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Abstract: Leaf Area Index (LAI) is a crucial 

biophysical variable for agroecosystems 

monitoring. Conventional Vegetation Indices 

(VIs) based on red and near infrared regions of 

the electromagnetic spectrum, such as the 

Normalized Difference Vegetation Index 

(NDVI), are commonly used to estimate Leaf 

Area Index (LAI). However, these indices 

commonly saturate at moderate-to-dense 

canopies (e.g. NDVI saturates when LAI 

exceeds 3). Modified VIs have then been 

proposed to replace the typical red/green 

spectral region with the red-edge spectral 

region. One significant and often ignored aspect 

of this modification is that, the reflectance in the 

red-edge spectral region is comparatively 

sensitive to chlorophyll content which is highly 

variable between different crops and different 

phenological states. In this study, three 

improved indices are proposed combining 

reflectance both in red and red-edge spectral 

regions into the NDVI, the modified simple 

ratio index (MSR) and the green chlorophyll 

index (CIgreen) formula. These improved indices 

are termed NDVIred&RE (red and red-edge 

normalized difference vegetation index), 

MSRred&RE (red and red-edge modified simple 

ratio index) and CIred&RE (red and red-edge 

chlorophyll index). The indices were tested 

using RapidEye images and in-situ data from 

campaigns at Maccarese Farm (Central Rome, 

Italy), in which four crop types at four different 

growth stages were measured. We investigated 

the predictive power of nine vegetation indices 

for crop LAI estimation, including NDVI, MSR, 

CIgreen, the red-edge modified indices NDVIRed-

edge, MSRRed-edge, CIRed-edge (generally represented 

by VIRed-edge) and the newly improved indices 

NDVIred&RE, MSRred&RE, and CIred&RE (generally 

represented by VIred&RE). The results show that 

VIred&RE improves the coefficient of 

determination (R2) for LAI estimation by 10% in 

comparison to VIRed-edge. The newly improved 

indices prove to be powerful alternatives for 

LAI estimation of crops with wide chlorophyll 

range, and may provide valuable information 

for satellites equipped with red-edge channels 

(such as Sentinel-2) when applied to precision 

agriculture. 

Keywords: Vegetation index; Remote sensing; 

RapidEye; Precision agriculture 

1. Introduction 

The explicit quantification of vegetation 

biophysical variables on large spatial scales is an 

important aspect in agricultural management 

and monitoring [1]. For instance, knowledge of 

the spatial distribution of leaf area index (LAI) 

and chlorophyll content can be used to improve 

the use of resources, such as fertilizer and water 

[2], leading to better yields and reduced costs [3-

6]. Remotely sensed data from satellites and 

airborne sensors has great potential to provide 
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information on vegetation biophysical variables 

over large spatial and temporal scales. Leaf area 

index (LAI), defined as one half the total leaf 

area per unit ground surface area [7, 8], is a 

biophysical key variable for estimating foliage 

cover and biomass production. The LAI can, 

therefore, be used to monitor and forecast crop 

growth and yield [1, 9, 10]. The LAI retrieval 

techniques from remote sensing data can be 

classified into three groups: (i) empirical 

retrieval methods, which typically relate the 

biophysical parameter of interest to spectral 

data [11, 12]; (ii) physical retrieval methods, 

which refers to inversion of radiative transfer 

models (RTM) from remote sensing 

observations [13]; (iii) hybrid methods, which 

aims to balance the strengths and weaknesses of 

empirical and physical based methods, e.g 

through a machine learning approach [14]. 

Amongst the three groups, the empirical 

retrieval methods typically use vegetation 

indices due to their simplicity, computational 

efficiency, and well-understood underlying 

mechanisms. The Normalized Difference 

Vegetation Index (NDVI)[15] is a widely used 

vegetation index to estimate vegetation 

biophysical variables, relying on chlorophyll 

absorption in the red spectral region, creating 

low reflectance, and high reflectance in the near 

infrared (NIR) spectral region due to the 

scattering of light from the intercellular volume 

of leaf mesophyll. Nevertheless, one 

unavoidable limitation of NDVI is that the 

relationship between NDVI and LAI 

approaches saturation asymptotically under the 

condition of moderate-to-dense canopy (e.g. 

LAI>3) due to the inherent drawback of NDVI 

[16]. 

 The red-edge region is defined as the 

spectral region between 680nm and 750nm 

where there is a sharp change in vegetation 

reflectance [17]. This occurs due to the transition 

from chlorophyll absorption in the red region to 

cellular scattering in the NIR [18, 19]. The 

promise and potential of the red-edge spectral 

region for vegetation biophysical variable 

retrieval has motivated the design and also the 

launch of spaceborne imaging sensors involving 

red-edge bands, including hyperspectral 

satellites like Hyperion, HICO (The 

Hyperspectral Imager for the Coastal Ocean) 

and CHRIS (The Compact High Resolution 

Imaging Spectrometer), and multi-spectral 

satellites such as MERIS, RapidEye and 

recently, Sentinel-2 [19]. It has been 

demonstrated that in the red-edge spectral 

region the shape of the reflectance spectra is 

strongly influenced by LAI [20, 21]. The shift of 

red-edge position towards longer wavelengths 

is caused by an increase in leaf chlorophyll 

content [22]. Many studies have revealed that, 

within red and red-edge region, chlorophyll 

content and LAI contribute the most to 

PROSAIL simulated canopy reflectance [23, 24]. 

