
Real-time Room Occupancy Estimation with
Bayesian Machine Learning using a Single PIR

Sensor and Microcontroller
Charles Leech

ARM, Cambridge
University of Southampton, UK

Yordan P. Raykov
NCRG, Aston University, UK

Emre Ozer
ARM

Cambridge, UK

Geoff V. Merrett
University of Southampton, UK

Abstract—This paper presents the implementation and deploy-
ment of a compute/memory intensive non-parametric Bayesian
machine learning algorithm on a microcontroller unit (MCU)
to estimate room occupancy in a Smart Room using a single
analogue PIR sensor. We envisage an IoT device consisting of a
resource-constrained MCU, PIR sensor and a battery running
the occupancy estimation algorithm and operating over days
or months without recharging or replacing the battery. Both
hardware-independent and hardware-dependent optimizations
are performed to reduce memory footprint and yet provide
acceptable real-time performance while consuming less energy.
We show a significant reduction in the on-chip memory usage in
the MCUs by the algorithm through optimisation of the machine
learning models and of the static memory footprint and dynamic
memory usage. We also show that a low-end MCU does not meet
the real-time requirements of the application without causing
high average power consumption. However, a moderately high-
performance MCU with a higher clock frequency and hardware
floating-point unit provides 19x improvement in the execution
time of the algorithm, better meeting the real-time specification
of the application and reducing power consumption. Further,
we estimate the battery lifetime of the IoT device if it operates
continuously in a Smart Room. With a typical size battery, an
IoT device consisting of a Cortex-M4F MCU and PIR sensor
can operate for more than a month without replacement or
recharging of the battery while running the compute-intensive
Bayesian machine learning algorithm.

I. INTRODUCTION

Smart Building and Smart Workplace applications are be-
coming increasingly of interest as the focus of technological
innovation shifts from mobile to IoT devices. For these sys-
tems to be effective they must be energy efficient, low cost
and non-invasive, all whilst providing useful information. We
present the implementation and the deployment analysis of a
novel sensing system capable of occupancy estimation using
only a single passive infrared (PIR) sensor.

This novel system was first introduced in [1] where we
discussed in more detail the evaluation, the training and the
statistical modeling involved in the problem of occupancy
estimation with a single PIR. However, as [1] points out the
novel system relies on sophisticated probabilistic modeling and
therefore deployment on energy constrained IoT hardware can
be a great challenge. Towards that end, we extend [1] and

Experimental data used in this paper can be found at
http://doi.org/10.5258/SOTON/405795

here we develop a framework of both hardware-dependent
and algorithmic optimization steps to efficiently utilize the
resources available on a typical microcontroller (MCU). The
undertaken optimization steps hardly affect the accuracy of
the original system from [1] and we can estimate occupancy
within one individual error bar with more than 80% accuracy.

The optimized model is deployed on two MCUs to estimate
room occupancy natively on the devices in real time and we
measure its performance, memory usage, energy consumption
and battery life. To enable real-time estimations we build
upon fast inference methods from [2] to derive online method
for fast inference in probabilistic models. Furthermore, we
demonstrate that the use of a floating point unit and hardware
peripherals on the MCU leads to an almost 10× reduction
in execution time of the algorithm. We also show that the
memory optimization that we perform enable the system to
operate within 12 KB of SRAM without impacting speed.

The paper is organized as follows: Section II briefly dis-
cusses the related work. Section III provides a brief overview
of the iHMM model developed in our early work. Section
IV describes the hardware-independent iHMM model resource
optimizations. Section V describes the algorithm implementa-
tion and porting. Section VI presents the experimental setup,
and Section VII describes the hardware-dependent optimiza-
tions. Section VIII presents the memory usage, performance,
power consumption and battery lifetime estimation results, and
finally Section IX concludes the paper.

II. RELATED WORK

Occupancy estimation is one of the five main tasks in human
sensing and is an essential one to consider when building self-
aware environments and smart building management systems
[3]. There are methods that rely on data inference from
cameras coupled with image processing algorithms ([4], [5],
[6] and [7]), methods using multiple motion sensors at all
entry and exit locations of a closed environments ([8], [9],
[10], [11], [12] and [13]) and methods relying on historical
patterns of movement across the environment based on data
from motion or environmental sensor networks ([14], [15],
[16]). PIR sensors have been dominantly used in the second
of those categories. For example ([10] and [11]) showed
how by placing three PIR sensors in a hallway, we can



identify direction of movement and relative location of passing
individuals. [12] used PIR sensors in combination with reed
switch door sensors placed at each doorway and [13] presented
a similar approach but using only PIR sensors at all entries
and exits.

