Iterative Learning Control for Performance Optimisation

Bing Chu

Abstract— Iterative learning control (ILC) is a popular design
methodology to achieve high performance trajectory tracking
of systems operating in a repetitive manner. This paper further
extends the applicability of ILC by showing that ILC can
solve a more general problem of optimising some system
performance for which trajectory tracking is just a special
case. The problem is formulated in a general Hilbert space
setting using system operators and a gradient based algorithm
is proposed as a solution. The algorithm’s convergence and
robustness properties are analysed in detail and numerical
simulations are provided to demonstrate the effectiveness of
the proposed method.

I. INTRODUCTION

Iterative learning control (ILC) is a design methodology
to achieve high performance tracking trajectory of systems
working in a repetitive manner, and to do so, by learning dur-
ing the information collected from the previous executions
of the task (named trials). The idea is motivated by human
learning: by observing how well you perform a task and
properly adjusting your actions according to your previous
performance, you will be able to improve your ability to
perform the same task next time. Originating from robotics,
ILC has now attracted extensive research interest and has
been proven to be extremely successful in achieving high
system performance across a wide range of applications from
industrial robotic manipulators, chemical batch processes,
medical equipment to rehabilitation [1].

In classic ILC design problem, the reference signal 7(t) is
defined at every time instant ¢ over the whole trial interval
[0,T]. This however is not always the case in practical
applications. As an example, when an robot arm performs
a ‘pick and place’ task, we will be mainly interested in
the output at the pick up and place down positions; what
happens between these positions is of less concern. Moti-
vated by these applications, the idea of point-to-point ILC
is developed where the design objective is to find an control
input such that the output tracks a given reference trajectory
defined not on the whole trial interval, but only at a finite
number of time instants. A number of the point-to-point ILC
design algorithms have been proposed in the literature, see
[2]-[9] for more details.

In point-to-point ILC, there are more flexibilities in choos-
ing the control input. Theoretically, there will be infinite
number of control inputs that can achieve perfect tracking
at the required intermediate time points. In principle, these
extra degrees of freedom can be further exploited to improve
some other system performance. Along this line, an auxiliary

Bing Chu is with School of Electronics and Computer Science,
University of Southampton, Highfield, Southampton SO17 1BJ, UK
b.chulecs.soton.ac.uk

optimization problem is studied in [10], [11] where the sys-
tem is required to track a given point-to-point reference and
at the same time to minimise some quadratic auxiliary system
performance. Two switching algorithms are proposed in [10]
and an inverse-model based approach is developed in [11].
More recently, a similar problem is studied in [12]. A multi-
objective learning framework is developed by including a
number of (possibly competing) performance metrics, e.g.
point-to-point tracking performance, control energy etc., into
a single optimisation based controller design. These results
suggest that in addition to trajectory tracking, ILC also
has the potential to improve some system performance of
interest.

Inspired by the above work, this paper shows that the idea
of ILC can be applied more generally to solve a perfor-
mance optimisation problem, for which the classic trajectory
tracking is just a special case, thus further extending the
applicability of ILC. The idea can be exploited in principle
in both classic ILC setting and point-to-point ILC problem
but for simplicity this paper focuses on the former. The main
contributions of the paper are summarised as follows:

« mathematical formulation of the idea of using ILC for
performance optimisation into an abstract optimisation
framework in Hilbert spaces (Section II). Formulating
the problem in general Hilbert spaces has the clear
advantage that it can include many situations of in-
terest, e.g. linear time invariant or time varying state
space models, linear differential models etc., providing
a general platform for algorithm analysis and design.

o derivation of a gradient based method to solve the above
problem and a detailed analysis of its convergence
properties (Section III). It is shown the proposed al-
gorithm has the appealing property that it will converge
monotonically in the performance index to the optimal
solution of the performance optimisation problem, i.e.
the best possible performance that can be achieved.
Implementation of the proposed algorithm is also dis-
cussed.

o rigorous robustness analysis of the proposed algorithm
against model uncertainties (Section IV). The analysis
results reveal that the proposed algorithm is capable of
converging to the best performance even if the model
used is different from the real plant. This feature is
of great interest in practice as an accurate model is
generally difficult to obtain. The model uncertainties
that can be tolerated by the proposed algorithm is also
characterised analytically.

