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Optimized Self-Localization for SLAM in Dynamic
Scenes Using Probability Hypothesis Density Filters

Christine Evers

Abstract—In many applications, sensors that map the positions
of objects in unknown environments are installed on dynamic plat-
forms. As measurements are relative to the observer’s sensors,
scene mapping requires accurate knowledge of the observer state.
However, in practice, observer reports are subject to positioning
errors. Simultaneous localization and mapping addresses the joint
estimation problem of observer localization and scene mapping.
State-of-the-art approaches typically use visual or optical sensors
and therefore rely on static beacons in the environment to anchor
the observer estimate. However, many applications involving sen-
sors that are not conventionally used for Simultaneous Localiza-
tion and Mapping (SLAM) are affected by highly dynamic scenes,
such that the static world assumption is invalid. This paper pro-
poses a novel approach for dynamic scenes, called GEneralized
Motion (GEM) SLAM. Based on probability hypothesis density fil-
ters, the proposed approach probabilistically anchors the observer
state by fusing observer information inferred from the scene with
reports of the observer motion. This paper derives the general,
theoretical framework for GEM-SLAM, and shows that it gener-
alizes existing Probability Hypothesis Density (PHD)-based SLAM
algorithms. Simulations for a model-specific realization using
range-bearing sensors and multiple moving objects highlight that
GEM-SLAM achieves significant improvements over three bench-
mark algorithms.

Index Terms—Simultaneous localization and mapping, Bayes
methods, nonlinear dynamical systems.

I. INTRODUCTION

CENE mapping equips dynamic observers with the ability
S to explore and create three-dimensional representations
of unknown environments, hence impacting on autonomous
as well as guided systems, including robots, unmanned aerial
vehicles, ad-hoc mobile networks, and planetary rovers. In
practice, the detection of objects from the observer’s sensor
measurements is subject to uncertainty, whilst multipath effects
in, e.g., communications, SONAR, and acoustic sensors, lead
to false alarms. Moreover, dynamic objects result in spatio-
temporal variations. Tracking algorithms [1]-[3] can be used to
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exploit temporal models of the object dynamics and to estimate
their smoothed trajectories from the distorted detections. Since
object detections are relative to the observer’s positional state,
accurate knowledge of the observer trajectory in the environ-
ment is required in order to track objects across time and space.
Reports of the observer position and motion can be obtained
from, e.g., Global Positioning System (GPS) or gyroscopic
sensors. However, in practice, the observer reports are subject to
errors due to physical and mechanical limitations. For example,
inertial sensor reports of robots decrease with hardware age due
to the wear of the mechanical parts [4]. Dead reckoning [5],
propagating the initial position using the reports, therefore leads
to divergence between the estimated and ground truth observer
trajectories.

Observer localization can be improved by identifying the ob-
server state that optimally aligns the sensor measurements with
the estimated objects’ positions. Conditional on the estimated
observer position, the objects are mapped using tracking algo-
rithms. Observer localization and object mapping are therefore
jointly dependent and present the estimation problem of SLAM.

SLAM developments to date led from the basic formulation
of the simultaneous estimation problem [6], [7], through con-
vergence and consistency studies [8], to the current focus on
robust perception [9]. An overview of the open problems and
future directions of SLAM research is provided in [10].

The aim and objective of this paper focus on two of the chal-
lenges highlighted in [10]. The aim of this paper is to provide
a theoretical framework for SLAM that is suitable for sensors
that facilitate perception beyond vision but are not yet conven-
tionally used for SLAM, such as acoustic microphone arrays
[11], [12]. Since many non-conventional sensors are deployed
in environments where the positions of the observer and the ob-
jects are highly time-varying, e.g., underwater, the objective of
this paper is the development of an approach that is specifically
designed for dynamic environments.

SLAM was originally developed for the use of LIDAR range
finders. Research rapidly focused on visual sensors as monoc-
ular, stereoscopic, and RGB-D cameras became available as
commodity hardware [13]-[15]. Visual SLAM can be broadly
classified into approaches that use either local or global descrip-
tors. Local descriptors [16], [17] involve detection algorithms
that abstract objects into salient features. Global descriptors
[18] process the image without a detection phase, and are hence
particularly suitable for place recognition.

However, global descriptors are often difficult to acquire for
non-visual sensors. For example, acoustic signals correspond
to the superposition of multiple interfering source signals, each
of which is the result of a convolution with the acoustic trans-
mission channel. Processing of audio content without a detec-
tion phase is therefore difficult. As such, feature-based SLAM
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is often a more appropriate choice over global descriptors for
modalities other than visual sensors.

The majority of feature-based SLAM approaches are graph-
based [19]-[21]. Graph-based SLAM typically relies on
non-convex or non-linear optimization techniques. Hence,
convergence to local minima may result in estimates unsuitable
for navigation [10]. Moreover, pose graph optimization is sus-
ceptible to false feature detections. For improved robustness,
loop closure [22] is typically used to recalibrate the observer
trajectory when place recognition detects a previously visited
scene. Fundamentally, loop closure relies on the assumption that
each scene must contain immovable objects, of which at least
some are visible each time the scene is revisited. However, this
static-world assumption is invalid in dynamic environments. For
example, underwater scenarios are subject to severe changes in
both the positions of objects, such as vessels, as well as the sea-
bed, i.e., the transmission channel for passive or active SONAR.
In fully dynamic environments, loop closure is therefore not
applicable, causing significant limitations for large-scale auton-
omy. Even on short scales, SLAM in dynamic scenes to date
remains challenging [10].

For dynamic scenes, probabilistic filtering is a natural al-
ternative to graph-based approaches. Perhaps the most widely
used probabilistic feature-based approach is FActored Solution
To Simultaneous Localization and Mapping (FastSLAM) [23]—
[25]. A particle filter [26] samples multiple candidates of the
observer state from the prior dynamical model of the observer
motion. For each observer candidate, or particle, an ensemble of
Extended Kalman Filters (EKFs) is used to estimate the feature
positions, one at a time. Data association is used to establish a
one-to-one mapping between the detections and features. How-
ever, in realistic conditions affected by false alarms and missing
detections, robust data association is one of the fundamental
challenges of SLAM algorithms [27].

For robust estimation against false alarms and missing de-
tections, the Rao-Blackwellized PHD (RB-PHD) filter [28],
[29], formulates the SLAM problem using Random Finite Sets
(RFSs) to avoid the need for heuristic data association alto-
gether. For each observer particle, one realization of a PHD filter
[30], [31] is used to track the set of features. The most likely
observer state is identified based on the Probability Density
Function (pdf) of the set of detections conditional on the fea-
ture estimates. However, the expression of this pdf as proposed
in [28], [29] is of combinatorial nature and hence computa-
tionally intractable. Therefore, the RB-PHD filter approximates
the multi-detection pdf by considering the contribution of a sin-
gle feature only. Alternatively, [32] approximates the intractable
likelihood by a randomized computation of the equivalent matrix
permanent. The work in [33] avoids approximating the multi-
detection pdf by extending [28] to a Labeled Multi-Bernoulli
(LMB) filter [34]. However, as reported in [34], the feature
update for each observer particle and time step can require sev-
eral seconds of computational time. Hence the LMB filter re-
mains computationally prohibitive for many large-scale SLAM
problems.

Rather than approximating the multi-detection pdf, the Single
Cluster PHD (SC-PHD) filter [35]-[38] uses the closed-form
solution. The SLAM problem is considered as the estimation of a
cluster process of features, where the cluster centre corresponds
to the observer state. Thus, the observer state is estimated as
the centroid that aligns all feature detections with the feature
estimates in the map. However, as the SC-PHD filter relies only

on feature information for observer localization, applications
where features are highly dynamic and subject to uncertainty can
lead to short-term ambiguities and hence long-term divergence
of the observer estimates.

For robust SLAM performance in dynamic and uncertain
environments, this paper proposes a novel approach, called
GEM-SLAM, that fuses the knowledge inferred from feature
mapping based on the SC-PHD filter, with reports of the ob-
server motion, thereby generalizing existing PHD-based SLAM
approaches. Such observer reports are typically obtained from
inertial sensors, but may also include path planning instruc-
tions, motor outputs, or GPS coordinates. By considering the
reports as measurements of the observer position, GEM-SLAM
exploits uncertainties in both the observer dynamics and re-
port accuracy to propagate the posterior observer pdf in time.
Observer localization is optimized by intersecting the space of
likely observer positions corresponding to the posterior pdf with
the space of observer positions corresponding to the closed-form
multi-detection likelihood of the features.