In contrast to these approaches, [1] proposed using a a
single analogue PIR sensor as a monitoring device rather than
simply counting entries or exits. The analogue PIR output is
segmented using a flexible probability model and the patterns
of motion which are the best descriptor of actual occupancy
are identified. In effect, we have traded the complexity of
image data with simpler data coupled with more complex
and flexible modelling. In this way, simple single dimensional
time series data generated from the PIR sensor can be used
to learn some motion behaviours of interest from the data.
This can be used for accurate occupancy estimation on its
own, hence why [1] is able to estimate occupancy using a
single sensor. However, while such an approach can reduce
the cost and also the invasiveness of the system, it faces
the challenge of learning a flexible Bayesian nonparametric
model online, which is non-trivial on a resource-constrained
MCU. To address this problem, we present several hardware-
independent model optimizations in Section IV.

III. OVERVIEW OF OCCUPANCY ESTIMATION ALGORITHM

In this section we present a high level overview of the pre-
and post-deployment stages of our algorithm for occupancy
estimation. The first stage is performed before deployment to
train the model and is described in more detail in [1]. We have
collected PIR data for approximately 50 hours from various
office meetings. We segment the raw analogue PIR data using
an infinite hidden Markov model (iHMM) [17] with Laplace
components and separate the data that is most descriptive of
the room occupancy. This filtered data is then used to estimate
a Laplace diversity parameter which is good indicator of the
levels of motion and occupancy. A regression model is fitted
to the different diversity parameters for each time window of
30 seconds and the regression is used to predict occupancy.

After training the iHMM and inferring the regression pa-
rameters, we implement a modified prediction process on
the MCU. The trained iHMM parameters are condensed and
transfered to the MCU. On the MCU a modified online
learning version of the MAP-iHMM [2] is used to fit the
iHMM to incoming streams of unseen PIR data, where the
method also incorporates the effect of the previously trained
parameters. Once we segment the new data, we update the
training iHMM parameters to incorporate the effect of the last
seen data. The regression parameters are robust so they rarely
need to be re-calculated.

IV. HARDWARE-INDEPENDENT MODEL RESOURCE
OPTIMIZATIONS

The iHMM used in [1] is a powerful probabilistic model
that can capture arbitrarily complex time dependent patterns
in entirely unsupervised way. Applications of models such as
the iHMM has been limited thanks to the computationally

Fig. 1. Block diagram of the stages of the room occupancy estimation
algorithm performed during deployment on the MCU.

expensive inference methods they typically require: exhaustive
Markov Chain Monte Carlo (MCMC) sampling. MCMC meth-
ods are probabilistic therefore aim to find the complete like-
lihood distribution of the fitted model. This involves storing
orders of magnitude more parameters than often needed. For
example, fitting an iHMM on 5 minutes of PIR output using
MCMC would require storing approximately N ∗K ∗ I +2K
parameters, where: N is large (11500 for 5 minutes of data) as
is the number of data points; K is the number of states found in
the time series (usually 3−6); I is the length of the chain (can
vary between 120− 1000 iterations). Approximate Variational
Bayes inference methods have been proposed ([18], [19])
which improve mixing drastically, but stochastic Variational
methods [19] require knowledge of the size of the data to
be processed a priori and storing data dependent number of
variational distributions. [18] reduces the memory overhead
when used on a batch of data, but in streaming applications
suffers from the same problems as [19].

To fit the iHMM to streams of PIR data we build upon a
recent learning algorithm called MAP-iHMM from [2], [20].
Iterative MAP methods are convenient as they converge orders
of magnitude faster than MCMC methods and return only the
most likely segmentation of the data rather than a full posterior
distribution; this makes them quite memory efficient. Using
the example from above for fitting an iHMM on 5 minutes
of PIR output data, this time using iterative MAP, the number
of parameters to store would be approximately N + 2 ∗ K.



