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Abstract7

This work considers automated Multi Target Tracking (MTT) of odontocete whistle8

contours. An adaptation of Gaussian Mixture Probability Hypothesis Density (GM-PHD)9

filter is described and applied to the acoustic recordings from six odontocete species. From10

the raw data, spectral peaks are first identified and then GM-PHD filter is used to simul-11

taneously track the whistles’ frequency contours. Overall over 9000 whistles are tracked12

with a precision of 85% and recall of 71.8%. The proposed filter is shown to track whis-13

tles precisely (with mean deviation of 104 Hz, about one frequency bin, from the annotated14

whistle path) and 80% coverage. The filter is computationally efficient, suitable for real-time15

implementation, and is widely applicable to different odontocete species.16
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I. INTRODUCTION17

The detection of marine mammal vocalizations plays an important role in passive acous-18

tic monitoring. The objectives of such studies include species recognition24,29,9, species pres-19

ence and abundance estimation21, studying species behaviour26, mitigation during industrial20

activities35. Odontocetes (toothed whales) produce a rich variety of high-frequency vocal-21

izations, which can be grouped into three broad categories: whistles, echolocation clicks and22

burst pulses2, all of which have most of their energy above 2 kHz31. This work focuses on23

whistles, which are highly variable, narrowband, frequency modulated, tonal sounds with24

fundamental frequencies generally between 2 and 30 kHz and are typically used in a social25

context14. Not all odontocete species whistle, but majority of delphinid species do.26

Methods used for detection and frequency estimation of odontocete whistles vary from27

semi-automated methods e.g.,14,24 to fully automated methods e.g.,8,36,11,28,12,9,13. Most28

methods are based on spectrogram techniques, although alternative approaches also exist29

e.g.,12,11.30

Prior to applying a detection algorithm to the signal, some pre-processing of data is typi-31

cally carried out in order to reduce background noise and interfering signals e.g.,8,36,12,22,28,9.32

After the noise removal, spectrogram-based algorithms usually identify strongest spectral33

peaks e.g.,10,15,28,22,9 or apply image-processing techniques to define the pixels20 or ridges34

that represent whistles13. The identified peaks are then connected into a continuous whistle35
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contour using different approaches, such as particle filtering36,28, Kalman filtering20, combi-36

nation of polynomial fitting and Kalman filtering13; hypothesis tracking with some gating37

rules10,22; phase tracking11,12.38

The automated methods for whistle contour detection are commonly based on the39

algorithms that allow for single target tracking. In this work, an alternative approach is taken40

in which the detection and tracking of frequency content of delphinid whistles is considered41

as a multi-target tracking (MTT) problem, where whistles are targets that overlap, their42

numbers are unknown and vary with time and there are interfering signals present. An MTT43

algorithm called Gaussian Mixture Probability Hypothesis Density (GM-PHD) filter16,32,44

which has been previously used in sonar applications6, was adapted here for application of45

dolphin whistle contour tracking. The paper is organized as follows. In Section II some46

background is given on target tracking and PHD filters. Section III introduces formulation47

of the GM-PHD filter for dolphin whistle tracking and derivation of models and parameters48

for this particular problem. The performance of the proposed GM-PHD filter is tested on49

the acoustic recordings of dolphin whistles, which have been hand-annotated and results50

are given in Section IV. Discussion and conclusions may be found in Sections V and VI51

respectively. Appendix summarizes the most frequently used symbols and their meanings.52

II. BACKGROUND53
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A. Target Tracking54

Target tracking is a process of estimating a target’s state as it evolves in time, from55

a sequence of noisy measurements. A target is broadly defined as the entity to be tracked56

and the state vector, xk, contains the information about the properties of the target at time57

k. The only available information about the targets is given by the measurement vector,58

zk, which also typically contains noise. In the case of whistle frequency contour tracking,59

each whistle represents a target. The target state vector consists of frequency and chirp60

(rate of change of frequency) information and the measurement vector consists of frequency61

peaks. Measurements may also be contaminated by the detection of false targets (clutter)62

and points where there has been a failure to detect a target.63

In order to perform target tracking at least two models are required; first a model64

describing the evolution of the state with time, called the system (or dynamic) model65

xk = Φk(xk−1,nk−1) (1)

where Φk is a system function that describes the evolution of the state vector and nk−1 is a66

system noise process and is a vector of random variables specifying the random component67

of the parameter evolution1,36. From the system model one can define a state transition68

density fk|k−1(xk|xk−1), which characterizes the transition of the state from time k − 1 to69

time k. The second model required is a model relating the noisy measurement to the state,70
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called the measurement (or observation) model71

zk = ψk(xk,ηk) (2)

where ψk is a function that defines the measurement process and ηk is the measurement noise72

process1,36. From the measurement model one can obtain a likelihood function gk(zk|xk),73

that describes the likelihood that a measurement zk was generated by the target xk. These74

models are collectively known as a state-space model.75

Target tracking is typically achieved with the use of a recursive Bayesian filter where76

one attempts to construct the posterior probability density function (pdf) of the state,77

pk(xk|z1:k), based on the set of measurements z1:k up to time k 1. Such a filter involves78

a two stage process; prediction and update, where the system model is used to predict the79

state pdf and the measurements are used to refine that prediction1. This is implemented80

in a recursive manner and at each time step an estimate of the state is obtained from the81

posterior pdf.82

In the case of single target tracking, it is assumed that only one target is present and83

that all the observations are generated by that target. If the system and measurement models84

are linear and the noise processes are Gaussian, then optimal target tracking is achieved with85

the Kalman filter5, which in this case represents the optimal solution to Bayesian recursion.86

