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Abstract. Non-negative matrix factorization (NMF) is an effective di-
mensionality reduction technique that extracts useful latent spaces from
positive value data matrices. Constraining the factors to be positive val-
ues, and via additional regularizations, sparse representations, sometimes
interpretable as part-based representations have been derived in a wide
range of applications. Here we propose a model suitable for the analysis
of multi-variate financial time series data in which the variation in data
is explained by latent subspace factors and contributions from a set of
observed macro-economic variables. The macro-economic variables being
external inputs, the model is termed XNMF (eXogenous inputs NMF).
We derive a multiplicative update algorithm to learn the factorization,
empirically demonstrate that it converges to useful solutions on real data
and prove that it is theoretically guaranteed to monotonically reduce the
objective function. On share prices from the FTSE 100 index time se-
ries, we show that the proposed model is effective in clustering stocks in
similar trading sectors together via the latent representations learned.
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1 Introduction

Many modern problems in machine learning are posed in high dimensions, due
to the ease with which we can now acquire and archive data. However, useful
information we wish to extract about a problem domain might be expected to
be characterised by fewer features. Hence dimensionality reduction is a useful
tool in identifying the latent subspaces of interest. By working in a smaller
subspace we hope to reduce the noise, compress the data and, potentially, enable
classification or regression machines to generalise better. Non-negative matrix
factorization (NMF) is an increasingly popular choice of linear dimensionality
reduction in large part because it is often capable of producing a sparse and
parts based representation of the data.

In standard NMF we consider an input matrix with m dimensions and n
samples: V € R"*", The aim is to find a lower-dimensional representation of
the data by factorizing V into two matrices W and H such that V ~ WH,
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where W € R™*" and H € R™™". Generally r < m and r < n so that NMF
creates a new representation of the data in a significantly reduced subspace.

Financial systems are inherently complex, driven by the objectives of market
players, along with monetary and fiscal policies of governments. Pure time series
analysis has been applied extensively to asset returns [1-3], exchange rates [4]
and derivatives [5,6]. NMF has been applied to financial data in several ways,
such as identifying underlying trends in stock market data [7]. Also sparse-semi-
NMEF approaches to portfolio diversification have been used to minimise risk [8,
9]. The appeal of NMF in this context is that returns on assets, expressed as ra-
tios of their market prices, are positive. Factorizing multivariate asset return data
into low rank factors can potentially discover low dimensional representations
that are determined by sectors of assets that are likely to show similar responses.
However, statistical signal analysis methods usually do not take into account ex-
ogenous information from macro-economic variables (referred to in this paper as
macro-variables) that have significant contributions to market movements.

In this paper, we propose a matrix factorization method that includes known
exogenous variables as additional components of subspace modelling. We expect
such factorizations to potentially uncover sector-specific drivers from among a
wide range of macro-variables available. Specifically, our model represents the
variation in any asset as consisting of contributions from sector-specific compo-
nents and selected macro-variables. Hence the main novel contributions in this
paper are the specification of such a factorization model and a learning algorithm
for it. We empirically demonstrate the effective performance of our approach on
share price data from FTSE 100 companies and theoretically prove that the
XNMF algorithm is guaranteed to monotonically reduce the objective function.

This paper is structured as follows: in Section 2 we present our model includ-
ing the underlying mathematics and the proof of monotonic reduction of the
objective function; in Section 3 we discuss the real and synthetic data we used;
in Section 4 we display our results; and in Section 5 we conclude and summarize
our results.

2 Model and Learning Algorithm

Our aim is to find a combined representation of the share price data using the
share price itself with the addition of external macro-variables. We can utilise
standard NMF methods to find representations such that V.~ W{H; and,
separately, V.~ WyoH, where Wy € R™*™ H; € R™*™ and Hy € R™*"
are all matrices to be found. The macro-variables are recorded in Wy € R™*"2
and are fixed quantities. Here m represents the number of time points, r; is a
parameter to select, ro is the number of macro-variables and n is the number of
stocks.

There are many approaches to perform NMF, a simple method is to utilise
the multiplicative update technique of Lee and Seung [10] which gives updates
for W and H of
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[VHT] [WTV]

W~ Wo H+~HO

(1)

where ® is the Hadamard product and % denotes element-wise division. These
updates push the matrices towards a minimum of the objective function ||V —
WH||%,,. In our combined representation we want to find matrices W1, H; and
H, that satisfy V.~ W 1H; + WsH> which requires us to minimise

1
f= §\|V — WiH; — WoHy| |7, (2)

As minimising Equation (2) with respect to Wy, H; and Hy together is
non-convex we hold two of the matrices constant whilst updating the third us-
ing multiplicative updates. Each individual problem is then convex, although
the overall problem remains non-convex and there is no guarantee of reaching
an optimal solution. Multiplicative updates are a type of scaled gradient de-
scent therefore we need to find Vw, f, Vu, f and Vg, f. First we multiply out
Equation (2) and get:

f :%tr [(V-WH; - W,H,)" (V- W H; - W,H,)]
:%tr [VTV ~V'W,H, - VIW,H,—
H{W{V +H{W{ W H, + H W] W,H,—
H/WIV + HIWIW, H, + HY WQTWQHQ} . (3)

