. According to [14] “reputation is synonymous with the measure of trust”,
and from a more social perspective [11]:

Reputation is an assessment based on the history of interactions with or observations of an
entity, either directly via personal experience or as reported by others.

Reputation systems can be centralized or distributed[25, 26, 27, 28]. Liu [29] de-
scribes criteria for classifying and analysing centralised reputation systems. Social
machines which are centralised usually use a centralised reputation system. How-
ever, some aspects in the reputation system can be decentralised, where participants
can set preferences which favour or reject some sources, without taking into con-
sideration the reputation, thus trusting or distrusting them implicitly – an example
is TrustMail described by Golbeck and Hendler [14].

2.3 Provenance, Trust and Reputation in Collective Adaptive
Systems

Berners-Lee and Fischetti [18] define a social machine, which are a synonym for
CAS, as systems “in which the people do the creative work and the machine does
the administration”, where both human and machines contribute to the completion
of a task which they could not achieve separately. The characterisation of social
machines is also described in the Chapter [30]1 entitled ”A Taxonomic Framework
for Social Machines”.

A number of terms and research areas involve the intersection of social be-
haviour and computational systems: social computing, crowdsourcing, collective
intelligence, human computation [31]. Social machines are used for a large variety
of tasks, too complex for humans or computers to achieve independently, but which
can be divided in small simpler tasks for one of the other. These include annotation,
disaster relief, mapping, collaborative filtering, online auctions, prediction markets,
reputation systems, computational social choice, tagging, and verification. Many
existing systems employ strategies which can qualify them as social machines, in-
cluding Wikipedia, OpenStreetMap, Ushahidi, re-Captcha.

The environment for collaboration in social machines varies from system to sys-
tem, it can be loosely mediated as in Twitter, or under stricter control of community
policies and guidelines like in Wikipedia. Stein and Hess [32] show that in the Ger-
man Wikipedia the quality of contributions is connected to the reputation of partic-
ipants. The ability to uniquely identity and assess participants inputs in a collective
based on their past actions or perceived domain knowledge in the system, is a factor

1 Daniele fix this reference please
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in measuring the trust and reputation of the collective output2. Although some social
machines go out of their way to prevent uniquely identifying users, such as 4chan,
most will have a way of identifying participants, usually through user accounts.

The adoption of a social machine depends on a combination of many factors,
some of them include:

• the purpose set out when the social machine was created,
• the perceived benefits to the participants,
• the amount and type of tasks, or
• the level of participation required.

Human participants have to trust that the machine will deliver the expected out-
comes and that any information provided by them will be used for the purpose which
was described. Specifically, the users must trust that the machine will not do any-
thing with the information that they provide, which conflicts with the purpose for
which this data was captured.

Weitzner et al. [1] argue that, for information, “accountability must become a
primary means through which society addresses appropriate use”. For them, “infor-
mation accountability means the use of information should be transparent, so it is
possible to determine whether a particular use is appropriate under a given set of
rules, and that the system enables individuals and institutions to be held account-
able for misuse”. Dynamically assembled systems need to be made accountable for
users to gain confidence in them, i.e., their past executions must be auditable so
that compliance with, or violations of, policies can be asserted and explained. They
also note the similarity between accountability and provenance in scientific experi-
ments. Provenance is a key enabler for accountable systems since it consists of an
explicit representation of past processes, which allows us to trace the origin of data,
actions and decisions (whether automated or human-driven). It therefore provides
the necessary logs to reason about compliance or violations. As users delegate im-
portant tasks to systems and endow them with private data, it is crucial that they can
put their trust in such systems. Accountability is a way by which trust can be built,
since action transparency and audit help users gain trust in systems. However, users
may not always want (or have the resources) to audit systems; instead, they would
like to be given a measure of trust, which they can rely upon to decide whether to
use a system or not.

The output of social machines may be influenced by many factors including col-
lective human input and machine processes. Because information is derived from
many agents and processes, it can be challenging to understand and evaluate the re-
sults. Provenance information can be used to understand better the results, allowing
their reliability and quality to be analysed. Therefore, understanding social compu-
tation hinges on capturing the provenance of the creation of data by both humans
and machines.

