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 16 

Abstract 17 

Autonomous underwater vehicles (AUVs) have proven to be feasible platforms for 18 

marine observations. Risk and reliability studies on the performance of these 19 

vehicles by different groups show a significant difference in reliability, with the 20 

observation that the outcomes depend on whether the vehicles are operated by 21 

developers or non-developers. We show that this difference in reliability is due to 22 

the failure prevention and correction procedures - risk mitigation - put in place by 23 

developers. However, no formalisation has been developed for updating the risk 24 

profile based on the expected effectiveness of the failure prevention and 25 

correction process. In this paper we present a generic Bayesian approach for 26 

updating the risk profile, based on the probability of failure prevention and 27 

correction and the number of subsequent deployments on which the failure does 28 

not occur. The approach, which applies whether the risk profile is captured in a 29 

parametric or nonparametric survival model, is applied to a real case study of the 30 

ISE Explorer AUV. 31 

Keywords: Instrumentation/sensors, Risk assessment, statistical techniques.  32 

 33 
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1.  Introduction 35 

Autonomous underwater vehicles (AUVs) are mechatronic robotic systems able to navigate 36 

underwater whilst untethered from any other system. For the purpose of this study, 37 

underwater gliders, which use a buoyancy change engine for propulsion but otherwise share 38 

many of the attributes of AUVs, are considered as AUVs. With ships being expensive to 39 

operate and satellites unable to observe many ocean features, or restricted to observing the 40 

near-surface, AUVs are an effective technology to sample the ocean (Singh et al., 2004, Webb 41 

et al., 2001, Eriksen et al., 2001, Rudnick et al., 2016).  42 

Early studies on propeller-driven AUV risk and reliability presented analysis methodologies 43 

with examples from a range of deployments (Podder et al., 2004, Griffiths and Trembanis, 44 

2007, Griffiths et al., 2009, Brito et al., 2010, 2012). More recently, two independent studies 45 

of underwater glider reliability have shown a significant difference in performance between 46 

gliders maintained and deployed by their developers and those deployed by purchasers (Brito 47 

et al., 2014). Rudnick et al. (2016) examined the operation of the Spray underwater glider by 48 

the development and operations team at the Scripps Institution of Oceanography. Their 49 

survival analysis concluded that, for a 100-day mission, the probability of survival for the Spray 50 

glider was 0.83. For this calculation, the authors considered the faults that led to premature 51 

mission abort albeit in some cases the mission was not aborted, because the main aim was to 52 

demonstrate a target mission length rather than to gather scientific data. In contrast, an 53 

analysis of commercially available gliders, operated by non-developers, concluded that the 54 

probability of a deep glider surviving a 90-day mission without premature mission abort was 55 

0.5 (Brito et al., 2014). Differences in survival estimates have also been observed for the risk 56 

of vehicle loss, with Rudnick et al. (2016) reporting a survival of 0.95 for a 100-day mission, 57 

and Brito et al. (2014) reporting a survival of 0.8 for a 100-day mission. In their survival 58 
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analysis, with respect to vehicle loss, Rudnick et al. (2016) considered as failure faults that led 59 

to loss of control over buoyancy and vehicle loss. In the study by Brito et al. (2014), the authors 60 

considered as failures vehicle loss. Both studies argue that understanding and eliminating 61 

failure modes are key to increasing the probability of successful mission completion and of 62 

survival.   63 

At this stage it is important to distinguish between failure and faults as these two terms 64 

are used in the manuscript. Our definition of failure is aligned with that adopted by the British 65 

Standard (BS 4778, 1991), which states that failure is “the termination of the ability of an item 66 

to perform a required function.” A failure is a result of a component fault or human error. A 67 

component fault is caused by a defect and human error is caused by a person’s lapse, slip, 68 

mistake or violation (Reason, 1990). For simplicity, in this paper we use fault to encapsulate a 69 

component defect and a human error. In the work presented by Brito et al. (2014) and Rudnick 70 

et al. (2016) mission abort and AUV loss were considered mission failures. In this paper, failure 71 

is defined as the termination of the ability of an AUV to perform the required function which 72 

can potentially lead to AUV loss. Generally, failure, or risk, mitigation is defined as the process 73 

of annulling the consequence of failure or its likelihood of occurrence (Subramanian et al., 74 

1996). In this paper, failure or risk, mitigation is achieved by reducing the likelihood of failure 75 

occurrence. 76 

Whilst both Brito et al. (2014) and Rudnick et al. (2016) give emphasis to the role of 77 

mitigation through failure prevention and correction, neither presents an analytical 78 

framework for updating the risk profile based on a structured assessment of the 79 

understanding and elimination of failure modes and the subsequent effect on field results. 80 

Such an analytical approach would have to be based on probability theory, as is proposed in 81 

this paper.  82 
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The novelty of the technology makes it impossible to obtain past data on the probability of 83 

failure mitigation. Therefore, the assessment of the probability of failure mitigation for this 84 

type of technology must rely on expert subjective judgment. The same approach has been 85 

adopted in space exploration (Feather and Cornford, 2003). 86 

Feather and Cornford (2003) presented a hazard management framework to monitor and 87 

update the likelihood of the occurrence of design failure modes occurring. The system, Defect 88 

Detection and Prevention (DDP), is a probabilistic model. The key assumption is that each 89 

failure may have a number of prevention, analysis, control and test (PACTs) methods. The 90 

efficiency of each PACT in mitigating the failure is assessed by a group of experts in the field. 91 

The DDP system considers that multiple PACTs may have adverse or positive effects on a 92 

failure mode. PACTs are not independent, and they may introduce a failure into the system. 93 