The novel contributions of this paper are therefore as fol-
lows. 1) We derive the theoretical framework and show that
GEM-SLAM fuses observer information from features with
the observer reports. Furthermore, illustrative examples will
demonstrate that GEM-SLAM reduces ambiguities in observer
localization arising from dynamic scenes, leading to improved
accuracy in the observer and feature estimates. 2) The pro-
posed framework is derived as a general, model-independent
formulation. GEM-SLAM is therefore sensor-agnostic and can
be realized for different sensor-specific models, including sen-
sors that are not conventionally used for SLAM. For illustrative
purposes and performance evaluation, this paper presents in ad-
dition to the general formulation a model-specific realization for
range-bearing sensors in dynamic scenes. 3) A detailed discus-
sion of the relationship between GEM-SLAM, the RB-PHD and
SC-PHD filter as well as FastSLAM shows that GEM-SLAM
generalizes existing PHD approaches, expressing the RB-PHD
and SC-PHD filter as special cases. Using the model-specific
realization, the estimation accuracy of GEM-SLAM is com-
pared against the three benchmark approaches using simulated
data. Simulations are used for the lack of available open-source
datasets appropriate for SLAM in dynamic scenes. The results
demonstrate that GEM-SLAM results in significant improve-
ments in observer localization and feature mapping accuracy
for increasing report errors, False Alarm Rates (FARs) and dy-
namic features.

This paper is structured as follows: Section II provides the
problem formulation. The necessary background theory on
RFSs is summarized in Section III. The proposed approach is
derived and its relationships analyzed in Section IV. A model-
specific realization is provided in Section V. The experimen-
tal setup is described in Section VI, results are discussed in
Section VII, and conclusions are drawn in Section VIII.

II. PROBLEM FORMULATION

A general formulation describes the positional observer state,
ry, at time step ¢, as a function of the control input, u;, and the
process noise, vy, i.e.,

ry :f(rtflyubvt)a (1)

where f(-) captures the observer dynamics (the reader is referred
to the nomenclature table in Appendix C). Reports, y;, of the
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observer motion are modelled as a function of the states and
report error, wy, i.e.,

Yt:h(rt,wt), (2)

where h(-) is the report model.

Feature-based SLAM represents the state of each of /V; ob-
jects by a single, salient feature. The absolute state, sf  , of
feature n € 1,..., NV, in the global coordinate frame is given
by

Sg,n =d (s??l,n ) nt,n) 5 (3)

where d(-) captures the dynamics of the feature and the process
noise, n; ,, allows for variations of the feature state from the
dynamical model. Objects may appear in and leave the scene
over time, therefore leading to feature birth and death. The
number of features hence is time-varying and unknown a priori,
such that the IV, feature states can be described as a RFS [39]
with realizations, S}, modelled as

Ny

U P(Stfl.n)

n=1

St = UBt7 (4)

where s; ,, is the state of feature n relative to the observer state,
rt, the set cardinality is |S¢| = N, the newborn feature process
is B, and P(s;_1 ;) is the survival process:

Ploi-) = {

where () denotes the empty set.
Given the sensor measurements, M, detections, w; ,,, m =
1,..., M, of the N, features are obtained relative to ry, i.e.,

{st.n}, if feature n is persistent
(),  if feature n terminates

(&)

Wt om = g (St,n;et,m) ) (6)

where the mapping from the feature to the detection space is
given by g(-), and e, ,, describes the detection error.

In practice, detection algorithms often result in missing detec-
tions and false alarms. The feature detections thus are modelled
by a RFS with realizations, €2, such that

N,

U D(st,n)] UK, (7)

n=1

Qt:

where D(s; ,, ) models the detection process as

{wy.m } if feature n is detected

D) ={

for m € 1,..., M;. The term K; in (7) is the RFS of false
alarms, commonly modelled as a Poisson point process [30],
[40], [41] of IV, . Independent and Identically Distributed (IID)
false alarms distributed uniformly over the sensor Field of
View (FoV) [29], [36]. The likelihood, #(w; i, |r¢), of a single-
detection corresponding to a false alarms is hence

K(wem |re) = A U(FoV), 9)

®)

if the feature is not detected

where U(-) denotes a uniform pdf, and . is the maximum
number of false alarms in the surveillance region.

III. FISST PREREQUISITES

This section provides a summary of Finite Set STatistics
(FISST) required for the derivation of GEM-SLAM.

A. Multi-feature Probability Density Function

Assuming the observer state, r;, is known, the posterior fea-
ture pdf, p (S, | r¢, Q1.4 ), is propagated sequentially via

Q I‘,S S I',Q:,,
AT P A (LA DV C A LBUERY,

o (|1, S:) p(Si| v, R1421) 68
(10)

where p (€| rs, Sy) is the detection likelihood. The pre-
dicted pdf, p(St|ri,Q1.4-1), is obtained from the prior,
p(Si|r;,Si—1), and the posterior, p(S;_1 | rs,Q1.4-1), at
t — 1 and relative to r; as

P(St | I‘t,ﬂ1:t71)
= /p(St | re,Sio1) p(Se1 | v, Qi4—1) 08,1 (11)

The set integral, f -dW, for any, W, is defined as [30]

/p(W) oW

=1
=p(0) + E H/.../p({wl,...,w"})dwl...dwn.
n=1 (12)

The summation in (12) enumerates the hypotheses that any num-
ber of objects can be contained in W. The set integral is hence
equivalent to marginalizing over all subsets {wy,...,w, } C
W, Vn =0,...,00. However, as a consequence, (10) is com-
binatorially intractable.

B. Probability Hypothesis Density

The first-order multi-object moment, referred to as the PHD,
A (w), can be used to approximate (10). The PHD expresses the
probability that one of the multiple objects in W has the state
w. If p (W) is a Poisson point process [40], i.e., the number
of objects, L, in W is Poisson distributed and the feature states
are 11D, the pdf, p (W), can be expressed in terms of its PHD,
A (w), and vice versa as [30], [39]

pW) =c* [ A(w), (13)
weWw
A(w) = / Suw (W) p (W) 6W, (14)

where dw (W) = > /e 0w/ (W) is the sum of Dirac-Delta
functions concentrated at w' € W. By definition, the PHD is
not a pdf but rather an intensity, since [30]:

/)\(w)dw:]E[L}7
s

where L is the number of objects in the region, S, of the state
space, and E [-] is the expectation operator. The expression in
(15) is a crucial property as estimation of A (w) simultaneously
results in an estimate L.

15)

C. Multi-Feature PHD for Known Observer Positions

The PHD filter was originally proposed in [30] for a
static observer with known position. The results can be
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straightforwardly extended to a dynamic observer with known
states as summarized in (25) set at bottom of the page.

The posterior PHD, A (s; | r;,$2;.;) for any s; € S}, condi-
tional on the a priori known state of a moving observer, models
the hypotheses that 1) any detection may be due to a newborn
source, 2) any detection may originate from any of the existing
features, or 3) any existing feature may not be detected, i.e., [30]

A(se | e, Qi) =X (se| 1) + A (8¢ 10) + Aa (8] 1)
(16)

where the PHDs of newborn, missed, and detected features,
Mo (st ] re), A (8¢ ] 1y), and Ay (s¢ | r;) respectively, are

)\b(St| I't) :pb(St)A(St| rf,,ﬂt), (173)
Am (8| ) = (1 —pal(se)) A(se | v, Q1) (17b)
M,

P (Wim | I"uSt) A(se| e, Q1)
a(selre) =pa(se j{: .
wt,m | I‘t)

(17¢)

where A (s; | ry, ;) is the initial feature PHD, pj(s;) is the
probability of newborn features, py(s;) is the probability of
detection, and p (wy ,, | ry,s;) and £ (w4, | ;) are the single-
detection likelihood and evidence respectively, i.e.,

é(wt,m| rt):"{/(wt.m ‘ I‘t)"‘P(Wt,m | rt)7 (18)

P(wt,m | I‘t)

= /Pd(sz))\(st | rtaﬂlztfl) p(wt.m \ I't,St)dSt- (19)

The predicted PHD, A (s; | ry,21.4-1), is
)\(St \ I‘t,ﬂ1:t71)

= /Ps(St—l)p(Sf, | rt,St—l) /\(St—l | I‘t,Ql:t—1)dSt—1,
(20)

where pg(s;—1) is the survival probability, p(s; | rs,s:1)
is the single-feature transition density, and the PHD,
A(st—1 |1, Qy.4-1) is obtained by transforming A(s;— | r:—1,
Q1.+-1) to the current r;.