« validation of the proposed method using a model of an

electro-mechanical rotatory non-minimum phase system
(Section VI). The results clearly demonstrate the effec-
tiveness and advantages of the proposed algorithm.

II. PROBLEM FORMULATION

In this section, the idea of using ILC for performance
optimisation is formulated using an abstract operator form
representation in Hilbert spaces. For simplicity, a formulation
is presented for discrete time, linear time-invariant systems
but the abstract problem setting applies to more general linear
systems including many situations of interest such as (but
not limited to) discrete time, linear time-varying systems,
continuous time linear time-invariant and time-varying state
space models, linear differential models, and differential
delay models etc.

Consider the following single-input, single-output discrete
time, linear invariant system

rp(t+1) =
ye(t) =

where ¢ is the time index (i.e. sample number), k is the trial
number and u(t), zx(t), yx(t) are respectively the input,
state and output of the system on trial k. The system is
working in a repetitive manner to perform the same task
defined over a finite duration ¢ € [0, N] and the system state
is reset to the identical initial condition z;(0) = zo, k =
1,2,--- between trials, i.e. when t = N + 1 the time is reset
to t = 0 and state to xg.

Without loss of generality assume the relative degree of
the system is unity (i.e. the generic condition CB # 0 is
satisfied, other cases can be handled in a similar way), then
system model (1) on the k'™ trial can be expressed in an
equivalent ‘lifted-system’ form representation [13]

A.’Ek (t) + .Bu;€ (t)
Cuxy(t) D

yr = Guy +d,)

where the NV x 1 vectors of input and output time series ug,
yr are defined as

T
c, Uk (N — 1)]
T
G is the linear system operator mapping from the input space
U = RY with inner product defined as

u =

Y =

(u,v)r = uT Rv
and associated induced norm

lullr = v/ {u,u)r = VuT Ru

to the output space Y = RV with inner product

(@,y)q =27 Qy

and associated induced norm

lylle = v/ (¥, 9)e = V¥ Qy

(where (), R are positive definite matrices of compatible di-
mensions). In particular, in matrix from G can be represented
as

CB 0 - 0 0
CAB CB . 0 0
G=| cA2B cAB . - : “)
: CB 0
| CcAN-1B CAB CB |

and the N x 1 vector d represents the effect of initial
conditions

d=[CAzy, CA2zy, ---, CANzy |". (5

Note that matrix G is nonsingular as C'B # 0. The design
problem can now be stated as follows.

ILC for Performance Optimisation: The ILC algorithm
design problem can now be stated as finding a control
updating law

, Uk—r) (6)

where s, > 0 are integers, such that the system input and
output has the asymptotic property that a performance index
J(u,y) defined as

Uk+1 = f(yk-‘rl?"' sYk—s, Uy " °

J(u,y) = g(u,y) @)

in which g(u,y) is a continuous function of the input « and
output y, is minimised, i.e. when k — oo

(uks yx) = (u*,y")
= arg (n;nyn {J(u,y) = g(u,y) : y = Gu+d} (8)
The above definition describes a large class of problems
including many situations of interest. As a special case, the
classic trajectory tracking problem can be included into the
above framework by choosing the performance index J(u, y)
to be minimised as

J(u,y) = |r —yll5, 9)

i.e. by choosing g(u,y) = [r — y[|3, in (7), where 7 is the
given reference signal. Minimising the performance J(u,y)
in this case requires that the tracking error r — y is as small
as possible and ideally zero (if the reference is within the
range of the system operator, i.e. there exists an input signal
to generate the given reference, which is true for the system
operator GG defined in (4)).