2 Uniquely identifying participants does not require or imply the use of any personally identifiable
information, which would connect the participant to the real person.
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3 Use Cases for Provenance, Trust and Reputation

In order develop a fully auditable reputation service, it is necessary to capture prove-
nance information from the applications which use it. Hence, we first consider im-
portant design issues and decisions for applying provenance, trust and reputation to
social machines. We ground our recommendations in set of generic use cases for
social machines. The use cases were outlined by considering generalised user re-
quirements of social machines in the public domain, by investigating a subset of the
social machines identified by the SOCIAM and SmartSociety projects 3. We discuss
methods for using provenance in social machines.

We have categorised the use cases into several types: functional, audit, privacy
and security, and administration. We note that not all of the use cases are suited to
all social machines, and we have described a machine’s applicable attributes. We
refer to participants as either humans or machines, which take part in the function
of the social machine.

3.1 Functional Use Cases

The following use cases describe scenarios where provenance, trust and reputation
can be used to support a social machine’s functional requirements.

Use Case 1 A participant creates or edits a piece of information in the system.

This is the basic use case of such systems, and we require that provenance is cap-
tured for the new piece of information created, or the changes to existing infor-
mation. In social machines like Wikipedia, where the generated information is the
actual final output of the system, this kind of information is very important. When
an editor changes an article, the information logged comprises of user name or IP
address of the editor, the date and time, and the changes made. These information
items are made visible to all other participants, passive or active, through the “View
history” tab. Depending on how the systems allow access (which based on owner-
ship, access rights, or roles) to the objects they manage, some participants might
not be able to edit part of the information, in which situation the next use case is
relevant.

Use Case 2 A participant annotates existing resources in the system.

An annotation is any meta-information about the main objects used by the social
machine. This includes ratings of existing users or products in an online store, feed-
back on user activities in a listing of service providers, feedback on the quality of
data. Information which is the main focus in one social machine, can be considered
annotation in another system, for example ratings and comments on products on

3 A comprehensive list of the systems identified can be found at: http://sociam.org/
social-machines

http://sociam.org/social-machines
http://sociam.org/social-machines
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eBay might be annotations, while comments and ratings on TripAdvisor and Yelp
are the main focus of the system. If we consider creating annotations as adding new
data in the system, then this use case is a sub-part of the previous one.

Use Case 3 A participant has to make a decision which requires them to select from
a subset of the objects (or users) available in the system.

This use case is relevant to social machines that rely on reputation and user pref-
erences to enable participants to make decisions – make a selection. For example:
On Amazon users select which product best suits their needs and rely on the prod-
uct information and reviews; on TripAdvisor users select hotels or restaurants based
on their location preferences, and reviews; and on Stack Overflow users post pro-
gramming related problems and questions, and receive solutions, and can then select
which is the best solution based on their opinion, a voting system, and user reputa-
tions.

3.2 Audit Use Cases

The provenance and reputation information collected in a social machine can sup-
port the ability to audit it.

Use Case 4 A participant wants to know who created or changed a resource.

This use case requires that the system provides a way to expose the users to prove-
nance data captured as a result of the first or second use cases listed above. This
use case is applicable to data that has been edited collectively, like for instance
Wikipedia articles, where it is important to be able to see when and who made
a change. Wikipedia also provides “Talk pages” where edits to articles can be
discussed, and which allow participants to understand the motivations behind the
changes, so that future edits take into account considerations of past motivations.
The next use case refers to annotations, in a similar manner.

Use Case 5 A participant wants to know who annotated a resource and when.

Amazon and eBay are social machines whose participants benefit from being able
to see provenance information of annotations. The users can decide on the value of
ratings by checking who and when they were posted. This will allow the user to
make an informed decision about the vote rating.

Use Case 6 A participant wants to know how the reputation of a user is computed
by the system.

This use case requires that the reputation scores for participants also have prove-
nance information which makes them auditable as well. The method used in com-
puting the reputation scores should be easy to understand and available to partici-
pants, as part of the provenance of the reputation. For most online stores, reputation
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of sellers is computed in a straightforward manner by averaging the ratings received
over time. However, some systems might decide to discard ratings older than a given
date, or given by users with a low reputation. Such choices in the formula might
improve the overall accuracy of the resulting scores, but they should be known to
participants.