The probability model aggregates all these effects to quantify the likelihood of failure 94 

mitigation. Brito et al. (2012) also used probability for modelling failure mitigation. However, 95 

in contrast to Feather and Cornford (2003), the mitigation actions were considered to be 96 

independent.  97 

In this paper, we present a Bayesian approach to updating the risk profile of an AUV, based 98 

on the pre-implementation perceived effectiveness of the mitigation by subject matter 99 

experts and the observed performance during subsequent missions. We present a case study 100 

of the International Submarine Engineering (ISE) Explorer AUV to illustrate the application of 101 

the method, based on the initial failure and survivability data presented in Brito et al. (2012). 102 

This paper is organized as follows. Section 2 presents a summary of the methods used for 103 

estimating AUV survival. Section 3 presents the data of the ISE Explorer campaigns in the 104 

Arctic in 2010 and 2011. Section 4 presents the method proposed for updating the risk profile 105 

of an autonomous vehicle based on the probability of failure mitigation and field results. 106 
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Section 5 presents the application of the method to the ISE case study. Section 6 presents the 107 

conclusions. 108 

 109 

2. Survival Analysis for Autonomous Underwater Vehicles  110 

For successful AUV missions, the observation that we gather is that the vehicle survived at 111 

least time t or distance x(t); this is total mission time or mission length. In statistical survival 112 

modelling, this observation where the end, or the last reading, did not result in death, is 113 

denoted as censored. For AUVs, successful missions are modelled as right censored, which 114 

means that the vehicle has survived at least the time or distance travelled by the vehicle. 115 

Some missions, however, end in failure. In statistical modelling, this event is represented as 116 

death. A survival function or distribution is a mathematical function that captures the 117 

probability that an individual or a system will survive beyond a specific time. One can make 118 

assumptions about the shape of the survival distribution. Parametric maximum likelihood 119 

methods can then be used to fit the data to the chosen distribution. Rudnick et al. (2016) used 120 

exponential distribution to model Spray glider reliability but other models exist, such as 121 

LogNormal and that devised by Weibull.  122 

Non-parametric methods can also be used to estimate the probability of survival for a 123 

population, without making any assumption with respect to the shape of the distribution 124 

(Kalbfleisch and Prentice, 2002). A number of studies have used non-parametric methods for 125 

estimating the survivability of autonomous underwater vehicles (Griffiths et al., 2003, Podder 126 

et al., 2004, Brito et al., 2014, Rudnick et al., 2016), including the Kaplan Meier estimator 127 

(Kaplan and Meier, 1958).  128 

These studies depend on the use of mission data collected in the target operational 129 

environment. For missions in extreme environments, such as under ice, there is an paucity of 130 
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mission data collected from the target environment, making it impossible to use conventional 131 

survival methods to estimate the mission risk. To address this problem, Brito et al (2010) 132 

developed an extended version of the Kaplan Meier estimator. Their estimator uses mission 133 

data collected in a benign environment and expert subjective judgment on the impact of that 134 

data in the targeted extreme environment.  135 

The extended Kaplan Meier survival estimator, 𝑆̂, for quantifying the probability of survival 136 

with distance x is presented in Eq. (1), below.  137 

A mission (either failed or successful) is considered as an event. All events are assigned the 138 

decreasing index ni according to the mission distance at which it ended (regardless of the 139 

outcome).  For each fault, Fi, a group of experts is asked to agree on the probability of fault 140 

leading to AUV loss, given that it is operated in a target environment E. This is the probability 141 

of failure, it is a conditional probability and it is written as P(L|Fi,E).  142 

𝑆̂(𝑥) = ∏ (1 − (
1

𝑛𝑖
) 𝑃(𝐿|𝐹𝑖, 𝐸))𝑥𝑖<𝑥  (1) 143 

This estimator was used to inform operational decision making for AUV deployments in 144 

extreme environments (Brito et al., 2010, Brito et al., 2012). There are two types of risk 145 

mitigation that lead to the reduction of the likelihood of failure: 1. monitoring distance; 2. 146 

failure prevention and reduction. Details of each are presented in the following subsections. 147 

 148 

2.1 Mitigation with monitoring distance 149 

An important feature of using a survival profile is that it allows us to quantify the impact of 150 

implementing a monitoring distance. The engineering purpose is to identify and fix any 151 

failures that emerge at short distances. Mathematically, consider that the aim is to travel 152 

distance r and that a monitoring distance d is put in place; the conditional survival distribution 153 
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provides a probability of loss for the target distance r, P(x < r), given that the vehicle has 154 

travelled a distance d. The probability of losing the AUV for a mission with distance r, given 155 

the implementation of a monitoring distance d, is then: 156 

𝑃(𝑥 < 𝑟| 𝑥 > 𝑑) =
𝑃(𝑥<𝑟)−𝑃(𝑥<𝑑)

1−𝑃(𝑥<𝑑)
    (2) 157 

where P(x<r|x>d) represents the conditional probability of loss in mission up to distance r 158 

given that it has survived monitoring distance up to distance d, where d < r. P(x<r) represents 159 

the probability of vehicle loss up to distance r, and P(x < d) represents the probability of 160 

vehicle loss up to distance d. These probabilities are computed for the survival distribution 161 

function. The implementation of a monitoring distance forms a key risk management strategy 162 

for AUV missions in critical environments (Griffiths et al. 2003).  163 

The decision to identify the most suitable monitoring distance is informed by both the 164 

slope of the survival distribution, and the practicality and cost of its implementation. The cost 165 

and the practical challenges of implementing the monitoring distance are not discussed in this 166 

paper.  167 

With respect to the survival distribution, if the slope of survival distribution is constant with 168 

the distance, then there is no gain in survival by implementing the monitoring distance.  On 169 

the other hand, if the survival profile shows a steep slope in the first tens of kilometers and 170 

then it plateaus for greater distances, then there is a benefit to be gained from implementing 171 

the monitoring distance. The optimum monitoring distance is that distance in the survival 172 

profile where the survival profile becomes closest to flat.  173 

Depending on the environment, the monitoring distance can be easy or hard to be 174 

implemented. The monitoring mission must allow operators to test the functionality of the 175 