In this paper the following quadratic performance index is
considered

J(u,y) =y = yallg + pllu — uall% (10)

where y; and ug represent some desired operating points
(note that they do not need to satisfy the system dynamics
ya = Gug + d;); p > 0 is a weighting scalar. Note that (10)
has been used extensively in the classic optimal control the-
ory to characterise system performance. The design objective
is to find a control updating law (6) such that the above

performance index is minimised as k& — oo by the designed
input uy and the system output yy.

Note that when accurate model information is available,
a solution of the above performance optimisation problem
can be obtained directly (either analytically or numerically),
in which case there is no benefit of using ILC to learn
from the previous system performance. For example for the
performance index (10) considered in this paper, this is just a
finite horizon linear quadratic optimal control problem which
admits a combined feedforward and feedback solution using
Riccati equations [14]. However, when there is no exact
model information available for use, the problem becomes
much difficult as we are trying to minimise a performance
index J(u,y) in which u and y are constrained by some
unknown system dynamics G, that is different from the
system model G we have, i.e. we are looking for the solution
of the following optimisation problem

(w*,y") = arg min {J(u,y) = lly — alldy
+pllu — ud||% cy = Gpu+ d} an

in which G, is unknown. A possible solution is to solve
the above problem using the (inaccurate) system model G
and apply the obtained input to the system. However, the
achieved system performance can be very different from the
optimal one. In what follows, we will show that even under
this difficult situation, we can still achieve the optimal system
performance by using the idea from ILC.

III. A GRADIENT BASED ILC ALGORITHM FOR
PERFORMANCE OPTIMISATION

In this section, a gradient based ILC algorithm is proposed
to solve the above performance optimisation problem. Its
implementation procedures and convergence properties are
discussed in detail.

A. Description of the Algorithm
The proposed gradient ILC algorithm is given as follows:
Step 1 Set iteration number k£ = 0, choose an initial input
ug, implement the input to the system and record the
output yo
Step 2 Update the input for the next iteration using a gradi-
ent based algorithm

Up1 = Uk — BIG (Y — ya) + plur —uaq)] (12)

where 8 > 0 is a learning gain satisfying
0<B<2/(p+IGIP),

G™ is the Hilbert adjoint operator mapping from Y
to & with a matrix form representation

G*=R'GTQ (13)

and ||G|| denotes the norm of the operator G; imple-
ment the input ug4; and record the system output

Yk+1
Step 3 Set k < k + 1, goto Step 2.

Note that the key step in updating the input uy4 is to
compute

G*(yr — ya) = R'GTQ(yx — ya).

This can be implemented by either off-line computation
using the system model GG, or on-line experiment as follows.
Introduce a time reversal matrix F' as follows

(14)

0 -+ ... 0 1
0 -« -~ 1 0

F-|0 -1 0 0 (15)
1 0 -+ - 0

The time reversal matrix has the property that when operating
on a signal, e.g. ug, the resulting signal is just the time
reversal of uy, i.e.

T

Fup = [up(N —1), up(N —2), - uR(0)]

It is clear that FF = FT F? = [. Using the time reversal
matrix F' the matrix GT can be written as

G' = FGF
and thus (14) is equivalent o

G*(yx — ya) = R FGFQ(yr — ya)
Therefore to update ujy; :
(i) compute Q(yx — ya) and p(ur — uq)
(ii) calculate F'Q(yr —yaq) by reversing Q(yx — yq) in time
(iii) apply FQ(yr — ya) to the system experimentally and
record the output GFQ(yx — ya)
(iv) reverse the output to obtain FGFQ(yx — y4); compute
R'FGFQ(yx — ya);
(v) update ug41 by computing

(16)

U1 = u, — BRI GTQyr — ya) + plug — ua)]

Term 1

Term 2

(note that both terms in the above have now been
obtained)

Note that compared to the off-line computation method,
the online implementation involves an experiment in
Step (iii) between two trials. This might seem to be more
complicated but as will be seen later (in Section IV), this
implementation leads to improved robustness properties and
therefore should be the preferable choice if possible.