IV. PROPOSED GEM-SLAM ALGORITHM

SLAM sequentially estimates the joint marginal posterior
pdf, p (r+, St | Q1.4,¥1:¢). In this section, the proposed GEM-
SLAM algorithm is derived.

A. Posterior pdf

Defining X; = (r;,S;) and Z; = (y;, ;) as realizations
of marked point processes [40] corresponding to the joint
states and measurements respectively, the posterior SLAM pdf,
p(Xt| Zi.t), can be written using Bayes’s theorem as

where p(Z;| X;) is the likelihood function of the obser-
vations, and the predicted density, p(X;| Z1.,_1), is ob-
tained by marginalizing, X,_;, from the transition density,
p(X:| X¢-1), and the posterior at t — 1, i.e.,

p(Xr, | Zl:t—l)

= /p(Xt | X)) p(Xi21 | Z14-1) 60X (22)

Similar to (10), the posterior SLAM pdf is combinatorially
intractable, but can be approximated by its PHD as detailed
in the following subsections. The derivations can be found in
Appendix A.

B. Predicted GEM-SLAM PHD

Using the probability chain rule, the predicted pdf in (22) can
be written as

P(Xz | Z1:t71)

= /p(l‘t [ r)p (i1 | Yia—1)p (S| v, Quy—1) dry_q,
(23)

where p (S| ri, Q1.4-1) is defined in (11), and p(ry | r;-1)
and p(r;_1 | y1.4-1) are the observer prior pdf and posterior
pdf at £ — 1 respectively.. As derived in Appendix A-A, the
joint predicted PHD of (23) is given by

>\(Xt | Z1:t71)

= /p(rt | rt—l)p(rt—l | Y1:t—1)/\(St | thl:t—l)drt—h
(24)

for any x; € X, where \(s;| r;,Q1.4-1) is given in (20).
The joint predicted PHD therefore extrapolates p (r;—1 | y1.¢-1)
using the observer dynamics specified by the prior, p (1 | r;—1),
and marginalizes the previous observer state, r;_1, from the
result as well as the predicted feature PHD.

C. Updated GEM-SLAM PHD

Similar to (23), the probability chain rule can be applied
to (21), leading to (25) below. Note that Bayes’s theorem
for the posterior observer pdf, p(r:|yi.), and similarly
p (St | rs, Q1.4), can be arranged to
=p(y)p(re|ye), (26

p(ye|re)p(re | yie-1)

where p (y; | r¢) and p (r; | y1.4-1) are the likelihood and pre-
dicted observer pdf respectively. Inserting (26) into (25):

p(re | yie)p (| 1)

Xz Sil v,

p(Xi| Z1y) = p(Z | X¢) p(Xi| Z141) e p(Xi| Z14) = To(r yia)p (Qtlrt)drtp( | T, Q1)
fp Zf| X ) (X[ | Zlif,*l)(;Xt (27)

(X, | Z1y) = p(yilre) p(re| yia1)p(Q | v, Se)p (S| vy, Q14-1) 05)

Jfp(ye|re)

p(r| yia-1)p

(Qt \ Ftvst)P(St | Ql:t—l)dstdrt’
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where the multi-detection evidence, p (€2; | r;), is given by the
Chapman-Kolmogorov equation [42] as

p(Q] 1) = /p(ﬂt\ r.,Se)p(Se|re,Q1:4-1)08;. (28)

For tractability of (27), p (X, | Z;.;) is approximated by its
PHD, A (x; | Z1.;), which, from Appendix A-B, is

L r)p(ri] yia)
AGer| Z1:) _fﬁ(ﬂt | v¢)p (e | y1.e) dry

)\(St \ rhﬂlzt)a
(29)

where A (s; | r;,€;.;) is provided in (16) and (17). The multi-
detection evidence, £ (€2 | r¢), is given by

M,

L) &e NN H C(wim | 1e), (30)
m=1

where £ (w; ,, | 1) is defined in (18), and IV; . and N;j;_; re-
spectively are the number of false alarms and predicted features
obtained by applying (15).

The result in (29) is crucial as it allows for full exploitation of
the joint dependency between the features and the observer. The
features are dependent on the observer through A (s; | vy, €21.¢).
Simultaneously, the observer pdf is dependent on the features
through the multi-detection evidence, £ (€2, | r;), facilitating
probabilistic anchoring of the observer using the features. This
point is further elaborated on in Section V-C and Section V-E
for the model-specific GEM-SLAM realization. The necessary
equations for the general formulation of GEM-SLAM are sum-
marized in Algorithm 1.

To provide insight into the physical meaning of the multi-
detection evidence in (30), recall from (18) that the single-
detection evidence, ¢ (w; ,, | ry), models the probability of the
detection being either due to a false alarm with probability
K (Wi m | 11), or due to a feature with probability p (w; ., | r1).
For reasons of illustration, consider expanding the closed-
form solution in (30) using (18), leading to the combinatorial
expression:

My

£(Qt | rt) _ e—NLn*NH/—l [ H /‘f(wtﬁm I I‘t)

m=1

+ Z Hp(W|rt)

WHQ, weW

II

k(z] rt)] , (3D
ze{Q; —-W}

where W H €, denotes the partitions of set {2, not includ-
ing the empty set, and {Q2; — W} denotes the set difference.
The expression in (31) highlights that GEM-SLAM enumer-
ates explicitly all hypotheses of the origin of detections, i.e.,
1) all M; detections are false alarms; 2) all detections are due
to features at W = €Q;; and 3) each set partition W H 2, are
due to features, whilst the remaining detections, 2, — W, are
false alarms. As the expression in (31) involves combinatorial
terms, it is computationally intractable. This problem is avoided
by the closed-form expressions in (30) and (18). In fact, the
formulation of the multi-detection likelihood is one of the fun-
damental differences between the RB-PHD, SC-PHD filter and
GEM-SLAM as discussed in the following subsection.

Algorithm 1: Summary of GEM-SLAM.

Feature prediction, (20);
Feature update, (16)—(17);
Single-detection evidence, (18);
Multi-detection evidence, (30);
Predicted SLAM PHD, (24);
Updated SLAM PHD, (29).

SAA A s

D. Relationship to Existing Approaches

1) SC-PHD SLAM: The SC-PHD filter [36], [43] was the
first approach based on the closed-form solution of the multi-
detection evidence in (30). The SC-PHD filter formulates the
SLAM PHD as:

A\SC (x¢| Z124) = pSC€ (v | Q) A (st | v, Q1),  (32)
where the observer posterior pdf in (32) is given by
L Q.
P> (| Q) £ (R [ re)p(re| Q1) (33)

J L | r)p (x| Quyy)dry

Therefore, the SC-PHD filter propagates the observer estimates
using the predicted pdf, p (r+ | 21.;—1), only. Recalling the pre-
dicted SLAM PHD in (24) and the dynamical model in (1), the
SC-PHD filter therefore exploits the uncertainty in the dynami-
cal model of the observer, but cannot incorporate the uncertainty
in the reports.

In contrast, GEM-SLAM incorporates the uncertainty in the
observer dynamics as well as the reports via the posterior pdf of
the observer states. In (29), the observer information is optimally
fused with information inferred from the features by intersecting
the space of likely observer states of the posterior pdf with that
of the multi-detection evidence. The optimal exploitation of
additional information about the observer motion is crucial for
dynamic scenes in order to disambiguate information inferred
from the time-varying feature states.

2) RB-PHD SLAM: Similar to the SC-PHD filter, the RB-
PHD filter [28], [29] relies on the predicted pdf of the observer
state only. Moreover, the RB-PHD filter is based on the computa-
tionally intractable multi-detection evidence in (31). To address
the combinatorial nature of the expression, the RB-PHD filter
relies on an approximation, which considers the contribution of
a single feature only, (see Appendix B):

M,

ﬁRB (Qt | rt) s G*Nt_(‘*]\,‘"t‘ffl [ H H(Wt,m | rt)

m=1

M, M,
+ D d(wim [ ) [T 5 (@il rt)],

m=1 (=1
{#m
(34)

where
Cf(wz \ I't) £ /pd(st)P(wt,m | éhrt)p(ét | I‘t,Z1:t71)d§t

and §; is the single, selected feature. The multi-detection evi-
dence of the RB-PHD filter in (34) therefore accounts for two
hypotheses: either all detections are false alarms or all detections
are false alarms with the exception of a single detection that is
due to a feature. In contrast, GEM-SLAM in (30) accounts for
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the hypotheses that any partition of detections may be due to
features. GEM-SLAM therefore reduces to the RB-PHD filter
if Ny =1and p(y;| r;) = const.

