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Nonlinear Process Fault Diagnosis Based on Serial
Principal Component Analysis

Xiaogang Deng, Xuemin Tian, Sheng Chen, Fellow, IEEE, and Chris J. Harris

Abstract—Many industrial processes contain both linear
and nonlinear parts, and kernel principal component analysis
(KPCA), widely used in nonlinear process monitoring, may not
offer the most effective means for dealing with these nonlinear
processes. This paper proposes a new hybrid linear-nonlinear
statistical modeling approach for nonlinear process monitoring by
closely integrating linear principal component analysis (PCA) and
nonlinear KPCA using a serial model structure, which we refer to
as serial principal component analysis (SPCA). Specifically, PCA
is first applied to extract principal components (PCs) as linear
features, and to decompose the data into the PC subspace and
residuals subspace (RS). Then KPCA is performed in the RS to
extract the nonlinear PCs as nonlinear features. Two monitoring
statistics are constructed for fault detection, based on both the
linear and nonlinear features extracted by the proposed SPCA.
To effectively perform fault identification after a fault is detected,
a SPCA similarity factor method is built for fault recognition,
which fuses both the linear and nonlinear features. Unlike
PCA and KPCA, the proposed method takes into account both
linear and nonlinear PCs simultaneously and, therefore, it can
better exploit the underlying process’s structure to enhance fault
diagnosis performance. Two case studies involving a simulated
nonlinear process and the benchmark Tennessee Eastman process
demonstrate that the proposed SPCA approach is more effective
than the existing state-of-the-art approach based on KPCA alone,
in terms of nonlinear process fault detection and identification.

Index Terms—Nonlinear process monitoring, kernel principal
component analysis, serial principal component analysis, fault
detection, fault identification, similarity factor

I. INTRODUCTION

As modern industrial processes become very complicated,
large-scale and highly invested, fault diagnosis technology
shows its great value in ensuring process safety and improving
product quality. In the past several decades, industrial process
fault diagnosis methods have been discussed extensively by
researchers [1]–[3], and existing methods are usually divided
into model, knowledge, and data based classes. Among these
three classes, data based fault diagnosis methods have become
an increasingly hot topic in recent years because large amounts
of historical and real-time data are collected and stored in
computer control system database [4]–[7]. Some representative
data based methods include principal component analysis
(PCA) [8]–[10], partial least squares [11], [12], independent
component analysis [13]–[15] and canonical variate analysis
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[16], [17]. Also some cognitive fault diagnosis methods have
been studied by mining online data information, particularly
for sensor networks [18]–[20]

As one of most well-known data based fault diagnosis
methods, PCA and its extensions have been studied in depth.
Miletic et al. [21] reported the application of PCA based con-
trol charts for a continuous slab caster at Dofasco Company.
For multiphase batch process, Zhao and Gao [22] improved
PCA by considering the between-phase relative changes. To
handle the correlated process data, dynamic PCA based on
decorrelated residuals was developed by Rato and Reis [23].
Considering the multimode operations, several multimode
PCA methods have been developed in the works [24]–[26].
As linear PCA cannot effectively deal with the nonlinear
process monitoring problem, many modified nonlinear PCA
methods have been developed. Krammer [27] firstly applied
neural network to construct nonlinear PCA model. Dong and
MacAvoy [28] generalized the linear PCA to the nonlinear
principal curve method. Guo et al. [29] combined the radial
basis function neural network and PCA to develop a nonlinear
monitoring model.

More recently, kernel PCA (KPCA) has attracted great
interest from researchers in fault diagnosis field. KPCA pro-
posed by Schölkopf et al. [30] avoids complicated nonlinear
optimization procedure by the use of kernel function. Lee et
al. [31] firstly applied KPCA to fault detection, and Choi
et al. [32] developed a KPCA contribution plot for fault
identification. Zhang et al. [33] built an improved KPCA
method, referred to as SFM-MSKPCA, by combining wavelet
decomposition technique and sliding median filter. Since non-
linear principal components (PCs) extracted by kernel trans-
formation may violate the Gaussian distribution assumption,
Ge et al. [34] incorporated a statistical local approach with
KPCA to construct new score variables that follow Gaussian
distribution. Fan et al. [35] proposed a KICA-PCA method
which considers both the nonlinear and non-Gaussian char-
acteristics. Utilizing local data structure analysis, Deng et al.
[36] proposed a local data structure assisted KPCA method for
nonlinear fault detection. More recent researches for KPCA
can be found in [37]–[39].

Although KPCA has achieved great success in process fault
detection and identification, there exist some open problems
or controversial issues to motivate the further study. One
important open problem is: Can one single KPCA model be
enough to describe the process data exactly? The characteris-
tics of an industrial process are generally unknown and very
complex. Although it is usually true that industrial process is
nonlinear, both linear and nonlinear relationships often exist
among industrial process variables. In some cases, one single
nonlinear model may be not the best choice. Therefore, hybrid
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linear-nonlinear modeling can offer a viable alternative to mine
the process data features. In the time series prediction field,
there are some successful cases of applying hybrid linear and
nonlinear modeling [40]–[44]. More specifically, Zhang [40]
proposed to build a hybrid ARIMA and neural network model,
and the results of [40] indicate that the combined model can
be more effective than either single linear model or single
nonlinear model. Chen [41] and Xiong et al. [42] applied
hybrid linear-nonlinear model to predict tourism demand and
agricultural commodity futures prices, respectively. Alippi et
al. [43] applied the ensemble of linear time invariant model
and nonlinear reservoir network to reconstruct the missing
data in sensor networks. Zhang et al. [44] performed non-
linear system identification by combing a linear model with
a nonlinear compensation term. As shown in [41], none of a
linear model or a nonlinear model alone can offer the solution
to all situations and a combination strategy is a better choice
for data modeling.