However if the system is deployed, as we monitor more and
more PIR data, N becomes too large to store. Therefore, we
derive from the MAP-iHMM an online streaming algorithm
that processes batches of sensor data as it is sampled. Once
converged, the method only updates the small number of
parameters and discards the raw data before receiving the next
batch. One challenge is that [20] and a lot of the efficient
inference algorithms for Bayesian nonparametric models use
a collapsed (Rao-Blackwellized) representation of the iHMM
for faster and more robust convergence (standard practice in
Bayesian modelling). This representation introduces depen-
dencies between the model parameters requiring us to keep
some explicit parameters for each sensor output point that
influences the segmentation. To overcome this issue, after
processing each window of data, we recover an approximation
of the complete representation of the iHMM with an explicit
distribution available for the whole parameter space. For
example, the memory footprint of the collapsed representation
of the model after training on 50 hours of data is approximately
228 MB, compared to few hundred KB when recovering a
non-collapsed model representation.

This is possible because future data is independent of
historic data given the complete model representation, while
this is not the case for the collapsed representation. Therefore
the complete trained model rigorously and unbiasedly can
be used as a starting point for the clustering on the next
window of sensor data. The trained form of the model involves
updating only (K+1)∗(K+2)+2 parameters after processing
each time window, which is sufficiently more compact. Note
that those few parameters still incorporate the knowledge
gained by observing and segmenting many hours of PIR data
and so the model is still capable of segmenting behaviours of
interest despite the reduced memory footprint. This will allow
the model to dynamically update the model parameters after
its deployment to the microcontroller unit (MCU).

V. ALGORITHM IMPLEMENTATION AND PORTING

Initially, a series of Matlab functions characterise the iHMM
and iMAP processes, such as the clustering of data samples
and the Bayesian resampling of hyperparameters. A top-
level encapsulation function connects these ML functions with
the Laplace model and regression parameters to apply the
algorithm to occupancy estimation.

Matlab was used to experiment with the theoretical concepts
of the algorithm without exposing hardware constraints. How-
ever, many microprocessor compilers cannot interpret such
high-level languages and therefore the Matlab code must be
translated to C and C++ such that it can be compiled into a
binary and executed directly by the MCU.

Porting can be achieved through manual programming or
automatic compiler-style translation using Matlab Coder [21].
Manual programming is the simpler option however it does
not scale well with increasing code size and requires detailed
knowledge of the syntax and constructs of both languages.
Automatic translation avoids both of these barriers, however
in the case of Matlab Coder, extensive code preparation is

Fig. 2. Photo of the experimental setup consisting of the ST Nucleo-401RE
MCU board and PIR sensor connected to the ADC through the Arduino
header.

required involving the addition of common syntactic elements
from both languages in order to guide the translation tool.
This negates much of the benefit that would be afforded by
the process. Furthermore, due to the algorithmic optimisations
described in the previous section, the algorithm occupies a
relatively small code-base and as a result the porting of each
function was realistic through manual programming.

Whenever possible, Matlab standard toolbox functions have
been replaced by equivalents from C and C++ standard li-
braries, with functional testing performed to ensure that the
algorithm results remain the same for the same input dataset.
Moreover, there are no dependencies on libraries introduced
with the C++11 standard to improve the portability of the code
as support for newer C++ standards varies across toolchains
and development environments. In the case where no stan-
dard library function exists as the replacement for a Matlab
function, a custom function was developed from a theoretical
basis or by combining other standard functions. Only one case
for this was required in the algorithm in the generation of
the gamma random distribution when re-sampling the values
of Beta from the iHMM. Here the Ziggurat method is used,
developed by Marsaglia and Tsang [22], based on the cube of
scaled normal variates from a normal distribution, which is a
standard library function.

VI. EXPERIMENTAL SETUP

We begin our experimentation with the ARM Cortex-
M0 based ST Nucleo-F070RB, a highly resource-constrained
MCU, to test the memory and computational boundaries of
the algorithm. The specification of the MCU is shown in
Table I where we highlight the critical features, including
clock frequency, memory capacity and the peripherals that
we will utilise. A Panasonic NaPiOn AMN21111 PIR sensor
is connected to one of the ADC inputs on the Arduino
header of the MCU, as shown in Figure 2. The PIR sensor
continuously produces a single dimensional analogue signal
which is sampled at 50 Hz by the 12-bit ADC, this produces
1500 samples per 30 second recording interval, which the



TABLE I
SPECIFICATIONS OF THE CORTEX-M0 AND M4 MCUS USED FOR EXPERIMENTATION. MEMORY NUMBERS SHOW SRAM SIZE WITH FLASH SIZE IN

SQUARE BRACKETS.