3) FastSLAM: FastSLAM [23], [24], as an approach based
on Random Variables (RVs) rather than RFSs, assumes that all
features are static and exist permanently in the scene. Further-
more, it is assumed that at most one feature detection, wy, is
observed at each time step. The joint posterior pdf of the ob-
server state and features is therefore factorized as [23]:

Ny
p(ri|wiy) [[p(sal vywre ko),

n=1

p(Xf | rt7wl:t7y1:f,) ~

where k; is the detection-to-feature assignment, obtained by
heuristic [44] or probabilistic [25], [45] data association, and
p(r; | wy,ys) is the observer posterior pdf, evaluated using the
current, single detection w;. Using Bayes’s theorem, the single-
feature update is hence expressed by

p(wf | rfasnakf) (Sn | wl:tfl)

[ p(wi | rse k) p (s, | wii-1)ds,
(35

The feature PHD in (16) reduces to (35) for a detection probabil-
ity of p; = 1, survival probability p, = 1, false alarm intensity
K (wq, | r;) = 0, and detection cardinality of M; = 1. Further-
more, assume that the multi-detection RFS, €2;, can be consid-
ered as a sequence of M, single detections observed between
|t — 1,]. The multi-detection evidence in (30) thus reduces to
L] 1) =e it p(w,| ;). Therefore, under the above
assumptions, GEM-SLAM reduces to FastSLAM by a scaling
factor of e Vei-1,

p(sn|rtaw1:t7k1‘

V. MODEL-SPECIFIC REALIZATION

This section provides a model-specific realization of GEM-
SLAM for range-bearing sensors and dynamic features.

A. Model

To provide a model-specific realization of GEM-SLAM, con-
sider as an illustrative example a range-bearing sensor installed
in the body of a humanoid robot. The observer state is defined as
r, 2 [f-tT,vt,fyt}T where Ty = [2t, yr, 2t ]T is the 3D position,
v denotes the velocity, and ; is the orientation. Assuming that
the observer moves in the direction of its orientation, the posi-
tion, r;, becomes a non-linear function of the orientation. The
observer state can hence be separated into a linear subspace,

~ T . i
p: £ [f],v/] . and its non-linear dependency, -, such that

T

+ = [pf. %] . Hence:
Pt = Ft Pt-1 + Viv, v N(04><17 Et,vv) (363')
Y = 9(Y—1 + Vi), y ~N(0,07,) (36b)

where Op . is the P x 1 zero vector, N () denotes the Gaussian
pdf, v, v is the process noise with covariance ¥ ., and the
orientation in (36b) obeys a random walk with process noise,

vt -, process noise variance, o7 ., and ¥(a) = mod (a, 27).
Furthermore, '
F, 2 I3 [A; sin(y), A cos(vy),0]" 37)

0143 1 ’

where Ip is the P x P identity matrix and A, is the time delay
between ¢ — 1 and ¢. The observer reports, y; £ [Yevs Yt s ]T,
containing the reported speed, ; ,, and orientation, ¥, -, are
noisy measurements of the state, ry, i.e.,

Yt = hpy +wi o, Wi,p ~ N (0, 01,2,“,,”) (38a)

Yy = V(0 +wi ), wyy ~ N (0» UtQ,w,, ) (38b)

T .
where h £ [0,0,0,1]" and wy , and wy -, are the velocity and
orientation report noise with variance o7 , and o7, .

The state of each feature,n € 1,...,

. . . T
[xtmayt,naZtm,vxt,naytJmZtJL ] s
tion and velocity, such that

. A
Ny, is defined as s}, =

containing the source posi-

St =Dis{ 1, t 0, Dy, o~ N (06«1, Q) (39)

where n;, is the process noise with covariance Q;, and
the dynamical model, D;, follows a constant-velocity model.
Using a range-bearing sensor, each detection is defined as
Wi 2 [Tems Pt Ot }T, with sensor-to-feature range, r , ,
azimuth, ¢, ,,,, and elevation, 6, ,,,, where

Wi.m = g(st,n) + €, € m ~ N(O3><17 Rt,m) (40)

where g(-) is the Cartesian-to-spherical transformation, e, ,,
is the detection error with covariance, Ry ,,, and s;,, is the
sensor-relative feature state:

. T

stn =T(y)st, + [#],01xs] (41a)
cosy; —siny 01x4

T(y) = |siny cosy 0144 (41b)
0451 041 14

B. GM-PHD Filter for Feature Mapping

For the Gaussian state-space in (39) and (40), the feature PHD
in (16) reduces to a Gaussian Mixture Model (GMM), [31]:

Ji
Alse | re, Quer) = Zwi\]t)*l (St ’mt\t 10 Ez(tljt 1)
j=1
(42a)
M, Ji | |
St ‘ rt Z Z (j,m) (Sf, ’mg.l,m), zi,;gn)) .
m=1 j=1

(42b)

where J; 1 is the number of Gaussian Mixture (GM) compo-
r(\f) , and wﬁj"m
GM weights, and the predicted and updated mean, m

mgj’m and covariance, £7)  and E

tt—1

nents att — 1, w are the predicted and updated

(4)

i , and

, are given by the
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EKF [46], i.e
m) | =D,m), (43a)
>0 —p, sV DT 43b

tlt— 1= t -1 +Qt, ( )
mym) = mf‘\];s)q + ng’m) (Wt,m - g(mz(sft)—l)> ;» (430
=P = (1 - KM 6 =) (43d)

(3,m)

where the gain, K;”"’, is given via the measurement Jacobian,

j . . . j,m
G,EJ ), and innovation covariance, SEJ ) as:

K7™ =3 160 s, (44a)
Sij"m) GJ)Et‘Jt) 1[G§J)]T TRy (44b)

. . ~ (j () .
The previous mean and covariance, mif >1 and 33,”,, relative to

the current r,, are obtained using (41) as

m’, =T (y) [(Fil(%—l)m& + rt—l) - rt} )

S =TT ()= [ ()] T (). @9)

The GM weights are given by wiftll = p, (mii )1) wt@1 and:
) ()
(jom) _ pa(m m,,_ ) fi—1 ) )
o 14 (wt,m | rt) N (wt'm ’g(mt\t71>7 t ) s

(46)
where ¢ (W, | rt) is defined in (18) with

Z wf\t 1 (wt,m |g(m§‘7f)_1)’ ngm)) )
(47)

Furthermore, the newborn PHD can be modelled as a detection-
driven process [47], such that

p wt m ‘ rt

M, Ty

Z Zwbjt'")/\/ (Sf ‘ mb a

m=1j=1

>\b Sf | I‘r

=), @)

where J, is the number of newborn components sam-
pled from each of the M, detections. The newborn GM

mean is méjtm) =[g " (wrm)",
= G(‘”Rf " [Gi'j)]T, and weight,
Dy (mb] " ) )/ Jy, where g~ (-) is the spherical-to-Cartesian trans-

formation, and (&g, ¢o, 20) are constant a priori initialization
values of the feature velocity.

A A . .
o:o,yo,zo] , with covari-

(4,m) _

(4,m)
ance, X Wyt

C. Rao-Blackwellized Particle Filter for Observer
Localization

Recalling (36), the orientation, -, is described by a wrapped
Gaussian pdf [48], whilst p; is modelled by a Gaussian state-
space that is non-linearly dependent on ~;. To separate the
linear Gaussian subspace from the non-Gaussian orientation,
p (1| y1.¢) is factorized as

p(rt | y1:t) :p(% ‘ yl:t,",/)p (49)

(pt | ’Vtvylzt,v) .

where p (¢ | y1.4,7) andp (P | V¢, ¥1:4,0) are the posterior pdfs
of the orientation and linear subspace respectively. The for-
mulation of GEM-SLAM facilitates estimation of r; using a
Rao-Blackwellized particle filter [49], where 7, is estimated by
optimal Importance Sampling (IS) and p; is obtained from its
optimal estimator formulated below. Using optimal IS, I parti-

cles, fy,gi) ;o =1,..., 1, of the orientation are drawn from

4~ N (e ) )

where N (-) denotes a wrapped Gaussian pdf, and the mean,

/Ji 2, and variance, g< )

t,y
Filter (KF) [50].
As p; is described by a linear Gaussian state-space in (36a)
and (38a), the optimal estimator of p; is the KF. Therefore, for

(50)

are obtained by the wrapped Kalman

each 4"

(Pl Aoy ) =N (P iy i), 6D

where the mean, ug g , and covariance, gE D , are provided by the
KF equations based on the dynamical model in (37) evaluated

at4\" . Applying (49)~(51) to (29):
(Xt | Z 1:t)

Z

(pf | % ) yia, 17) A (St | f'gi),ﬂu)

(52)
where rt )& [N 7“})) LA } s A (st \ fl(ti),ﬂyt) is given by
(16),and at =0 @ / Z 1 ag 7) are the normalized IS weights.
Using (29):

&) = ol (|5 )piy0). (53)

where p (y;) is the observer report evidence, given as
pye) =N (un.