Motivated by the above analysis, we propose a new hybrid
linear-nonlinear statistical modeling approach for nonlinear
process monitoring by integrating PCA and KPCA closely
using a serial model structure, which we refer to as serial
principal component analysis (SPCA). To our best knowledge,
we are the first to propose a combined linear PCA and non-
linear KPCA method to process fault detection and diagnosis.
Our contribution is twofold. Firstly, a hybrid linear-nonlinear
fault detection framework is presented based on SPCA. More
specifically, linear PCA is first applied to extract PCs as linear
features, and then in the PCA residual space (RS), KPCA is
used to obtain nonlinear feature extraction. SPCA monitoring
statistics are more effective in process fault detection than
the monitoring statistics constructed using either PCA or
KPCA alone. Secondly, a SPCA similarity factor method is
developed for fault recognition, which fuses the linear features
and nonlinear features, and therefore it outperforms both the
PCA similarity factor method and the KPCA similarity factor
method. In general, compared to PCA and KPCA, which only
mine the linear or nonlinear features, the proposed SPCA takes
into account all the relevant statistical features, including both
linear PCs and nonlinear kernel PCs (KPCs).

The rest of this paper is organized as follows, In Section II,
after a brief overview of PCA and KPCA, the proposed SPCA
is detailed. Section III presents the fault detection procedure
based on SPCA, while the fault identification framework
based on the proposed SPCA similarity factor is provided in
Section IV. Two case studies are used to validate the proposed
SPCA approach for process fault detection and identification
in Section V, and our conclusions are offered in Section VI.

II. SPCA FOR HYBRID LINEAR-NONLINEAR MODELING

We begin by a brief overview of PCA and KPCA, followed
by the detailed description of our proposed SPCA for hybrid
linear-nonlinear modeling.

A. Overview of PCA and KPCA
PCA is a classical linear data dimension reduction tech-

nique, which transforms the original variables into new un-
correlated variables arranged by their variances. The new

variables with large variances are viewed as the PCs, which
represent the dominating data changes, while other variables
with small variances are the projections of the original data
onto the RS, which are usually thought to be the noise
information but this is only true if the data only contains linear
features. Thus PCA decomposes the original data space into
two subspaces: PC subspace (PCS) and RS. Mathematically,
given a data matrix X ∈ Rn×m with n samples of m variables,
the PCA decomposition is represented by

X = X̂ + X̃ =
k∑

i=1

tip
T
i + X̃, (1)

where ti ∈ Rn is the ith score vector or PC, pi ∈ Rm is the
corresponding loading vector and k is the number of retained
PCs, while X̂ ∈ Rn×m is the matrix reconstructed by the PCs
and X̃ ∈ Rn×m is the residual matrix.

In kernel PCA, an nonlinear function Φ : Rm → F is
implicitly assumed that maps the data in the original space
onto a new high-dimensional feature space where the data
become linearly correlated. Then in the feature space F , linear
PCA is applied. As the nonlinear mapping Φ(.) is unknown,
kernel function is used to help completing the nonlinear
transformation. Specifically, by using kernel function ker(·, ·),
the inner product of two feature data Φ(xi) and Φ(xj) in the
feature space can be calculated in the original data space as

ker(xi, xj) = ΦT(xi)Φ(xj), (2)

for xi, xj ∈ Rm, without having to perform the nonlinear
mapping Φ(·) explicitly. A commonly used kernel function
is the Gaussian kernel ker(xi, xj) = exp(−∥xi − xj∥2

/c),
where c > 0 is known as the kernel width.

For the processes operating in linear zones around some
operating points, PCA offers an efficient and robust monitoring
method, but it cannot deal with nonlinear processes. By con-
trast, KPCA is capable of extracting nonlinear features. Since
industrial processes are highly complex and the performance
of KPCA is often restricted by the chosen kernel parameters,
it is often difficult to guarantee that KPCA can precisely
capture the process characteristics. Moreover, many industrial
processes exhibit both linear and nonlinear characteristics.
Combining linear PCA and nonlinear KPCA modeling offers
a new and viable process monitoring alternative.

B. Hybrid modeling by combining PCA and KPCA

The proposed hybrid linear-nonlinear SPCA method con-
sists of two modeling steps, as depicted in Fig. 1. In the first
step, PCA is executed to extract linear features. The second
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Fig. 1. The schematic of SPCA statistical modeling.
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step involves KPCA decomposition, which extracts nonlinear
features in the RS of the PCA. We now detail this SPCA.