If the models are non-linear and/or the noise is non-Gaussian, particle filters can be used to87
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perform single target tracking36.88

In the majority of real-world applications there are multiple targets present at any given89

time, the number of which will change through time as targets appear (i.e. target birth)90

and disappear (i.e. target death). At each time k there are nk target states xk,1, ...,xk,nk91

and mk measurements zk,1, ...,zk,mk . The states of the targets and the observations can be92

modelled using the concept of a random finite set. A random finite set is an object in which93

the elements have random values, as in any multivariate random process, but in addition94

to which the number of elements in the set is also random27. The random set of states95

(multi-target state), Xk, and the random set of measurements (multi-target measurement),96

Zk, are represented as follows:97

Xk = {xk,1, ...,xk,nk} ∈ F(X ) (3)
98

Zk = {zk,1, ...,zk,mk} ∈ F(Z) (4)

where F(X ) and F(Z) are the finite subsets of the state and observation spaces X and Z,99

respectively.100

In this case the use of multi target tracking (MTT) techniques is required and the101

objective is to jointly estimate the number of targets and their states from the noisy mea-102

surements32. Traditional approaches to MTT are based on data association techniques and103

involve explicit associations between measurements and targets that are achieved with the use104
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of single target tracking techniques. Examples of traditional MTT include nearest neighbor105

(NN), joint probabilistic data association (JPDA) and multiple hypothesis tracking (MHT)4.106

However, the uncertainty in the evolution of the multi-target state and the origin of the107

multi-target measurement is naturally modelled by random finite sets27 and therefore data108

association-free techniques, based on Mahler’s finite set statistics (FISST) framework (an109

overview is provided in19), have been increasingly used in the last decade for the Bayesian110

multi-target filtering problems. A multi-target Bayesian filter determines at each time step k111

the posterior probability density of multitarget-state pk(Xk|Z1:k)
27. The high dimensionality112

of the Bayes multi-target filter makes the recursion intractable in practice, a problem which113

is overcome using the Probability Hypothesis Density (PHD) filter16,17.114

B. Probability Hypothesis Density (PHD) filter115

The PHD filter approximates the multi-target Bayes recursion by propagating the first-116

order statistical moment vk(x|Z1:k) of the multi-target posterior pk(Xk|Z1:k), known as the117

intensity function or the PHD17,32,25,27. The PHD is a function whose peaks identify the118

likely positions of the targets. By integrating the PHD on any region of the state space119

one obtains the expected number of targets in that region. It should be noted that PHD120

is a density function but is not a pdf, since its integral over the space of its variable is not121

unity19. A target with state x is more likely to be present in the region when the PHD122

(intensity function) is large than when it is small, which allows one to obtain state estimates123
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of the targets based on peaks in the PHD.124

The PHD filter comprises both prediction and update steps. In the prediction step,125

the PHD filter incorporates the motion of individual targets and accounts for disappearance126

of existing targets (by incorporating the probability of target’s survival). In addition it127

incorporates the appearance of completely new targets. Hence, the predicted intensity func-128

tion, vk|k−1(·), consists of the newborn targets (introduced by the birth intensity function)129

and the existing targets (targets surviving from the previous time step that are represented130

by the posterior intensity function from the previous time step vk−1(·)). The abbreviation131

vk(x|Z1:k)
abbr
= vk(xk) is used and the prediction step can be expressed as32,25,27132

vk|k−1(xk) = γk(xk) + 〈pS,k(xk−1)vk−1(xk−1), fk|k−1(xk|xk−1)〉 (5)

where γk(xk) denotes the PHD of target births between time k−1 and k; pS,k(xk−1) denotes133

the probability of survival, that is probability that a target with state x at time k − 1 will134

survive until time k; fk|k−1(xk|xk−1) denotes single-target state transition density from time135

k− 1 to k and 〈g, f〉 =
∫
f(x)g(x)dx. Note that spawning terms, that define how one target136

can become resolved into more than one target, have been omitted from the above equation.137

This is because rarely, if ever, does one observe a dolphin whistle contour which splits into138

two distinct contours.139

In the update step, the PHD filter incorporates the probability that any given target140
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was not detected (by incorporating the probability of target detection) and updates the pre-141

dicted intensity with a set of measurements by also taking into the account the measurement142

likelihood function and false alarms (clutter). The posterior intensity function vk(·) at time143

step k is given by144

vk(xk) = [1− pD,k(xk)]vk|k−1(xk) +
∑
z∈Zk

pD,k(xk)gk(z|xk)vk|k−1(xk)
κk(z) + 〈pD,k(xk)gk(z|xk), vk|k−1(xk)〉

(6)

where pD,k(xk) denotes the probability of detection, that is the probability that observation145

will be collected at time k from a target with state xk, Zk denotes the multi-target measure-146

ment at time k, κk(z) denotes denotes the PHD of clutter at time k and gk(z|xk) denotes147

the single-target measurement likelihood function at time k.148

The computational load of the PHD filter can grow significantly if target births can149

occur uniformly in the state space. One approach to mitigate this is to adapt the birth150

intensity according to the measurements27, which results in the prediction and update steps151

being preformed separately for newborn and existing targets. A label β is introduced to152

distinguish between the two types of targets; β = 0 refers to existing targets, β = 1 refers153

to newborn targets. The prediction stage becomes27154



Gruden and White, JASA, p. 11

vk|k−1(xk, β) = γk(xk) β = 1

= 〈pS,k(xk−1)vk−1(xk−1), fk|k−1(xk|xk−1)〉 β = 0 (7)

where vk−1(·) represents posterior intensity function from the previous time step and consists155

of posterior intensity functions of existing and newborn targets from the previous time step156