However, the effects of chlorophyll change on 

LAI retrieval is rarely discussed in studies using 

vegetation indices based on red-edge 

reflectance for LAI estimation. To note that, in 

those studies, the red-edge modified indices 

improve the LAI estimation when the indices 

are applied to crops with consistent chlorophyll 

content, e.g. datasets consisting of one type of 

crop at one growth stage [19, 25]. Therefore, 

how chlorophyll content affects spectral 

reflectance and leaf area index (LAI) when 

chlorophyll content and LAI vary 

simultaneously needs to be analysed, e.g. 

datasets with multi crop species and across 

multi growth stages. As such, the aims of this 

study are: (i) to analyse how variation in 

chlorophyll content and LAI contributes to red, 

red-edge and near infrared reflectance 

variability; and (ii) to apply three improved 

spectral indices for LAI estimation, and evaluate 

their advantages over other existing vegetation 

indices. 

2. Experimental and Validation Data 

Collection 

2.1. Test Site Description and LAI Measurements 

Ground LAI measurements were carried 

out in situ at the Maccarese farm (41°52′N, 

12°13′E, alt. 8 m a.s.l.) near Rome, Central Italy 

(Fig. 1) in 2015 growing season. The site is 

within a plain coastal agricultural area 

comprising four dominant crops: winter wheat 

(Triticum aestivum L.), barley (Hordeum 

vulgare L.), alfalfa (Medicago sativa L.) and 

maize (Zea mays L.) (Table 1). Winter wheat 

was measured on 3 March, 20 March and 7 May, 

from its tillering stage to heading stage [26]; 

barley was measured on 3 March, 20 March and 

7 May, from its tillering stage to earning stage 
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[27]; alfalfa was measured on 7 May, during its 

budding stage [28]; maize was measured on 7 

July, during its jointing stage [29]. The soil is 

Cutanic Luvisol, with a prevailing sandy clay 

loam texture, becoming more clayey towards 

the north-east of the site. The climate is 

temperate Mediterranean with dry summers 

and wet autumns, with a yearly average 

temperature of 15.5 °C and annual rainfall of 734 

mm. LAI Measurements were performed using 

an LAI-2200 Plant Canopy Analyzer (Li-Cor 

Biosciences Inc., Lincoln, Nebraska, USA), at 66 

points each covering 1 m2. To note that, LAI 

measurements taken by LAI-2200 are “effective 

LAI” [30]. 

 

Figure 1. Location of the field test sites at Maccarese Farm, Rome, Italy. The locations of the field plots 

where non-destructive LAI measurements took place are also shown. The highlighted image is a false 

colour composite image from RapidEye collected on 18 March, 2015. 

Because of the difficulties in collecting a 

large number of data in diffuse sunlight 

conditions, i.e. at sunset or dawn, which are 

considered optimal for LAI-2200 

measurements, data were acquired during 

daytime in bright sunny days, within a 

maximum of four days since a satellite 

acquisition. A 45° view cap was employed and 

the operator shaded the sensor from direct 

radiation. The sequence suggested by the 

manufacturer for direct radiation scattering 

correction was followed and a post-processing 

correction was subsequently applied, using the 

FV2200 software (LI-COR Biosciences), as 

detailed in the equipment manual. Each LAI 

measurement was obtained, collecting 10 

readings from below the canopy, from an area 

of about 10 m2 of which the centre coordinates 

were recorded using a GPS with differential 

correction (accuracy in the order of 1-2 m).  

2.2. Satellite Data Acquisition and Processing 

Multispectral remote sensing images from 

the RapidEye sensor were obtained on 28 

February, 18 March, 11 May and 5 July 2015, 

corresponding to field measurements on 3 

March, 20 March, 7 May and 7 July (Table 1). 

This constellation of five identical EO satellites 

record radiance in five broad bands: blue 

(440nm - 510nm), green (520nm - 590nm), red 

(630nm - 685nm), red-edge (690nm - 730nm) 

and near infrared (760nm - 850nm), at a spatial 

resolution of 5m. 
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Table 1. Field measurements and corresponding satellite data obtained 

Data Time 

Field 

measurements 

March 3 

(winter wheat, 

barley) 

March 20  

(winter wheat, 

barley) 

May 7  

(winter wheat, 

barley, alfalfa) 

July 7  

(maize) 

RapidEye images February 28  March 18 May 11 July 5 

     The RapidEye images were delivered as 

level 3A Ortho Product, which offer the highest 

processing level with respect to radiometric, 

sensor, and geometric corrections. This means 

that the digital numbers (DNs) of the image 

pixels represent calibrated radiance values. A 

subsequent atmospheric correction was 

performed on RapidEye images by using 

ENVI's Fast Line-of-Sight Atmospheric 

Analysis of Spectral Hypercubes (FLAASH) 

module, which is based on the radiative transfer 

model MODTRAN4 [31]. In this study, model 

parameters of a mid-latitude summer 

atmosphere and rural aerosols, as well as 

automatic aerosol retrieval, were used in 

FLAASH to correct the RapidEye images. The 

output of FLAASH assumed reflectance values 

rescaled to normal range of 0 to 1. 