For the data matrix X ∈ Rn×m which is assumed to be
mean centered and variance scaled, linear PCA decomposition
of Eq. (1) is rewritten as

X = X̂ + X̃ =
kL∑
i=1

tLip
T
Li

+ X̃, (3)

where tLi is the ith linear score vector, pLi is the correspond-
ing loading vector, and kL is the number of PCs retained in
the PCA model. The loading vector pLi can be obtained by
the eigen-decomposition of the covariance matrix as

1
n − 1

XTXpLi = λLipLi , (4)

where λLi denotes the ith eigenvalue of XTX/(n − 1).
Given a testing vector xt ∈ Rm, its ith score is given by

tLi = xT
t pLi . (5)

The first kL scores of xt, denoted by
[
tL1 tL2 · · · tLkL

]T,
are available as the linear features of the testing vector.
Furthermore, the residual vector of xt is readily given by

x̃t =xt −
kL∑
i=1

tLipLi . (6)

In the second step, KPCA is applied to the PCA residual
matrix X̃ . The KPCA transformation of X̃ in F , denoted by
Φ(X̃) ∈ Rn ×F , can be decomposed as

Φ(X̃) =
kN∑
i=1

tNi

(
pNi

)T + E, (7)

where tNi ∈ Rn is the ith nonlinear score vector or feature,
pNi ∈ F is the corresponding loading vector in KPCA
decomposition, and kN is the number of kernel PCs retained
in the model, while E ∈ Rn×F is the KPCA residual matrix.
To obtain the KPCA score and loading vectors, the eigenvalue
decomposition of the covariance matrix is formulated as

1
n − 1

ΦT(X̃)Φ(X̃)pNi = λNipNi , (8)

with λNi denoting the ith eigenvalue of 1
n−1ΦT(X̃)Φ(X̃).

Denote X̃ =
[
x̃1 x̃2 · · · x̃n

]T
. Then there exists αi =[

αi,1 αi,2 · · ·αi,n

]T
such that [30], [31]

pNi =
n∑

j=1

αi,jΦ(x̃j) = ΦT(X̃)αi. (9)

Combining Eqs. (8) and (9) with Eq. (2), we have [30], [31]

(n − 1)λNiαi = Kαi, (10)

where K ∈ Rn×n is the kernel matrix with its ith-row
and jth-column element given by [K]i,j = ker

(
x̃i, x̃j

)
=

ΦT(x̃i)Φ(x̃j), and K has been been mean centered [31].
It can be seen that λNi and αi are the ith eigenvalue and
eigenvector of K, and they can be explicitly computed [30].

For the test residual vector x̃t, its ith KPCA score is
extracted by projecting Φ(x̃t) onto pNi as

tNi =ΦT(x̃t)pNi =
n∑

j=1

αi,jΦT(x̃j)Φ(x̃t) = kT
t αi, (11)

where kt ∈ Rn is the test kernel vector whose jth element
is [kt]j = ker

(
x̃j , x̃t

)
. Detailed explanation, discussion and

implementation of the KPCA can readily be found in the
literature, e.g., [30], [31], [45].

In the literature, there exist some methods for selecting the
number of retained PCs in PCA or KPCA model, including the
average eigenvalue and cumulative percent variance methods
[31], [46]. We adopt the average eigenvalue approach to
determine kL and kN , owing to its simplicity and robustness.
This method retains the PCs whose eigenvalues are larger than
the average eigenvalue.

III. FAULT DETECTION BASED ON SPCA

For the convenience of real-time fault detection, two mon-
itoring statistics are constructed as

T 2 =tTSPCAΓ−1tSPCA, (12)

Q =
n∑

j=1

(
tNj

)2 −
kN∑
j=1

(
tNj

)2
, (13)

where tTSPCA =
[
tL1 tL2 · · · tLkL

tN1 tN2 · · · tNkN

]
contains

the monitored linear and nonlinear PCs, and Γ is the covari-
ance matrix of these components computed under the normal
operating condition. The T 2 and Q statistics are standard
monitoring statistics widely adopted in fault detection appli-
cation. For example, the two corresponding statistics of the
PCA method are constructed using tTPCA =

[
tL1 tL2 · · · tLkL

]
,

while the two related statistics of the KPCA method are
computed with tTKPCA =

[
tN1 tN2 · · · tNkN

]
.

To inspect if a fault occurs, the confidence limit is required
for each statistic. In order to determine the confidence limit,
the distribution for the monitored variables is required. Typi-
cally, existing PCA and KPCA methods assume some specified
distribution, usually Gaussian, for the monitored variables.
For example, the original KPCA method of [31] computes
the confidence limits for T 2 and Q statistics based on the
F distribution and weighted χ2 distribution for these two
statistics, respectively. Since industrial processes are highly
complex, it is difficult to guarantee that process data conform
to a specific distribution assumption, such as Gaussian. Ker-
nel density estimation (KDE) [47], [48] is a non-parametric
empirical density estimation technique, which does not need
any distribution assumption. Hence, data-driven KDE based
method has become popular recently for confidence limit
determination [14], [16], [36], [39], [49]. Therefore, we apply
the KDE to determines the confidence limits for the PCA,
KPCA and SPCA based monitoring statistics. Specifically, this
KDE based method computes confidence limit based on the
values of monitoring statistics under normal testing data. In
particular, 95% confidence limit are obtained in our paper.

Similar to the PCA and KPCA based process monitoring
procedures, the SPCA based process monitoring procedure
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consists of two stages: offline modeling and online monitoring.
During the offline modeling stage, normal operating data are
acquired and divided into the training and validating datasets.
The training dataset is used to construct a SPCA model and
the validating dataset is applied to determine the confidence
limits. During the online monitoring stage, new measured data
is collected and its linear and nonlinear PCs are extracted.
Then the two monitoring statistics are computed. If at least
one of these two statistics exceeds its confidence limit, a fault
alarming signal is given to operator. This SPCA based fault
detection procedure is summarized in Fig. 2.