(vk−1(·, 0) + vk−1(·, 1)).157

The update stage of the filter for existing targets (β = 0) can be expressed as27158

vk(xk, 0) = [1− pD,k(xk)]vk|k−1(xk, 0)

+
∑
z∈Zk

pD,k(xk)gk(z|xk)vk|k−1(xk, 0)

L(z)
(8)

and for newborn targets (β = 1)159

vk(xk, 1) =
∑
z∈Zk

gk(z|xk)γk(xk)
L(z)

(9)

where160

L(z) = κk(z) + 〈gk(z|xk), γk〉+ 〈pD,k(xk)gk(z|xk), vk|k−1(xk, 0)〉 (10)

Note that since newborn targets are created from the measurements, the newborn161

targets are always detected, i.e. pD(x, 1) = 127.162
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It can be seen from the above equations that in addition to the system and measure-163

ment models (from which the fk|k−1(xk|xk−1) and gk(z|xk) are obtained respectively), the164

PHD filter requires definition of additional models and parameters. Specifically, the target’s165

survival (pS,k(xk−1)) and detection (pD,k(xk)) probabilities and clutter (κk(z)) and target166

birth (γk(xk)) models. The formulation of these is described in the Section III.B.2.167

The above equations still involve integrals that typically have no closed form solution168

and therefore the PHD filter needs to be approximated32,25. Practical implementations of169

PHD filters include Gaussian Mixture PHD (GM-PHD)32 and Sequential Monte Carlo PHD170

(SMC-PHD)33 filters. In this work the GM-PHD approach was chosen since it tends to be171

faster and more straightforward than the SMC-PHD approach18. The GM-PHD filter and172

its application to a specific problem of dolphin whistle tracking is presented in the next173

section.174

III. METHODOLOGY175

A. Data, pre-processing steps and obtaining the measurements176

The data set used in this study was obtained from the 5th Workshop of Detection,177

Classification, Localization and Density Estimation (DCLDE) conference 2011 (available at178

MobySound archive, http://www.mobysound.org). This dataset contained raw data and179

analyst-annotated files for six species: long-beaked common dolphin (Delphinus capensis),180
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short-beaked common dolphin (Delphinus delphis), melon-headed whales (Peponocephala181

electra), spinner dolphin (Stenella longirostris), Atlantic spotted dolphin (Stenella frontalis)182

and bottlenose dolphin (Tursiops truncatus). The recordings contained in this dataset were183

single-species recordings that were confirmed by trained visual observers. Study areas, data184

collection protocols and procedure for hand-annotation of the data are summarized in Roch185

et al. 28 , Baumann-Pickering et al. 3 and Soldevilla et al. 30 . The raw data was used for the186

GM-PHD filter to track the whistles from and hand-annotations were used to evaluate the187

performance of the filter. In addition, a small part of raw data was set aside to be used188

as training data for certain parameters of the GM-PHD filter. For this purpose three files189

were randomly selected from the annotated dataset and a 1 minute section of each of those190

files was taken as the training data. These training files corresponded to three species, D.191

capensis, D.delphis and S.frontalis, and were obtained using different recording equipment.192

This training data was subsequently not used in the performance evaluation.193

For ease of implementation, where necessary, the data was re-sampled to 192 kHz (before194

re-sampling 2.5% of the files were sampled at 300 kHz, 12.5% at 480 kHz and 85% at 192 kHz).195

After re-sampling, pre-processing was applied to the data in order to reduce the background196

noise and interfering signals. A pre-processing scheme was adapted from Gillespie et al. 9197

and was applied with a sliding window that was 2048 points long and had 50% overlap,198

resulting in 93.8 Hz spacing between frequency bins. Within each window the following199
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steps were performed as described in Gillespie et al. 9 : first echolocation clicks were removed200

by applying a weighting function; then spectrogram was computed on a decibel scale, using201

2048 point Hanning window, and spectral peaks were enhanced by applying normalization202

across frequency based on a 61 point median filter; after that the normalization across time203

using exponential moving average (with the weighting constant of 0.02) was performed in204

order to remove persistent tones from the spectrogram.205

In each window, after the noise was removed, spectral peaks were determined by iden-206

tifying all frequencies whose normalized magnitude exceeded 8 dB. Only frequency bins207

between 2 and 50 kHz were searched for peaks, since most dolphin whistles will lie within208

this range and to be consistent with the hand annotations which were also applied to whistle209

harmonics. The identified spectral peaks represent the measurement set from which the210

whistle contours were tracked using the Gaussian Mixture PHD (GM-PHD) filter.211

Measurement sets containing spectral peak measurements and a list of all files used212

in this study, as well as Matlab implementation of the method for obtaining spectral peak213

measurements was released to the MobySound archive.214

B. Whistle contour tracking with Gaussian Mixture PHD (GM-PHD) filters215

216

The GM-PHD filter algorithm32 was implemented and used to track frequency contours217

of whistles from the identified spectral peaks. In this approximation to the PHD filter, the218
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posterior intensity function vk(xk) is represented by a sum of weighted Gaussian components219

whose weights, means and covariances are propagated in time25. This strategy is analogous220

to Kalman filter5 for single target tracking, which propagates the first moment (the mean)221