Within the scope of this use case is included also the possibility of the user en-
quiring about their own reputation, to see how they are perceived by other partici-
pants in the system and what factors influenced it. This leads to the next use case:

Use Case 7 A participant has audited their reputation score, but they consider it is
incorrect and would like to influence it.

Some social machines allow users to verify information provided about them by
other users, and take under consideration evidence that refutes the incorrect infor-
mation. An example of this is the eBay Resolution Center, which allows buyers
and sellers to resolve conflicts in a controlled environment, before negative ratings
are submitted. Yelp on the other hand does not arbitrate reviews, but they do allow
businesses to post public responses to reviews, in which to address the issues.

3.3 Privacy and Security Use Cases

The use cases in this section describe scenarios where provenance, trust and rep-
utation can be used to support a user’s security and privacy requirements. They
are applicable mainly to human users of social machines, especially those systems
which request and store personal details, for example Facebook, LinkedIn, Twitter.

Use Case 8 A participant wants to change their personal information and prefer-
ences stored by a social machine.

This use case includes adding new information, changing existing values, and re-
moving previously set personal data from the system. The users should also be in-
formed what other usage information the social machine captures, and should be
able to decide if they agree to this data being stored. For example, Google uses lo-
cation data from Android phones to map congestion areas in Google Maps4, but
they allow users to opt out of this crowdsourcing experiment.

Use Case 9 A participant wants to know who has access to their personal informa-
tion.

This use case is as much about auditing the system as it is about privacy and security.
It includes situations when the user is concerned about who can can see and use
their personal information as stored in the system, both among other internal users,
and external entities, like advertising companies for example. LinkedIn in particular

4 http://googleblog.blogspot.co.uk/2009/08/bright-side-of-sitting-in-traffic.
html

http://googleblog.blogspot.co.uk/2009/08/bright-side-of-sitting-in-traffic.html
http://googleblog.blogspot.co.uk/2009/08/bright-side-of-sitting-in-traffic.html
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employs this information to show its users who of its other users has viewed their
profile information, as a possible show of interest.

3.4 Administrative Use Cases

The use cases in this section refer to the use of provenance, trust and reputation for
the administration of the social machine.

Use Case 10 An administrator wants to quantify how much of a goal of the system
has been achieved.

This use case is relevant to social machines which have quantifiable goals. It is use-
ful if the overall goal is divided in sub-goals, which must be achieved before the next
state or activity can occur. For example, in the CollabMap5 [33] social machine for
map building for emergency response, an evacuation route from a building can only
be created after the building outline was created, and validated by a given number of
independent users. Some social machines have a running goal, which can never be
completed, like for example Wikipedia’s aim of capturing world knowledge. Some
social machines can have dual goals, one or all of which can be quantifiable, like
for instance reCAPTCHA[34] which on one side is used to validate that the user is
human by being able to decipher images of words, and at the same time the result is
used for digitization of books.

Use Case 11 An administrator wants to analyse statistics about the users’ be-
haviour and achievements.

User statistics can be used for tracking the adoption of a social machine, but also
for feeding back information into the social machine, and influencing its further
development. For example, this use case is applicable to social machines which use
gamification elements like star ratings, badges and leader boards. In this case, usage
analysis can help to identify behaviours to reward, or how much certain actions
should contribute to a user’s score, based on provenance. For example, the protein
folding game Foldit could analyse provenance data to find who performed complex
moves and reward them with a higher score or ranking.

Use Case 12 An administrator wants to check that the resources are used according
to the agreed upon rules.

This use case is applicable to social machines which require resources to be created
in accordance to specific policies. Auditing the provenance data allows the user to
validate the sequence of activities performed over entities by an agent.

5 http://collabmap.org/

http://collabmap.org/
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4 Designing Provenance, Trust and Reputation in Social
Machines

In this section, we present an upper level ontology, Provenance for Social Compu-
tations, which defines the schema of provenance concepts in social machines. It is
used to define types explained in the provenance, and supports querying and thus
auditing. It can also be used to expose provenance to the end user.

Following that, we present a REST API for a reputation service, which stores
and retrieves user feedback, and retrieves of reputation information. We use the API
to support the capture of provenance for the ride share application, discussed in the
following section. It will be used to aid in the development of reusable provenance
patterns for REST services.