Board name CPU Clock Modes (MHz) Memory (KB) Peripherals Used Technology Node (nm) [23] Operating Voltage (V)
Nucleo-F070RB Cortex-M0 8, 24, 48 16 [128] ADC, DMA, TIM3 180 2.4
Nucleo-F401RE Cortex-M4F 84 96 [512] ADC1, DMA2, TIM2 90 1.7

algorithm then processes. Samples are recorded as integers
but converted to floating point values in the range 0.0 to 1.0
before processing.

We make extensive use of the hardware peripherals of the
MCU, through the STM hardware abstraction library (HAL).
A timer with a 50Hz period triggers conversion events in
the ADC via an interrupt. We use DMA to transfer sampled
data from the ADC to SRAM without the involvement of the
CPU, allowing the CPU to sleep or perform other tasks during
sampling periods.

The completion of sampling is signalled by a DMA transfer
complete interrupt when the data buffer in SRAM is filled. A
DMA interrupt service routine (ISR) links the interrupt to an
ADC conversion complete callback function from where the
count estimation algorithm is called. The configuration and
interaction of the HAL components is illustrated in Figure 3.

The board is connected to a laptop via a USB cable solely
for power supply and programming reasons. All data collec-
tion and processing for the algorithm is performed locally
on the MCU. Furthermore, the board can be configured to
receive power from a battery source connected to it and,
when deployed in a Smart Room context, the program will
be automatically loaded from the flash memory on start-up,
removing all need for an external connection.

An LCD display is mounted to the board via the Arduino
header, allowing the occupancy count estimation from the
algorithm to be displayed on the device. During development,
debugging information was communicated back to a PC via
the USB cable and displayed via a serial terminal.

Despite the particular choice of MCU, in principle the
C/C++ code for the algorithm can be compiled and executed
on any microprocessor with a similar specification.

VII. HARDWARE-DEPENDENT OPTIMIZATIONS

The occupancy estimation algorithm is required to have low
computational complexity and memory requirements to allow
real-time processing and deployment on the MCU.

Strategies to manage the memory requirements of the al-
gorithm from a theoretical perspective are described in detail
in Section IV. These primarily consist of the pre-deployment
construction of a non-collapsed iHMM representation to re-
duce the memory footprint of the algorithm from the order of
MB to KB and the use of an iterative MAP inference method
due to the fact that it is an order of magnitude faster than
MCMC methods when fitting the iHMM to streams of PIR
data, also greatly reducing the expected computation time.

In deployment of the algorithm, additional optimisations
are made to further reduce the memory and computational

Fig. 3. The configuration of HAL components on the MCU

requirements from an implementation perspective. Smaller
data type sizes were used throughout the algorithm to reduce
the size of memory required to hold intermediate variables.
The double data type offers the greatest precision to represent
real numbers but requires twice as many bytes for storage. As
a result, all floating-point numbers are represented in single-
precision, with negligible loss in accuracy, reducing the size of
stored data from 12 to 6 KB for 1500 samples. In addition, for
integers that are known to be within the range −128 to +127,
their type is reduced to characters, reducing memory allocation
by a factor of four with no effect on data values. This has the
greatest affect in the storage of the cluster assignments for the
hidden state sequence; from 6 to 1.5 KB.

Memory tracing was used to more accurately analyse the
memory behaviour of the algorithm throughout its execution.
Tracing was performed using an mbed OS API whereby calls
to standard C memory management functions were wrapped
and intercepted to identify when (de-)allocations were made.
In addition, heap statistics were recorded online to monitor the
maximum heap allocation reached in the algorithm, determin-
ing the minimum SRAM size required by the MCU. Memory



reduction techniques have been used throughout the algorithm
such as lowering the scope of intermediate variables to discard
temporary data and pruning data structures to pass only the
minimum amount of data between functions. Updates are made
directly to the hidden state sequence for each iteration so that
only the final clustered states are returned by the model.