Fig. 2. Flowchart of SPCA based fault detection

IV. FAULT IDENTIFICATION USING SPCA SIMILARITY
FACTOR

After a fault is detected, it is vital to diagnose the fault
source so that the fault can be repaired quickly. Some methods
were discussed for this challenging task in the literature [39],
[50], [51]. An early solution is contribution plot [51]–[53],
where the largest contribution value indicates the possible fault
variable. Contribution plot is easy to implement but performs
unsatisfactorily for complicated faults. Often many historical
fault datasets are available in computer database and, therefore,
pattern recognition strategy can be adopted to identify fault
pattern. Hence, we assume that there are many fault pattern
datasets available in the historical database.

A. PCA and KPCA similarity factors

PCA similarity factor [54]–[57] computes the similarity
factor between the test fault dataset and each fault pattern
dataset available in the historical database, and the fault
pattern with the highest similarity factor is concluded as the
recognition result. Early work on PCA similarity factor was
carried out by Johannesmeyer et al. [54]. Later, Singhal et al.
[55] presented a modified PCA similarity factor by considering
the weighting of PC directions. This method has been applied
in process monitoring and data classification in [56], [57].
To deal with nonlinear processes, Deng et al. [58] built a
nonlinear similarity factor called KPCA similarity factor. We
now briefly review both PCA and KPCA similarity factors.

For datasets S ∈ Rn×m and H ∈ Rn×m from a process,
which have been scaled by the mean and variance of normal
operation data, PCA is performed on them to retain the
first kL PCs for each of them. The PCSs of S and H

are defined by L =
[
l1 l2 · · · lkL

]
∈ Rm×kL and M =[

m1 m2 · · ·mkL

]
∈ Rm×kL , respectively, which contain the

first kL loading vectors of S and H . The loading vector is
also the PC direction. Let θi,j be the angle between the ith
PC direction li of the dataset S and the j-th PC direction mj

of the dataset H . The cosine of θi,j is given by

cos θi,j =
lTi mj

∥li∥ ∥mj∥
. (14)

Then the weighted PCA similarity factor is defined as [55]

SPCA(S, H) =

∑kL

i=1

∑kL

j=1 λLiλMj

(
cos θi,j

)2

kL∑
i=1

λLiλMi

=
tr
(
ΛLLTMΛ2

MMTLΛL

)
∑kL

i=1 λLiλMi

, (15)

where tr(·) denotes the matrix trace operation, Λ2
M =

ΛMΛM , ΛL and ΛM are the weighting matrices given by

ΛL =diag
{√

λL1 ,
√

λL2 , · · · ,
√

λLkL

}
, (16)

ΛM =diag
{√

λM1 ,
√

λM2 , · · · ,
√

λMkL

}
, (17)

with diag{a1, a2 · · · , ap} as the diagonal matrix having the
diagonal elements of a1, a2 · · · , ap, while the eigenvalues λLi

and λMi correspond to the ith PCs of S and H , respectively,
with the ordered eigenvalues satisfying λL1 > λL2 > · · · >
λLkL

and λM1 > λM2 > · · · > λMkL
. The number of PCs kL

used is a key parameter in PCA similarity factor computation.
Let kS and kH be the numbers of PCs determined for S
and H , respectively, based on the average eigenvalue method.
According to [54], [55], we can choose kL = max{kS , kH}.

The PCA similarity factor SPCA(S, H) characterizes the
similarity degree of S and H in the linear PC space. Large
value indicates high similarity degree. In particular, the two
datasets S and H are regarded to come from the same oper-
ation pattern if the value of SPCA(S, H) is close to 1, while
they belong to different operation patterns if SPCA(S, H) is
close to 0. However, it is clear that PCA similarity factor can
only be applied to fault diagnosis of linear processes.

For the datasets S and H , we can apply KPCA transfor-
mation to obtain their nonlinear PC subspaces respectively as

L =ΦT(S)AL ∈ F × RkN , (18)

M =ΦT(H)AM ∈ F × RkN , (19)

where AL, AM ∈ Rn×kN contain the first kN eigenvectors
of the KPCA decomposition on S and H , respectively. The
KPCA similarity factor [58] can then be written as

SKPCA(S, H) =
1∑kN

i=1 λLiλMi

tr
(
ΛLAT

LΦ(S)ΦT(H)AM

× Λ2
MAT

MΦ(H)ΦT(S)ALΛL

)
, (20)

where ΛL,ΛM ∈ RkN×kN are the diagonal matrices whose
diagonal elements are the square roots of the corresponding
eigenvalues {λLi , 1 ≤ i ≤ kN} and {λMi , 1 ≤ i ≤ kN},
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respectively, obtained from the KPCA decomposition of S and
H . Applying kernel trick, we can compute the kernel matrices
KHS = Φ(H)ΦT(S) and KSH = Φ(S)ΦT(H). Then the
KPCA similarity factor can be calculated explicitly as

SKPCA(S, H) =
tr
(
ΛLAT

LKSHAMΛ2
MAT

MKHSALΛL

)
∑kN

i=1 λLiλMi

.

(21)
Since the KPCA similarity factor characterizes the similarity

degree of two datasets in the nonlinear PC space, it is capable
of applying to fault identification of nonlinear processes.