AUV. Therefore, the AUV must be within communication range of the pilot or control team. 176 

The range is also important in terms of recovery. The implementation of a monitoring mission 177 
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implies that it is possible to recover the AUV at any time if a fault has occurred which needs 178 

mending prior to committing to the main missions. Different environments affect the ability 179 

to communicate with, or to recover, the AUV. The implementation of the monitoring distance 180 

must be defined with an understanding of these constraints. 181 

 182 

2.2 Failure prevention and correction 183 

Failure correction, the process of annulling a failure involves understanding the failure and 184 

putting into place an action to fix it. For AUV risk analysis, failure mitigation was considered 185 

in the analysis presented in Brito et al. (2010) and Brito et al. (2012) for propelled AUVs and 186 

in Brito et al. (2014) and Rudnick et al. (2016) for underwater gliders. There is always a degree 187 

of subjective uncertainty as to whether or not a failure has been mitigated. In Brito et al. 188 

(2012) the authors capture this uncertainty in the form of a probability of failure mitigation. 189 

The authors use the probability of failure mitigation, elicited from a panel of experts, to 190 

update the survival profile. The probability of loss for a given failure, in a given environment, 191 

given a mitigation strategy Mi is calculated using Eq. (3). 192 

𝑃(𝐿|𝐹𝑖, 𝐸, 𝑀𝑖) = 𝑃(𝐿|𝐹𝑖, 𝐸) × (1 − 𝑃𝑀𝑖
)                   (3) 193 

Where PMi is the probability of failure being mitigated. PMi value of 1 means that the 194 

mitigation action completely mitigates the failure and 0 the mitigation does not mitigate the 195 

failure. The risk profile calculated using the survival estimator presented in Eq. (1) does not 196 

take into account the probability of mitigation. In order to account for the probability of 197 

mitigation 𝑃(𝐿|𝐹𝑖, 𝐸) in Eq. (1) must be replaced by  𝑃(𝐿|𝐹𝑖, 𝐸, 𝑀𝑖) calculated in Eq. (3). 198 

 199 

 200 

 201 
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3. ISE Explorer Case Study 202 

The ISE Explorer is an autonomous underwater vehicle developed by ISE Limited, Port 203 

Coquitlam, Canada. The AUV has a length of 7.4m, a body diameter of 0.74m and is depth 204 

rated to 5000m. The weight of the AUV varies from one mission to another, depending on the 205 

payload and battery configuration; for the 2010 and 2011 Arctic campaigns the weight was 206 

1870kg. The propulsion is by a propeller with energy for propulsion, controls and 207 

communication from Li-ion Exide batteries, 30 modules each of 1.6 kWh energy. The 208 

maximum range is 450 km at 1.5 m/s. (Kaminski et al., 2010, Crees et al., 2010).  209 

In this case study, we consider the operational data gathered for vehicle B05 during the 210 

Arctic operations in 2010 and 2011. The initial risk analysis for the operations in the Arctic was 211 

presented in Brito et al. (2012). 212 

The dataset consisted of 32 missions; the fault data is presented in Table 1, below.  For 213 

each fault, experts were asked to assess the likelihood of a fault leading to vehicle loss and 214 

the likelihood of a failure being mitigated in light of the mitigation action discussed with the 215 

engineering team. The expert judgments were elicited at two separate workshops. The first 216 

workshop was held in Halifax, Nova Scotia, Canada, from 8 to 10 December 2009; the second 217 

workshop was held in Vancouver, British Columbia, in 2011. The deployments within the 218 

dataset were from: 219 

• Fabrication and assembly (May - September 2009) 220 

• Builders sea trials, (8 September - 12 October 2009) 221 

• First homing and positioning trials (16 November - 4 December 2009) 222 

• Second homing and positioning trials (4 January - 28 January 2010) 223 

• Mission testing (22 February - 12 March 2010) 224 

• Arctic survey (4 May - 22 May 2010) 225 
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• Vancouver trials (17 February - 22 February 2011) 226 

• Bedford basin trials (14 June - 15 June 2011) 227 

The full fault description and mission details are provided in Brito et al. (2012).  In the same 228 

paper, the authors present the results of the expert judgment elicitation. A formal expert 229 

judgment elicitation was conducted in order to elicit from a group of five experts two risk 230 

assessments for each fault. Firstly, for each fault, the experts were asked to agree on the 231 

probability of the fault leading to vehicle loss. Following the completion of this process, the 232 

experts were then asked to agree on the probability that the failure mitigation strategy 233 

proposed by the engineers would correct the failure. Brito et al. (2012, p1693), present a table 234 

of the agreed expert assessments for all 51 failures in the dataset. When the authors plotted 235 

the density distribution of the probability of failure mitigation, they realised that there were 236 

three distinct modes in this distribution. The first mode, at zero, comprised assessments for 237 

which the failure had not been understood and for which a mitigation plan had not been 238 

developed. The second distribution, with mode at 0.5, comprised failures where although a 239 

mitigation strategy had been developed, it had not been tested. A third distribution, with 240 

mode at 0.9 comprised failure for which a mitigation plan had been developed and tested.  241 

 242 

4.   Method for Updating Risk based on Mitigation Effectiveness  243 

Previous research has assumed that the probability of failure mitigation was a fixed value 244 

(Brito et al., 2010, 2012). Once agreed in the workshop, by a group of experts, the assumption 245 

is that is value remains constant. Our argument now is that in reality each mission is a test for 246 

the mitigation action or strategy. Therefore, the result of the test can be used to update the 247 

probability that the failure was mitigated. This can be modelled using a Bayesian theory, which 248 

captures the rationale that belief in a hypothesis is influenced by new observations (or 249 
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evidence). The posterior parameter distribution p(θ|D) is inferred from the observed data D. 250 