Sampling of the PIR sensor and execution of the algorithm
is performed simultaneously through additional configuration
of the hardware peripherals on the MCU, as outlined in the
previous section, to enable the transfer of sensor data from
the ADC to SRAM using the DMA module. This allows us to
overlay each data processing operation with the beginning of
data collection for the following estimation period, meaning
that a count estimate can be obtained at regular intervals and
still be based on a full 30 second sampling period. In addition,
after sampling, the CPU can enter a lower power mode if has
no other tasks to perform, whilst waiting for the next sampling
period to complete.

VIII. EXPERIMENTAL RESULTS

A. Memory Usage and Real-time Performance

To evaluate the performance of the algorithm on the Cortex-
M0 MCU, we record new PIR sensor data and apply the
algorithm to 30 second segments. This directly emulates the
operation expected when the MCU is placed in a meeting
environment. The accuracy of the translated version of the al-
gorithm has been verified against the original Matlab program
by testing with the same data sets collected from meetings
of known occupancy. The percentage of time windows where
the predicted number of occupants was within ±1 and ±2
matches those presented in the evaluation of [1]. There was
no impact on the estimation accuracy of the algorithm from
losses in precision due to the conversion of real numbers
from double to single precision. This rounding rarely causes
cluster assignments to change and the regression parameters
are robust after training. All other computation and memory
optimizations do not impact data values.

To analyse memory consumption, we run the program with
memory tracing and heap statistic recording enabled. The peak
heap allocation was recorded as 0.7 KB. To find the total
memory consumption we must include statically allocated
global data, including the memory blocks outlined in the
previous section, which accounts for 9.63 KB in our program,
giving a combined total memory consumption of 10.33 KB.
This is below the 16 KB available on the Cortex-M0 MCU.

To evaluate computational demand, we use execution time
as a metric, and test how long the Cortex-M0 based MCU
takes to calculate the estimated occupancy count, with the
algorithmic optimisations described, across the three frequency
modes in table I. We measure execution time as approximately
22 seconds. The main reason for low performance is because
the iHMM model uses a significant number of floating-point
operations, which are emulated by software since the Cortex-
M0 CPU does not have a hardware floating-point unit (FPU),
and also the clock frequency of the Cortex-M0 is compara-
tively low, i.e. 48 MHz.

TABLE II
RESULTS FOR COMPUTATION TIME, MEMORY CONSUMPTION AND

CURRENT CONSUMPTION OF THE ALGORITHM ON THE CORTEX-M0 AND
M4 BASED MCUS. MEMORY CONSUMPTION IS DIVIDED INTO SRAM

AND FLASH, WITH THE LATER SHOWN IN SQUARE BRACKETS.

ARM Platform Execution Time (s) Memory Requirement (KB)
Cortex-M0 22 10.33 [11.70]
Cortex-M4 9.55 10.36 [12.03]

Cortex-M4 + FPU 1.15 10.36 [11.24]

In order to improve the execution time, we experiment with
a higher performance Cortex-M4 based MCU. The Cortex-M4
CPU has a single-precision FPU that can perform floating-
point calculations in hardware, dramatically increasing the
speed at which our algorithm executes. This speed-up is
compounded by the higher clock frequency of the Cortex-M4
(1.75x faster than Cortex-M0) which accelerates all instruc-
tions. The execution time is reduced from 22 s to 1.15 s. We
disable the FPU in the Cortex-M4 to evaluate how the FPU
improves execution time. We recompile the code, with the
floating-point instructions being emulated, and observe that
the algorithm executes in 9.55 s, which reflects the increase
in clock frequency. The memory usage and execution time
results are summarized in Table II. The same hardware pe-
ripherals (ADC, DMA and timer) are used in both Cortex-M0
and Cortex-M4 experiments, and the code for the algorithm
remains unchanged.