B. Proposed SPCA similarity factor

The propose hybrid similarity factor, called SPCA similarity
factor, integrates both linear and nonlinear features. When
SPCA is applied for fault identification, two steps of PCA
and KPCA decompositions are involved for S and H .

At the PCA step, the datasets are decomposed into

S =Ŝ + S̃, (22)

H =Ĥ + H̃, (23)

where S̃ and H̃ are the resulting PCA residual matrices, and
the PCA similarity factor SPCA(S, H) is calculated.

The KPCA step then decomposes the PCA residual matrices
S̃ and H̃ into

Φ
(
S̃

)
=Φ

(̂̃
S

)
+ E

S̃
, (24)

Φ
(
H̃

)
=Φ

(̂̃
H

)
+ E

H̃
, (25)

with E
S̃

and E
H̃

being the related KPCA residual matrices,
and the KPCA similarity factor SKPCA

(
S̃, H̃

)
is calculated.

The new SPCA similarity factor is constructed as

SSPCA(S, H) = SPCA(S,H) · SKPCA

(
S̃, H̃

)
. (26)

In this new SPCA similarity factor, the PCA similarity factor
component is capable of describing the similarity degree in
linear PC space, while the KPCA similarity factor component
is capable of characterizing the similarity degree in nonlinear
PC space. Therefore, only when S and H are similar in both
the linear and nonlinear spaces, which means that the two
datasets are truly similar, this SPCA similarity factor is close
to 1. If S and H are not similar, either in the linear feature
space or in the nonlinear feature space or in the both spaces,
then either the PCA similarity factor or the KPCA similarity
factor or the both will be near to 0. This leads the SPCA
similarity factor close to 0.

Once a fault is detected, this SPCA similarity factor can
be used to identify the pattern of newly occurred fault. The
unknown fault data is collected and the similarity factors with
all the known fault pattern datasets are computed. The largest
SPCA similarity factor indicates the possible fault pattern. If
all the similarity factors between the occurring faulty data
and all the known historical fault data are all close to zero,
then the occurring fault pattern is unknown or unseen to the
historical database. In this case, other means must be applied
to identify the fault. For example, experience operator with

the plan knowledge may have to infer from the operational
condition the root cause of the occurring fault. Once this is
done, that is, the fault is identified, the fault dataset can be
added to the historical database.

V. CASE STUDIES

Two case studies, a simulated nonlinear system [28] and
the Tennessee Eastman (TE) process [59], are used to validate
our proposed SPCA based approach and to compare its fault
detection and identification performance with those of the PCA
based and KPCA based methods. The KDE method is used
to compute the 95% confidence limits of the two monitoring
statistics for the PCA, KPCA and SPCA based fault detection
methods. In all monitoring charts, the 95% confidence limit
is plotted with dashed line and the monitoring statistic is
plotted with solid line. Furthermore, all monitoring charts are
normalized by their corresponding 95% confidence limits.

A. A simulated nonlinear system

The simulated nonlinear system, which is a modified version
of the example given in [28], is described by

x1 = u1 + e1,
x2 = u2 + e2,
x3 = 2u1 + 3u2 + e3,
x4 = 5u1 − 2u2 + e4,
x5 = u2

1 − 3u2 + e5,
x6 = −u3

1 + 3u2
2 + e6,

(27)
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Fig. 3. PCA monitoring charts for fault detection of the simulated nonlinear
process.
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Fig. 4. KPCA monitoring charts for fault detection of the simulated nonlinear
process.
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Fig. 5. SPCA monitoring charts for fault detection of the simulated nonlinear
process.
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where u1 and u2 are the independent source variables which
follow the uniform distribution in [0, 2], while e1 to e6 are the
independent noise variables obeying the normal distribution
with zero mean and variance 0.01. Normal operation dataset
consisting of 600 samples is simulated based on the model
(27). Among these data, 300 samples are used as the training
dataset to build statistical model and the other 300 samples are
applied as the validating dataset to determine the confidence
limit. Both the KPCA and SPCA adopt the Gaussian kernel
with the kernel width c = 3000. For fair comparison, the PCA,
KPCA and SPCA methods all apply the average eigenvalue
method to determine the linear PC and/or nonlinear PC num-
bers, resulting in kL = 2 PCs for the PCA, kN = 4 nonlinear
PCs for the KPCA, and kL = 2 PCs as well as kN = 4
nonlinear PCs for the SPCA, respectively.

A fault with 300 samples is designed, where the variable x2

has a step change of −0.5 after the 100th sample. The fault
detection results obtained by the three methods are shown in
Figs. 3 to 5, respectively. It can be seen that the PCA based
T 2 statistic cannot detect the fault, and the KPCA based T 2

statistic does better but fluctuates around the confidence limit.
By contrast, the SPCA based T 2 statistic clearly goes well
above the confidence limit after the occurrence of the fault.
The three Q charts all correctly detect the fault, but the SPCA
based one yields the best indication of the occurring fault.
Detection performance can be quantified by the fault detection
rate which is the ratio of the alarming samples over all the fault
samples. The fault detection rates of the three methods are
summarized in Table I, which clearly confirm that the proposed
SPCA method achieves the best fault detection result.