The prior distribution p(θ) represents any known information regarding θ, before D is 251 

observed.  252 

Before any AUV missions take place, experts agree on the probability of failure mitigation. 253 

The probability of failure mitigation tends to be specified as a single probability value, from 0 254 

to 1, rather than a probability density function. The probability of mitigation agreed at the 255 

workshop was the prior of the probability of failure mitigation which must be updated in light 256 

of successful missions as well as re-occurrences of failures.    257 

There are two key problems. First we must model the prior probability of failure mitigation 258 

in such a way that allows us to update its value based on field observations. Second, we must 259 

have means to conduct the Bayesian inference. This is discussed in sections 4.1 and 4.2.  260 

4.1 Modelling the prior 261 

In the process of building the risk model, the experts agree on the probability that the 262 

failure correction action will remove the failure. In Brito et al. (2012), this is denoted as the 263 

probability of failure mitigation and it is represented by PMi. In this paper, our aim is to update 264 

PMi in the light of subsequent missions. PMi is the a priori probability of mitigation, which we 265 

aim to update using Bayesian inference. 266 

There is uncertainty associated with the estimate of PMi. This uncertainty was not captured 267 

in the expert judgment elicitation presented in Brito et al. (2012). Nevertheless, similar to the 268 

way that there is uncertainty associated with the probability of loss there is also uncertainty 269 

associated with the probability of mitigation. In addition, the PMi must be modelled in a way 270 

that allows us to apply Bayesian inference. To enable these two steps the beta probability 271 

density function (pdf) is selected for two reasons. Firstly, it is the most suitable probability 272 

distribution to model expert judgments for single mode assessments (O’Hagan et al., 2006). 273 



13 
 

Secondly, this distribution is a conjugate distribution for the binomial distribution. This is to 274 

say, if the beta distribution is used as a prior pdf of the probability of failure mitigation and 275 

the conditional distribution is binomial, then the posterior is always a beta distribution.  276 

The probability of failure mitigation, θi, is taken to follow the beta distribution this is. 277 

𝑝(𝜃 ) =
1

𝐵(𝑎,𝑏)
× 𝜃𝑖

𝑎−1 × (1 − 𝜃𝑖)𝑏−1   (4) 278 

where a and b are the constant hyper-parameters of the beta distribution and B(a,b) 279 

represents the beta function,  280 

B(a, b) = ∫ θ
a−1 × (1 −θ)b−1dθ

1

0
  (5) 281 

The beta function is the normalization constant for the beta distribution. 282 

The hyper parameters, a and b, of the beta distribution are calculated using the probability 283 

of failure mitigation PMi. Eq. (6) and Eq. (7), below, are obtained by manipulating the equations 284 

for the mean and variance of the beta distribution.    285 

𝑎𝑗 =  
𝜇𝑗

2

𝜎𝑗
2 −

𝜇𝑗
3

𝜎𝑗
2 − 𝜇𝑗          (6) 286 

𝑏𝑗 =  
𝑎𝑗

𝜇𝑗
− 𝑎𝑗      (7) 287 

Both the mean (𝜇𝑗  ) and the variance (𝜎𝑗
2) for each failure j are obtained from the prior 288 

assessments of the probability of failure mitigation. The mean (𝜇𝑗) equals the PMi estimated 289 

by the experts. The variance for each probability of failure mitigation is calculated from the 290 

tri-modal probability of mitigation distribution Brito et al. (2012). The details of the 291 

characteristics of these modes are presented in section 5.1. The variance for each mode was 292 

calculated using.  293 

𝜎𝑦
2 = ∑ (𝑥𝑘 − 𝜇𝑦)

2
𝑝𝑘

𝑚
𝑘=1             (8) 294 
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where y is the mode number, 1 to 3. The index k =1 to m, is the number of probability 295 

classes in each mode of the tri modal probability of mitigation distribution and 𝑝𝑘  is the 296 

proportion of assessments in each probability class.  For example, for mode 1, 𝑝1 = 0.571 and 297 

𝑝2 = 0.429. 𝑥𝑘 is the probability associated with each class and 𝜇𝑦  is the mean probability of 298 

each mode. In this case the variance for mode 1 is 0.002449, for mode 2 is 0.00209 and for 299 

mode 3 is 0.00606. The variance for each failure 𝜎𝑗
2 is equal to the variance for the mode y 300 

that encapsulates this failure.  301 

 302 

4.2 Bayesian inference 303 

Having defined the prior for the probability of failure mitigation, the next step is to update 304 

this prior in the light of subsequent missions. We consider that each mission that the AUV 305 

conducts  is a test of the effectiveness of the mitigation action. The probability of failure 306 

mitigation is analogous to the probability of success in a binomial trial. Each mission is a trial, 307 

which is successful if the mission was completed failure free and unsuccessful if the failure in 308 

question occurred during the mission. The total number of successful missions is denoted as 309 

m. If we denote the total number of missions as n, with θ being the probability of success, 310 

p(θ) the probability distribution of θ, the probability of success for m out of n missions is 311 

calculated using the binomial expression. 312 

    mnm

m

n
nmP











  1,  (9) 313 

The same convention is used as in 4.1 because θ is the probability of failure mitigation.  314 

The aim is to estimate the value of θ given the observations made with respect to the 315 

number of trials, n, and the number of successes, m. To achieve this aim we must calculate 316 
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P(θ |m,n). The Bayesian rule allows us to calculate this probability using Eq. (10), below. This 317 

equation is demonstrated from first principles in Appendix A.  318 

 319 

𝑃(𝜃|𝑚, 𝑛) =
𝑃(𝑚|𝜃,𝑛)×𝑃(𝜃)