2.3. Reflectance Simulation with PROSPECT Model 

In order to analyse how variation in 

chlorophyll a+b content and leaf area index 

contribute to canopy spectral reflectance, the 

combined leaf (PROSPECT) and canopy (SAIL) 

reflectance model PROSAIL was used for a 

sensitivity analysis of the spectral vegetation 

indices. To investigate the effect of chlorophyll 

a+b content and LAI on canopy spectral 

reflectance, chlorophyll content values were set 

to change from 10 to 100 μg/cm2 with a step of 5 

μg/cm2, and LAI values were set to change from 

1 to 9 with a step of 0.5. The values of 

chlorophyll a+b content and LAI cover their 

plausible range respectively, based on our 

history field campaign data regarding the crop 

types investigated in this study. Equivalent 

water thickness (Cw) was fixed to an value of 

0.01, because the absorption of leaf water does 

not influence significantly the canopy 

reflectance within the spectral range used in this 

study (< 0.9 μm) [32]. Other input variables were 

assigned with fixed reasonable values based on 

field measurements and previous studies [33, 

34] (Table 2). 

Table 2. Parameters used in simulating reflectance with PROSAIL model 

Parameter Value Units Notes 

Leaf parameters    

N 1.5 - Leaf thickness parameters 

Cw 0.01 g/cm2 Equivalent water thickness 

Cm 0.004 g/cm2 Dry matter content 

Cab 10~100, step: 5 μg/cm2 Chlorophyll a + b content 

Canopy parameters    

LAI 1~9, step: 0.5  - Leaf area index 

LAD Spherical - Leaf angle distribution 

s  30 degree Solar zenith angle 

v  0 degree View zenith angle 

  0 degree View azimuth angle 

3. Methods 

3.1. Quantifying Sources of Variation in Simulated 

Reflectance Data 

A model sensitivity analysis was 

implemented to identify the significance of the 

leaf area index and chlorophyll content in 

explaining variance in the PROSAIL model 
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output reflectance. The Extended Fourier 

Amplitude Sensitivity Test (EFAST) method 

was used [35], which is an extension of the 

classical Fourier Amplitude Sensitivity Test 

(FAST). The EFAST approach is a parametric 

transformation that enables reducing 

multidimensional integrals over the space of the 

input factors to one-dimensional quadratures, 

through a search curve that scans the whole 

input space. This approach allows the definition 

of a set of simulations in which all input 

parameters vary simultaneously. A Fourier 

decomposition is then conducted to obtain the 

fractional contribution of each input factor to 

the variance of the model output [36]. EFAST 

provides two sets of indices: first-order and 

total-order indices. The first-order indices give 

the additive effect of each input factor; while the 

total-order indices are overall measures of 

importance, accounting for the effects of the 

interactions of each factor with others. 

Simulated spectral reflectance was 

analysed to understand the effect of chlorophyll 

content on relationships between the leaf area 

index (LAI) and the red, red-edge, near infrared 

(NIR) reflectance. In order to quantify the effect 

of chlorophyll content on spectral indices, 

RED , RE  and NIR  were formed (Eq. 

1, 2, 3) as indicators to quantify the change of 

red, red-edge and NIR bands against near 

infrared spectral band under two different 

chlorophyll contents.  

1 2

2

| 100% |RED RED

NIR

RED
 




       (1) 

1 2

2

| 100% |RE RE

NIR

RE
 




         (2) 

1 2

2

| 100% |NIR NIR

NIR

NIR
 




        (3) 

Where 1RED , 1RE  and 1NIR  are spectral 

reflectance at red, red-edge and near infrared 

regions respectively, under the one chlorophyll 

content, while 2RED , 2RE  and 2NIR  are 

spectral reflectance under the other chlorophyll 

content. To set up the EFAST sensitivity analysis 

and to compute RED , RE  and NIR , the 

PROSAIL simulated spectral reflectance was 

spectrally re-sampled to the spectral response 

functions of RapidEye. (The spectral response 

functions of RapidEye were obtained from the 

RapidEye Science Archive website: 

https://resa.blackbridge.com/files/2014-

06/Spectral_Response_Curves.pdf) 

3.2. Existing and Improved Vegetation Indices 

Canopy spectral reflectance data derived 

from RapidEye was used to calculate the 

vegetation indices (Table 3) for subsequent LAI 

estimation. The existing vegetation indices 

tested include three red/green reflectance based 

indices: NDVI (normalized difference 

vegetation index), MSR (modified simple ratio 

index) and CIgreen (green chlorophyll index). 

NDVI is widely accepted as benchmark for 

comparing alternative inversion algorithms, it 

highlights the striking contrast between NIR 

and red spectral reflectance [37]. MSR was 

proposed to suppress the saturation problem of 

NDVI [38]. CIgreen shows a close relation to both 

chlorophyll content and LAI [39]. 