of the single-target state32. So that each whistle at time k is represented by a Gaussian222

component and is therefore characterized by a mean (consisting of frequency and chirp), a223

weight and a covariance. The means and covariances of the existing and newborn whistles224

are predicted using the Kalman filter prediction equations and updated with the received225

measurements (spectral peaks) also using the Kalman equations. The weights of the whistles226

are predicted and updated using the PHD equations and they can be thought of as a measure227

of the likelihood of presence of a component. Detailed description of the GM-PHD filter is228

given next.229

The whistle estimates generated by the GM-PHD filter do not inherently contain iden-230

tity. In order to assign a particular state to a specific whistle, tracking of Gaussian compo-231

nents needs to be carried out. Tracking is achieved by labelling each individual Gaussian232

component with a unique tag and the likelihood of each track is then given by the weight of233

each component e.g.,7,25,34.234

This section is organized as follows. First the GM-PHD algorithm is outlined, then235

filter’s models and parameters are defined, followed by a description of the performance236

evaluation.237
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1. The GM-PHD algorithm238

The GM-PHD filter approximates the intensity functions (PHDs) with Gaussian mix-239

tures. It should be noted that these do not share the properties of GM approximations to240

pdfs in terms of weights summing to 1. Here the sum of weights reflects the number of whis-241

tles present at each time step. The GM-PHD filter makes the following assumptions. It is242

assumed that each whistle follows a linear Gaussian dynamical model and that measurements243

follow a linear model32. That is, (1) and (2) can be written as244

xk = Fk−1xk−1 + nk−1 (11)

zk = Hkxk + ηk (12)

where xk and zk denote the sate and measurement vectors respectively, Fk−1 and Hk denote245

state transition and measurement matrices respectively, nk−1 denotes system noise with246

covariance matrix Qk−1 and ηk denotes measurement noise with covariance matrix Rk. So247

the state transition density function and measurement likelihood function are Gaussian:248

fk|k−1(xk|xk−1) = N (x;Fk−1xk−1, Qk−1) (13)

gk(zk|xk) = N (z;Hkxk, Rk) (14)

where N (·;m,P ) denotes a Gaussian density with mean m and covariance P .249
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It is also assumed that the probability of survival and detection are state independent250

and constant between time steps251

pS,k(x) = pS (15)

pD,k(x) = pD (16)

The intensity function of target birth is also assumed to be a Gaussian mixture32
252

γk(xk) =

Jγ,k∑
i=1

w
(i)
γ,kN (x;m

(i)
γ,k, P

(i)
γ,k) (17)

where Jγ,k, w
(i)
γ,k, m

(i)
γ,k, P

(i)
γ,k, i = 1, · · · , Jγ,k are given model parameters that determine the253

shape of the birth intensity function, which is derived in Section III.B.2.254

The algorithm then consists of the following steps:255

Step 0: Initialization. At the initialization (time k=0 ) the intensity function v0 is a256

mixture of J0 Gaussian components257

v0(x) =

J0∑
i=1

w
(i)
0 N (x;m

(i)
0 , P

(i)
0 ) (18)

In this study J0 is initialized randomly to be between 1 and 10 components, means m0258

of those components are drawn randomly from a uniform distribution between 2 and 30 kHz259

and the initial covariance P0 is set to be the same as the system noise covariance, Qk−1. The260
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initial weights of all components are the same and are set to w0 = 1/J0 .261

Each component is assigned a unique tag (identifier), L
(i)
0 , to form a set L0 = {L(i)

0 }J0i=1
7,25.262

Step 1: Prediction. In this step the Kalman filter prediction equations are used to263

predict means (m) and covariances (P ) of the Gaussian components representing existing264

whistles. The weights (w) for existing whistles depend on the probability of survival, pS.265

The predicted intensity of existing whistles, vk|k−1(x, 0), at time k is a Gaussian mixture266

of the form32,7:267

vk|k−1(x, 0) = pS

Jk−1∑
j=1

w
(j)
k−1N (x;m

(j)
k|k−1, P

(j)
k|k−1) (19)

m
(j)
k|k−1 = Fk−1m

(j)
k−1 (20)

P
(j)
k|k−1 = Fk−1P

(j)
k−1F

t
k−1 +Qk−1 (21)

where Jk−1 denotes the number of existing whistles derived from the previous time step268

(combination of existing and newborn whistles) and wk−1 denotes the weights from the269

previous time step.270

In this step Jγ,k new Gaussian components, representing newborn whistles, are also271

created according to the birth model (defined in Section III.B.2, Eqs. (38 and 39)).272

The tags of the Gaussian components in this step are maintained separately; exist-273

ing whistles keep their tags, Lk|k−1, from the previous time step and new tags, L
(i)
γ,k, i =274
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1, · · · , Jγ,k, are assigned to Gaussians introduced by the birth model so that275

Lk|k−1 = Lk−1 (22)

Lγ,k = {L(1)
γ,k, · · · , L

(Jγ,k)

γ,k } (23)

Step 2: Update. In this step the predicted means and covariances of existing and276

newborn whistles are updated using the Kalman filter update equations. The predicted277

weights are updated with the PHD equation. The update is performed separately for existing278

and newborn whistles, Eqs. (8) and (9) respectively.279

For the existing whistles the posterior intensity function at time k is given by a Gaussian280

mixture32,7:281

vk(x, 0) = (1− pD)vk|k−1(x, 0) +
∑
z∈Zk

Jk|k−1∑
j=1

w
(j)
k (z)N (x,m

(j)
k (z), P

(j)
k ) (24)

where (1− pD) denotes the probability of missed detection at current time k; z denotes an282

individual measurement in the measurement set Zk at time k and283
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w
(j)
k (z) =

pDw
(j)
k|k−1g

(j)
k (z)