B. Power Consumption and Battery Lifetime

We estimate the power consumption and battery lifetime
of the platform (MCU and PIR sensor) based on current
consumption and operating voltage numbers provided in the
MCU and PIR datasheets and using the STM32CubeMX tool
by STMicroelectronics [24]. While data is being sampled,
the CPU is put into sleep mode which clock-gates the CPU
and reduces the current consumption. For example, it is 9.58
mA for the Cortex-M4F MCU at 84 MHz and 7.53 mA for
the Cortex-M0 MCU at 48 MHz. When data sampling is
complete, the CPU is returned to run mode and, together with
the continued use of the peripheral components, the current
consumption of the Cortex-M4F and M0 MCUs rise to 17.18
mA and 11.50 mA, respectively. With operating voltages of
2.4 and 1.7 V, the average power consumption of the Cortex-
M4F and Cortex-M0 platforms are 46.36 and 18.50 mW,
respectively.

Finally, we estimate the battery lifetime of the platform if it
were battery-powered and deployed in a meeting room envi-
ronment to run continuously. Battery lifetimes are calculated
from the average power consumption over the sampling and
execution periods. We use a Lithium Polymer (LiPo) battery
with a 2200 mAh capacity. The estimated lifetimes of the
platform are shown in Figure 4, for the Cortex-M0 operating
at three frequencies and the Cortex-M4 with its FPU enabled
and disabled. Battery lifetime and execution time decrease for
the Cortex-M0 platform as frequency increases. The Cortex-
M4 MCU increases battery lifetime by 2.51x due to the



0 20 40 60 80 100

Execution Time (s)

0

10

20

30

40

50

60

B
a
tt

e
ry

 L
if
e
ti

m
e
 (

d
a
y
s)

Cortex-M0 @ 24 MHz

Cortex-M0 @ 48 MHz

Cortex-M4 FPU Disabled @ 84 MHz
Cortex-M4 FPU Enabled @ 84 MHz

Cortex-M0 @ 8 MHz

Required Execution Time

Fig. 4. Battery lifetime and execution time over a range of frequencies on
the Cortex-M0 and for the FPU enabled and disabled on the Cortex-M4F. The
vertical line shows the 30 second algorithm execution time requirement.

lower average power consumption whilst further reducing the
execution time. The reduction in power consumption is due to
the lower technology node of the Cortex-M4F MCU, which
reduces dynamic current consumption, and a lower operating
voltage.

IX. CONCLUSIONS

In this paper, we have investigated the deployment of a
non-parametric Bayesian machine learning algorithm on a
resource-constrained MCU for a room occupancy estimation
application using a single analogue PIR sensor. Optimisa-
tions in several dimensions were performed to accommodate
for reduced memory and computational capacity to produce
an energy efficient and non-invasive solution with reduced
hardware complexity. We have demonstrated a three order
reduction in the memory requirement of the algorithm through
hardware-independent optimisation of the machine learning
models and an 8x reduction in memory utilisation on two
MCUs, through analysis of the static memory footprint and
dynamic memory behaviour of the implemented algorithm.
We have shown that a low-end MCU did not meet the real-
time service requirements for the application but a moderately
high-performance MCU with a higher clock frequency and
hardware floating-point unit provided 19.13x improvement in
the execution time of the algorithm, meeting the real-time
specification of the application. Further, we have estimated the
power consumption of the IoT platform and battery lifetime
if it operates indefinitely in a Smart Room application. With a
typical battery size, the IoT platform consisting of a Cortex-
M4F MCU and PIR sensor can operate for over 36 days
without replacement or recharging the battery while running
a compute-intensive self-learning algorithm.

REFERENCES

[1] Y. P.Raykov et al., “Predicting Room Occupancy with a Single Passive
Infrared (PIR) Sensor Through Behavior Extraction,” in Proceedings
of the 2016 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, ser. UbiComp ’16. New York, NY, USA: ACM,
2016, pp. 1016–1027.

[2] Y. P.Raykov, A.Boukouvalas, and M. A.Little, “Simple approximate
MAP inference for Dirichlet processes mixtures,” Electron. J. Statist.,
vol. 10, no. 2, pp. 3548–3578, 2016.

[3] T.Teixeira, G.Dublon, and A.Savvides, “A survey of human-sensing:
Methods for detecting presence, count, location, track,” and Identity.
Technical report, ENALAB, Yale University, Tech. Rep., 2010.

[4] V.Lempitsky and A.Zisserman, “Learning to count objects in images,”
in Advances in Neural Information Processing Systems, 2010, pp. 1324–
1332.