B. Convergence Properties

The proposed algorithm has some very nice convergence
properties, as shown in the follow theorem:

Theorem 1: The proposed algorithm converges monoton-
ically in the performance index J(u,y), i.e.

1 = yallgy + pllunss — ual%

< lyr — yall}y + pllux — ual%, k>0 (A7)

to the unique solution of the performance optimisation prob-
lem, i.e.

hm (Umyk) = (u*,y")
= arg min {lly = vallg + pllu — wal% : y = Gu+d} .

Proof. To show the monotonicity of the performance index,
denoting

Aup, = up 1 — up = =BG (yx — ya) + plur — uaq)]

and substituting the updating law into the performance index
gives

J(ugs1, Y1) — I (urs yi) = lyr+1 — de?g
+ pllunts — uallf — lyw — yallgy — pllur — uall%
= B2 (pll Aupl|% + |GAu) — 28] Auk|7 (18)

which is a quadratic function of 5 (if Auy # 0). It is easy
to find that if

0<8<2/(p+GI*),

the value of the above quadratic function will be negative
and thus

J(uk+17yk+1) S J(ukayk)a

i.e. the performance index decreases monotonically.

To prove that the algorithm converges to the solution of
the performance optimisation problem, we use a slightly
different approach (the same approach will be used later in
robustness property analysis).

Note that the updating law can be further written as

Ug+1 — ud = u, — U — BIG*(yr — ya) + p(ur — ua)]
= ug — ug — B[G*Gup + G*d — G*yq + p(ur, — ug)]
=[I - B(pl + G*G)] (ur — ua) + BG* (ya — Guq — d)

As 0 < B < 2/(pI + ||G||?), the above is a contraction and
thus as k — 0o, ui —ug converges to the unique fixed point

Uoso — Uug = G*(pI + GG*) M (yg — Gug —d) (19)
Similarly it can be shown that y; — y4 converges to
Yoo — uqg = —(pI + GG*)_I(yd — Gug —d)
Denote

A= (pI + GG*) Hya — Gug —d).
It is seen that the proposed algorithm converges to
Uoo — Ud = G A, Yoo — Yd = —A,
which is a stationary point of the Lagrangian
Llu,y,A) = lly = yally + llu — uall % + Xy — Gu —d)q

This together with the fact that the performance index is
strict convex implies the algorithm converges to the desired
unique solution of the performance optimisation problem,
which complete the proof. []

The above theorem shows that the proposed algorithm
converges monotonically in the performance index to the best
performance that can be achieved. Moreover, from (18) in
the proof, it can be seen that the performance improvement
from trial to trial is a quadratic function of the learning gain
(. Therefore, if 8 is chosen to be closer to the minimum
of the quadratic function, e.g. close to 1/(p + ||G||?), faster
convergence of the performance index should be expected.
This will be further illustrated later in the example section.

Remark 1: Computing the operator norm ||G||. In order
to choose the learning gain 5, we will need to know ||G||,
i.e. the norm of the operator GG. This can be calculated as
follows using the model

b 1Gule _ 1Gull3y uWTGTQGu
HG” 2 = T
o Tullm [ullz u” Ru
= sup \/vTRl/ZGTQGRl/QU — (—7(Q1/2GR—1/2)
v#£0 vTv

(20)

in which 7(QY2GR~'/?) is the largest singular value of
matrix Q'/2GR~'/2. An upper bound of it can be estimated
using the ||G(2)|lo0, details of which are omitted here for
brevity.