Additionally, three red-edge modified 

indices were tested, with red/green reflectance 

replaced by red-edge reflectance: NDVIRed-edge 

(red-edge normalized difference vegetation 

index), MSRRed-edge (red-edge modified simple 

ratio index), CIRed-edge (red-edge chlorophyll 

index). The red-edge modified indices (NDVIRed-

edge, MSRRed-edge and CIRed-edge) have been shown 

to improve the LAI estimation compared to the 

red/green reflectance based indices, because the 

red-edge channel is sensitive to small changes in 

the canopy, gap fraction and senescence [40]. 

In this study, we established three newly 

improved vegetation indices combining red and 

red-edge spectral information: NDVIred&RE (red 

and red-edge normalized difference vegetation 

index), MSRred&RE (red and red-edge modified 

simple ratio index), CIred&RE (red and red-edge 

chlorophyll index), in which a certain 

proportion of the red and the red-edge 

reflectance was used to replace the red/green 

reflectance in the formula of NDVI, MSR and 

CIgreen. Following the principles of the original 

indices (NDVI, MSR, CIgreen), the improved 

vegetation indices (NDVIred&RE, MSRred&RE and 

CIred&RE) still utilise the strong contrast between 

the red and NIR reflectance sensitive to LAI. 

Furthermore, combining red and red-edge 

spectral information is a compensation strategy 

that neither puts heavy emphasis on the red 

reflectance, which will help to avoid saturation, 

nor put heavy emphasis on the red-edge 

reflectance, which will help avoid interruption 
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from the change of chlorophyll content [24]. The 

definitions and formulas of the improved 

indices as well as six existing indices tested in 

this study are shown in Table 3. 

Table 3. Descriptions and formulas of vegetation indices investigated in this study 

Index Description Formula Reference 

Existing indices 

NDVI 
Normalized difference vegetation 

index 
NIR red

NIR red

 

 



  
[15] 

NDVIRed-edge 
Red-edge normalized difference 

vegetation index 
NIR RE

NIR RE

 

 



  
[41] 

MSR Modified simple ratio index 
/ 1

/ 1

NIR red

NIR red

 

 




 

[38] 

MSRRed-edge 
Red-edge modified simple ratio 

index 

/ 1

/ 1

NIR RE

NIR RE

 

 




 

[34] 

CIgreen Green chlorophyll index 
gree

1NIR

n






 
[42] 

CIRed-edge Red-edge chlorophyll index 1NIR

RE






 
[43] 

Improved indices 

NDVIred&RE 
Red and red-edge normalized 

difference vegetation index 

( * (1 ) * )

( * (1 )* )

NIR red RE

NIR red RE

a a

a a

  

  

  

    
- 

MSRred&RE 
Red and red-edge modified 

simple ratio index 

/ ( * (1 )* ) 1

/ ( * (1 )* ) 1

NIR red RE

NIR red RE

a a

a a

  

  

  

  
 

- 

CIred&RE 
Red and red-edge modified 

chlorophyll index 
1

* (1 ) *

NIR

red REa a



 


   
- 

* NIR refers to near infrared; RE refers to red-edge; a ∈ [0, 1] 

3.3. The Noise Equivalent (NE) ΔLAI 

The Noise Equivalent (NE) ΔLAI was used 

to test sensitivity of the different spectral 

vegetation indices against leaf area index (LAI) 

changes. The NE ΔLAI has been proved to be 

advantageous over the direct comparison 

between different vegetation indices, with 

different scales and dynamic ranges [44]. NE 

ΔLAI is calculated as: 

  . 

( ) / ( )

RMSE VI vs LAI
NE LAI

d VI d LAI
         (4) 

Where RMSE and d(VI)/d(LAI) are respectively 

the root mean square error and the first 

derivative of the best-fit function in the “VI vs. 

LAI” relationship [2, 45]. The NE ΔLAI was 

calculated based on the “VI vs. LAI” 

relationship function. The LAI was obtained 

from ground measurements as introduced in 

Section 2.1 of this paper, and the VI was 

calculated with RapidEye data according to the 

formula in Table 3. 

3.4. Validation Scheme 

Leave-one-out cross validation procedure 

was used to evaluate the performance of the 

improved vegetation indices to estimate LAI. 

This type of validation avoids the dependence 

on a single random partition into validation 

datasets. It also guarantees that all samples were 

used for both training and validation with each 

sample used for validation exactly once. The 

coefficient of determination (R2) and root-mean-

square error (RMSE) were selected as indicators 

of the accuracy of the statistical estimation 

models [46]. 

4. Results and Discussion  

4.1. Sensitivity of Canopy Reflectance Against Leaf 

Area Index and Chlorophyll Content 

Table 4 shows the first-order and total-

order indices, calculated by EFAST method 

introduced in Section 3.1 of this paper, for the 

study of how variation in chlorophyll a+b 

content (Cab) and leaf area index (LAI) 

contributes to red, red-edge and near infrared 

reflectance variability. Table 4 shows that, at red 

spectral region, the sum of Cab and LAI EFAST 

first-order indices (FOI) is about 85% (FOI of 

Cab=65.60%, FOI of LAI=19.30%). This means 

that approximately 85% of the uncertainty in the 
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PROSAIL model output red region reflectance 

is explained by the factors singularly, while the 

remaining 15% is explained by interactions 

between the two factors. Therefore, the EFAST 

total-order indices are provided (Table 4) to 

account for the additive effects of each input 

factor and their interactions with the others. 