4.1 Provenance for Social Computation

Provenance is a record of the entities, activities, and agents, that describes the flow
of data across a single or multiple systems. In order for provenance to be traceable
through heterogeneous systems, which may have their own ways of representing
information, it is important to use a shared vocabulary. In order to support hetero-
geneous social systems, we present the upper level ontology provenance for social
computations, which defines a core vocabulary for the classification of agents, en-
tities and activities. Specifically, these three concepts are reused from PROV-O 6,
where:

1. A prov:Entity is a physical, digital, conceptual, or other kind of thing with some
fixed aspects; entities may be real or imaginary.

2. A prov:Activity is something that occurs over a period of time and acts upon or
with entities; it may include consuming, processing, transforming, modifying,
relocating, using, or generating entities.

3. A prov:Agent is something that bears some form of responsibility for an activity
taking place, for the existence of an entity, or for another agent’s activity.

The ontology is expressed using the OWL2 Web Ontology Language. It provides
a set of classes, properties, and restrictions that can be used to represent and ex-
change provenance information generated in different systems and under different
contexts. It can also be specialised to create new classes and properties to model
provenance information for social computations.

Õ prov:Agent

Õ Collective
Õ Machines
Õ Users
Õ MachinesAndUsers

6 PROV-O: http://www.w3.org/TR/prov-o/

http://www.w3.org/TR/prov-o/
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Õ prov:Person
Õ User

Õ AdminUser
Õ GuestUser
Õ LoggedInUser

Õ prov:SoftwareAgent
Õ Machine

Õ WebApplication
Õ WebServer
Õ Database

The PROV:Agent class is a parent to three subclasses: prov:Person, prov:SoftwareAgent,
and Collectives (see Table 1).

Class Description
Machine Identifies software components which run software. Subclasses of Machine include:

WebServer, WebApplication or Database.
User Identifies agents which have a user role within a social computions. A user can be

classified as: an AdminUser who has administrative privileges; a GuestUser where
the user is not registered with a social machine; and a LoggedInUser who has reg-
istered with a user name and password. A GuestUser and LoggedInUser may be the
same person at different times, however we chose to differentiate between them be-
cause typically social machines allow logged in users different privileges to guest
users. While it is important to understand the provenance of an agent, it is also im-
portant to be able to describe collectives of agents.

Collective Identifies a group of agents that are motivated by at least one common issue or inter-
est, or work together to achieve a common objective. The Collective class denotes a
group of agents, which can be composed of just one type, like Users or Machines,
or a mix of Users and Machines. The notions of the dimensions or characteristics
used to define collectives are largely undefined, with respect to social machines.
Therefore, the collective subsumption is most likely to evolve with new research ef-
forts. However, the notion of a collective is used when describing or comparing the
outcome of a social computation. For example, in GalaxyZoo people classify with
collective performance as good as professional astronomers [35].

Table 1: prov:Agent classes and their descriptions

The PROV:Entity class is parent to seven subclasses DataStore, prov:Location,
MachineOutput, NegotiationOutcome, Plan, UserInput, and Utility, as shown in Ta-
ble 2.

Õ prov:Entity

Õ DataStore
Õ prov:Location
Õ MachineOutput
Õ Plan

Õ TransformativeInformation
Õ NegotiationOutcome

Õ NegotiationAgreement
Õ NegotiationCounterOffer
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Class Description
DataStore Identifies data repository entities of a set of integrated objects.
prov:Location Identifies the geographical location of an entity.
MachineOutput Defines entities that were created by a machine process, this process may transform

the inputs to this activity.
NegotiationOutcome Defines entities that were produced from a negotiation, where a negation may result

in an agreement, rejection or counter offer.
Plan Defines entities that are a detailed proposal for doing or achieving a goal.
UserInput Classifies entities that are inputted by users, these may include personal details, user

preferences, feedback information such as votes or ratings, or user requests.
Utility Describes entities that have utility for social computation, such as price.