𝑃(𝑚|𝑛)
    (10) 320 

 321 

P(m|n) is the normalization constant, uniquely defined by requiring the total posterior 322 

probability to be 1. It is the probability of a successful trial given that a number of tests are 323 

conducted. Whether or not we ignore the normalisation constant, P(m|n) we can argue that 324 

P(θ|m,n) is proportional to the numerator of Eq. (11), below. Equation 11 is the beta-binomial 325 

inference for the probability θ given m experiments and n successes. The expressions for 326 

P(m|θ,n) and p(θ) are given in Eq. (9) and Eq. (4), respectively. 327 

 328 

     

 
 

 

 
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),(

1
,

1

1
,

1
1

,,

11

11

bmnamBeta

baBm

n

baBm

n

pnmPnmp

bmnam

bamnr


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






























 11. 329 

P(θ|m,n) is proportional to a beta distribution. We can use Eq. (11) to calculate the updated 330 

probability of failure mitigation.  331 

 332 

 333 

 334 

 335 

 336 
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5.   Bayesian updated judgments 337 

To illustrate the application of the Bayesian inference approach, we applied the approach 338 

to the ISE Explorer AUV B5. Twelve missions were performed after the failure mitigation 339 

assessment process in January 2010. Of these, six missions, dives 51, 52, 53, 54, 55 and 56, 340 

were carried out in the Arctic. Four missions took place off Vancouver on 17, 18, 21 and 22 341 

February 2011 and two missions were carried out in the Bedford Basin on 14 and 15 June 342 

2011. Here we applied Bayesian inference for updating the likelihood that failure x had been 343 

mitigated.  344 

 345 

5.1 Updating failure risk 346 

Fig. 1, below presents the cumulative distribution functions (cdfs) for the probability of 347 

failure mitigation for failures 9, 13, 15, 40, 42 and 35b. These are typical examples of the 348 

probability of mitigation for the failures in the three modes of the probability of failure 349 

mitigation, for where failures did and did not occur.  350 

The posterior probability of failure mitigation increases even if one or two failures emerge 351 

during subsequent trials. This suggests that the failures are rarer than the prior (expert) 352 

probabilities suggest.    353 

 354 

<Fig. 1 goes here> 355 

 356 

The updated values for all probabilities of mitigation are presented in Table 1, below. 357 

Where the prior PMi is 0 or 1 it is impossible to fit a beta distribution and thus it is not possible 358 

to update these probability of mitigation estimates.  359 

The table shows that most failures did not re-emerge in subsequent missions. 360 
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 361 

< Table 1 goes here> 362 

Fig. 2, below, presents a summary of the effect of the probability of mitigation, before 363 

and after subsequent missions, for failures for which the probability of loss was greater than 364 

0.01.  365 

 366 

<Fig. 2 goes here> 367 

In Brito et al. (2012) the authors show that the distribution of the probability of mitigation 368 

can be tri-modal. Fig. 3, below, shows in black the a priori pdf of the probability of mitigation, 369 

with no prior knowledge on the effectiveness of the failure mitigation. Fig. 3, in grey shows 370 

the probability of failure mitigation without knowledge of subsequent field missions. In black 371 

is the updated probability of mitigation with knowledge of field missions. The three modes of 372 

the distribution, identified by Brito et al. (2012) are still evident for the a posteriori 373 

distribution.  374 

 375 

<Fig. 3 goes here> 376 

5.2 Reliability Growth 377 

Having calculated the posterior for the probability of failure mitigation, (see Table 1), it is 378 

then possible to calculate the updated survival profile for the autonomous underwater vehicle 379 

using the extended version of the Kaplan-Meier estimator, Eq. (1). Fig. 4, below, shows the 380 

survival distribution.  381 

 382 

<Fig. 4 goes here> 383 

 384 
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Fig. 4 shows that for long missions the largest increase in survivability comes from 385 

addressing the historical failures with their a priori estimated probability of effective 386 

mitigation. Considering the survival profiles for mitigated and Bayesian updated, for a mission 387 

between 57 and 324 km, the probability of survival increased by 1.6%, (see Fig. 4). These 388 

results are based on the mean estimate for the updated probability of mitigation for each 389 

failure. From Table 1, it is possible to see that there is a reduction in the variance from the 390 

prior estimate for the probability of mitigation and the posterior estimate. The results 391 

therefore show that with the Bayesian inference there is an increase in the probability of 392 

survival and an increase in confidence. 393 

From the survival distribution for the un-mitigated case, it is possible to see that the 394 

probability of survival decreases approximately by 15% in the first 31km of a mission. This is 395 

the most significant slope in the survival distribution before it plateaus and it informed the 396 

implementation of mission 51. Two other test missions were conducted, missions 52 and 53. 397 

For missions 51 and 52 the vehicle was constantly monitored using short range localization 398 

(SRL). Table 2, below, presents the missions conducted by the ISE Explorer vehicle B05 in the 399 

Arctic during the campaign in 2010. 400 

 401 

<Table 2 goes here> 402 

 403 

Table 3, below, presents the survival estimates for missions 51, 52 and 53, considering the 404 

unmitigated, mitigated and Bayesian updated survival profiles. The probability of survival for 405 

missions 52 and 53, given the implementation of a monitoring distance of 31 km, was 406 

calculated using Eq. (2). 407 

 408 
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< Table 3 goes here> 409 