TABLE I
FAULT DETECTION RATES (%) OF THREE METHODS FOR THE SIMULATED

NONLINEAR SYSTEM

.
T 2 Q

PCA 6.0 94.0
KPCA 66.5 93.0
SPCA 97.5 99.5

We further examine the features extracted from the fault data
by the three methods. Fig. 6 plots the linear PCs obtained by
the PCA method, which are also the linear PCs for the SPCA.
Observe from Fig. 6 that there exists no obvious change in
these two linear PCs, which leads to the poor fault detection
performance of the PCA based T 2 chart as it is constructed
based on these two features. Fig. 7 shows the nonlinear PCs
extracted by the KPCA, where it can be seen that the 3rd
and 4th components exhibit slight changes after the 100th
sample. This explains why the KPCA based T 2 chart is able

Sample Number
0 100 200 300

t L
1

-6

-4

-2

0

2

4

6

Sample Number
0 100 200 300

t L
2

-4

-2

0

2

4

Fig. 6. Linear principal components extracted by the PCA method for the
fault data of the simulated nonlinear process.
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Fig. 7. Nonlinear principal components extracted by the KPCA method for
the fault data of the simulated nonlinear process.
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Fig. 8. Nonlinear principal components extracted by the SPCA method for
the fault data of the simulated nonlinear process.

to sound alarm but it fluctuates around the confidence limit.
Fig. 8 depicts the nonlinear features extracted by the SPCA.
It can be seen from Fig. 8 that the 3rd and 4th components
exhibit clear changes after the 100th sample. Thus the SPCA
based T 2 chart is able to confidently detect the fault.

B. Tennessee Eastman process

The TE process, developed by Downs and Vogel [59],
has become a benchmark process for validating pro-
cess control and fault diagnosis techniques [60]–[62]. This
process simulates a realistic chemical process operation
and its flowchart is illustrated in Fig. 9. The simula-
tion data with 52 variables can be downloaded from
http://web.mit.edu/braatzgroup/links.html, which provides a
normal operation case and 21 pre-programmed fault cases,
denoted by IDV(1) to IDV(21). These 21 faults involve step
changes and random variations in the process variables, slow
drift in reaction kinetics, valve sticking and some unknown
faults. Detailed fault descriptions can be found in [59], [60],
[62]. The normal operation condition includes two datasets,
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Fig. 9. The flowchart of TE process.

one having 500 samples and the another having 960 samples.
Each fault condition also includes two fault datasets. One set
contains 960 samples and the fault is introduced after the
160th sample, and the another has 480 samples with the fault
occurring after the 20th sample.

We use the normal dataset with 500 samples as the training
dataset to build model and apply the another 960 normal
samples as the validating dataset to determine the confidence
limits. The fault datasets IDV(1) to IDV(21) that each contains
960 samples are used for online fault detection and identifi-
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Fig. 10. PCA monitoring charts for the TE process fault IDV(4).
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Fig. 11. KPCA monitoring charts for the TE process fault IDV(4).
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Fig. 12. SPCA monitoring charts for the TE process fault IDV(4).

cation, while the fault datasets IDV(1) to IDV(21) that each
contains 480 samples are assumed to form the historical known
fault pattern datasets which are relabelled as FP(1) to FP(21).
Both the KPCA and SPCA applies the same Gaussian kernel
function with the width parameter c = 500m, where m is the
number of variables. The number of PCs is determined by the
average eigenvalue method.

1) Fault detection performance: The fault IDV (4), which
is a step change in reactor cooling water inlet temperature, is
first used to compare the fault detection performance of the
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Fig. 13. PCA monitoring charts for the TE process fault IDV(19).
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Fig. 14. KPCA monitoring charts for the TE process fault IDV(19).
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Fig. 15. SPCA monitoring charts for the TE process fault IDV(19).
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three methods, and the results obtained are shown in Figs. 10
to 12. It can be seen that the PCA based T 2 statistic fails to
detect the fault, while the KPCA based Q statistic fluctuates
around its confidence limit. By contrast, both the SPCA based
T 2 and Q monitoring charts clearly and confidently detect
the occurring fault. By combining both linear and nonlinear
features, the SPCA achieves the best detection performance
for the fault IDV(4).

The monitoring results obtained by the three methods for
the fault IDV(19), which is an unknown fault, are shown
in Figs. 13 to 15. It can be seen from Fig. 13 that this
fault is difficult to detect by the PCA method because its
two monitoring statistics are both below the corresponding
confident limits. The KPCA based T 2 monitoring chart also
fails to detect this fault, as can be seen from Fig. 14. Again
the SPCA method shows its advantages in fault detection. As
confirmed by its T 2 and Q monitoring charts given in Fig. 15,
the SPCA method confidently detects the fault IDV(19).
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Fig. 16. PCA monitoring charts for the TE process fault IDV(21).
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Fig. 17. KPCA monitoring charts for the TE process fault IDV(21).
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Fig. 18. SPCA monitoring charts for the TE process fault IDV(21).

The fault IDV(21), which involves a valve fault causing slow
process degradation, is also used in detection performance
comparison, and the results obtained by the three methods
are shown in Figs. 16 to 18. It can be seen that all the three
methods are able to detect this fault. To further analyze the
detection performance, let us define the fault detection time.
Specifically, let us consider that a fault is detected only if the
six consecutive samples are all above the confidence limit,
and the first sample of these six consecutive samples is then
defined as the fault detection time. Noting that this fault starts

at the 160th sample, the PCA based T 2 statistic detects the
fault at the 680th sample, while its Q statistic detects the fault
at the 445th sample but then goes below the confidence limit
until the 600th sample. The KPCA based T 2 statistic detects
this fault at the 427th sample, while its Q statistic indicates
the fault until the 672th sample. By contrast, the SPCA based
T 2 and Q statistics both detect the fault at the 415th sample,
providing the earliest fault alarm.