We then differentiate Equation 3 with respect to W1, H; and Hs respectively
to give three equations:

Vw, f = (WiHH] + W,H,H{ — VHT), (4)

Vi, [ = (WIW H, + W/W,H, - WTV) (5)
and

Va,f = (WiW,yH, + Wi W, H; — WIV). (6)

We apply multiplicative updates to W1, Hy and Hs by:

i

W1 <— Wl ® s

[W1H1H1T n WQHQHﬂ
wiv]

H1 <— Hl ®

[WlTlel n WITWQHQ}
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and
WiVl
H, +~ H,®

(9)
[vvngH2 + W;f”WlHl}

where © is the Hadamard product and % indicates element-wise division. We will
discuss how changes to W7 reduces the objective function noting that the same
argument also applies to changes in H; and Hs. As we want to follow the gradient
down towards a minimum, if Vw, f < 0 then we want to increase Wy. This is
equivalent to VH? > WlHle + WQHQHT, and, as shown in Equation (7),
‘W, is increased. Conversely if Vv, f > 0 then we need W to decrease, which
the multiplicative update does because W1H1H1T + WgHngT > VHlT. The
final eventuality, that Vw, f = 0, implies we have found a minimum of W;
and so want to keep W7 the same. Our multiplicative update multiplies W1 by
one, fulfilling our requirement. We should note that if Vw, f = 0 we are not
necessarily at a minimum of the objective function as the other two matrices
may still change which might change the situation of Wy such that Vw, f is no
longer zero.

While this argument shows that the updates move in the correct direction,
that is no guarantee of a monotonic reduction of the objective function as we
could overshoot the minimum. However, part of the value of multiplicative up-
dates is that Lee and Seung proved that they do produce a monotonic reduc-
tion [11].

We prove that our algorithm monotonically reduces Equation (2) by extend-
ing the proof of Lee and Seung [11] to cover the XNMF objective function using
the same notation they did. Definition 1 and lemma 1 from their paper remain
the same but we change the K (h') diagonal matrix of lemma 2 to

Kap(hiy)) = 6a5(W1 Wihi + Wi Wshy),/hi;), (10)

which changes only the K(hfl)) term of G(hy, hf). We then prove that G(hy,h})
is an auxiliary function of the altered F'(hy):

1
F(hy) = 3 (v — Wihy — Wohy)” (v — Wihy — Wshy) (11)

which requires the proof that M, ;(h}) = h

ma(K(hﬁ) — W{Wl)a,bhzl)b is pos-
itive semidefinite:

vI'Mv
= E VaMa,be
a,b

= [Fya ((WIWAR + W Waho) b, ) by = vahls) o (W W a sty
a,b ’
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Our proof is then the same as Lee and Seung except, due to the different
K(h'), we end with:

pttl _pt (W{V)a

o a . (13)
Ma ="M WTW h, + W Wh,),

which proves that our algorithm will monotonically reduce the objective function
for H;. Equivalent proofs are trivially shown for W; and Hs.

3 Data

We demonstrate the effectiveness of our model and learning algorithm empiri-
cally using daily data from FTSE 100 companies taken over a twenty year period.
To deal with non-stationarity that may exist over such a long period in time, we
also split the data into four equal sections in time and show results on all four
separately.

Table 1. Macro-variables used in this study

Macro-variable Frequency|Macro-variable Frequency
Gross Domestic Product  Quarterly |Unemployment Monthly
Interest Rate Monthly Inflation Index Rate ~ Monthly
Imports Goods&Services Quarterly |Exports Monthly
Oil Imports Monthly Gross National Income Quarterly
M1 Money Supply Monthly Productivity Quarterly
GBP/USD Daily Contribution to CPI  Monthly
Balance of Payments Monthly Oil Investment Daily
Government Gross Reserve Monthly

In Table 1 we show the macro-variables used in this study. The choice of
which macro-variables to use is somewhat arbitrary, there are many potential
macro-variables, and they can be changed. To compensate for the differences
in frequency between the share data (recorded on work days) and the macro-
variable data we have linearly interpolated between all the macro-variable data
so that the dimensionality (the number of time points) are equal.
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4 Results

We first confirm empirically that our algorithm achieves the desired goal, the re-
duction in the error until it reaches a minimum. In Figure 1(a) we show how the
error changes with iteration for different values of r for the three different algo-
rithms. We will use the same terminology throughout: NMF results are from the
algorithm which minimised ||V — W1H;||%,,, XNMF (exogenous inputs NMF)
is for the minimisation of ||V — W1H; — WoH;||%  and EX (exogenous inputs
alone) is for the minimisation of ||V — WaHs||% . The blue dashed lines are for
different values of r for NMF and the solid black lines for different values of 7
for XNMF.