IV. ROBUSTNESS OF THE PROPOSED ALGORITHM

The previous section proposes a gradient based ILC algo-
rithm and shows that the proposed algorithm will converge
monotonically in the performance index to the optimal
solution under the ideal situation that the available model
is an accurate representation of the plant dynamics, which,
however, is rarely the case in practice. In this section,
the convergence performance of the proposed algorithm is
examined when there exist model uncertities/mismatches.
In particular, the uncertainties that can be tolerated by
the algorithm are characterised in terms of the following
definition which is a modified version of the so-called ‘robust
monotonic convergence’ proposed in [15].

Robust Monotonic Convergence: An ILC algorithm has
the property of robust monotone convergence with respect to
a performance index in the presence of a defined set of model
uncertainties if, and only if, for every choice of control on
the first trial and for any choice of model uncertainty within
the defined set, the resulting sequence of performance index
converges monotonically.

Suppose the real plant G), is different from the system
model G and represented by

G, = (I+AG)G

where AG is the multiplicative model mismatch/uncertainty
which is an N x N matrix in ‘lifted form’ representation.
It turns out that the robustness properties of the proposed
algorithm depends on how the algorithm is implemented.
When the algorithm is implemented online using experiments
on the plant between trials, the following theorem shows
that the proposed algorithm can still converge to the optimal
solution of the performance optimisation problem.

Theorem 2: The proposed algorithm using online imple-
mentation is robust monotonically convergent in the perfor-
mance index J(u,y), i.e.

Yks1 — yallg + pllunss — uallz

< llye — allp + pllur — uall®, k>0 (21)

to the best performance that can be achieved, i.e.
i (uge, yx) = (u”,y7)
= argmin {lly - yallg + pllu - wallf : y = Gyu + d}
(22)
if
0<B<2/(p+IGy|*). (23)

Proof. The theorem can be proved using similar techniques
as in the proof of Theorem 1 by noting that

Aug = Uiy — up = —B[GL(Yx — ya) + p(ur — uq)]

where G is the adjoint operator of the real plant. The details
are omitted here for brevity. []

From the above theorem, it can be seen that the proposed
algorithm can still converge monotonically to the unique
minimal solution of the performance optimisation prob-
lem (22), even when the exact plant model G, is not avail-
able. This is clearly different from the normal optimisation
problem where the optimal solution is sensitive to the model
accuracy. In our algorithm, this has been possible as the
system works in a repetitive manner thus the algorithm could
learn from the system’s previous behaviours to compensate
for the modelling mismatches. Also note that a sufficient
condition for (23) to hold is

1 /2
IAG] < =51/ 5 =P
IGIIV 5

From this, it can be seen that, for a larger set of model
uncertainties to be tolerated, the learning gain [has to
be smaller. A very small learning gain S will lead to
slow convergence in the performance index which clearly
demonstrates the classic tradeoff between performance and
robustness.

Robustness properties of the algorithm using off-line com-
putation can be analysed in a similar way - details are
omitted here for space reasons. Unfortunately, using off-
line implementation the algorithm does not converge to the
optimal solution to the performance optimisation problem,
which is clearly different from the case of using online
implementation where the optimal solution is guaranteed.
This is not surprising as when using online experiments more
information about the real plant is utilised and therefore
better performance can be achieved. On the other hand,
using off-line computation saves the effort of conducting real
experiments - a compromise between the experimental effort
and achieved performance has to be made.

V. VALIDATION OF THE PROPOSED DESIGN

In this section, numerical simulations are presented to
demonstrate the effectiveness of the proposed design.