TABLE II
FAULT DETECTION RATES (%) OF THREE METHODS FOR THE TE PROCESS.

Fault PCA KPCA SPCA
No. T 2 Q T 2 Q T 2 Q
1 99.5 99.8 99.8 99.8 99.9 99.8
2 98.3 98.8 98.8 98.5 98.9 99.0
3 8.1 7.8 8.0 7.5 7.9 7.4
4 28.9 100 100 37.3 100 94.0
5 30.6 31.3 28.6 99.5 30.5 99.9
6 99.3 100 99.5 100 100 100
7 100 100 100 99.9 100 100
8 97.5 97.9 98.3 98.1 98.1 97.9
9 7.4 6.0 6.5 4.5 7.1 6.0

10 49.8 53.9 54.9 86.9 89.5 82.1
11 47.4 73.3 79.3 51.8 79.8 64.8
12 99.0 97.8 99.1 99.5 99.5 99.8
13 95.0 95.4 95.5 95.9 95.6 95.4
14 99.0 100 100 99.9 100 100
15 12.4 8.8 13.3 14 15.9 10.8
16 32.5 48.3 37.0 90.0 93.0 75.8
17 81.6 93.9 96.1 90.5 96.5 92.3
18 89.5 91.4 91.3 89.4 91.1 90.4
19 8.4 29.1 19.1 80.8 75.0 90.4
20 47.0 57.3 68.4 72.3 73.5 82.6
21 39.4 51.1 54.5 44.3 56.5 59.0

Table II lists the fault detection rates (FDRs) obtained by
the three methods for all the 21 faults of the TE process.
First thing to note from Table II is that for the faults IDV(3),
IDV(9) and IDV(15), all the three methods perform poorly
and cannot detect these faults. This is not surprising as it is
well-known that these three faults are extremely difficult for
data-driven monitoring methods owing to the reason that there
exist no observable changes in the mean or variance of these
three fault datasets [62]. It can also be seen that for the faults
IDV(1), IDV(2), IDV(6), IDV(7), IDV(8), IDV(12), IDV(13)
and IDV(14), all the three methods perform similarly well.
However, for detecting the faults IDV(4), IDV(5), IDV(10),
IDV(11), IDV(16), IDV(17), IDV(18), IDV(19), IDV(20) and
IDV(21), the proposed SPCA method clearly outperforms the
other two methods. Fig. 19 depicts the average fault detection
rates over these 10 faults achieved by the three methods.
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Fig. 19. Average fault detection rates achieved by the three methods aver-
aging over the faults IDV(4), IDV(5), IDV(10), IDV(11), IDV(16), IDV(17),
IDV(18), IDV(19), IDV(20) and IDV(21).
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TABLE III
FALSE ALARMING RATES (FARS) AND FALSE FAULT DETECTION

PROBABILITIES (FFDPS) OF THE THREE METHODS FOR THE TE PROCESS.

Method PCA KPCA SPCA
Statistic T 2 Q T 2 Q T 2 Q
FAR (%) 3.13 4.58 2.77 2.65 3.04 4.61

FFDP 0 0 0

False alarming rate (FAR) is an important metric in classifi-
cation applications. For our fault detection problem, we define
the FAR as the percentage of the normal operating samples
exceeding the confidence limit over all the normal operating
samples. For the three methods, we compute their FARs on
the 160× 21 = 3360 normal samples from the 21 TE process
simulation datasets, and the results are listed in Table III.
As 95% confidence limit is used as the detection threshold,
up to 5% of the samples may exceed the confidence limit
statistically. From Table III, it can be seen that although the
SPCA does not obtain the lowest FARs, its FAR values for the
two monitoring statistics are both lower than 5%, which are
consistent to the 95% confidence limit. It is worth emphasizing
that the FAR is not the false fault detection probability (FFDP).
In a real industrial application, an isolated sample exceeding
the confidence limits is never taken to signify that a fault
has occurred. Only when several successive samples, e.g.,
6, consistently exceed the confidence limits can a fault is
detected. By designing the appropriate confidence limits to
ensure that the FAR is below 5%, the FFDP is practically
zero. This allows us to determine the overall performance of
a method by its FDR. In Table III, we also give the FFDPs of
the three methods, by assuming that a fault is detected when
3 successive samples exceed the confidence limits.

For the three methods, their computation loads at the online
monitoring stage are different. The PCA is the simplest, which
costs the least computation time. By contrast, the KPCA,
which involves the kernel vector calculation, is more complex
and requires more computation time than the PCA. Compared
with the KPCA, the SPCA further adds the linear feature
extraction step and, therefore, is slightly more complex than
the KPCA. However, as the computation of linear features
is very simple, the computation time of the SPCA is only
marginally more than that of the KPCA. To validate our
analysis, we run the TE process online monitoring programmes
10 times in the same computer with the configuration of
Intel CoreTM i7-5500U processor (2.4GHz) and 8G RAM
memory. The average computation times per sample in the
online monitoring required by the three methods are is listed
Table IV. It can be seen that the PCA only needs 7.25×10−5 s
for monitoring each sample and the KPCA’s computation
time increases to 9.35 × 10−3 s, while the SPCA spends
9.54 × 10−3 s for monitoring each sample, which is indeed
only marginally higher than that of the KPCA method.