Table 2: prov:Entity classes and their descriptions

Õ UserInput
Õ PersonalDetails
Õ UserPreference
Õ FeedbackInformation

Õ Feedback
Õ Vote

Õ NegotiationInput
Õ UserRequest

Õ Utility
Õ Price

The PROV:Activity class is parent to six subclasses (see Table 3):

Class Description
PerformNegotiation Describes negotiation activities.
ProvideInformation Describes activities that provide a prov:Entity.
CompleteTask Describes activities that are performed by a user or machine and may result in Plan,

Utility, UserInput, and or Negotiation entities.
PublishData Describes activities which can be performed by a user or machine who publishes

data, a user may publish their contribution, and a machine may publish the result of
a computation.

RunPlan Describes activities which can be performed by a user or a machine
StoreData Describes activities which store data.

Table 3: prov:Activity classes and their descriptions

Õ prov:Activity

Õ PerformNegotiation
Õ SubmitApproval
Õ SubmitCounterOffer
Õ SubmitDisagreement

Õ ProvideInformation
Õ ProvideFeedback



14 Heather S. Packer, Laura Drăgan and Luc Moreau

Õ ProvideVote
Õ ProvideStarRating

Õ CompleteTask
Õ CompleteMirotask
Õ PlayGame

Õ CreateOriginalContent
Õ ProvideDeviceCollectedData

Õ PublishData
Õ RunPlan

Õ PerformDataManipuation
Õ Additive
Õ Subtactive
Õ Transformative

Õ PerformHouseKeeping
Õ StoreData
Õ RetrieveData

Applications may extend this ontology with their own class hierarchy, because
the aim of the upper level ontology is to capture the core concepts and their prop-
erties. An example of this is described in Section 5, where we extend the ontology
with concepts specific to the ride share application.

4.2 Trust and Reputation

Social machines, such as LinkedIn, Stack Overflow, and eBay, use reputations to
allow users to make trust judgements, and also to instil trust in the system. A repu-
tation service will compute and publish reputation scores for a set of subjects (such
as users, goods, service providers and services) within a social machine, based on
the opinions of other users about a subject. The opinions are typically ratings and
are sent to the reputation service, which uses a specific reputation algorithm to dy-
namically compute the reputation scores based on the received ratings.

Users of a social machine use the reputation scores for decision making: a subject
with a high reputation score will normally attract more business than a subject with a
low reputation score. It is therefore in the interest of users to: have a high reputation
score; know what factors influenced the reputation score; and understand how to
improve their score. Also, a transparent reputation system, which is clear in the way
it computes scores, appears more trustworthy to its users.

In order to allow social machines to provide reputation data and access the reputa-
tions, we contribute a RESTful API because it helps organise a complex application
into simple resources which it makes it easy for new clients to use the application,
even if it is not specifically designed for them. The following REST API described
in Table 4, has four resources: subjects, feedback reports, reputation reports, and
events. A subject is the subject about which feedback or reputation describes, and
is derived from feedback reports provided by an author. A feedback report can be
associated with an event, which a subject was a part of. In more detail, an event is
identified with a time and date range to which the feedback is pertaining to.
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Action Description
GET /subjects/ Get the URIs of subjects which have rep-

utations.
GET /subjects/:subject/feedback-reports/ Get the URIs of the feedback reports

about the subject.
GET /subjects/:subject/reputation-reports/ Get the URIs of the reputation reports

about the subject.
GET /subjects/:subject/feedback-reports/:report/ Get a feedback with a report identifier

about the subject.
GET /subjects/:subject/reputation-reports/:report/ Get a reputation report with a report iden-

tifier about the subject.
POST /subjects/:subject/feedback-reports/ Post a new reputation report about the

subject.
GET /subjects/:subject/events/ Gets the URIs of events a subject is asso-

ciated with (for example, in the ride share
application users are associated with ride
request id).

GET /subjects/:subject/feedback-
reports/?event=:event

Gets the URIs of the feedback reports
about the subject from an event.

GET /subjects/:subject/feedback-
reports/?author=:user

Get the feedback reports that is authored
by a user about a subject.

GET /subjects/:subject/reputation-reports/summary-
latest

Get latest reputation report, which is the
latest generated summary from the repu-
tation service about a user.