[5] T.Van Oosterhout, S.Bakkes, and B. J.Kröse, “Head Detection in Stereo
Data for People Counting and Segmentation.” in VISAPP, 2011, pp.
620–625.

[6] A. B.Chan and N.Vasconcelos, “Counting People with Low-level Fea-
tures and Bayesian Regression,” IEEE Transactions on Image Process-
ing, vol. 21, no. 4, pp. 2160–2177, 2012.

[7] D. B.Yang, H. H.González-Baños, and L. J.Guibas, “Counting people in
crowds with a real-time network of simple image sensors,” in Computer
Vision, 2003. Proceedings. Ninth IEEE International Conference on.
IEEE, 2003, pp. 122–129.

[8] K.Hashimoto et al., “People count system using multi-sensing applica-
tion,” in Solid State Sensors and Actuators, 1997. TRANSDUCERS’97
Chicago., 1997 International Conference on, vol. 2. IEEE, 1997, pp.
1291–1294.

[9] P.Zappi, E.Farella, and L.Benini, “Enhancing the spatial resolution of
presence detection in a PIR based wireless surveillance network,” in
Advanced Video and Signal Based Surveillance, 2007. AVSS 2007. IEEE
Conference on. IEEE, 2007, pp. 295–300.

[10] J.Yun and S.-S.Lee, “Human movement detection and identification
using pyroelectric infrared sensors,” Sensors, vol. 14, no. 5, pp. 8057–
8081, 2014.

[11] P.Zappi, E.Farella, and L.Benini, “Tracking motion direction and dis-
tance with pyroelectric IR sensors,” IEEE Sensors Journal, vol. 10, no. 9,
pp. 1486–1494, 2010.

[12] Y.Agarwal et al., “Occupancy-driven Energy Management for Smart
Building Automation,” in Proceedings of the 2nd ACM Workshop on
Embedded Sensing Systems for Energy-Efficiency in Building. ACM,
2010, pp. 1–6.

[13] F.Wahl, M.Milenkovic, and O.Amft, “A distributed PIR-based approach
for estimating people count in office environments,” in Computational
Science and Engineering (CSE), 2012 IEEE 15th International Confer-
ence on. IEEE, 2012, pp. 640–647.

[14] K. P.Lam et al., “Occupancy detection through an extensive environ-
mental sensor network in an open-plan office building,” IBPSA Building
Simulation, vol. 145, pp. 1452–1459, 2009.

[15] R. H.Dodier, G. P.Henze, D. K.Tiller, and X.Guo, “Building Occupancy
Detection Through Sensor Belief Networks,” Energy and buildings,
vol. 38, no. 9, pp. 1033–1043, 2006.

[16] A.Khan et al., “Occupancy Monitoring using Environmental & Context
Sensors and a Hierarchical Analysis Framework.” in BuildSys@ SenSys,
2014, pp. 90–99.

[17] M. J.Beal, Z.Ghahramani, and C. E.Rasmussen, “The Infinite Hidden
Markov Model,” in Advances in neural information processing systems,
2001, pp. 577–584.

[18] M. C.Hughes, W. T.Stephenson, and E.Sudderth, “Scalable Adaptation
of State Complexity for Nonparametric Hidden Markov Models,” in
Advances in Neural Information Processing Systems, 2015, pp. 1198–
1206.

[19] N.Foti, J.Xu, D.Laird, and E.Fox, “Stochastic variational inference for
hidden Markov models,” in Advances in Neural Information Processing
Systems, 2014, pp. 3599–3607.

[20] Y. P.Raykov, A.Boukouvalas, and M. A.Little, “Iterative collapsed
MAP inference for Bayesian nonparametrics,” NIPS 2015 Workshop on
Bayesian Nonparametrics: The Next Generation, 2015.

[21] T. M.Inc. Matlab coder - generate c and c++ code from matlab code.
Online. The MathWorks Inc. Natick, Massachusetts.

[22] G.Marsaglia and W. W.Tsang, “A Simple Method for Generating
Gamma Variables,” ACM Trans. Math. Softw., vol. 26, no. 3, pp. 363–
372, Sep. 2000.

[23] AN4435 Application note, STMicroelectronics, March 2016, rev 3.
[24] Stm32cubemx - stm32cube initialization code generator. Online. STMi-

croelectronics. V4.18.0.