TABLE IV
COMPARISON OF AVERAGE COMPUTATION TIMES PER SAMPLE IN ONLINE

MONITORING.

Method PCA KPCA SPCA
Time (s) 7.25 × 10−5 9.35 × 10−3 9.54 × 10−3

2) Fault identification performance: After a fault is de-
tected, it is necessary to identify what kind of fault is occurring
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(c) SPCA similarity factor
Fig. 20. Similarity factors between the fault IDV(7) and the historical known
fault pattern datasets of FP(1) to FP(21).

by computing the similarity factors between the fault dataset
under investigation with the historical known fault pattern
datasets of FP(1) to FP(21). The largest similarity factor then
identifies the fault pattern. We first use the fault IDV(7) as an
example. The PCA similarity factors, KPCA similarity factors
and SPCA similarity factors between the fault IDV(7) and the
known fault pattern datasets of FP(1) to FP(21) are calculated
and the results are depicted in Fig. 20. It can be seen from
Fig. 20 that for all the three methods, the 7th similarity factor,
namely, the similarity factor between the fault IDV (7) and
the known fault pattern dataset FP(7), attains the largest value
of 0.99. Therefore, in theory, all the three methods correctly
identify the fault pattern. However, The result of the PCA
similarity factor is not very convincing. This is because the 5th
and 12th PCA similarity factors are larger than 0.9, while the
3rd, 15th and 16th PCA similarity factors are bigger than 0.8.
These large similarity factors are also close to 1 and, therefore,
the PCA similarity factor may be easily influenced by the
noise, potentially leading to a wrong diagnosis. The KPCA
similarity factor is marginally better than the PCA similarity
factor, and there are several other large KPCA similarity factor
values close to 1, e.g., the 3rd, 5th and 12th KPCA similarity
factors. By contrast, all the SPCA similarity factors other than
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Fig. 21. Gray images of the similarity factors for all the 21 fault datasets
of IDV(1) to IDV(21).

the 7th one are smaller than 0.45 and many of them are close to
zero. Therefore, by fusing both linear and nonlinear features,
the method of SPCA similarity factor is most effective in the
recognition of the fault IDV(7).

We then analyze the fault recognition results for all the
21 fault testing datasets as shown in Fig. 21, where the
PCA similarity factors, KPCA similarity factors and SPCA

TABLE V
FAULT IDENTIFICATION RESULTS FOR THE TE PROCESS BY THE THREE

SIMILARITY FACTOR BASED METHODS.

FIR(%) No. of wrong identification cases
PCA 66.7 3,5,9,10,13,15,16
KPCA 76.2 3,9,10,13,15
SPCA 81.0 3,9,13,15

similarity factors between all the fault datasets of IDV(1)
to IDV(21) and the historical known fault pattern datasets
of FP(1) to FP(21) are depicted in gray images. In a gray
image, the darkest black colour represents the largest similarity
factor that is close to 1, while the lightest black colour, i.e.,
white colour, is for the smallest similarity factor that is zero
or close to 0. From Fig. 21 (a), it can be seen that the gray
image or the similarity ‘matrix’ is not very diagonal, indicating
that it is difficult for the PCA based method to identify fault
convincingly and correctly. By taking the largest similarity
factor as the recognized fault pattern, the PCA based method
mis-classifies 7 faults which are indicated in Table V. The
clarity of the KPCA similarity factors shown in Fig. 21 (b) is
slightly better, and the method makes 5 wrong recognitions
which are also listed in Table V. Observe from Fig. 21 (c) that
the SPCA based similarity ‘matrix’ is much close to diagonal
and, therefore, the SPCA based method offers the best fault
discriminant ability. The number of incorrect recognitions
made by the SPCA based method is only 4, as indicated
in Table V. As mentioned previously, the faults IDV(3),
IDV(9) and IDV(15) are extremely difficult for a data-driven
method. Thus, out of the other 18 fault cases, the SPCA
based method only makes one error in fault identification. The
fault identification rate (FIR), which is the percentage of the
correctly identified fault cases over all the fault cases, is also
shown in Table V for each method.

VI. CONCLUSIONS

A novel hybrid linear-nonlinear statistical modeling ap-
proach, referred to as SPCA, has been proposed for nonlinear
process monitoring and fault diagnosis. Our contribution has
been twofold. Firstly, we have derived the SPCA based model
which fuses both linear and nonlinear features for effective
fault detection of nonlinear processes. Specifically, PCA firstly
extracts the linear features and KPCA then mines the nonlinear
features on the PCA residual subspace. The SPCA based moni-
toring statistics constructed by fusing both linear and nonlinear
features offer more effective fault detection capability than
either the PCA or KPCA based monitoring charts. Secondly,
a SPCA based similarity factor has been developed for fault
identification with the aid of historical fault database, which
is more powerful for fault pattern diagnosis than either the
PCA or KPCA based similarity factor method. Simulation
results involving a simulated nonlinear system and the TE
benchmark process have confirmed the superior performance
of the proposed SPCA approach over the existing KPCA based
approach, in terms of fault detection and identification.

As a note to the related topic, specifically, statistical mod-
eling of time-varying industrial data, we point out that the
existing researches of [63]–[65] are worth further investigat-
ing.
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