Table 4: The Reputation Service’s URIs

5 The Ride Share Application

This section describes a ride sharing application that allows drivers and commuters
to offer and make request rides [36]. These offers and ride requests include details
about required travels, timing, locations, capacity, prices, and other details relevant
for car sharing. It performs automatic matching of commuters to available cars, by
considering departure and destination locations, routes, capacity and reputation. The
interactions of a driver and commuters differ and result in different outcomes. The
following list describes the flow of interactions when a driver offers a ride.

1. Drivers and Commuters post ride requests to the server.
2. Matching is performed and some potential ride plans are generated based on the

previously submitted ride requests from commuters that are matching the con-
straints of the ride request posted by the driver. This gives rise to ride plans that
appear as potential ride plans both for the driver as well as for the commuters
who have already submitted ride requests in the past, these ride requests have
not been finalised (i.e. a ride record does not exist for them) and are matched to
the ride request of the driver.
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3. When at least one driver or commuter indicates their willingness to follow a
specific ride plan the specific potential ride plan becomes a potentially agreed
ride plan.

4. When all participants have expressed an interest in a potentially agreed ride
plan, the driver selects one and attempts to finalise negotiation.

5. When all the commuters who appear in the driver agreed ride plan also agree
that this is their selection among their driver agreed ride plans, the agreement
has been reached and this gives rise to an agreed ride plan.

6. Together with the agreed ride and all the other ride plans that exist, both for the
driver as well as the commuters, automatically become invalid ride plans for the
specific requests that generated them.

5.1 The Ride Sharing Architecture

The ride share application has five core components: a view, ride matching service,
reputation service, and ProvStore 7 (see Figure 2). The view provides the user with
the graphical components with which to enter their ride requests, and to view and
select potential rides. The matching service provides matches containing drivers
and commuters, which the users can select. The reputation service is designed to
store feedback reports and, generate and store reputation reports. The ProvStore is
a specialised service for storing provenance using W3C PROV standard, the view,
matching service and reputation service all send provenance data to it.

The components communicate using REST APIs. In more detail, we show the
interactions between the ride share service, reputation service and the ProvStore in
Figure 3. The interactions use a REST API for the reputation and ProvStore services.
The figure describes five interactions:

1. The ride share application requests the latest reputation of a user. It sends a GET
request for the latest generated reputation of the user, and receives a JSON ob-
ject containing the reputation. The reputation service also generates the prove-
nance data recording this request and the outcome, and posts it to the ProvStore.
This interaction may occur when a user requests to view the reputation of an-
other, and the ride matching algorithm filters the potential rides.

2. The ride share application requests all feedback reports about a subject authored
by a given author. This interaction occurs when the ride manager is matching
drivers and users for rides, if an author rates the other participant (the subject)
highly then this is more likely to result in a match. The reputation service re-
turns a JSON object containing the requested feedback reports, and sends the
provenance data recording this request to the ProvStore.

3. The ride share application requests the feedback reports about a user, the ride
share application sends two requests. The first GET requests returns the dictio-
nary of reports describing a user, and the second GET requests for a particular

7 ProvStore: https://provenance.ecs.soton.ac.uk/store/

https://provenance.ecs.soton.ac.uk/store/
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View
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Reputation 
    Service

Ride Matching 
      Service

User

seesuses

updates

stores sends

stores sends

posts

Ride Share Application

stores stores

sends

sends

Fig. 2: Components of the ride share application

report. The reputation service sends the provenance data recording this request
to the ProvStore.

4. The ride share application submits a feedback report. The reputation service
stores the feedback report, and then generates a reputation report of the user. In
order to generate the reputation of a user, it requests details from the ProvStore
about the user. The reputation service posts the provenance data recording this
request to the ProvStore.

5. The ride share application submit provenance data to the ProvStore. The ride
share application posts the provenance data contained in a bundle to the ProvS-
tore. This interaction occurs when the ride share application creates entities and
performs activities on entities, such as receiving ride requests from users and
generating ride plans.

5.2 Provenance Example for the Ride Share Application

In order to describe the provenance generated by the ride share application, we run
through an example where two users post ride requests and describe the provenance
generated in each step.