40§ 25
---NMF 4 —~~NMF
N —XNMF 20l —XNMF ]
<10 T — EX A ] o XNMF Random

‘ ‘ ‘ ‘ 0 ‘ ‘
2000 4000 6000 8000 10000 0 10 20 30
Iteration r

(a) (b)

Fig. 1. (a) The extended multiplicative update algorithm reduces the error monoton-
ically with iteration until a plateau is reached. The multiple blue dashed (NMF) and
solid black (XNMF) lines are for different sizes of the subspace, r. Generally the XNMF
algorithm requires more iterations to approach a minimum than the NMF algorithm,
but reaches a lower final error. (b) The final errors for different sizes of the subspace,
r, for NMF (blue dashed lines with crosses), XNMF (solid black line) and XNMF us-
ing a Wy with random values (red dotted with circles). At all values of r that were
implemented XNMF produces smaller errors than NMF or the randomised XNMF. As
r is increased the difference between the errors produced by the algorithms reduces as
the capacity of the NMF model increases and begins to overfit the data.

The EX algorithm (red dotted line) produces a poor approximation as it con-
tains no information from the actual stocks themselves. The results of particular
note are those of the XNMF algorithm which works as we expect it to, we see a
fall in the objective function with iteration until it approaches a minimum where
the error plateaus. The XNMF algorithm takes more iterations than the NMF
algorithm to approach a minimum which might be expected as we have three
matrices to optimise rather than two. In addition, the third matrix may make
the objective function more non-convex than with just two matrices to optimise.
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In Figure 1(b) we show the final errors from performing normal NMF (blue
dashed line with crosses) and XNMF (solid black line) for different sizes of
the subspace, r. At low values of r the model does not have enough subspace
dimensions (columns of W) to effectively fit the data and so the errors are high.
The additional macro-variables here make a significant difference to the quality
of the fit. As r increases the benefit of the additional information decreases as the
increased capacity of the W1H; part of the model means that a good fit to the
data is possible without any additional information. As r increases it is likely
that the model is overfitting the data, so any use of NMF requires a sensible
choice of r to be made [12]. We also include a version of XNMF (red dotted
line with circles) called XNMF Random where the Wy matrix is composed of
random numbers. The NMF and XNMF Random plots are hard to distinguish
demonstrating that the XNMF method is extracting real information from the
external data, and not just reducing the error by increasing the size of the
parameter space.
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Fig. 2. a) A representation of how much clusters diverge with time. K-means clustering
was applied to non-dimensionality reduced data (dark blue bars), dimensional reduction
using NMF (light blue bars) and dimensional reduction using XNMF (yellow bars) for
four times periods and for a combination of the four periods. The clusters produced
from data with no dimensional reduction diverge the most, with application of NMF the
divergence is reduced and with XNMF we see the smallest divergence, the clusters tend
to hold together better through time. b) Boxplots of the same results demonstrating
the improvement of XNMF over NMF.

A particular appeal of NMF is noise suppression, by reducing the noise we
might expect to be able to extract more real features from the data. A key result
demonstrated with gene expression data is that the reduction in noise achieved by
matrix factorization leads to stable clustering and biologically relevant inference
about genes [13,14]. In financial data we are often interested in how stocks and
shares move together through time, a balanced portfolio would not contain lots
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of shares which are likely to fall in the same period. If we can effectively cluster
the shares we can then build a more resilient portfolio.

We can cluster stock data into groups using a range of techniques including
the popular K-means clustering. We are then interested in the quality of the
clustering in the future, clusters that hold together better would be desirable.
While NMF is not a clustering technique we can use the dimensionality reduction
to create a new sub-space in which we apply clustering.

We performed K-means clustering on three versions of the data: a) no di-
mensionality reduction; b) dimensionality reduced using NMF; c¢) dimensional-
ity reduced using XNMF. A measure of the similarity of a cluster is the average
distance to the cluster centre using the non-dimensionality reduced data. We are
interested in the change in the average distance to the cluster centre as this gives
us a measure of how similar the cluster is at different time points. In general, we
would expect an increase in distance as clusters will tend to diverge with time.
If we see a smaller increase using the dimensionality reduced versions, it shows
that the NMF techniques are allowing us to produce clusters which generalise
better.

In Figure 2 we see the results of this forward prediction of clustering. First
the data was split in half into a “training” set, the first half of the data in time,
and a “testing” set, the second half of the data. The training data was then
clustering into seven cluster centres using, respectively: the raw data, V; H;
from NMF; and H; from XNMF. We chose the size of the subspace, r, using
a combination of domain knowledge about numbers of sectors in the data, and
automatic techniques to assess subspace size [12]. The y-axis shows the ratio
of the average distances from each data-point to its cluster centre between the
testing data and the training data. A smaller value means the cluster stayed
closer together. We see a clear trend, the raw data performs the worst whilst
XNMF gives the best performance, and NMF gives a result in between the other
two.

5 Conclusion

In this paper we introduce a matrix factorization model suitable for multi-variate
financial time series that includes known exogenous macro-variables. We use real
FTSE 100 stock data to show that the multiplicative update factorization al-
gorithm of XNMF produces lower errors than standard NMF and that stock
clusters formed with the addition of exogenous data stay tighter bound through
time. We also prove theoretically that the algorithm is guaranteed to monoton-
ically reduce the objective function.
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