 410 

The survivability of the AUV, for mission 51, increased by 0.06, from the mitigated survival 411 

profile to the Bayesian updated survival profile. For missions greater than 31 km the 412 

probability of survival for the Bayesian updated risk profile is 0.116 higher than the probability 413 

of survival estimated using the mitigated survival profile.  414 

Table 4, below, presents the survival estimates for missions 55 and 56. The survival profile 415 

contains data up to a distance of 334km; therefore the probability of survival for mission 54 416 

cannot be calculated. The product rule was used to estimate the overall probability of 417 

surviving both survey missions.  418 

< Table 4 goes here> 419 

 420 

Considering no failure mitigation, for the case where a monitoring distance of 87 km is 421 

implemented (missions 51 and 52), the probability of surviving missions 55 and 56 increases 422 

by 17.7%. On the other hand, if we consider only failure correction and the Bayesian inference, 423 

with no monitoring distance, the probability of survival increases by 26.2%. This shows the 424 

importance of quantifying the impact of failure correction and of updating the risk profile 425 

based on subsequent missions.  426 

 427 

 428 

 429 

 430 

 431 

 432 
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6.  Conclusions 433 

Autonomous underwater vehicles are complex systems where managing the risk of 434 

premature abort or loss is very important. While designers and manufacturers will have 435 

sought to design and build reliable components, hardware sub-systems and software, a 436 

vehicle in the hands of users who were not the developers is still likely to show faults and 437 

failures. Developers and experts are efficient at managing risk through mitigation, that is to 438 

say, describing and understanding the failures that emerge, coming up with solutions, and 439 

then testing those solutions. However, this is usually a subjective process without an analysis 440 

of the likely impact of the fault or the effectiveness of failure mitigation on the probability of 441 

a vehicle surviving a mission.  442 

This paper injects transparency into this process. It argues that whilst an initial assessment 443 

can be obtained for the probability of successful mitigation for a failure, the actual probability 444 

of mitigation must be updated based on the results of subsequent missions.  445 

Tracking reliability growth is required in order to ensure effective outcomes from the 446 

deployment of autonomous systems. In this paper we present Bayesian formalism for tracking 447 

the reliability growth of autonomous underwater vehicles. Each mission was considered as a 448 

test in a binomial trial. We applied the method to update the risk of the ISE Explorer AUV, 449 

following the Arctic campaign in the 2010.  450 

Another potential application of this approach within the AUV context is the issue of 451 

updating the availability prediction. In an AUV deployment there are several phases, for 452 

example, pre-test, post-test, vehicle over-board (if being launched from a ship) and so on. 453 

Availability is the likelihood of a successful sequence of phases taking place (Brito and 454 

Griffiths, 2011). In actual field deployment, the transition from one phase to the next can be 455 

considered to be a binomial trial. Similar to what has been presented in this paper, the a priori 456 
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of the probability of successful transition can be updated using the results of field 457 

deployments, thus allowing us to update the availability prediction of an AUV.  458 

In our view, this study has highlighted some limitations in the expert judgment elicitation, 459 

as the practice of eliciting a single value for the probability of mitigation presents a problem. 460 

Experts tend to assign a probability of 0 if the event is very unlikely and a probability of 1 if it 461 

is very likely. In the elicitation of the probability of loss given a failure, the elicitation process 462 

encourages the experts to assign a probability distribution, such as a beta distribution. A 463 

similar approach should be adopted for eliciting the probability of failure mitigation. By doing 464 

so, it allows the decision maker to update the risk for those failures in the light of subsequent 465 

missions. This research shows that the practice of eliciting a single probability value for the 466 

probability of failure mitigation can be problematic. It forces the analyst to make assumptions 467 

regarding modelling the probability of mitigation. In making these assumptions the analyst 468 

may introduce bias. This is evident with Figure 3; here the probability of failure mitigation is 469 

represented as the number of counts. The probability of failure mitigation provided by 470 

experts, were discrete values 0, 0.1, in increments of 0.1. This allowed us to model the 471 

probability of failure mitigation as a number of counts. If a more detailed probability of failure 472 

mitigation had been obtained, instead of using the number of counts to represent the 473 

probability of failure mitigation could have used as density function. In the case study 474 

presented in this paper, we modelled the probability of failure mitigation with a beta 475 

distribution. In order to match a beta distribution to the probability of failure mitigation we 476 

assumed that the mean of the beta distribution was the probability of failure mitigation. The 477 

width of the prior (expert) probability distributions are also not known. To model the width, 478 

we assumed that the prior variance was the same as the variance for the mode of the priori 479 

probability of failure mitigation distribution, this was calculated using Eq. (7). Alternatively, 480 
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we could have assumed that the mode of the beta distribution was the probability of failure 481 

mitigation or have made another assumption for the variance. This is, in our view, one 482 

limitation of this research. This highlights the need for analysts to elicit a probability 483 

distribution for the probability of failure mitigation. To our knowledge, this is not current 484 

practice in risk modelling.  485 
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APPENDIX A 491 

Derivation of the Bayesian equation for three variables 492 

Let Ɵ be a vector of probabilities of success for several independent binomial trials. Let n be 493 

a vector of the number of trials and let m be a vector of the number of successes.   494 

The joint distribution P(Ɵ,m,n) can be calculated using the following equation  495 

𝑃(𝜃, 𝑚, 𝑛) = 𝑃(𝜃|𝑚, 𝑛) × 𝑃(𝑚, 𝑛) 496 

                                                                    = 𝑃(𝜃|𝑚, 𝑛) × 𝑃(𝑚|𝑛) × 𝑃(𝑛)    497 

𝑃(𝜃, 𝑚, 𝑛) = 𝑃(𝑚|𝜃, 𝑛) × 𝑃(𝜃, 𝑛) 498 

                                                                    = 𝑃(𝑚|𝜃, 𝑛) × 𝑃(𝜃|𝑛) × 𝑃(𝑛) 499 

                                                                    = 𝑃(𝑚|𝜃, 𝑛) × 𝑃(𝜃) × 𝑃(𝑛) 500 

Ɵ  is independent from n because we must know both m and n in order to infer Ɵ. Thus 501 