The EFAST indices also show that the first-

order indices and total-order indices (TOI) of 

Cab at red and red-edge region (FOI at red/red-

edge region: 65.60%/93.31%, TOI at red/red-

edge region: 80.48%/98.92%) are vastly larger 

than corresponding indices of LAI at red and 

red-edge region (FOI at red/red-edge region: 

19.30%/1.07%, TOI at red/red-edge region: 

33.69%/6.59%), suggesting that variation in the 

reflectance measured at red and red-edge 

spectral region is mainly the result of variations 

in chlorophyll content. Compared to red 

spectral reflectance, the red-edge reflectance is 

more deeply controlled by chlorophyll content, 

given that the first-order and total-order indices 

of Cab at red-edge region (FOI: 93.31%, TOI: 

98.92%) are larger than the indices at red region 

(FOI: 65.60%, TOI: 80.48%). In contrast, 

variation in the near infrared (NIR) spectral 

reflectance is mainly the result of variations in 

leaf area index, because the EFAST indices of 

LAI at NIR region (FOI: 97.64%, TOI: 99.66%) 

are vastly larger than corresponding indices of 

Cab (FOI: 0.41%, TOI: 2.35%). The EFAST 

sensitivity analysis confirms that the red-edge 

spectral reflectance is relatively easily affected 

by chlorophyll change than the red spectral 

reflectance, which means that the red-edge band 

will induce larger error for leaf area index 

retrieval when chlorophyll content varies 

simultaneously. 

Table 4. First-order and total-order sensitivity 

indices for the study of how variation in chlorophyll 

a+b content (Cab) and leaf area index (LAI) 

contributes to red, red-edge (RE) and near infrared 

(NIR) reflectance variability. 

  Red RE NIR 

First-order 

Indices (%) 

Cab 65.60 93.31 0.41 

LAI 19.30 1.07 97.64 

Total-

order 

Indices (%) 

Cab 80.48 98.92 2.35 

LAI 33.69 6.59 99.66 

The PROSAIL simulated spectral 

reflectance was further analysed to understand 

the relationships between the leaf area index 

(LAI) and the red, red-edge, near infrared (NIR) 

reflectance (Fig. 2). Fig. 2 (a) shows that as LAI 

increases, the NIR reflectance increases, while 

the red reflectance decreases at early stage and 

then reached an asymptote when the LAI values 

exceeded 3. Thus, both red reflectance and 

NDVI approach a saturation level 

asymptotically when LAI > 3. The coefficient of 

determination (R2) of the relationship between 

NDVI and LAI in Fig. 2 (a) is 0.81 for LAI<3, but 

drops to 0.04 for LAI>3. In addition, under 

visual comparison, the red-edge reflectance 

scatters most significantly due to chlorophyll 

content change, which is further supported by 

Fig. 2 (b), where reflectance in red-edge appears 

a sharp decrease when chlorophyll changes 

from 10 to 100 ug/cm2. In order to quantify the 

effect of chlorophyll content on spectral indices 

formed by the combination of red/NIR or red-

edge/NIR spectral bands, RED , RE  and 

NIR  were defined as Eq. 1 through Eq.3 in 

Section 3.1 of this paper, to quantify the relative 

change of each band. Fig. 2 (c) demonstrates 

that, when chlorophyll content varies from 10 to 

100 ug/cm2, RE  is much greater than RED  

and NIR , which means that the relative 

change in red-edge spectral reflectance is larger 

than that in red and NIR. Therefore, vegetation 

indices combining red-edge and NIR bands are 

more sensitive to chlorophyll change than the 

indices combining by red and NIR bands. For 

example, for simulated samples of LAI=3 in 

Fig.2 (a), the NDVI value is increased by 26.4% 

when Cab increases from 10 μg/cm2 (NDVI=0.72) 

to 100 μg/cm2 (NDVI=0.91); in contrast, the 

NDVIred-edge value is increased by 159.3% when 

Cab increases from 10 μg/cm2 (NDVIred-edge=0.27) 

to 100 μg/cm2 (NDVIred-edge=0.70). The Cab 

variance would induce larger LAI retrieval 

error to NDVIred-edge model than to NDVI model. 

Therefore, replacing the red / green reflectance 

with the red-edge reflectance in NDVI, MSR 

and CIgreen [47, 48] does not necessarily improve 

the LAI estimation accuracy when applied to 

different crops at different growth stages in 

which the chlorophyll content and LAI vary 

together. Given that the red spectral reflectance 

saturates when LAI>3, while the red-edge 

region is easy to be affected by chlorophyll 

change, we recommend combining them into 

vegetation indices rather than abandoning one 

of the two regions. 
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Figure 2. Red, red-edge and near infrared reflectance response to leaf area index: (a) when chlorophyll 

content varies from 10 ug/cm2  to 100 ug/cm2; (b) extracted from subfigure (a), when chlorophyll 

content is 10 and 100 ug/cm2; (c) the change of red, red-edge and bands against near infrared spectral 

band under two different chlorophyll contents (Eq. 1~3). 