X N (yt,‘lf | h“gjl))a hgyl)) + 0—15211) + O-t27u_r,”> b (54)

i) 2 2
t O—t,'y + O-t,u,u,

where 01,2‘,1,» is the velocity component of 3, . Furthermore,
using (30), (18), (47):
; W_yo ,
£ i) = e Vi [Fv (wim 15")
m=1

Jiji1

+Zpd

w'Bd)
t\t 1N(wt,m |g(

t\t 1

(4,7 (4,4,m)
7)), s,

(55)

Therefore, the observer particles are weighted by the multi-
detection and observer report evidence terms. The detection
uncertainty in the observer orientation and speed, as well as the
rotational and translational agility are explicitly accounted for
via the observer evidence in (54). The multi-detection evidence
in (55) facilitates exploitation of the existence of multiple fea-
tures for observer localization. The product in (55) approaches
zero for an increasing number of detections corresponding to
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TABLE I
MODEL-SPECIFIC DIFFERENCES BETWEEN GEM-SLAM AND THE BENCHMARK ALGORITHMS
[ Algorithm ][ Observer estimation [ IS weight | Feature mapping |
GEM-SLAM Rao-Blackwellized IS, (49) and (50) | Report pdf & pdf of detection set given feature set, (52)-(54) | GM-PHD
SC-PHD Prior IS, (56) pdf of detection set given feature set, (54) GM-PHD
RB-PHD Prior IS, (56) pdf of detection set given single feature, (33) GM-PHD
FastSLAM Prior IS, (56) pdf of single detection given single feature, (19) EKF

Algorithm 2: GEM-SLAM.

. . - i Tt
1 nput {fgn,a;n,{mg Dol )
i=1

Jj=1

2: fori=1,. I do

3: Sample rt (50) (51);

4: forj=1,...,J;_ ldou

5 Evaluate 1&1£Z a 53£1J1> relatlve to #\") (45)
. (i.4)  $(i.d)

6: Predict m, ;" ],Eﬂtfl, t‘t 1 (43);

7 end for

8: form=1,..., M, do

9: forj=1,. Jb do N

10: Evaluate mb7 Jom) EZ()LB m) ,(ffj "m);

11: end for

12: forj=1,. Jtldo N

13: Evaluate s B g (44

14: Update miz - m>,2§”*m>,w§%"’> 43);

15: end for _

16: Evaluate £(w, , |#\")) (18), (47);

17: end for

18:  Evaluate £(£]i!") (55)
19: GM reductlon [51]

20: Evaluate & ozt (53)
21: Normalize weights, ail);
22: end for

23: Resampling [49];

low likelihood values. The optimal feature-to-detection align-
ment thus corresponds to the observer particle that maximizes
(55). Therefore, the observer is probabilistically anchored by
identifying the location and orientation that corresponds to the
optimal alignment between the features and detections. The
GEM-SLAM pseudo-code is provided in Algorithm 2.

D. Relationship to Existing Approaches

As PHD-based approaches, the RB-PHD and SC-PHD filter
use the same feature model as GEM-SLAM, estimated using
the Gaussian Mixture PHD (GM-PHD) filter in Section V-B. In
contrast, FastSLAM, based on RVs rather than RFSs, assumes
that feature detections are processed one-by-one with known
data association, and uses a single EKF for each feature.

The fundamental difference between the benchmark algo-
rithms and GEM-SLAM is the approach to observer localiza-
tion. The RB-PHD and SC-PHD filter as well as FastSLAM
model the observer state, r;, as the Cartesian feature coordi-
nates, T+, and use the observer reports as parameters of the con-

=Ny [sin(ym,),cos(yt,ﬂ,),O]T [25]. Hence,
Vi NN(OSXD Et,f) (56)

trol input, u,

P =T +u + vy,

where 3, ; is the process noise covariance. As (33) incorpo-
rates the predicted pdf, but not the updated posterior, observer
localization for the RB-PHD, SC-PHD filter, and FastSLAM is
realized by prior IS, i.e., [36]

’Uf(i) ~N ('Uf, |yt,1n O-tZﬁv)

:Yt(l) ~N (77‘ ’yt‘“/’v 03,1)7,) )
such that &\ = a!” £(€ | r{")). The particle state, £\, is
evaluated from (57) using (36). Based on (57), prior IS hence
incorporates the uncertainty in the dynamical model of the ob-
server, but cannot model uncertainty in the reports. Therefore,
prior IS is expected to lead to increased estimation variance
and hence decreased performance compared to optimal IS used
in GEM-SLAM [52]. Furthermore, the GEM-SLAM particle
weights in (53) compensate for the report evidence in addition
to the multi-feature evidence. As discussed in Section IV-D1,
this fusion is equivalent to evaluating the intersection between
the areas of likely observer positions corresponding to the re-
port and multi-detection evidence respectively. GEM-SLAM
is therefore expected to result in a significantly reduced area
of likely observer positions compared to the benchmark ap-
proaches.

Table I summarizes the model-specific differences between
GEM-SLAM, the RB-PHD and SC-PHD filter as well as Fast-
SLAM. The following subsection highlights these differences
using an illustrative example.

(57a)

(57b)

E. lllustrative Comparison

Consider the initial observer position at (5,2,1.8) m in
a6 x6x25m® room with vy =0 rad and vy = 0.5 m/s.
The observer trajectory is simulated using (36) and (38)
with oy, = 0.08 rad, o;,, = 0.1 m/s, oy, = 0.18 rad and
Otw, = = 0.5 m/s. Two static features are 1n1t1a11y located at
(4 3,1.8) m and (2,2, 1.8) m, both moving with a velocity of
(0.17 0.1,0) m/s in the x-y-z directions. The feature states and
detections are simulated using (39) and (40) for Q, = 10~ I
and R; = 0.1I3. The number of uniformly distributed false
alarms was simulated from a Poisson distribution with A\, = 1.
The room is divided into a grid with 5 cm? resolution in z- and
y-coordinates. The z-positions of the co-located observer sensor
and sources are assumed known a priori.

For each observer position in the grid, the EKF equations are
used to update the two feature states with each of the two detec-
tions, resulting in four new feature states. The resulting impor-
tance weights of GEM-SLAM, the SC-PHD filter, the RB-PHD
filter, and FastSLAM displayed as contour plots in Fig. 1. The
“confidence area” corresponding to the outermost contour level
is evaluated numerically based on the distances between ver-
tices along the contour lines. The resulting area for FastSLAM
assuming known data association is shown in Fig. 1(a) and
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the areas of likely observer positions for (a) FastSLAM assuming known data

association; (b) FastSLAM with incorrect data association; (c) the RB-PHD filter, LR (Q; | r;); (d) the SC-PHD filter, £ (€2, | r;); and (e) GEM-SLAM,

L(Q|1e)p(ye)

corresponds to a confidence area of 5.35 m?. In practice, data
association leads to false detection-to-feature assignments. The
impact of false assignments is illustrated in Fig. 1(b), clearly
showing that the ground truth observer position is outside of
the confidence area. Therefore, FastSLAM leads to unreliable
observer estimates for false data associations. The results for the
RB-PHD filter are shown in Fig. 1(c) and correspond to a con-
fidence area of 7.87 m?. The SC-PHD filter leads to an area of
6.22 m? (see Fig. 1(d)) by using the closed-form multi-detection
evidence rather than the approximation by the RB-PHD filter.
By fusing observer information inferred from the features with
the observer reports, GEM-SLAM in Fig. 1(e) leads to a reduced
confidence area of 2.24 m?.

F. Computational Complexity

The computational complexity of the GEM-SLAM realiza-
tion in Algorithm 2 is O(M,; N, I), i.e., linear in the feature de-
tections, number of features and observer particles. Therefore,
the complexity of GEM-SLAM is comparable to the RB-PHD
filter and multi-hypothesis FastSLAM as shown in [53], as well
as the SC-PHD filter [54]. As also mentioned in [53], all three
PHD-filter approaches can be reduced to O(M; I log(N;)) us-
ing binary tree enhancements [25].