P(θ|n) = P(θ). 502 

Taking into account the two terms for 𝑃(𝜃, 𝑚, 𝑛). 503 

𝑃(𝜃|𝑚, 𝑛) × 𝑃(𝑚|𝑛) × 𝑃(𝑛) = 𝑃(𝑚|𝜃, 𝑛) × 𝑃(𝜃) × 𝑃(𝑛) 504 

𝑃(𝜃|𝑚, 𝑛) =
𝑃(𝑚|𝜃, 𝑛) × 𝑃(𝜃)

𝑃(𝑚|𝑛)
 505 

 506 

  507 
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List of Tables 1 

Table 1.     Probability of failure mitigation for all faults presented in Brito et al (2012). The first column is the fault reference number. The second 2 

column contains the values of PMi for each failure. The third column P(loss|fault – 95% quantile) represents the probability of loss given the fault, 3 

without considering the mitigation. In the fourth column is the number of times that the fault has re-occurred. The fifth and sixth column present 4 

the hyper parameters of the beta distribution fitted to prior PMi. In columns seven to ten present the properties of the posterior PM. These 5 

columns present the hyper parameters, the mean and the standard deviation (sd). Column eleven presents the probability of loss given the fault 6 

and the mitigation, taking into account the prior PMi. Column twelve presents the probability of loss given the fault and the mitigation, considering 7 

the posterior PMi. 8 

Fault ref. 

number 

PM P(loss|Fault) - 

95% quantile 

Re-

occurred? – 

number of 

times 

Prior Posterior With 

mitigation 

95% quantile 

Bayesian 

updated 95% 

quantile Prior  

a 

Prior b a b mean variance 

1 0 0.000413 1 - - - - - - 4.13E-04 0.000413 

2 0.9 6.4E-07 0 12.451 1.383 24.452 1.384 0.946 0.00189 6.40E-08 3.456E-08 

3 0.8 0.0536 0 20.299 5.075 32.298 5.075 0.864 0.00306 1.07E-02 0.0072896 

4 0.9 6.4E-07 0 12.451 1.383 24.452 1.384 0.946 0.00189 6.40E-08 3.456E-08 

5 0.95 6.4E-07 0 6.489 0.341 18.489 0.341 0.982 0.000898 3.20E-08 1.152E-08 

6 1 6.4E-07 0 - - - - - - 0 0 

7 1 0 0 - - - - - - 0 0 

8 0.9 0.48 0 12.451 1.383 24.452 1.384 0.946 0.00189 4.80E-02 0.02592 

9 0.1 0.00464 0 3.575 32.175 15.575 32.175 0.326 0.00451 4.18E-03 0.0031274 

10 0.95 1 0 6.489 0.341 18.489 0.341 0.982 0.000898 5.00E-02 0.018 

  9 
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Fault 
ref. 

number 

PM P(loss|Fault) 
- 95% 

quantile 

Re-
occurred? 

– number 

of times 

Prior Posterior With 
mitigation 

95% 

quantile 

Bayesian 
updated 95% 

quantile 

Prior a Prior b a b mean variance 

11 0.95 6.4E-07 0 6.489 0.341 18.489 0.341 0.982 0.000898 3.20E-08 1.152E-08 

12 1 0.504 0 - - - - - - 0 0 

13 0.8 0.0361 0 20.299 5.075 32.298 5.075 0.864 0.00306 7.22E-03 0.0049096 

14 0.75 0.921 0 22.43 7.477 34.43 7.477 0.823 0.00342 2.30E-01 0.163017 

15 0.4 0.901 0 45.493 68.239 57.492 68.239 0.457 0.00196 5.41E-01 0.489243 

16 0.95 0.396 0 6.489 0.341 18.489 0.341 0.982 0.000898 1.98E-02 0.007128 

17 1 0 0 - - - - - - 0 0 

18 0.9 0.0166 0 12.451 1.383 24.452 1.384 0.946 0.00189 1.66E-03 0.0008964 

19 0.8 0 0 20.299 5.075 32.298 5.075 0.864 0.00306 0.00E+00 0 

20 0.4 0.79 0 45.493 68.239 57.492 68.239 0.457 0.00196 4.74E-01 0.42897 

21 0.8 0.0361 0 20.299 5.075 32.298 5.075 0.864 0.00306 7.22E-03 0.0049096 

22 0 1 0 - - - - - - 1 1 

23 0.9 0 0 12.451 1.383 24.452 1.384 0.946 0.00189 0.00E+00 0 

26 0.95 0.0361 0 6.489 0.341 18.489 0.341 0.982 0.000898 1.81E-03 0.0006498 

28 0.95 0.167 0 6.489 0.341 18.489 0.341 0.982 0.000898 8.35E-03 0.003006 

29 0.9 0 0 12.451 1.383 24.452 1.384 0.946 0.00189 0.00E+00 0 

 1 

  2 
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Fault 
ref. 

number 

PM P(loss|Fault) 
- 95% 

quantile 

Re-
occurred? 