4.2. Relationship between Vegetation Indices and 

Leaf Area Index 

    The analysis of the data in Table 4 and 

Fig. 2 provides a justification to combine 

red and red-edge spectrum to formulate ratio 

vegetation indices for leaf area index (LAI) 

retrieval when chlorophyll content and LAI 

vary simultaneously. The improved indices 

in Table 3 were calculated using RapidEye 

derived reflectance, with the parameter "a" 

ranges from 0 to 1, at a step of 0.1. The value 

of parameter "a" represents the proportion 

of red reflectance, and the value of (1-a) 

represents the proportion of red-edge 

reflectance. The coefficient of 

determination (R2) of the calibration models 

based on improved indices (NDVIred&RE, 

MSRred&RE, CIred&RE) and in-situ measured 

LAI were calculated (Fig. 3). The R2 of each 

improved index peaked at a=0.4 (R2 of 

NDVIred&RE=0.62, R2 of MSRred&RE=0.61, 

R2 of CIred&RE=0.59), and the curve of each 

index followed the same trend: a small rise 

from a=0 (R2 of NDVIred&RE=0.55, R2 of 

MSRred&RE=0.53, R2 of CIred&RE=0.50) to 

a=0.4, then a reduction until a=1 (R2 of 

NDVIred&RE=0.48, R2 of MSRred&RE=0.29, 

R2 of CIred&RE=0.18). It is also noteworthy 

that each index achieved higher R2 when 

a=0 compared to a=1, suggesting that 

replacing red/green reflectance with red-

edge could enhance the relationship 

between LAI and vegetation indices (see 

VIs formula of Table 3), consistent with 

many researches [34, 41, 43, 47]. However, 

combining red and red-edge reflectance 

with selected proportion (in our case a=0.4, 

the percentage of red and red-edge 

reflectance were 40% and 60% 

respectively), further improves the 

correlation between LAI and vegetation 

indices. To note that, the optimal proportion 

found between red and red-edge reflectance 

in this study to maximize the LAI estimation 

may be varied for other types of agricultural 

systems, in which case we suggest to re-

compute the optimal proportion for other 

datasets. 

 

Figure 3. Coefficient of determination of the 

calibration models for different values of the 

parameter a (Table 3), based on in-situ measured 
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LAI and RapidEye derived reflectance. VIred&RE 

represents NDVIred&RE, MSRred&RE, CIred&RE. 

The NDVI, NDVIRed-edge and NDVIred&RE 

exhibited logarithmic relationships with LAI, 

while MSR, MSRRed-edge, MSRred&RE, CIgreen, CIRed-

edge and CIred&RE exhibited exponential 

relationships with LAI (Fig. 4). The red/green 

reflectance based indices have weaker 

correlations with LAI, especially when LAI 

exceeded 3. NDVI saturated as LAI value 

increased while MSR and CIgreen showed 

considerable scatter against LAI. VIRed-edge (VI 

represents NDVI, MSR and CI) with red/green 

reflectance replaced by red-edge has a stronger 

relationship with LAI than red/green reflectance 

based indices; while VIred&RE combining red and 

red-edge reflectance had the strongest 

relationship with LAI, with R2 values increased 

by at least 10% compared to VIRed-edge. Among 

the indices, CIgreen, which consists of NIR and 

green reflectance, had the lowest coefficient of 

determination (R2 = 0.063), suggesting that 

vegetation indices including green reflectance 

are not optimal for LAI estimation under 

various chlorophyll content. Although green-

based indices can be highly accurate when 

applied to single species plant communities 

[49].  

For the same LAI, all three red/green 

reflectance based indices (NDVI, MSR and 

CIgreen) showed lower values for maize than 

other crops (Fig. 4 A, D, G), all VIRed-edge (Fig. 4 B, 

E, H) and VIred&RE (Fig. 4 C, F, I) showed lower 

values for alfalfa than other crops. This is in 

agreement with the study of J. Delegido et al. 

[50], in which nine types of crops including 

maize, alfalfa and wheat were investigated 

based on field measurements in Spain, 

Germany and France. This could be explained 

by the effect of chlorophyll content. The in situ 

data we collected for this study does not include 

chlorophyll content, we have to refer the 

chlorophyll effects among these crops from 

other datasets and researches. According to 

other field measurements we have conducted 

and other research concerning these crops [50, 

51], we can draw the conclusion that when at the 

same leaf area index value, usually the leaf 

chlorophyll content of maize is higher than that 

of wheat and barley, while the leaf chlorophyll 

content of alfalfa is lower than that of wheat and 

barley. As a result, the RapidEye reflectance in 

this study appears that the spectral reflectance 

of the red-edge is lower for maize than that in 

wheat and barley, while higher for alfalfa than 

that in wheat and barley, which is in accordance 

with the rule revealed by the simulated 

reflectance shown in Fig. 2: when the LAI value 

is fixed, the red-edge reflectance increases as the 

chlorophyll content decreases. In the red 

spectral region, the maize spectral reflectance is 

higher than that of other crops. Thus, the 

vegetation index (VI) values for crops with 

equivalent LAI values (moderate-to-dense 

canopies) show that the maize canopy has lower 

VI (NDVI, MSR, CIgreen) values but higher VIRed-

edge (NDVIRed-edge, MSRRed-edge, CIRed-edge) than that 

of the other crops. In terms of alfalfa, the VIRed-

edge values are lower than other crops with the 

same LAI. 