The crucial advantage of GEM-SLAM in terms of complexity
is the required number of particles. As discussed in the previous
subsection and highlighted in Fig. 1, GEM-SLAM needs to sam-
ple from a significantly reduced area of likely observer positions
compared to the SC-PHD and RB-PHD filters as well as Fast-
SLAM. Therefore, fewer particles are required for GEM-SLAM
to achieve observer point estimates with comparable accuracy
to the benchmark approaches.

VI. EXPERIMENTAL SETUP

A. Simulation Setup

The experimental setup is designed to decouple the GEM-
SLAM performance from any specific detection algorithm.
Hence, an ‘oracle localizer’ is used so that the Root Mean
Square (RMS) localization error and rates of missing detec-
tions and false alarms can be controlled. The sensor path is
simulated for 300 waypoints from (36) with vy = 7 rad and
Ar =0.1s, with 07 = 0.52 rad” and %, ,, = 10"?I,. The
observer reports are simulated from (38) with default values
of o4, = 5m/s and oy ,,, = 0.02 rad. The sources are simu-
lated from (39) within a 50 x 50 x 3 m? surveillance volume
with Q, = diag [1072,1072,107%,10%], survival probability,
ps = 1, and initial positions at the centre of three randomly
selected quadrants inside the surveillance volume. The height
of each feature is randomly drawn from a uniform distribution
between [1.5,1.95] m. Feature detections are simulated from
(6) with R, ,, = diag[25,25,9]. False alarms are modelled by
a Poisson process with a default FAR of A\, = 0, and uniformly
distributed alarms within the surveillance volume.

SLAM performance in static scenes is typically verified using
open-source datasets, providing sensor data and accurate ground
truth positions of the moving observer and nearby static features
(see, e.g., [9, Table 46.1] for an overview). However, open-
source datasets that provide ground truth positions of dynamic
features are not currently available.

B. Experimental Description

Experiment 1: Evaluation for increasing RMS sensor report
errors in velocity of o, ,,, = 0,5, 10 m/s.
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Experiment 2: Evaluation for increasing FARs between A\, =
{0,3,5} with oy ,,, = 5 m/s.

Experiment 3: Evaluation for an increasing number of dy-
namic features, N; 4 = {0, 1,3}. Dynamic features are simu-
lated [55] for a constant velocity with an arbitrarily chosen ex-
ample value of 1 m/s. The orientation is simulated as a random
walk with process noise standard deviation of 0.35 rad.

C. Implementation Details

The GEM-SLAM realization in Section V-C is evaluated us-
ing I = 100 particles, and L, = 10 newborn feature compo-
nents per detection, N, = 107* and X, = diag [2,2, 1]. The
initial sensor state is assumed known a priori with 3¢ , =
diag [0.01,0.01,0.0025]. The sensor pdf is approximated by
evaluating the bimodal Kernel Density Estimate (KDE) over
the - and y-coordinates of the particles [56],

p(re] yie) =

! r i
Z () B () (g

1
w1

where H is the 2 x 2 symmetric, positive definite bandwidth.

To mitigate an exponential explosion, the feature GMM
is pruned to a maximum of 250 components using [31,
Table I1] with merging and truncation thresholds, 0.05 and 10~
respectively. Systematic resampling [49] is applied to the sensor
particle to avoid particle depletion [57].

The sensor point estimate, 1;, is extracted as the weighted
average of all particles. The number of features, N, is ob-
tained as the weighted average of the number of features across
all sensor particles. To extract feature point estimates, all fea-
ture GM means are transformed relative to r;. The Estimation-
Maximization (EM) algorithm in [58] is used to cluster the
feature means into N; + 1 clusters, with one diffuse cluster to
absorb outliers [59, Section 10.1].

The GEM-SLAM results are compared against FastSLAM
implemented as detailed in [25, Table 3.2]; the SC-PHD fil-
ter as per [43, Figure 6,7]; and the RB-PHD filter as in [28,
Table 1] for a single-feature map. All algorithms are initialized
with Jy = 0, i.e., without knowledge of the initial feature states.

D. Performance Metrics

Accuracy of the sensor estimates, reports, and ground truth is
evaluated using the Euclidean distance between two positions,

Xt 2 [Tt Yews 200 | and yy 2 [Ty, Uiy 20y |

deUCl(Xta Yt) = — Yt ||

where || - || denotes the Euclidean norm. The OSPA distance
[60], [61], A(X,,Y), is used as a measure of feature ac-

curacy, continuity, and false track initialization. Given X, £

{Xt,h . 7Xt.,N} and Y, £ {Yt,h cee a}’t,M}:
1
1 M ?
A(X,Y,) 2|~ min de(Xt,i, Yi,x(0))) + (N — M)c!
N?TEHN -

i=1
where 1 < p < oo is the OSPA metric order parameter, IIy
is the set of permutations of length M with elements from

{15 ceey N}a and dc (Xt.i7 yfﬂ'(z)) é min (07 d(Xt,i7 yt,ﬂ'(’i) )) iS
the cutoff distance between two tracks with cutoff value, c.

The OSPA parameters were chosen as ¢ = 30 m and p = 2 to
emphasize detection errors as discussed in [62].

VII. RESULTS

A. Experiment 1 - Velocity Error

The average Euclidean distance between the ground truth
observer path and GEM-SLAM estimates is shown in Fig. 2(a)
for each setting of o; ,,, . The results are compared against the
SC-PHD and RB-PHD filter, FastSLAM, and dead reckoning.

Across all three velocity error settings, GEM-SLAM achieves
an average Euclidean distance of between 0.37 m, 0.41 m, and
0.25 m with standard deviation of 0.14 m,0.17 m, and 0.11 m re-
spectively. In comparison, dead reckoning results in an average
localization error of 0.37 m with a standard deviation of 0.14 m
for 0y,,,, = 0 m/s. The error increases to 2.70 m with standard
deviation of 1.46 m for o, ,,, = 5 m/s, and to 12.86 m with
standard deviation of 6.48 m for oy ,,, = 10 m/s. GEM-SLAM
hence results in observer localization improvements compared
to dead reckoning of 84.81% and 98.05% for o ,,, = 5,10 m/s
respectively.

The SC-PHD filter results in average Euclidean distances of
5.23mfor 0y, = 0m/s,5 mforo; ., = 5m/s,and 8.48 m for
Ot w, = 10 m/s, with standard dev1at10n of 1.95 m, 2.39 m and
4.1 mrespectively. The RB-PHD filter results in a Euclidean dis-
tance of 5.18 m, 4.91 m, and 8.46 m and standard deviations of
1.92 m, 2.45 m, and 4.08 m respectively for the three settings of
Ot w, - Therefore, GEM-SLAM results in performance improve-
ments of 92.93%, 91.8%, and 97.05% compared to the SC-PHD
filter, as well as 92.85%, 91.64%, and 97.04% compared to the
RB-PHD filter for oy ,,, = 0,5, 10 m/s respectively.

The OSPA distances correspondmg to the feature mapping
accuracy of GEM-SLAM and the benchmark algorithms are
shown in Fig. 2(b). The results indicate that GEM-SLAM re-
sults in almost constant average OSPA distances of 1 m, 1.09 m,
and 0.9 m with standard deviations of 4.04 m, 4.05 m, and
4.06 m for oy ,,, = 0,5, 10 m/s respectively. In comparison, the
SC-PHD filter results in OSPA distances of 15.76 m, 15.95 m,
and 17.98 m with standard deviations of 8.18 m, 8.20 m, and
7.96 m respectively for the three velocity error settings. The RB-
PHD filter corresponds to OSPA distances of 15.89 m, 15.91 m,
and 18.23 m, with 8.13 m, 8.12 m, 7.81 m standard deviation
respectively. Therefore, GEM-SLAM outperforms the SC-PHD
and RB-PHD filters by up to 16.99 m and 17.33 m respec-
tively. These results are clearly correlated with the significant
improvement in observer localization.

To provide further insight into the results, Fig. 3 shows the
estimated scene map obtained by GEM-SLAM at ¢t = 100 for
o¢,w, = 0 m/s and for o, ,,, = 10 m/s. A comparison with the
estimated map obtained by the SC-PHD filter is also provided.
For the baseline scenario of 0y ,,, = 0m/s, theresultsinFig. 3(a)
show that the GEM-SLAM estimates of the observer trajectory
and feature positions accurately reflect the ground truth. In con-
trast, the map estimates of the SC-PHD filter in Fig. 3(b) diverge
from the true observer path, resulting in increasing errors in the
feature estimates.