A. A non-minimum phase test facility

A model of an electro-mechanical non-minimum phase
test facility consisting of a rotary mechanical system of
inertias, dampers, torsional springs, a timing belt, pulleys
and gears, has been used to evaluate the proposed method.
The test facility is a demanding platform which has been
used in the assessment of a wide variety of ILC schemes
(see, for example [16], [17]). A 1000 pulse/rev encoder
records the output shaft position and a standard squirrel
cage induction motor supplied by an inverter, operating in
Variable Voltage Variable Frequency (VVVF) mode, drives
the load. The plant uses a PID loop in order to act as a pre-
stabilizer, and the resulting closed-loop system constitutes
the system to be controlled using ILC. The system can be
represented using the non-minimum-phase, continuous time
plant transfer-function

149.36(4 —)
5%+ 21.553 + 170.285 + 368.525 + 663.82

which was identified in previous work [16] using a frequency
response test method and shown to be a reasonably good
representation of the system dynamics. The model is sampled
using a zero-order hold and a sampling time of 0.1s to yield a
discrete time state space model to be used in the simulation.

The design objective is to design an input signal such that
the output shaft position is as close as possible to the desired
operating position r(t) given below

G(s) = (24)

5 cos(7rt), 0<t<1.5
r(t) =0, 15<t<45 (25
Ssin(rt —7/2) 4.5 <t <6

over a duration of 6s repeatedly, at the same time, minimising
the input energy required. This is formulated into a perfor-
mance optimisation problem with

J(u,y) = lly = rllg + lull%,

i.e. choosing y4 = r,uq = 0 and p = 1 in the general
performance index (10). For simplicity, the matrices () and
R are chosen to be) = I and R = 0.1 x I where [is an
identity matrix with appropriate dimensions.

B. Performance of the algorithm

The simulations study a practical scenario where the
accurate model information is not available. Suppose that
during the identification process, the nondominant poles
—9.6789 + 5.4546¢ of the model (24) were not identified
at all and only the dominant poles —1.0711 + 2.0569¢
were included; furthermore, the DC gain of the model was
underestimated by 50%. The resulting model is denoted as
G with transfer function

1.344(4 — s)
2 + 2.1425 + 5.378

representing a situation where significant model uncertainties
are present.

The simulation compares the performance of four scenar-
ios:

Gl(s) =

1) Online implementation of the proposed algorithm with
learning gains 5 = 0.05 and 0.1, respectively

2) Off-line implementation of the proposed algorithm with
learning gains S = 0.05 and 0.1, respectively

3) Calculating the optimal solution by directly solving the
optimal control problem using the available (inaccurate)
system model and apply the obtained input to the
plant, compute the performance index - this represents
a classic (perhaps the most commonly used) solution

4) Assuming the accurate model is known, solving the
optimal control problem and compute the performance
index - this represents the best possible result that can
be achieved.

The results are shown in Figure 1. From the figure, it is

102°F T T T .
= = = Online Implementation B = 0.05
= = = Offline Implementation 3 = 0.05
Online Implementation B = 0.1
10%° Offline Implementation3=0.1 |q
" RN Optimal Performance (Predicted)
1 Optimal Performance (Real)
2.4 BV
10 \
=Y
oo
= 102} 1
AR R R R R R R R R R R R R R EEREREE
1022} 1
102.17 - -
0 10 20 30 40 50
Trials
Fig. 1. Simulation: performance index convergence results over 50 trials

clear that using the classic solution based on an (inaccurate)
system model, the best performance that can be obtained is
170.6. Using the proposed method, significant improvements
in the performance are achieved. In particular, using off-line
implementation the proposed algorithm converges to 125.4 in
the performance index and using online implementation the
proposed algorithm converges to 119.6, which is the optimal
performance that can be ever achieved (calculated using the
assumed known accurate system model (24)). Note that this
is accomplished when there is no exact model information
available, which is of great interest in practical applications.

VI. CONCLUSION

Iterative learning control is a popular control design
method for high performance trajectory tracking of systems
operating in a repetitive manner. This paper further extends
the applicability of ILC by showing that it can be used
to solve a general performance optimisation problem for
which the trajectory tracking is just a special case. The
problem is formulated into an optimisation framework using
an abstract Hilbert space setting. A gradient based method
is proposed as a solution and its convergence and robustness
properties are analysed in detail. It has been shown that

the proposed algorithm will converge to the best solution
of the performance optimisation problem, even when the
model available is different from the real plant, which is of
particular practical interest. Numerical simulations using an
electro-mechanical non-minimum phase system model verify
the effectiveness of the proposed design.