Crop canopy reflectance is a complex 

signal affected by many factors, besides the 

chlorophyll content, there might be other factors 

affecting LAI retrieval such as leaf structures 

and canopy architectures of these crops. For 

example, the canopies of maize and alfalfa 

exhibit a planophile leaf angle distribution [49, 

52], while the canopies of barley and wheat 

exhibit a more erectophile leaf angle 

distribution [53]. But these factors have much 

less impact than LAI and chlorophyll content on 

canopy reflectance as proved by other 

researchers [24]. According to our other field 

measurements and other researches concerning 

these crops [50, 51], within the RapidEye bands 

we investigated (red (630nm-685nm), red-edge 

(690nm-730nm), NIR (760nm-850nm)), the red 

and red-edge region are dominated by Cab and 

LAI where other factors do not need to be 

accounted for; the NIR region is impacted by 

multi factors, such as LAI, average leaf angle 

and dry matter content, but these factors do not 

affect the improvement of the vegetation indices 

proposed in our study. Because the NIR band 

remains unchanged during the improvement of 

VIs, in which the improvement relies on the 

combination of red and red-edge region. In this 

study, the newly improved VIs are focused on 

reducing the impact of chlorophyll content on 

LAI retrieval. Nevertheless, we suggest that the 

relationships between vegetation indices and 

LAI will potentially be further improved if the 

impact from other factors could be reduced as 

well. 
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Figure 4. Relationships between vegetation indices (Subfigure A: NDVI, B: NDVIRed-edge, C: 

NDVIred&RE, D: MSR, E: MSRRed-edge, F: MSRred&RE, G: CIgreen, H: CIRed-edge, I: CIred&RE) and leaf area index, 

for maize, barley, wheat and alfalfa during the growing seasons of 2015. 

The sensitivity analysis of the different 

spectral vegetation indices to leaf area index 

was performed by calculating the Noise 

Equivalent (NE) ΔLAI of the calibration models 

between each vegetation index (VI) and LAI, in 

order to compare the performance of the nine 

indices under the same criteria. This analysis 

(Fig. 5) shows that among vegetation indices of 

the same root (e.g. NDVI, NDVIRed-edge and 

NDVIred&RE), the NDVI exhibits the lowest 

NEΔLAI values (thus the highest sensitivity to 

LAI). In particular, the NDVIRed-edge (marked by 

blue markers) exhibits the highest NEΔLAI 

values (thus the lowest sensitivity to LAI), while 

the NDVIred&RE shows moderate NE ΔLAI 

values (thus moderate sensitivity to LAI). MSR 

and CIgreen, as well as their corresponding 

improved indices, show the same rule as NDVI 

series indices: original VI (marked by green 

markers) was the most sensitive to LAI, second 

by the VIred&RE, while the VIRed-edge was the least 

sensitive to LAI. The spectral analysis confirms 

that VIRed-edge is less sensitive to leaf area index 

than VIred&RE. Therefore, the improved 

vegetation indices VIred&RE (NDVIred&RE, 

MSRred&RE, CIred&RE) have greater potential in leaf 

area index retrieval than corresponding VIRed-edge 

(NDVIRed-edge, MSRRed-edge , CIRed-edge). 
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Figure 5. Sensitivity of the different vegetation indices tested to LAI using the NEΔLAI (Eq. 1). 

4.3. Leaf Area Index Estimation Model Validation 

Results of leave-one-out cross validation 

for LAI estimation are presented in Fig. 6, with 

coefficient of determination (R2) and root mean 

square error (RMSE) computed and presented 

for each model. The estimated LAI values were 

compared with the ground measurements using 

least significant difference test performed using 

SPSS software [54]. Statistical analysis revealed 

that the estimates of CIgreen model reached 0.05 

level of significance, and estimates of other eight 

models reached 0.01 level of significance. 

Among the examined indices, the red/green 

reflectance based vegetation indices (VIs) were 

the poorest at predicting LAI (Fig. 6 A, D, G), the 

VIRed-edge improved the LAI prediction (Fig. 6 B, 

E, H) on the basis of VIs, by including red-edge 

reflectance. This is agreed with other studies 

[19, 25], in which the red-edge modified indices 

improved the LAI estimation when the indices 

are applied to crops with consistent chlorophyll 

content, e.g. datasets consisting of one type of 

crop at one growth stage. However, the 

chlorophyll content varies across the crop 

growing season and varies among different 

crop types in our study, VIred&RE resulted in the 

best prediction with the lowest RMSE (less than 

1.07) and the highest R2 (above 0.500) (Fig. 6 C, 

F, I), by combining the red spectral reflectance 

and the red-edge spectral reflectance into the 

vegetation indices. In comparison with the VIRed-

edge, the VIred&RE improved the LAI estimation 

accuracy by at least 10% higher R2 and 10% 

lower RMSE value. For instance, NDVIred&RE 

exhibited an R2 of 0.500 and RMSE of 1.068; 

NDVIRed-edge exhibited an R2 of 0.438 and RMSE 

of 1.138, showing lower accuracy than 

NDVIred&RE; NDVI exhibited an R2 of 0.314 and 

RMSE of 1.255, showing the lowest accuracy 

among NDVI, NDVIRed-edge and NDVIred&RE.  

