
  

 

Abstract— In this paper we present a systematic exploration 

to determine several EEG based features for classifying three 

emotional states (happy, fearful and neutral) pertaining to face 

perception. EEG data were acquired through a 19-channel 

wireless system from eight adults under two conditions – in a 

constrained position and involving head-body movements. The 

movement EEG data was pre-processed using an artifact 

reduction algorithm and both datasets were processed to 

extract neurophysiological features – ERP components and 

from functional connectivity measures. The functional 

connectivity measures were processed using a brain 

connectivity toolbox and gray level co-occurrence matrices to 

generate a total of 463 features. The feature set was split into:  

training dataset comprising of constrained and movement EEG 

data and test dataset comprising of only movement EEG data. 

A retrospective cross-validation approach was run on the 

training dataset in conjunction with two classifiers (LDA and 

SVM) and the ranked feature set, to select the best features 

using a sequential forward selection algorithm. The best 

features were further used to prospectively classify the three 

emotions in the test dataset. Our results show that we can 

successfully classify the emotions using LDA with an accuracy 

of 89% and using top 17 ranked features. 

I. INTRODUCTION 

An understanding of the underlying mechanism involved 
in the perception of different facial expressions incurring a 
high mental activity has considerable applications in the field 
of psychology (e.g. studying mood and emotions). Emotional 
states have been known to be associated with specific 
psychological response patterns which have been investigated 
by the research community for various applications in 
healthcare [1], affecting computing [2] and learning [3]. Out 
of the several common measures used for emotion 
recognition [4], neurophysiological measurement can access 
the processes in the fundamental brain structures responsible 
for the evolution in emotion dynamics and can hence be used 
for recognition of a wide range of emotional states. 

In particular, EEG with its high temporal resolution, can 
detect the immediate responses to emotional stimuli [5] and 
hence various EEG features are implicated in emotion 
processes. These features at a single electrode level are: 1) 
components of event related potentials (ERPs) [6], 2) spectral 
power in different frequency bands and 3) from multichannel 
perspective - phase synchronization and coherence [7]. As the 
emotional process involves a large-scale network instead of a 
single brain region [4], a multichannel EEG analysis 
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investigating the interaction among different brain sites could 
formulate an understanding of the underlying emotional 
processes. The information exchange between the network of 
segregated functional units of the brain which integrate with 
each other can be described by functional connectivity (FC) 
measures during emotion processes These measures can be 
quantified by a number of neuro-biological features using 
complex network analysis [8].   

In this study we aim to investigate several EEG-based 
features extracted from brain signals acquired during face 
emotional stimuli to determine the significant features (ERP 
components and FC measures specific to emotion 
processing) involved in cognitive processing for face 
perception. These identified features can be used to classify 
the emotional states thereby aiding the diagnosis and 
treatment of patients affected by neurodegenerative diseases, 
having impaired face emotion recognition (e.g. Autism 
Spectrum Disorder [1]). 

For this investigation, we recorded EEG data elicited by 
neutral and emotional faces (happiness and fearful) with the 
subject: in a constrained position (condition1-constrained 
EEG) and in real-life involving body/head movements 
(condition2-movement EEG). A wireless 19-Channel EEG 
system was used to collect data from the subjects and 
relevant processing was done to identify robust EEG features 
required for classifying the different emotional states. The 
processing hierarchy involved filtering the captured signals 
and an additional artifact reduction algorithm was applied 
only on the movement EEG data using wavelet packet 
transform-empirical mode decomposition (WPT-EMD) [9]. 
The processed EEG data were averaged across multiple 
stimuli (26 stimuli were presented for each of the three 
emotions) to generate the ERP data for the feature extraction 
of: 1) ERP components and 2) FC based measures. Each FC 
measure was represented with a reduced dimensionality by 
applying: 1) gray level co-occurrence matrices (GLCM) [10] 
and 2) Brain Connectivity Toolbox (BCT). Out of the 463 
features extracted, the significant features were selected from 
a ranked list, using sequential forward selection (SFS) 
algorithm in conjunction with two classifiers following a 
cross-validation technique. Our results show that we are able 
to prospectively classify the three emotional states from 
condition2 with an accuracy of 89% using only 17 features 
with the Linear Discriminant Analysis (LDA) classifier. 

II.  BACKGROUND 

Recent studies have focused on recognizing emotions 
from neural response using EEG signal features and 
classifying emotions elicited by pictures, audio and video. 
Majority of these EEG features are based on wavelet [11] and 
Hilbert [12] transform. In [5], few brain connectivity 
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measures (correlation, coherence, and phase synchronization) 
have been used to classify positive, neutral and negative 
emotions elicited by video-clip, which to the best of our 
knowledge appears to be the most relevant work for emotion 
recognition.  