L(z)
(25)

g
(j)
k (z) = N (z;Hkm

(j)
k|k−1, Rk +HkP

(j)
k H t

k) (26)

m
(j)
k (z) = m

(j)
k|k−1 +K

(j)
k (z −Hkm

(j)
k|k−1) (27)

P
(j)
k = [I −K(j)

k Hk]P
(j)
k|k−1 (28)

K
(j)
k = P

(j)
k|k−1H

t
k(HkP

(j)
k|k−1H

t
k +Rk)

−1 (29)

where Kk denotes the Kalman gain and I denotes the identity matrix.284

For the newborn whistles the posterior intensity function at time k is also a Gaussian285

mixture286

vk(x, 1) =
∑
z∈Zk

Jγ,k∑
j=1

w
(j)
γ,k(z)N (x,m

(j)
γ,k(z), P

(j)
γ,k) (30)

where m
(j)
γ,k(z) and P

(j)
γ,k are calculated with Kalman update equations, in the same way as287

in the equations above and the weights are updated according to Eq. (9)288

w
(j)
γ,k(z) =

w
(j)
γ,kg

(j)
γ,k(z)

L(z)
(31)

where289
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L(z) = κk(z) +

Jγ,k∑
l=1

w
(l)
γ,kg

(l)
γ,k(z) + pD

Jk|k−1∑
l=1

w
(l)
k|k−1g

(l)
k (z) (32)

g
(l)
γ,k(z) = N (z;Hkm

(l)
γ,k, Rk +HkP

(l)
γ,kH

t
k) (33)

At the end of the update step, there are (1+|Zk|)Jk|k−1 Gaussian components, (1+|Zk|)290

for each predicted Gaussian32 for existing whistles and |Zk|Jγ,k Gaussian components for291

newborn whistles. The same tag is assigned to each of the associated predicted and updated292

Gaussian components to form the set7,25293

Lk = L
vk|k−1

k|k−1 ∪ L
z1
k|k−1 ∪ · · · ∪ L

z|Zk|
k|k−1 (34)

for existing whistles and for newborn294

Lγ,k = Lz1γ,k ∪ · · · ∪ L
z|Zk|
γ,k (35)

The intensities and tags of existing and newborn whistles are then joined and predicted295

jointly in the next time step.296

With every iteration the number of Gaussian terms will increase, increasing the com-297

putational cost of the algorithm. To control this, pruning and merging schemes are applied298

to the mixture at the end of the update step.299
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Step 3: Pruning and Merging. Pruning is achieved by truncating all components300

with small weights by applying a pruning threshold, Tr. In the merging stage, the components301

that are close together are merged into a single Gaussian component based on a merging302

threshold U . The distance is computed with a Mahalanobis distance measure32.303

Additionally, to further reduce the computational load, if the number of Gaussian304

components exceeds the desired maximum number of components (Jmax), only the Jmax305

Gaussian components with the largest weights are kept in the recursion.306

The values for Tr, U , Jmax are discussed in Section III.B.2 and listed in Table I.307

Step 4: State estimation and tracking. At the end of each recursion the pruned308

Gaussian mixture represents the posterior intensity function vk(·) and the means of the309

Gaussian components therefore represent local maxima of vk(·). By taking the Gaussians310

that have weights greater than some threshold wth (derived in Section III.B.2 and listed in311

Table I), the multi-target states are estimated32,7. This step does not affect the main GM-312

PHD recursion. The individual whistles are then tracked from the estimated states based313

on their tags. When a track of a whistle exceeds 150 ms then it is labelled as a detection.314

The 150 ms length threshold was selected based on the study by Roch et al. 28 and serves to315

reduce the false detections.316

2. Definition of the models and parameter selection317

State space models for dolphin whistles318
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The whistle state vectors in this study consist of frequency f and chirp rate α (rate of319

change of frequency)36:320

xk = [f, α]t (36)

where [·]t denotes the transpose.321

The system model (11) in current application uses the state transition matrix Fk−1 =322 [
1 4
0 1

]
, where 4 denotes the time interval between overlapping spectral windows and is323

related to the sampling frequency (fs), 4 = (ww/2)/fs, where ww denotes the length of the324

window. The system noise, nk−1, in this model is independent Gaussian white noise with a325

covariance matrix Qk−1. Initially, Qk−1 was defined as Qk−1 = diag[σ2
f , σ

2
α], where σf and σα326

denote the standard deviations of the frequency and chirp respectively, here σf = 70.7 and327

σα = 3.2× 103.328

This noise covariance matrix was then refined by running the GM-PHD filter (described329

in previous Section III.B.1) on the training data and calculating the mean noise covariance,330

resulting in331

Qk−1 =

 σ2
f σf,α

σf,α σ2
α

 (37)

where the refined standard deviations of frequency and chirp are σf = 70.8 and σα =332
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7.35× 103 and the off-diagonal element is σf,α = 408.42.333

The measurement model (12) uses the measurement matrix Hk = [1, 0], indicating that334

only the frequency information is measured. The measurement noise, ηk, is independent335