This divergence is attributed to two factors. Firstly, by rely-
ing on only the feature information for observer localization,
the SC-PHD filter leads to ambiguities in the estimated ob-
server position when no features exist in the map, and can
hence not be used to probabilistically anchor the observer. In our
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Fig. 2. Performance evaluation of GEM-SLAM and comparison to the SC-PHD and RB-PHD filter, FastSLAM, and dead reckoning. (a),(b) Experiment 1 for
increasing reported velocity error; (c), (d) Experiment 2 for increasing FAR; (e),(f) Experiment 3 for an increasing number of moving features. Bars show the
distance metrics and whiskers indicate the standard deviation across time. Top row: Average Euclidean distance of the observer state estimates compared to the
ground truth across all time steps. Bottom row: Average OSPA distance of the multi-feature states.
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experiments, all algorithms are initialized without prior knowl-
edge of the feature positions. Features therefore need to be
initialized from the observer-relative detections whilst simul-
taneously estimating the observer position itself. Ambiguity in
the observer position can be resolved by optimally exploiting
the observer reports, as demonstrated by the GEM-SLAM re-
sults. Secondly, uncertainty in the feature detections leads to
uncertainty in observer localization. In the baseline scenario of
o0, = 0deg, the observer reports are affected only by the ori-
entation error of 0y, ,,, = 1 deg. Report noise is therefore almost
negligible, as indicated by the accurate dead reckoning estimates
shown in Fig. 3(a) and 3(b). Nevertheless, the variance of prior
importance sampling for the SC-PHD filter is determined by the
process noise, i.e., 0,/2‘7 = 0.52 rad?, therefore leading to large
estimation variance. In contrast, the use of the Rao-
Blackwellized particle filter in GEM-SLAM leads to a reduced
estimation variance, as both the report and process noise vari-
ance are explicitly used for importance sampling. The results
are verified for a realistic velocity error of o, ,,, = 10 deg in
Fig. 3(c) and 3(d).

The results in Fig. 2(a) also compare the GEM-SLAM per-
formance against FastSLAM. The results highlight that Fast-
SLAM results in a observer localization performance of 0.75 m,
2.69 m, and 7.23 m with standard deviation of 0.34 m, 1.45 m,
and 4.35 m for oy ,,, = 0,5,10 m/s respectively. Observer lo-
calization of FastSLAM is therefore less robust to report uncer-
tainty than GEM-SLAM. Nevertheless, despite the increasingly
inaccurate observer estimates, FastSLAM’s performance in fea-
ture mapping remains relative constant with OSPA distances
of 14.33 m, 14.86 m, and 15.33 m and standard deviations of
7.59 m, 7.6 m, and 6.53 m for the three velocity error settings.
The OSPA performance of FastSLAM is therefore comparable
to that of the SC-PHD and RB-PHD filter for scenarios where
uncertainty is dominated by observer report errors. Neverthe-
less, GEM-SLAM outperforms FastSLAM by up to 96.54%
in observer localization accuracy and 94.13% accuracy in the
feature map.

B. Experiment 2 - False Alarms

The results for increasing FARs, as discussed in Section VI-B,
are summarized in Fig. 2(c). The results highlight robustness of
observer localization for GEM-SLAM with Euclidean distances
of 0.28 m, 0.26 m, and 0.29 m with standard deviations of
0.1 m, 0.09 m, and 0.1 m for A. = 0, 3, 5 respectively. As only
the FAR is varied in this experiment, dead reckoning results in
an observer localization error of 4.69 m with 1.56 m standard
deviation across all three settings of .. GEM-SLAM results
in an improvement in observer localization of at least 93.8%
compared to dead reckoning. The performance improvements
of GEM-SLAM compared to the SC-PHD filter correspond to
95.96%, 96.02%, and 95.44%. The performance improvements
of GEM-SLAM compared to the RB-PHD filter is between
95.91% and 96.5%, and against FastSLAM between 92.03%
and 93.14%.

GEM-SLAM also outperforms the benchmark algorithms in
terms of feature mapping acccuracy, with OSPA distance of
1.12 m, 10.97 m, and 16.11 m for A. = 0, 3,5 respectively.
These results correspond to an improvement of between 59.95%
and 95.58% compared to the SC-PHD filter; between 55.16%
and 95.51% compared to the RB-PHD filter; and between
59.20% and 93.78% compared to FastSLAM.

[ "%  Estimated feature
True feature

Detected feature
Feature GM component

North position, y [m]

Dead reckoning
T

|“l.'0l:l‘.

| I
| #+sssee+ Estimated observer path

30 40 50
East position, z [m]

Fig. 4. GEM-SLAM scene map for \. = 5, showing that 7 detections, in-
cluding 4 false alarms, cause a single false initialization.

The increasing OSPA distance with increasing \. is mainly
attributed to temporary false feature initializations. To illustrate
this point, Fig. 4 shows the estimated scene map at ¢t = 200
for a single Monte Carlo run with A. = 5. The results show
that from 7 detections, a single feature is falsely initialized
at (46.29, 33.29) m. Nevertheless, the features are accurately
mapped with estimates at (37.13,38.08) m, (12.46,12.75) m,
and (12.44,37.93) m compared to the ground truth at
(37.46,37.65) m, (12.57,12.68) m, and (12.65, 37.73) m. False
feature initialization could be reduced by reducing the number
of birth components, J,, or by decreasing the birth weight,
wy. Either setting reduces the contribution of birth components,
thereby reducing the estimated number of features. As a trade-
off, reducing the birth weight also results in slower initialization
of features. Adverse affects of slow initialization on observer lo-
calization can be avoided if the initial positions of some of the
features are known a priori.

C. Experiment 3 - Number of Dynamic Features

The observer localization performance of GEM-SLAM is
compared to the benchmarks in Fig. 2(e), whilst Fig. 2(f) shows
the corresponding OSPA results for feature mapping. The results
highlight that GEM-SLAM achieves observer localization with
accuracy of 0.23 = 0.01 m on average across all three scenarios.
Feature mapping is achieved with 2.2 m OSPA distance for a
fully dynamic scene where all three features as well as the
observer are moving. For a single moving feature, GEM-SLAM
achieves an OSPA distance of 1.99 m, whilst a fully static scene
results in 0.97 m feature mapping accuracy.

The SC-PHD and RB-PHD filter result in OSPA distances
of 19.71 m and 19.55 m respectively, whilst FastSLAM results
in an OSPA distance of 16.06 m for three moving features. A
fully static scene results in OSPA distances of 16.65 m for the
SC-PHD filter, 16.59 m for the RB-PHD filter, and 14.46 m for
FastSLAM. GEM-SLAM therefore results in a feature mapping
performance improvement for fully dynamic scenes of 88.83%,
88.74% and 86.30% compared to the SC-PHD filter, RB-PHD
filter, and FastSLAM respectively.

VIII. CONCLUSION

This paper proposed a novel approach to SLAM, called
GEM-SLAM, that is targeted at 1) dynamic scenes for moving
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sensors and moving objects for 2) applications that enable per-
ception beyond vision using sensors not conventionally used for
SLAM. GEM-SLAM optimally fuses observer information in-
ferred from feature detections with knowledge from the observer
reports. GEM-SLAM was shown to generalize existing PHD-
based state-of-the-art approaches, expressing the SC-PHD and
RB-PHD filter as special cases. Specifically, we showed that the
SC-PHD filter relies only on observer information inferred from
the features to localize the observer, and is therefore affected
by ambiguities that arise from uncertainty in feature detection.
GEM-SLAM mitigates these ambiguities by optimally fusing
observer information from the features with the observer re-
ports. Moreover, we showed that the RB-PHD filter is based on
a single-feature approximation of the multi-detection evidence.
In contrast, GEM-SLAM exploits a closed form solution of the
evidence. The proposed approach was evaluated and compared
against the performance of the three benchmark algorithms in
three experiments. The experiments demonstrated significant
performance improvements and robustness against 1) report er-
rors, 2) FAR, and 3) uncertainty due to dynamic features.