18 Heather S. Packer, Laura Drăgan and Luc Moreau

ProvStoreReputation ServiceRideShare
Application

4.2.1: returns specified document about subject

1: GET /subjects/:subject/reputation-reports/summary-latest

4: POST ReputationReport

2: GET /subjects/:subject/reputation-reports/?author=:user

3: GET /subjects/:subject/reputation-reports/

3.2.1: GET /subjects/:subject/reputation-reports/:report/

1.2: returns latest reputation report

2.2: returns reports authored by the specified user

3.2: returns reports about a subject

4.1: Store reputation report

3.2.1.1: POST /store/api/v0/documents/

4.2.1.3: POST /store/api/v0/documents/

4.2.1.1: Generate Summary Reputation Report
4.2.1.2: returns posted reputation report's id

4.2: GET /store/api/v0/documents/

3.2.1.2: returns the specified report

3.1: POST /store/api/v0/documents/

2.1: POST /store/api/v0/documents/

1.1: POST /store/api/v0/documents/

5: POST /store/api/v0/documents/

5.1: returns confirmation of action

Fig. 3: Interactions between the ride share application, reputation service and Prov-
Store



An Auditable Reputation Service for Collective Adaptive Systems 19

1. Alice who is a driver wants to car pool because it saves her money on petrol,
she uses the ride share application to find someone to share a ride with. She
logs into the application and creates a ride request with the details of the ride,
including the departure and destination locations and times, how many seats are
available and her preferences.
The provenance recorded from posting a ride request is shown in Figure
4. Alice who is identifiable by the uri rs:users/0, posted the ride request
rs:rideRequest/#08 to the ride manager, who stored the ride request at rs:rideRequest/0.

Fig. 4: A graph showing the provenance generated by Alice’s ride request.

2. Bob would like a ride, and he logs in to the ride share application and adds his
request to the application.
The provenance recorded Bob, who is identifiable the uri rs:users/1 posting the
ride request rs:rideRequest/#1 to the ride manager, who stored the ride request
at rs:rideRequest/1.

3. After each ride request is submitted, the ride share application runs a ride match-
ing algorithm. It uses the information in the two ride requests Alice and Bob
submitted because their departure and destination locations and time were com-
patible, it also used their reputation which was stored by the ride manager, to
generate a match.
The provenance recorded from this step shows that the matching algorithm used
Alice and Bob’s ride requests, and their reputations which are retrieved from the
reputation manager, to generate the ride plan, rs:ridePlans/0. This is shown in
Figures 5a and 5b.

4. Alice and Bob can then view that there is a match. Alice views Bob’s reputation
and then accepts the ride.

8 The hash indicates that this entity isn’t stored in memory.
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(a) The matching algorithm used Alice and Bob’s ride requests.

(b) The matching algorithm used Alice and Bob’s reputation, and generated a ride plan.

Fig. 5: A detail of the provenance generated by the ride matching activity.

This provenance generated by Alice’s acceptance is shown in Figure 6. It shows
that Alice viewed Bob’s reputation repser:subjects/28/reputation-reports/v/11
and accepted the ride plan rs:ridePlans/0, which changed the state of the ride
plan into a potentially agreed ride plan rs:ridePlan/0/v/parp.

Fig. 6: A detail of the provenance generated by Alice’s acceptance of a ride plan.
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5. Bob then views Alice’s reputation, and accepts the ride.
The provenance that was generated by this acceptance shows that Bob viewed
Alice’s reputation repser:subjects/27/reputation-reports/v/2 and accepted the
ride plan rs:ridePlan/0/v/parp, which changed the state of the ride plan into
an agreed ride plan rs:ridePlan/0/v/arp, as shown in Figures 7a and 7b.

(a) Bob viewed Alice’s reputation

(b) The agree plan was generated.

Fig. 7: Details of the provenance generated by Alice’s acceptance of a ride plan.

6. When the ride has been completed, Bob fills in a feedback form rating Alice as
a Driver. This triggers the reputation manager to recalculate Alice’s reputation.
The provenance generated by the submission of Bob’s feedback, shows that
the rs:ride manager posts a reputation report repser:subjects/27/reputation-
reports/#490 and is used to generate a reputation report with the ac-
tivity repapi:generateReputationReports 1244. This activity generates the
reputation report repser:subjects/27/reputation-report/491, which is derived
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from the properties (such as the #total completed rides) in the report
repser:subjects/27/reputation-reports/490 (see Figure 8).