In our study, we aimed at using neurophysiological 
features that are deemed to aid in the investigation of the 
underlying brain processes involved in emotion perception. 
ERP components and functional connectivity have been 
commonly used for studies involving face perception in 
typical and pathological subjects. Here, in addition to the 
ERP components, we make an attempt to describe these FC 
measures with a reduced dimensionality by using BCT and 
GLCM. Finally, we use these features to classify the 
emotions using a low-complexity classifier. 

III. EEG DATA ACQUISITION 

In this study we chose three common emotional states [5], 
having a wide range of variability that can trigger diverse 
brain responses to the applied stimuli. An EEG face-evoked 
dataset [13] was used consisting of greyscale images of 13 
adults (seven males and six females) with three different 
expressions (happy, fearful and neutral). The external facial 
features, like hair, neck and ears, were deleted from the 
stimuli to ensure subject's attention on the facial expression. 
EEG data were collected under two conditions from eight 
subjects, who gave consent for the experiments, comprising 
of two females and six males (mean age of 28 ± 3). The 
participants were seated approximately 80 cm from a 
computer monitor with back and arm rests and were asked to 
watch the series of images presented at the screen during 
condition1 (constrained position) and condition2 (body-head 
movement). The 39 face stimuli (13 faces × 3 emotions) were 
presented in a randomized order and each stimulus was 
presented twice for 850 ms with a randomized duration of 
500-1500 ms between two consecutive stimuli to avoid 
expectation effects. A fixation cross was randomly presented 
to the subjects to ensure that the subjects looked at the screen. 
EEG signals were recorded using the wireless Enobio system 
[14] with 19 channels according to the International 10-20 
system with a sampling frequency of 500 Hz. 

IV. METHODS 

The EEG recordings were pre-processed with a band pass 
filter having a cut-off frequencies of 0.5 Hz - 42 Hz and 
further processing involved the following stages – artifact 
reduction, epoching and feature extraction, explained in the 
following sections. An overview of the methodology has 
been illustrated in Figure 1. EEG data acquired from 
condition2 (contaminated by artifacts due to the subject’s 
body-head movement and eye-blinking) was de-noised using 
an automated artifact reduction technique - WPT-EMD 
artifact reduction algorithm [9] prior to epoching. EEG 
epochs corresponding to each stimulus were then extracted 
from the pre-processed data for both conditions, obtaining an 
ensemble of 26 epochs for each emotional state (i.e. happy, 
fearful and neutral). A threshold of 200 µV was applied on 
the 78 epochs (26×3 emotions) and the selected epochs 
within the thresholds were averaged to obtain the ERP data. 
These ERP data, from condition1 and 2 were then used for 
the feature extraction.  
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Figure 1.  Overview of the methodology.  

A. Functional Connectivity (FC) 

 Hermes Toolbox was used to generate the 29 FC 
measures; each of these is a matrix with size 19×19 (19 being 
the number of electrodes). Among the measures, described in 
Table I, four connectivity measures related to the phase 
synchronization (PS) between two signals (i.e. 5-8) have been 
estimated for each individual band (in Hz) – θ (4-8), α (8-12), 
β (12-32), γ (32-42) and all bands (6-42), resulting in total of 
[(4×5) + 9] 29 features. 

TABLE I.  FUNCTIONAL CONNECTIVITY MEASURES 

No. Measures Description 

1. CrossCorrelation  linear correlation between two signals as a function 

of time  

2. Correlation Pearson’s correlation coefficient (at zero lag) 

3. Coherence  linear correlation between two signals as a function 
of frequency  

4. Phase Slope 

Index 

estimation of the flow direction of information 

between two signals as a function of time 

5. Phase Locking 
Value (PLV) 

(PS) inter-trial variability of the phase difference 
between two signals at time t 

6. Phase-Lag Index 

(PLI) 

(PS) similar to PLV, however rejects phase 

distributions centered around zero 

7. ρ Index  (PS) based on Shannon entropy, quantifies the 
deviation of the distribution of the cyclic relative 

phase from the uniform distribution 

8. Directionality 

Phase Indexes 
(DPI) 

(PS) Analysis of the temporal evolution of the 

phase derivative 

9. Granger 

Causality  

linear parametric method, measures if signal x 

provides predictive information about signal y 

10. Transfer 
Entropy  

is non-parametric, measures the amount of directed 
information flow from signals x to y 

11. Partial Directed 

Coherence  

a frequency domain measure of Granger causality, 

based on modelling time series by multivariate 
autoregressive (MAR) processes 

12. Direct Transfer 

Function  

similar to PDC, however use a Hermitian transpose 

instead of a Fourier transform  

13. Mutual 

Information  

measures the amount of information shared 

between two signals 

a. Detailed description of the measures have been provided in [7]  
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B. Feature Extraction: ERP Components 

ERP components related to emotion processing [6], 
described in Table II, are calculated for each electrode/region 
(central, frontal, occipital, parietal and temporal), resulting in 
– a) 96 features [19 electrodes + 5 regions × (P100+N170) × 
(amplitude, latency)]; b) 72 features [19 electrodes + 5 
regions × (P300+ESW+LSW)], totaling 168 features. 