Gaussian white noise with covariance matrix Rk. Rk in this study is defined as a variance of336

a uniform random variable and is therefore bw
2/12 where bw denotes bin width and is equal337

to bw = fs/ww .338

Other models and parameters339

In addition to the system (11) and measurement (12) models required by standard340

tracking methods, the PHD filter requires definition of additional models and parameters341

that govern the GM-PHD recursion. All of these are application dependent. Some of the342

parameters can be determined analytically, but some parameters need to be estimated from343

training data.344

The additional models needed for the GM-PHD filter, model the birth and the clutter345

intensities. The birth model defines where in the state space new whistles are likely to appear.346

If a whistle appears in a region that is not covered by the predefined birth intensity then the347

PHD filter will not detect it27. Since dolphin whistles typically occur in a frequency band348

between 2 and 30 kHz14, making the birth intensity diffuse over such a large region would349

increase the computational load. Therefore, the birth intensity in this study is based on the350

available measurements27 and the new whistles are created as follows. In each time step k,351
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Jγ,k newborn whistles are created, where Jγ,k corresponds to the number of measurements352

in the measurement set Zk at time k. Each newborn whistle is a Gaussian component and353

is therefore characterized by a mean (m
(i)
γ,k), a weight (w

(i)
γ,k) and a covariance (P

(i)
γ,k), where354

i = 1, · · · , Jγ,k. The covariance of the i-th newborn whistle is set to be Qk−1 (Eq. 37).355

The frequency component of the mean of the i-th newborn whistle ({m(i)
γ,k}f ) is obtained by356

drawing from a Gaussian mixture centred on the measurements and the chirp component of357

the mean ({m(i)
γ,k}α) is set to zero:358

{m(i)
γ,k}f ∼

1

Jγ,k

Jγ,k∑
j=1

N (x; z
(j)
f,k, 0.01z

(j)
f,k)

{m(i)
γ,k}α = 0 (38)

where zf,k denotes frequency measurements at time k. The weight of the i-th newborn359

whistle is computed as360

w
(i)
γ,k =

pstart(z
(i)
f,k)

Jγ,k
(39)

where pstart(z
(i)
f,k) is a value of the log-normal pdf of starting frequencies of whistles (that was361

obtained from the training data) at a particular frequency z
(i)
f,k.362

The clutter (false detections) intensity used in the present study was computed as363

follows. It is assumed that clutter is uniformly distributed over the frequency range (2 to 50364
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kHz) and is constant with respect to time. The average number of clutter points (r) per time365

step was estimated based on the training data. The training data were pre-processed using366

the technique described in Section III.A. The number of identified spectral peaks per time367

step was compared to the number of annotated whistle peaks from the analyst-annotated368

data. From this the average number of clutter points can be computed. It was determined369

that our pre-processing technique results in r = 10 clutter points per time step, giving the370

clutter intensity of κk = r/A, where A denotes the bandwidth over which clutter can occur,371

which is 48 kHz for this study.372

In addition to the models for birth and clutter intensities, the GM-PHD filter requires373

the selection of five other parameters; pS, pD, U , Tr, wth. Parameters determined analytically374

in this study were probability of survival (pS) and merging threshold (U). Probability of375

survival, pS, determines how likely the whistle is to survive from one time step to another.376

As such it will depend on the average length of the whistles, specifically one can show that377

pS = 1− (1/k̄), where k̄ is the average length of the whistles expressed in time steps.378

The average length of whistles was calculated from the study by Oswald et al. 23 , where379

four species were the same as in the present study. The average length was 0.875 s, which380

equates to 165 time steps (since the time step used in this study is 5.3 ms), giving a pS of381

0.994.382

The merging threshold, U , determines which components are merged and is based on383
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the Mahalanobis distance between two Gaussians. Mahalanobis distances are characterized384

by the Chi-squared distribution with d-degrees of freedom (where d equals the number of385

variables; in our case, where the state vector consists of frequency and chirp rate, d is equal386

to 2). For a Chi-squared distribution with 2-degrees of freedom, 99% of all the values coming387

from this distribution will lie within 9.2. Therefore merging threshold U was set to 10.388

Parameters determined experimentally from the data were probability of detection (pD),389

pruning threshold (Tr) and weight threshold (wth). All three parameters were determined390

experimentally by running the GM-PHD filter on the training data and by selecting the391

values that resulted in the best performance. The parameters used in the GM-PHD for392

dolphin whistle tracking are summarized in Table I.393

3. GM-PHD performance evaluation394

After applying the GM-PHD filter described above to the acoustic recordings of dolphin395

whistles, the detected list of time against frequency peaks for each whistle was compared to396

the ground truth hand-annotated data in order to evaluate the filter’s performance. First397

the whistles in the hand-annotated data were evaluated in terms of whistles’ duration and398

SNR. The ground truth whistle was only expected to be detected if its duration exceeded399

150 ms and if its SNR exceeded 10 dB for at least one third of its duration (following Roch400

et al. 28). Ground truth whistles meeting these selection criteria were termed valid.401

Next the output of the GM-PHD filter was compared to the ground truth whistles. The402
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detected whistle was considered a match (true positive) to a ground truth whistle if its timing403

overlapped with the ground truth whistle and if the mean difference between the detected404

whistle path and ground truth whistle path did not exceed 3 frequency bins (281 Hz). If405

the detected whistle exceeded that criteria, it was considered as false positive. It should be406

noted that detected whistles were matched to ground truth whistles regardless of whether the407

ground truth whistles met the selection criteria (i.e. if they were valid). However only the408

whistles that matched valid ground truth whistles were considered in the evaluation metrics409

that describe the quality and quantity of matches28. Also, since the hand-annotations were410

only applied to the frequencies between 4.5 kHz and 50 kHz, all the detected whistles that411

had over 40% of the contour below the 4.5 kHz were not taken into account in the evaluation.412