The red/green reflectance based indices 

(VIs) exhibited respective drawbacks; for 

instance, the NDVI saturated when LAI exceeds 

3, MSR scattered when LAI exceeds 3, and the 

CIgreen overestimated LAI at low-to-moderate 

(LAI<3) canopy cover whilst significantly 

underestimated LAI when LAI > 3. The 

saturation of NDVI at LAI values higher than 3 

was expected and is in agreement with the 

literature [16]. The red-edge based indices VIRed-

edge improved the estimation by alleviating the 

underestimation of moderate-to-dense canopy, 

but did not improved much overestimation for 

low-to-moderate canopy, agreeing with the 

results in other researches using red-edge based 

indices [48, 50]. By accounting for the 

chlorophyll content effect, the improved 

vegetation indices we formed in this paper best 

yielded LAI with highest accuracy and 

robustness when applied to a wide range of 

crops across multi growth stages. 

In addition, the effects of chlorophyll 

content difference among the four crop species 

on canopy spectra and vegetation indices, 

discussed in Section 4.2 of this paper, result in 

the different behaviour in LAI estimation. The 

maize and alfalfa LAI are better estimated by 

VIRed-edge (Fig. 6 B, E, H) than by the VI (Fig. 6 B, 
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E, H), because the red-edge reflectance is 

significantly affected by the chlorophyll 

content: the red-edge reflectance of maize is 

lower than that of wheat and barley, while the 

red-edge reflectance of alfalfa is higher than that 

of wheat and barley. Hence replacing the red 

band with red-edge in vegetation indices (VIs) 

loose the robustness of VIs against chlorophyll 

change. Fig. 6 C, F and I demonstrate that 

VIred&RE better retrieved maize and alfalfa LAI 

than VIRed-edge, and VIred&RE improved the 

underestimation and overestimation problems 

of VIs, confirming that combining red and red-

edge reflectance in VIred&RE could improve the 

underestimation and overestimation problems, 

whilst remain a certain capability of robustness 

against chlorophyll change. Our results agreed 

with many researchers who revealed that some 

indices using red-edge bands in their 

formulation, however, proved to be less 

sensitive to differences among species [43, 49]. 

As the performance of empirical methods are 

case depend, we suggest using our improved 

indices (VIred&RE) for the case of various 

chlorophyll content, e.g. various crop species 

and various growth stages. For complicated 

cases, a threshold method to choose among our 

improved indices, red-edge indices (VIRed-edge) 

and original indices (VI) may yield higher LAI 

estimation accuracy. For example, on the choice 

between NDVI and red-edge NDVI, Nguy-

Robertson et al selected NDVI = 0.7 as a 

threshold for their case of maize and soybean 

LAI estimation (NDVI saturates at 0.7) [55].  

 

Figure 6. Measured leaf area index versus estimated LAI derived from RapidEye spectra; Subfigure 

A: NDVI, B: NDVIRed-edge, C: NDVIred&RE, D: MSR, E: MSRRed-edge, F: MSRred&RE, G: CIgreen, H: CIRed-edge, I: 

CIred&RE 

5. Conclusion 
In this paper, we have proposed three 

improved vegetation indices (NDVIred&RE, 
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MSRred&RE and CIred&RE) combining red and red-

edge spectral region and validated them with 

RapidEye satellite data and in situ data over four 

crops at four growth stages. The predictive 

power of the three improved vegetation indices 

and other six existing indices have been 

analysed, including three red/green reflectance 

based indices (NDVI, MSR and CIgreen), three 

red-edge modified indices (NDVIRed-edge, MSRRed-

edge and CIRed-edge), and three improved indices 

combining red and red-edge regions 

(NDVIred&RE, MSRred&RE and CIred&RE). The 

proportion between red and red-edge 

reflectance that led to the best correlation 

between VIred&RE (NDVIRed-edge, MSRRed-edge and 

CIRed-edge) and LAI was encountered at 0.4, which 

means using 0.4* 0.6*red RE   to replace 

er d  in the formula of red/green reflectance 

based indices (NDVI, MSR and CIgreen). Under 

the comparison amongst the red/green 

reflectance based indices, the VIRed-edge and the 

VIred&RE, the VIred&RE achieved the most accurate 

LAI estimation, improving at least 10% the 

coefficient of determination achieved by VIRed-

edge. The improved indices VIred&RE, combining 

red and red-edge reflectance, both of the 

spectral regions are strongly related to the 

physiological status of the plant, proved to be 

the most robust and stable for crop LAI 

estimation over a wide range of crop species 

and growth stages.  

Such indices are of great potential for 

agricultural monitoring using sensors 

providing red-edge bands and high spatial 

resolution, such as RapidEye and the newly 

launched Sentinel-2. In view of delivering 

improved leaf area index products for 

environmental and agricultural applications, 

further research is planned in the directions of: 

(i) validation of the proposed vegetation indices 

over a broader range of crops with field 

collected both LAI and chlorophyll content, (ii) 

application and evaluation of more advanced 

plant parameter retrieval models. 
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