TABLE II.  ERP COMPONENTS 

No. Measures Description 

1. P100 reflects early sensory processing of visual 

information; calculated for amplitude and latency  

2. N170 linked to sensitivity in processing information 
from human faces; calculated for amplitude and 

latency 

3. P300 linked to face recognition; calculated for mean 
amplitude 

4/5 Early/Late Slow 

Wave (ESW/LSW) 

linked to face processing and facial emotion 

processing; calculated for mean amplitude 

b. Detailed description of the measures have been provided in [6]  

C. Feature Extraction: Brain Connectivity Toolbox (BCT)  

BCT applies graph theory analysis on the FC measures 
except for 1, 3, 11, 12 (cf. Table I), since averaging across the 
thrid dimension of these 3D matrices would negate the 
significance of these features, thereby yielding 150 features 
[25 FC×6].   

TABLE III.  GRAPH THEORETIC MEASURES 

No. Measures Description 

1. Transitivity measure of segregation (i.e. how many node’s 

neighbors are connected among themselves)  

2. Modularity measure of segregation; it measures how much the 

network can be divided into subgroups with dense 

links within-groups and few links between-group 

3. Characteristic 

path length  

measure of integration; measures the average 

distance between nodes across the entire network 

4. Global 

efficiency 

measure of integration; it is the inverse of the 

distance between nodes 

5. Radius measure of shape of network-minimum eccentricity 

6. Diameter measure of shape of network- maximum eccentricity 

c. Detailed description of the measures have been provided in [8]  

D. Feature Extraction: GLCM 

GLCM measures the second order statistics to describe the 
distribution of the gray levels over the pixels in an image 
region. Here, it is used to quantify the FC measures with a 
reduced dimensionality, resulting in 145 features [29 FC×5].  

TABLE IV.  GLCM MEASURES 

No. Measures Description 

1. Contrast measures the local variations of grey level 

2. Correlation measures the correlation between pixels in different 

directions 

3. Homogeneity measures the repetition of texture elements 

4. Entropy measure of texture spatial disorder 

5. Energy It is a measure of local homogeneity of the texture 

d. Detailed description of the measures have been provided in [10]  

This concludes the feature extraction process resulting in a 
total of 463 features extracted across ERP, BCT and GLCM. 
These features are correspondingly used for the next stage of 
classifying the emotional states.  

V. CLASSIFICATION 

We combine the feature sets from both the datasets 

(condition1 and condition2) thereby having a data matrix for 

15 subjects, 463 features and three emotional states. The 

combined dataset is split into - a training dataset and a test 

dataset. The training dataset comprises of constrained EEG 

features of 7 subjects and movement EEG features of 5 

subjects (80% of data). The test dataset however comprises 

of only movement EEG features of 3 subjects (20% of data). 

Since in this work, our target was to classify the three 

emotional states from the movement EEG data, we opted to 

use only this in the test dataset. Using both constrained and 

movement EEG data in the training dataset helps to ensure a 

wider range of variability in the training set paving the way 

for a robust classification methodology which will produce 

acceptable levels of accuracy in a real-world application.  

Prior to classification, we rank the features and select 

only the optimal number of features for dimensionality 

reduction. This is done using three steps – 1) feature ranking 

using scatter matrices; 2) retrospectively classifying the 

training dataset using a ‘leave-one-out’ cross-validation 

strategy in conjunction with the ranked feature set using a 

SFS methodology to obtain the best combination of 

sequentially selected features; and 3) prospectively 

classifying the movement EEG test dataset. 

We use the low-complexity class-separability measure 

based on scatter matrices to rank the 463 features. It ranks 

each individual feature for a multiple-class scenario where a 

high rank represents a small within-class variance and a 

large between-class distance among the data points in the 

respective feature space [15]. We follow the wrapper 

approach using the low-complexity SFS technique, selecting 

the first i features of the ranked feature set in each iteration (i 

=1…463) of the retrospective classification in conjunction 

with a ‘leave-one-out’ cross-validation methodology on the 

training dataset. For this exploration, we restrict ourselves to 

two different classifiers – LDA and support vector machines 

(SVM), chosen from the perspective of using a 

low/moderate complexity classifier. SVM being a binary 

classifier in principle, we used the toolbox LIBSVM that is 

efficient for multi-class classification [16]. 