The performance of the GM-PHD filter was measured in terms of recall, precision,413

fragmentation, deviation and coverage. For detailed description see Roch et al. 28 . Recall414

measures the percentage of the expected detections that are retrieved, precision measures the415

percentage of the detections that are correct. For the detected whistles that matched valid416

ground truth whistles (true positives), three additional performance metrics are computed;417

fragmentation, mean deviation and coverage. Fragmentation measures the average number418

of detections per ground truth whistle, deviation measures the average frequency deviation419

between the path of ground truth whistle and its corresponding detection and coverage420

measures the average percentage of a ground truth whistle that is matched.421
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IV. RESULTS422

Across all six species in the selected database, 9192 ground truth whistles met the423

selection criteria. The performance of the GM-PHD detector for each species is summarized424

in Table II. The GM-PHD detector tracked whistles successfully with overall precision of425

85% and overall recall of 71.8%. Across all species, the whistles were tracked precisely426

with average deviation from the whistle path of 104 Hz and with coverage of 80.3%. An427

example of GM-PHD tracking is shown in Figure 1. The detector tracked the paths of428

individual whistles when overlapping whistles were present, although occasional “breaking”429

of the whistle contours still occurred (on average there were 1.2 fragments per whistle across430

all species). An example is shown in Figure 2, where both successful tracking through a431

crossing and some breaking of the whistle track can be observed.432

V. DISCUSSION433

This study demonstrated the use of a MTT technique for tracking odontocete whistle434

contours. The proposed adaptation of the GM-PHD filter successfully simultaneously tracked435

whistles in complex environments (overlapping whistles, missed detections, clutter present)436

for all species investigated, despite the parameter optimization being performed on only three437

of the species in the overall dataset. This suggests that the GM-PHD detector formulation438

in this study is widely applicable to whistle tracking problems across a wide range of species.439
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Figure 1: (Color online) Detected whistles with the GM-PHD filter. Spectrogram of raw

data is shown (top), peak frequencies measurements (peaks 8 dB above background noise)

(middle) and tracked whistles (bottom) where GM-PHD filter detections are shown.
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Figure 2: (Color online) Detection of crossing whistles with the GM-PHD filter. Spectrogram

of raw data (left) and tracked whistles with GM-PHD filter (right) are shown.
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The precision for all species was generally higher than the recall. It should be noted440

that the precision for T.truncatus is slightly lower than the precision for other species (Table441

II). When T.truncatus files were investigated, it was observed that one file in particular442

contained many burst pulses, which the GM-PHD filter detected as whistles, resulting in a443

high number of false positives. In general, there is a trade-off between the precision and recall,444

and the recall could be increased by allowing shorter fragments to be detected (currently a445

150 ms threshold is used). However this would, in turn, lower the precision since it would446

likely increase the number of false positive detections.447

For the detected whistles that matched the ground truth data (true positive detections),448

the performance was quite good. The detected whistles followed the path of the annotated449

ground truth data closely (within about 1 frequency bin width) and covered the majority450

of the individual contours. The whistles were mainly detected as a single contour, but451

were occasionally ”broken” into more fragments. The breaking of contours mainly occurred452

where the amplitude of the whistle dropped below the SNR used to detect spectral peaks and453

therefore there were no measurements passed to the GM-PHD detector. While the GM-PHD454

filter allows for missed detections, it cannot continue to track a target if the measurements are455

absent for several continuous time steps (an example is shown in Figure 2). Also, while the456

analyst constructing the ground truth data attempted not to trace whistles where the whistle457

path was not obvious, it was observed from manual inspection of some of the annotated files458
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and corresponding spectrograms, that this was not universally applied. This leads to an459

increase in the measured fragmentation rate.460

Comparing the performance of the GM-PHD filter to other filters is difficult, mainly due461

to different sound files being used, different pre-processing techniques and different methods462

to estimate the SNR. However, the results in Table II demonstrate that performance results463

are comparable to those of the graph filter and better than particle filter detailed in Roch464

et al. 28 . In order to facilitate the comparison between different detectors (that operate on465

identified spectral peaks), datasets containing detected spectral peaks used in this study466

have been released to MobySound archive.467

Further improving the GM-PHD filter performance is not a trivial task. In general,468

the performance of the filter will greatly depend on the parameter selection and therefore469

needs further discussion. In the present study some of the parameters; pD, κk, Tr, wth, were470

estimated from the training data set. In particular the probability of detection (pD) was471

selected by running the GM-PHD filter on all training data and choosing the value that on472

average resulted in the best performance. Since pD depends on the SNR, which will change473

depending on the environment, the animal’s location relative to the sensor and the recording474

equipment, significantly different values might have been obtained if different training files475

were used. During the GM-PHD recursion the pD is assumed to be constant, but between476

different recordings the performance could potentially be improved if the pD was adjusted477
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to that particular situation. We are currently exploring the methods that would facilitate478

this. Another parameter estimated from the training data was the clutter intensity, κk.479