– number 

of times 

Prior Posterior With 
mitigation 

95% 

quantile 

Bayesian updated 
95% quantile Prior a Prior b a b mean variance 

30 0.8 0.176 0 20.299 5.075 32.298 5.075 0.864 0.00306 3.52E-02 0.023936 

31 0.95 0.0361 0 6.489 0.341 18.489 0.341 0.982 0.000898 1.81E-03 0.0006498 

32 1 0 0 - - - - - - 0 0 

33 1 0 0 - - - - - - 0 0 

34 0.9 0.00983 0 12.451 1.383 24.452 1.384 0.946 0.00189 9.83E-04 0.0005308 

35a 1 0 0 - -  - - - 0 0 

35b 0.6 1 0 68.239 45.493 80.239 45.493 0.638 0.00182 4.00E-01 0.362 

36 0.9 0.798 0 12.451 1.383 24.452 1.384 0.946 0.00189 7.98E-02 0.043092 

37 0.1 0.00464 0 3.575 32.175 15.575 32.175 0.326 0.00451 4.18E-03 0.0031274 

38 1 0 0 - - - - - - 0 0 

39 0.75 0.109 0 22.43 7.477 34.43 7.477 0.823 0.00342 2.73E-02 0.019293 

40 0.5 0.202 0 59.256 59.256 71.256 59.256 0.546 0.00189 1.01E-01 0.091708 

41 0.5 0.0189 0 59.256 59.256 71.256 59.256 0.546 0.00189 9.45E-03 0.0085806 

42 0.5 0.0197 2 59.256 59.256 69.256 61.256 0.531 0.00189 9.85E-03 0.0092393 

43 0.5 1 0 59.256 59.256 71.256 59.256 0.546 0.00189 5.00E-01 0.454 

44 0.5 0.0197 2 59.256 59.256 69.256 61.256 0.531 0.00189 9.85E-03 0.0092393 

  1 
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 1 

 2 

Fault ref. 
number 

PM P(loss|Fault) 
- 95% 

quantile 

Re-
occurred? 

– number 

of times 

Prior Posterior With 
mitigation 

95% 

quantile 

Bayesian 
updated 95% 

quantile 
Prior a Prior b a b mean  variance 

45 0 0.0191 0 - - - - - - 

 0.0192 0.0191 

46 0.5 0.00009 2 59.256 59.256 69.256 61.256 0.531 0.00189 4.50E-05 4.221E-05 

47 0.5 0.78 0 59.256 59.256 71.256 59.256 0.546 0.00189 3.90E-01 0.35412 

48 0.5 0.451 0 59.256 59.256 71.256 59.256 0.546 0.00189 2.26E-01 0.204754 

50 0.5 1 0 59.256 59.256 71.256 59.256 0.546 0.00189 5.00E-01 0.454 

51 0.95 0.0361 0 6.489 0.341 18.489 0.341 0.982 0.000898 1.81E-03 0.0006498 

52 0.5 0.78 0 59.256 59.256 71.256 59.256 0.546 0.00189 3.90E-01 0.35412 

53 0.5 0.78 0 59.256 59.256 71.256 59.256 0.546 0.00189 3.90E-01 0.35412 

54 0.1 0.00947 1 3.575 32.175 14.575 33.175 0.305 0.00435 8.52E-03 0.0065817 

 3 

 4 
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Table 2. All mission conducted by ISE Explorer B05 in the Arctic Campaign of 2010.  1 

Mission Distance (km) 

51 31 

52 56 

53 131 

54 336 
55 326 

56 325 
 2 

Table 3. Survival estimates for ISE Explorer’s missions 51, 52 and 53. The monitoring mission of 3 

31km corresponds to mission 51. 4 

 Probability of survival  

Scenario Mission 51 Mission 52 Mission 53 Survival for all 

missions 

Unmitigated 0.854 0.732 0.710 0.444 

Mitigated 0.934 0.84 0.835 0.655 

Bayesian updated 0.94 0.851 0.851 0.681 

Mitigated+monitor 31km  0.899 0.894 0.8048 

Bayesian updated + monitor 31km  0.905 0.905 0.8201 

 5 

Table 4. Survival estimates for ISE Explorer’s Arctic survey missions.  6 

 Survival estimates for survey missions Survival for all 

missions 

 Mission 55 Mission 56  

Unmitigated 0.433 0.433 0.187 

Mitigated 0.67 0.67 0.449 

Bayesian updated 0.695 0.695 0.483 

Unmitigated + monitor 87km 0.610 0.610 0.372 

Mitigated+monitor 87km 0.802 0.802 0.644 

Bayesian updated+monitor 87km 0.817 0.817 0.667 

7 
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List of figures captions 

 

Fig. 1. Density distribution for the mean of the probability of fault mitigation for failures 9, 

13, 15, 35b, 42 and 40. 

 

Fig. 2: Probability of loss given fault, mitigation and trials results. Ranked order by unmitigated 

probability of loss given fault, for those faults above 0.01. The upper point of the "error bar" 

is the unmitigated data, the main point is after a priori estimated mitigation and the lower 

error bar is posterior after Bayesian inference. 

 

Fig.3: Probability of failure mitigation. In gray, the prior of the probability of mitigation 

distribution. In black, the posterior probability of mitigation distribution. 

 

Fig. 4: Survival distribution for ISE Explorer vehicle deployment in the Arctic. In full line is the 

survivability without mitigation. In dashed line is the survivability considering the mitigation 

based on the prior belief. In dotted line is the survivability considering the mitigation updated. 
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Fig. 1. Density distribution for the mean of the probability of fault mitigation for failures 9, 

13, 15, 35b, 42 and 40. 

Fault 9 Fault 13 

Fault 15 Fault 35b 
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Fig. 2. Probability of loss given fault, mitigation and trials results. Ranked order by unmitigated 

probability of loss given fault, for those faults above 0.01. The upper point of the "error bar" 

is the unmitigated data, the main point is after a priori estimated mitigation and the lower 

error bar is posterior after Bayesian inference. 

 

Fig. 3. Probability of failure mitigation. In gray, the prior of the probability of mitigation 

distribution. In black, the posterior probability of mitigation distribution. 
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Fig. 4. Survival distribution for ISE Explorer vehicle deployment in the Arctic. In full line is the 

survivability without mitigation. In dashed line is the survivability considering the mitigation 

based on the prior belief. In dotted line is the survivability considering the mitigation updated 

using Bayesian updated.  

 