Fig. 8: A detail of the provenance generated when Bob submits feedback about
Alice.

The reputation report repser:subjects/27/reputation-report/491 contains Alice’s
reputation in JSON format shown in Table 5. The reputation report includes
a hasProvenance property, which is a uri that links to the provenance of the
reputation report.

5.3 Accountable Reputation Service

The provenance recorded from the above steps allows users to perform audits, in-
cluding:

1. Who created ride requests;
2. Which ride requests were used to generate which ride plans;
3. Who accepted and rejected ride plans;
4. How users’ rides are generated and what influenced their generation;
5. How users’ reputations were generated.

Moreover, it allows the users to overview the provenance of more than one ser-
vice, the ride and reputation manager, which can be difficult in heterogeneous sys-
tems. It also gives the users the awareness that their actions are accountable, and it
allows users to alter their actions so that they might improve their chances of ride
matches and being selected by other users. Specifically, it supports the following
use cases, which are derived from the general use cases presented in Section 3:
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{
”report type” : ”reputationReport”,
”user id” : 0”,
”total-stars”: 321,
”total completed rides”: 201,
”number of repeat riders” 82,
”average overallStarRating”: 4.5,
”average ride Price”: 3,
”average ride Route”: 4,
”average ride Car/Environment”: 2,
”average ride OnTime”: 5,
”average individual Reliability”: 5,
”average individual Communication”: 4,
”average individual DrivingSkill”: 3,
”average individual Friendliness”: 4,
”average outsideFactors Traffic”: 2,
”average outsideFactors Weather”: 2,
”freeTextComments” : [”Problems with traffic but other-
wise fine.],
”hasProvenance” : ”https://provenance.ecs.soton.ac.uk/store/documents/1665/”,
”provenanceGenerated” : ”2014-01-30T21:00:00.250”

}

Table 5: Alice’s reputation report repser:subjects/27/reputation-report/491, which
was derived from Bob’s feedback report.

Ride Share Use Case 1 The user wants to be able to make choices between avail-
able rides based on the participants and their preferences, reputation, and their
opinion of them. This use case is a specialisation of use case 3.

Ride Share Use Case 2 The user wants to be able to analyse quickly the possible
participants, and if the choice is too large then they should be filtered to include
only rides that fulfil their preferences with users that have good reputations. This
use case is a specialisation of use case 3.

Ride Share Use Case 3 The user wants to be able to understand why they were
recommended particular ride matches, so that they can see which factors affected
the recommendation, such as their preferences or reputation. This use case is a
specialisation of use case 3.

Ride Share Use Case 4 The user wants to be able to understand how they are
viewed by others in the ride share application, and which factors influenced this.
This use case is a specialisation of use case 6.

Ride Share Use Case 5 The user wants to understand how their personal details
are used by the ride share application system. This use case is a specialisation of
use case 9.



24 Heather S. Packer, Laura Drăgan and Luc Moreau

6 Summary

Provenance describes the flow of data across multiple systems, as we have demon-
strated in the previous section with the ride and reputation manager. Moreover,
provenance is independent of the technologies used in those systems executions.
This is crucial because heterogeneous systems implemented by different develop-
ers or companies, and may each have their own way of representing information.
In order to support heterogeneous social systems, we present the upper level ontol-
ogy provenance for social computations, which defines a core vocabulary for the
classification of agents, entities and activities.

Auditing private data processing is crucial so that authorities and system admin-
istrators can check its compliance with regulations. Provenance is a record of data
entities, and it details how entities are created, modified and used, and this record
can be used to audit these processes. In order to consume the provenance data gen-
erated by a social machine it must be retrievable.

Exposing provenance data increases public awareness and promotes accountabil-
ity. Organisations are required to manage personal information in accordance with
regulatory frameworks. However, there have been several cases where personal in-
formation has been leaked and exposed to unauthorised recipients. Future work will
explore how to expose provenance without revealing the identity of users.

Reputation plays a core role in social machines, directly by interactions between
users of social machines, and indirectly by influencing social computations. There-
fore, in this paper we provide a generic REST API for exposing reputation informa-
tion.
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