VI. RESULTS 

The retrospective classification using cross-validation in 

conjunction with feature selection helps to ascertain the best 

combination of features that resulted in highest accuracy for 

each individual classifier, calculated by averaging the 

individual accuracies across each cross-validation step for a 

sequentially selected feature combination. We achieve an 

overall accuracy of 81% using LDA (17 features) and 69% 

using SVM (25 features) as a result of this stage. This 

selected feature set is further used for the next step of 

prospective classification on the movement EEG test dataset, 

which is the most important stage in any classification 

procedure, as it helps to determine the success of the cross-

validated model on the data that it has not been trained upon. 

The results for prospective classification, using the best 
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determined feature combination with the two classifiers on 

the test dataset comprising of three subjects and three 

emotional states are presented in Tables V and VI 

(illustrating the sensitivity for each class, overall accuracy 

considering a multi-class scenario and the best features). 

Using LDA and only 17 features (out of 463), we can 

successfully classify the three emotional states with 

sensitivities ranging between (2/3, i.e. 67% for neutral) to 

(3/3, i.e. 100% for emotional) and a total accuracy of 89%. 

TABLE V.  SUMMARY OF SENSITIVITIES AND ACCURACY FOR THE 

MOVEMENT EEG DATA COLLECTED FROM 3 SUBJECTS 

Classifier No. of 

Features 

Sensitivity for each class 

(true predictions out of 3) 

Accuracy 

(%) 

  Happy Fear Neutral  

LDA 17 3 3 2 89 

SVM 25 3 3 1 78 

TABLE VI.  LIST OF THE BEST FEATURES SELECTED IN THE CROSS-
VALIDATION STAGE FOR EACH CLASSIFIER 

Classifier List of best Features 

LDA Transitivity[PLV(θ)]; N170_Latency_F8; 

Transitivity[DPI(γ)]; LSW_MeanAmp_F7; 

LSW_MeanAmp_F4; ESW_MeanAmp_F7; 

ESW_MeanAmp_C4; Diameter[PLI(θ)]; Energy[DPI(γ)]; 

N170_Amp_T8; N170_Amp_P3, CP_DPI, 

P300_MeanAmp_C4; P100_Amp_P3; 
ESW_MeanAmp_P8; N170_Amp [Cz, C4, C3]; 

N170_Latency_O2 

SVM Same as LDA features; Radius[PLI(θ)]; 
LSW_MeanAmp_O1; P300_MeanAmp_P8; 

Correlation _DPI α; P100_Latency_T7; N170_Amp_P8; 

Energy_PSI; P300_MeanAmp_O2 

 

An observation of the selected features for LDA shows 

the following significant features for each type of measure 

(cf. Table VI) - 1) all the ERP components in several 

channels or region (i.e. N170, LSW, ESW and P100); 2) 

among the functional connectivity measures, only the phase 

synchronization, specifically PLV and PLI in θ band and 

DPI in either γ or all bands; 3) for the graph theoretic 

measures: transitivity (i.e. of PLV(θ) and DPI(γ)), diameter 

of PLI(θ) and characteristic path length of DPI; 4) lastly, for 

GLCM measures only the energy (i.e. DPI(γ)) is the most 

significant feature. Hence, this helps us to determine the 

most significant features (17 out of 463) required to classify 

the target emotional states. Similarly, using SVM we achieve 

sensitivities in the range of 33-100%, with an accuracy of 

78% using 25 features having an inherent similarity with the 

top ranked features of LDA. However, there are few extra 

features required in this case, such as ERP components from 

additional channels (LSW O1), BCT (i.e. Radius[PLI(θ)]) 

and GLCM measures (i.e. Correlation[DPI(α)]). The results 

using SVM are comparatively lower than LDA and the 

higher number of features required by the former, paves the 

way for LDA to be the most applicable classifier, besides 

being computationally less complex. 

VII. DISCUSSION 

In this paper, we describe a systematic exploration using 

several EEG features to classify three emotional states 

pertaining to face perception. The processing methodology 

involved extracting a large number of neurophysiological 

features and effectively reducing the dimensionality using 

machine learning techniques. Our results show that we can 

successfully classify the three emotions using a simple LDA 

classifier using only 17 features chosen from ERP 

components and only three main parameters based on graph 

theory analysis extracted from phase synchronization-FC 

measures. The three significant features from graph theory - 

segregation (i.e. transitivity), integration (i.e. diameter) and 

shape of the network (i.e. CP) helps to further reduce the 

complexity of the feature extraction process, an essential 

step towards recognising the target emotions. The feature 

ranking/selection and classification techniques have been 

chosen considering the underlying computational complexity 

of the methodology. This paves the way for transforming the 

algorithms to a low-complexity implementation in 

software/hardware for supporting real-time emotion 

classification which can be applied for monitoring a wider 

subject population in the field of clinical neuroscience. 
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