APPENDIX A
GEM-SLAM DERIVATION

This appendix presents the derivation of the results in
Section IV. In the following, the Probability Generating Func-
tional (p.g.fl.) [30] is used as a tool to simplify manipulations of
set integrals. The posterior p.g.fl., Gy, |z, [T], of aRFS, X}, with
realization, X, given RFS, Z;, with realization, Z,, is defined
as [30]:

GuialT)2 [TXp(Xi| Z0)6X, (A
where T is a test function over the support of X;:
]., lf Xt = (Z)
Xt = 1
-_— Hx eX ,I’(Xt)7 let = {Xt,]’ N 7Xt,N, } .
Ny 2 xee2e
The p.gfl. is related to the pdf via
"Gz, [T
X Zyy) = ———————— A2
p( ! ‘ 1‘f/) 6Xl‘,1 e 6Xt,77, T—0 ( )

The PHD can be obtained from a p.g.fl. via the following rela-
tion:

0Gx, 1z, [T]

/\(Xt,| Zl:t) = ox
t

(A3)

T=1
The pdf and PHD can be obtained from the p.g.fl. by differen-
tiating and setting the test function to O or 1 respectively [30],
[39].

A. GEM Prediction

The predicted p.g.fl. is found by multiplying both sides of
(22) by T integrating over X, and applying (A.1), i.e.,

Gz, [T] = // H T(x)p( X+ | Xi-1)
x; €Xy

Xp( X1 Z14-1) 0 X0 X1, (A4)

Expanding A&} into r; and S;:

Gyz [T = // {/ Gss o [T|re] p(re | i) dry

Xp(Si—1| v, Quy—1) p(re1 | Yiu—1) 0841 dr,.

(A.3)
As shown in [30], for any RES, F = F; U--- U Fy:
Gr[T)=Gp[T]...Gpy [T). (A.6)
Hence, using (4) and (A.6) the p.g.fl., Gs, s, , [T'|r], is:
Ny
Gs,is,  [T|re] = Gs,p[T|re] H Gs,is, o, [Llred, (AT
n=1

where G, p[T|r;] is the p.gfl. of newborn features,
Gs,is 1, [T|r] is the transition p.g.fl. from ¢ — 1 to ¢ [30]:

G151 . [TIr] =p (0] si-1.0) + / T(s)p (5t | St-1.0) dsi.
(A.8)

Using (A.7) and (A.8), the p.g.fl. in (A.5) can be written as

Gz, [T = //P(rt | re-1) p(reo1 | yie-1)

x G, [Tl Gs, 0, [Gsys,,, [Tlre]] drydryy,
(A.9)

where G's, |0, , [T'|r;]is the multi-feature p.g.fl. at ¢ — 1 condi-
tional on the RFS of feature detections, O;_;, with realization,
Qt,1 :

G5171|0171 [GSI ISt —1.n [T‘rf]] £

N
/H (GS, 1St 1.n [T\ft]) p(Si—1 |1, Q1) 681.

n=1

Applying (A.3) to (A.9), results in (24).

B. GEM Update
Multiplying both sides of (10) by 7%, and integrating over
X, the posterior p.g.fl., Gy, |z [T], is found as

Hz, x[T
G, [T] = 2 1]

— A.10
Hz, x[1] (A10)

where
Hz, 5112 [ ] Txo)p(Z:1X0)p(X11Z141)0 X,
x€Xy

Expanding X; by S; and r; and Z; by y; and €2;:

Hz o [T) = / p(yelen)p(eely 1)

Ny

x / (H T(St,ml‘t)> p(2[Se,11)p(St],1e, Q1:4-1)0S,dry,

1=1

(A.11)
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where the multi-detection likelihood function, p(€2;|S;,r;) is
derived using (A.2). The detection p.g.fl. required for the differ-
entiation is obtained using (A.6) and (7), such that

Go, s, [Tl = Go,p[T H Goyis, . [T']
n=1
Gouis. . (1) = p0lre,s) + [ T'wiplelri,sen o
(A.12)
Inserting (A.12) into (A.11) hence leads to:
51\/[,,
Hz 1 [T] = TWFZ“X’ [T], (A.13)

where

fzmﬂz/%@ﬁwmmmmm%mm

Mo

Fo, 5[T) 2 Go,[T"|Gs 0, [T Go,s,., [T
Using (A.3), (A.10) and (A.13):

§M

1) 59, FZr Xy [T]

x| Z
) R e

(A.14)

T=1
The numerator is obtained as

5 oM
—F T
5, o6, L2
d SMe 7
= dT't 5Qt (5s Fo, Sf[ ]p(}’t|rt)p(rt|y1:t—l)drt
51\[, 5 A
59 5S Or Sr[ ]p(yt‘rt)p(rt‘ylztfl)' (A15)

The partial derivative, 5;’; pr Fo, s,[1], was derived in [30]:

SMe g .
5Qt dS F(’)r Sr[ ] = E(Qt|rt))\(st\rt, Zl:t) (A16)
with £(€;|r;) as defined in (30). Inserting (A.16) into (A.15):
§ &M
0% 07, Ztth[ ] .
= L(Q|r)A(selre, Z1.) p(yelre) plrelyre-1).  (AL7)

The denominator in (A.14) is obtained in a similar way, i.e.,
61\[ f

FXon Fz

1] = //J(Qt Ir) p(ye|re)p(re|yie—1)dry
(A.18)
Inserting (A.17) and (A.18) into (A.14) yields (29).
APPENDIX B
RB-PHD REDERIVED

The multi-detection evidence can be expressed as:
p(Q| 1) = /p(ﬂt | e, 80)p(Si| 1, Q1.4-1) 08,
(B.1)

Alternatively, p (£2; | S¢, ) can be expressed as [63]

p(Q | Sy,1) = Z p(W]Si,r)p(—W|0r).
wCXx,

Applying (13) to p (€, — W | 0, r;) and with IID detections:

p (| St re) (B.2)

Z H p(wi|Si,ry) H K(ze| 1),

WCX,w, eW z,€(2, —W)

where k (z; | ;) = (zt | 0, r;). Inserting (B.2) into (B.1):

2 I

WC X, 2,60, -W)

p(Q|r) = k(2| 1)

I »(wil Si,x)p(Si|re,Q141)8S;.  (B3)

w; eW

Applying (12) to (B.3), and reducing the resulting sum to a
single feature and single detection as in [29] results in (34).

APPENDIX C
NOMENCLATURE
t Time index
Ay Time delay between ¢t — 1 and ¢
M, Number of feature detections
Ni, Nyjy—1 Updated / predicted number of features
Ni.c Number of false alarms
r; Observer state at ¢
Yt Observer reports at ¢
S, Feature RFS at ¢
S, Realization of S;
st Single-feature state in global reference frame
sf,;n Single-feature state relative to r;
o (+) Probability of feature birth
pa() Probability of feature detection
ps(+) Probability of feature survival
O, Feature detection RFS
Q, Realization of O,
Wim Single-feature detection
Xy SLAM RFS
X, Realization of X}
Z SLAM measurement RFS
Z; Realization of Z;
(") Probability density function
A(9) Probability hypothesis density
X () PHD of newborn features
A (7) PHD of surviving features
Aa(+) PHD of detected features
G(") Probability Generating Functional

T Test function

Single-detection evidence
Multi-detection evidence

False alarm likelihood

Maximum number of false alarms
Dynamical model of observer state
Observer report model

Dynamical model single-source state
Feature-to-detection transformation
Feature persistence process

)
. — .
NG

Q QU > > =
~ N =S~

g
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By
K
D(")
u
Vi

N()
Nur(.)
I(-)
uf-)

[ -dw
T-ow
Ky

Pt

Qi Gy
Tt
Kot~
Sty
/J't,p
St,p

Feature birth process
False alarm process
Feature detection process
Control input

Process noise on dynamical model of observer

state

Observer report noise

Normal distribution

Wrapped normal distribution
Wrapping operator

Uniform distribution

Integral over random variable, w
Set integral over set W
Detection-to-feature assignment
Linear subspace of observer state
3D observer position

Observer orientation

Observer speed

Reported observer speed

Reported observer orientation
Observer dynamical model
Observer report model

Process noise on p;

Covariance of v,

Velocity component of X3
Process noise on ~y;

Variance of v;

Report noise on v,

Variance of wy ,,

Report noise on ~;

Variance of w; ,

Specific feature dynamical model
Feature process noise

Covariance of n; ,,
Cartesian-to-spherical transformation
Feature detection error

Covariance of e; ,

Rotation matrix

Number of feature GM components
Number of feature birth GM components
Updated / predicted GM weight
GM weight of birth component
Updated / predicted GM mean
Updated / predicted GM covariance
GM mean of birth component

GM covariance of birth component
Kalman gain

Kalman innovation covariance
Measurement Jacobian

Number of observer particles
Normalized / unnormalized importance weight
Observer orientation particle

Mean of proposal distribution for 7,
Variance of proposal distribution for -,
Mean of posterior pdf of p,
Covariance of posterior pdf of p,
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