The paper focuses on linear discrete time invariant systems
but the method applies more generally to linear discrete
time varying systems and linear continuous time systems; the
detailed realisations of the results, however, might change.
Theoretically, the results in this paper can also be extended
to point-to-point ILC problem and to the case where there
exist system constraints. These topics constitute part of our
future research and will be reported separately.

REFERENCES

[1] David H Owens. [terative Learning Control: An Optimization
Paradigm. Advances in Industrial Control. Springer, 2016.

[2] Y.Wang and Z. Hou. Terminal iterative learning control based station
stop control of a train. International Journal of Control, 84(7):1263—
1277, 2011.

[3] H. Ding and J. Wu. Point-to-point control for a high-acceleration
positioning table via cascaded learning schemes. IEEE Transactions
on Industrial Electronics, 54(5):2735-2744, 2007.

[4] J. Park, P. H. Chang, H. S. Park, and E. Lee. Design of learning input
shaping technique for residual vibration suppression in an industrial
robot. IEEE/ASME Transactions on Mechatronics, 11(1):55-65, 2006.

[5] J. van de Wijdeven and O. Bosgra. Residual vibration suppression
using hankel iterative learning control. International Journal of Robust
Nonlinear Control, 18(10):1034-1051, 2008.

[6] D. H. Owens, C. T. Freeman, and T. V. Dinh. Norm-optimal iterative
learning control with intermediate point weighting: Theory, algo-
rithms, and experimental evaluation. [EEE Transactions on Control
Systems Technology, 21(3):999-1007, 2013.

[7]1 C. T. Freeman and Y. Tan. Iterative learning control with mixed
constraints for point-to-point tracking. IEEE Transactions on Control
Systems Technology, 21(3):604-616, 2013.

[8] P. Janssens, G. Pipeleers, and J. Swevers. A data-driven constrained
norm-optimal iterative learning control framework for LTI systems.
IEEE Transactions on Control Systems Technology, 21(2):546-551,
2013.

[91 T. D. Son, H. S. Ahn, and K. L. Moore. Iterative learning control
in optimal tracking problems with specified data points. Automatica,
49(5):1465-1472, 2013.

[10] D. H. Owens, C. T. Freeman, and B. Chu. Multivariable norm optimal
iterative learning control with auxiliary optimisation. International
Journal of Control, 86(6):1026—1045, 2013.

[11] D. H. Owens, C. T. Freeman, and B. Chu. An inverse-model approach
to multivariable norm optimal iterative learning control with auxiliary
optimisation. International Journal of Control, 87(8):1646-1671,
2014.

[12] I. Lim and K. L. Barton. Pareto iterative learning control: Optimized
control for multiple performance objectives. Control Engineering
Practice, 26:125-135, 2014.

[13] J. Hatonen, D.H. Owens, and K.L. Moore. An algebraic approach to
iterative learning control. International Journal of Control, 77(1):45—
54, 2004.

[14] A. Bryson and Y.C. Ho. Applied Optimal Control: Optimization,
Estimation, and Control. Abingdon, UK, 1975.

[15] D. H. Owens, J.J. Hatonen, and S. Daley. Robust monotone gradient-
based discrete-time iterative learning control. International Journal of
Robust and Nonlinear Control, 19(6):634-661, 2009.

[16] C.T. Freeman, PL. Lewin, and E. Rogers. Experimental evaluation of
iterative learning control algorithms for non-minimum phase plants.
International Journal of Control, 78(11):826-846, 2005.

[17] Z. Cai, C. T. Freeman, P. Lewin, and E. Rogers. Iterative learning
control for a non-minimum phase plant based on a reference shift
algorithm. Control Engineering Practice, 16(6):633-643, 2008.