While the average number of clutter points per time step appeared to be consistent between480

species and files in the training set, the value will mainly depend on the threshold used481

to generate measurements (detected spectral peaks). The value of κk would need to be482

adjusted if a different threshold was used or if a different pre-processing or spectral peak483

detection strategy was adopted. The selection of pruning (Tr) and weight (wth) thresholds484

mainly affects the computational speed of the algorithm. By selecting higher values for485

the two thresholds, fewer Gaussian components remain in the recursion and the speed of the486

recursion increases. However, if the selected values are too high, the components representing487

whistles start to be excluded from the recursion, which results in a decrease in performance488

since fewer whistles are tracked.489

In addition, the performance of the GM-PHD filter will also crucially depend on the490

state-space and birth models used. The birth model in this study was developed from the491

proposition by Ristic et al. 27 , where the birth model is based on the measurements. The492

weights of the newborn whistles were determined based on the probability distribution of493

the whistles’ start frequencies, which were obtained from the training data. Since training494

data encompassed only three species, future work will investigate whether a model based on495

more species enhances the performance. The state models, used in this study, describing496
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the evolution of the whistles are based on a simple linear model. Refining this model and497

developing a more rigorous method to fit its parameters to the training data should also be498

considered.499

One attraction of the GM-PHD filter is that the formulation of the filter is based on the500

mathematical principles and is not ad-hoc as some of the other tracking algorithms. Since501

the filter is data-association free, it is more computationally efficient than the traditional502

MTT methods and can be implemented in real-time. It should be noted that the compu-503

tational speed of the algorithm will not only depend on the parameter selection, but also504

on the amount of clutter in the measurements. If lower SNR thresholds are used in the505

measurement generation (spectral peak detection), more clutter is present in the measure-506

ments and the computational load increases, which results in slowing the algorithm. Using507

higher thresholds in the spectral peak detection increases the speed of the algorithm, but508

some spectral peaks associated with whistles are then missing from the measurements, which509

affects the tracking performance. So there is an inherent trade-off between the performance510

and computational speed. To illustrate, for the parameters used in this study, the GM-PHD511

algorithm implemented in MATLAB (version 8.5 (R2015a)) on a Mac (Os X, processor 2.7512

GHz and 8 GB RAM), took 1 min and 48 s to process a file of 1 min duration at 192 kHz513

sample rate, that contained 103 hand-annotated whistles.514

VI. CONCLUSIONS515
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The proposed formulation of the GM-PHD filter provides a general and powerful tool516

for simultaneous tracking of odontocete whistle contours. Its performance is comparable517

with the best existing methods, it is computationally efficient and well suited for real-time518

implementation.519
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APPENDIX526

A list of the most frequently used symbols and their meanings.527

ηk and Rk Measurement noise process and its covariance matrix528

Fk−1 State transition (system) matrix529

fk|k−1(xk|xk−1) State transition density530

gk(z|xk) Likelihood function531

γk(xk) Intensity function (or PHD) of target births at time k532
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Hk Measurement matrix533

Jk−1 Number of existing targets deriving from previous time step k − 1534

Jγ,k Number of newborn targets at time k535

κk(z) Intensity function (or PHD) of clutter at time k536

nk−1 and Qk−1 System noise process and its covariance matrix537

pD,k(xk)
abbr
= pD Probability of detection538

pS,k(xk−1)
abbr
= pS Probability of target’s survival from time k − 1 to time k539

pk(Xk|Z1:k) Posterior pdf of the multi-target state540

β Label β denotes newborn targets (β = 1) or existing targets (β = 0)541

vk|k−1(x, β) Predicted intensity function (or PHD)542

vk(x, β) Posterior intensity function (or PHD)543

w and wγ Weights for existing and newborn Gaussian components (whistles) re-544

spectively.545

xk and zk State and measurement vectors at time k546

Zk Multi-target measurement at time k547
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Table I: Summary of parameters used in GM-PHD filter for odontocete whistle tracking.

pS and pD denote probabilities of survival and detection respectively; U , Tr and wth denote

merging, pruning and weight thresholds respectively and Jmax denotes maximum allowed

number of Gaussian components in one iteration.

pS pD U Tr wth Jmax

0.994 0.85 10 0.001 0.009 100
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Table II: Performance of the GM-PHD filter for detection of odontocete whistle contours. N

files denotes number of audio files used, Valid whistles denotes the number of ground truth

whistles that met the selection criteria, µDeviation denotes average deviation, SD denotes

standard deviation. The summary performance is computed across all ground truth whistles

that met the criteria and is not the average of file performances.

Species N files Valid Recall Precision Coverage Fragments µDeviation

whistles ±SD (%) ±SD ±SD (Hz)

D.capensis 7 1859 72.1 91.1 80.6±22.3 1.2±0.4 94±51

D.delphis 10 1931 71.6 85.7 79.2±23.2 1.2±0.4 96±53

P.electra 3 756 66.8 91.3 79.8±21.6 1.1±0.3 92±54

S.longirostris 3 869 76.4 93.5 77.2±22.2 1.2±0.5 100±51

S.frontalis 2 242 70.7 88.6 86.1±19.4 1.1±0.3 117±63

T.truncatus 15 3535 71.7 78.3 81.2±21.2 1.2±0.5 117±53

OVERALL 40 9192 71.8 85.0 80.3±22.0 1.2±0.4 104±54
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Figure Captions659

Figure 1. Detected whistles with the GM-PHD filter. Spectrogram of raw data is shown660

(top), peak frequencies measurements (peaks 8 dB above background noise) (middle) and661

tracked whistles (bottom) where GM-PHD filter detections are shown.662

Figure 2. Detection of crossing whistles with the GM-PHD filter. Spectrogram of raw data663

(left) and tracked whistles with GM-PHD filter (right) are shown.664


